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ABSTRACT 

In the United States, manufacturing facilities accounted for about 32% of total domestic 
energy consumption in 2014. Robust energy tracking methodologies are critical to understanding 
energy performance in manufacturing facilities. Due to its simplicity and intuitiveness, the 
classic energy intensity method (i.e. the ratio of total energy use over total production) is very 
widely adopted. However, the classic energy intensity method does not consider the variation of 
other relevant parameters (i.e. product type, feedstock type, weather, etc.). Furthermore, the 
energy intensity method assumes that facilities’ base energy consumption (energy consumption 
at zero production) is zero, which rarely holds true. Therefore, it is commonly recommended to 
utilize regression models rather than the energy intensity approach for tracking improvements at 
the facility level. Unfortunately, it is challenging for some energy managers to understand why 
regression models are statistically better than the classic energy intensity method. While 
anecdotes and qualitative information may convince some, many have major reservations about 
the accuracy of regression models and whether it is worth the time and effort to gather data and 
build quality regression models. This paper will explain why regression models are theoretically 
and quantitatively more accurate for tracking energy performance improvements. Based on the 
analysis of data from 114 manufacturing plants over 12 years, this paper will present quantitative 
results on the importance of utilizing regression models over the energy intensity methodology. 
This paper will also document scenarios where regression models do not have significant 
relevance over the energy intensity method. 

Introduction 

In the United States, industrial facilities accounted for about 32% of total national energy 
consumption in 2014 (EIA 2015). Improving energy efficiency of industrial facilities benefits 
companies financially, mitigates energy-related business risks, and protects the environment by 
reducing greenhouse gas emissions. To improve facilities’ energy efficiency, companies have 
implemented energy conservation projects and adopted or advanced energy management 
systems. To demonstrate energy savings from energy conservation projects and assess the 
effectiveness of energy management systems, methodologies are required to accurately track the 
energy performance of manufacturing facilities (ISO 2011; 2014). 



 

 

The simplest approach is to compare the annual total energy consumption on utility bills. 
This is the least accurate methodology as it does not consider the variation in products types, 
production, scheduling or manufacturing processes. It only, to some extent, considers weather by 
comparing similar time periods. 

To minimize the influence of all relevant factors, many measurement and verification 
protocols and energy tracking methodologies had been proposed (ASHRAE 2014; Kissock 2006; 
Lammers 2011; Goldstein 2013; NEEA 2013; US DOE 2016; Therkelsen 2016). One approach 
is to use classic energy intensity (CEI) which involves simply dividing annual total energy use 
by annual total production of plants. Due to its simplicity and intuitiveness, this classic energy 
intensity method is very widely adopted in industry. This is definitely some improvement from 
the annual total energy consumption comparison; however, this simple energy efficiency metric 
has some major flaws. As explained in the next section, using CEI comparison to track energy 
performance fundamentally assumes that the base energy consumption (energy consumption 
with no production) is zero. In other words, it is assumed that the relationship between total 
energy and production can be represented by a straight line through origin with the slope as the 
ratio of annual total energy consumption over production. Unfortunately, this zero base energy 
assumption very rarely holds valid, because supporting energy systems or major manufacturing 
equipment almost never unloads perfectly with production due to technological and operational 
limitations (US DOE 2015). 

A better approach is to utilize monthly energy (or shorter time periods) and production 
data to generate linear regression models to represent the relationship between energy 
consumption and production. These regression models can be used to normalize production and 
even other parameters that affect energy consumption. Unfortunately, it is challenging for some 
facility energy managers to understand why regression models are statistically better than 
utilizing the CEI method. While anecdotes and qualitative information may convince some, 
many have major reservations about the accuracy of regression models and whether it is worth 
the time and effort to gather data and build quality regression models.  

This paper will first explain why regression models are engineeringly and statistically 
more accurate for tracking energy performance improvements. Then based on the analysis of 586 
sets of manufacturing plants monthly electricity and production data from114 manufacturing 
plants over 12 years, this paper will present quantitative results on the importance of utilizing 
regression models over CEI methodology. 

Theoretical Background 

Engineering Perspective 

The classic energy intensity method uses one single number, the ratio of annual total 
energy consumption to production, to represent one whole year’s energy performance 
characteristics and perform year-to-year energy performance comparisons. For example, the 
annual energy consumption and production of year 1 and 2 are TE1, TP1, TE2, and TP2, 
respectively. The energy savings (ES) percentage from year 2 to 1 will be: 

 
𝐸𝑆(%) = 	1 − 𝑇𝐸+ 𝑇𝑃+ / 𝑇𝐸. 𝑇𝑃.  (1)  
 



 

 

CEI is a basic production normalization approach. It is apparent that the only variable 
considered in CEI is production. More importantly, this production normalization approach also 
implicitly assumes that the relationship between production and energy consumption is linear 
with zero base energy consumption (the energy consumption with no production) and a slope of 
the ratio of annual total energy over production. To some facility energy managers, this 
assumption is obscure and hard to understand. To illuminate this major underlying assumption, 
Equation (1) is expanded to its full version as illustrated below. 

To make a relatively fair comparison on energy performance for two years with different 
production rates, one logic thought is to compare the projected energy consumption if both years 
has the same production rates – the norm production rate (TPN). 

 
Year 1 energy consumption for the norm production rate will be: 
𝑇𝐸/. = 𝑇𝐸. 𝑇𝑃.×𝑇𝑃/ (2) 
Year 2 energy consumption for the norm production rate will be:  
𝑇𝐸/+ = 𝑇𝐸+ 𝑇𝑃+×𝑇𝑃/ (3) 
The energy savings percentage from year 2 to year 1 is: 
𝐸𝑆(%) = 	1 − 𝑇𝐸+ 𝑇𝑃+×𝑇𝑃/ / 𝑇𝐸. 𝑇𝑃.×𝑇𝑃/  (4)  
After canceling TPN, Equation (4) becomes Equation (1). 
𝐸𝑆(%) = 	1 − 𝑇𝐸+ 𝑇𝑃+ / 𝑇𝐸. 𝑇𝑃.  (1)  
 
Equations 2 to 4 show the how Equation (1) is obtained. For equations (2) and (3), please 

note that when TPN is zero, the TEN1 and TEN2 will be zero. In other words, if the production is 
zero, the energy consumption will be zero. This almost never holds true for any manufacturing 
plants, because manufacturing systems and supporting energy systems almost never perfectly 
unload with production rate due to current technology and operation limitations. In fact, base 
energy consumption for most manufacturing facilities can be up to 40% of its full load energy 
consumption (DOE 2015). 

Statistical Perspective 

As described above, the CEI approach assumes that the relationship between production 
and energy consumption is linear with zero intercept (i.e. zero base energy consumption) and 
with a slope of the ratio of annual total energy over production. In other words, this approach 
uses a linear regression through the origin to represent the relationship between energy 
consumption and production. From a statistical perspective, linear regression through the origin 
is not always the most accurate way to represent the relationship. Figure 1 shows the comparison 
between a linear relationship through the origin with a slope of the ratio of total electricity use 
over production (i.e. CEI) and the least squares one variable linear regression (LSOVLR) model 
for an automobile assembly plant.  

 
 



 

 

 
 

Figure 1. CEI vs. LSOVLR 

 
From Figure 1, it can be observed that LSOVLR graphically is a more accurate 

representation of the relationship between energy consumption and production than the CEI 
approach for this manufacturing plant. Statistically, the values of R2 (Coefficient of 
Determination) and SE (Standard Error of Regression) also quantitatively demonstrates that 
LSOVLR is more accurate than CEI for this specific case. 

Data Analysis 

Manufacturing Plants Energy Usage Data 

To demonstrate the advantage of LSOVLR over CEI, 586 sets of monthly electricity and 
production data have been analyzed. This data set includes 12 years (2005-2016) of data from 
114 manufacturing plants. The nine manufacturing subsectors included in this data set are shown 
in Table 1. 

 
                Table 1. Manufacturing Subsectors of Energy Usage Data Sets 
 

NAICS Manufacturing Subsectors 

324 Petroleum and Coal Products 
Manufacturing 

325 Chemical Manufacturing 
331 Primary Metal Manufacturing 
333 Machinery Manufacturing 
334 Computer and Electronic Product 



 

 

Manufacturing 

335 Electrical Equipment, Appliance, and 
Component Manufacturing 

336 Transportation Equipment Manufacturing 

337 Furniture and Related Product 
Manufacturing 

339 Miscellaneous Manufacturing 
 

SE Ratio 

R2 and Standard Error of Regression (SE) are two most common goodness-of-fit 
statistical measures. R2 basically is the percentage of the dependent variable variation that can be 
explained by a linear model (Montgomery 2012). SE represents the average distance between the 
actual values and the regressions output (Frost 2014). In other words, SE intuitively shows the 
how close the predicted values are to the observed values.  

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑	𝐸𝑟𝑟𝑜𝑟	𝑜𝑓	𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛	 𝑆𝐸 = 	
𝑌> − 𝑌?

+

𝑛 − 𝑝  

Where: 
𝑌> = Actual sample values 
𝑌?	= Predicted sample values 
𝑛 = Number of samples 
𝑝 = Number of variables not including the intercept 
 
Due to its intuitiveness, SE is adopted as the method to decide how well a linear 

regression model fits data. To compare the statistical error of CEI method and LSOVLR, when 
the SE ratio of CEI over LSOVLR is greater than 1.1, it is interpreted that LSOVLR improved 
accuracy. When the SE ratio is less than 1.1, it is interpreted that LSOVLR does not significantly 
improve accuracy. Some measurement and verification protocols (e.g. ASHRAE 2014) have 
uncertainty requirement of equal to or less than 10% and use 10% savings as approach selection 
threshold. Therefore, this paper selects SE ratio threshold of 1.1 for demonstration purpose. SE 
ratio threshold can be less or greater than 1.1 depending on the energy performance tracking 
accuracy requirements by facilities and measurement and verification protocols to comply. 
Please note that selecting different SE ratio thresholds might affect the conclusions. 

Figure 2 shows the SE ratio of CEI over LSOVLR for various plant annual electricity 
uses. It can be observed that SE ratio ranges from about 1.0 to 3.0 for almost all plant sizes 
(electricity consumption perspective). For some plants with electricity consumption around 
1.0×106 MMBtu, the SE ratio can be up to 9.6. It is also interesting that for plants with electricity 
consumption more than 1.0×105 MMBtu and less than 2.0×106 MMBtu, the SE ratio is relatively 
greater than smaller or larger plants, this might be worth future investigation. 

Figure 3 shows that, for 152 data sets, the SE ratio is equal to or less than 1.1. In other 
words, for these data sets, using CEI does not compromise much accuracy. There are 265 data 
sets for which the SE ratio is greater than 1.1 and less than or equal to 2.0. This means for these 



 

 

data sets LSOVLR has considerably improved accuracy. For the other 169 data sets, SE ratio is 
greater than 2.0 and for some data sets, the SE ratios are up to 9.6 (Fig. 2). For these data sets, 
CEI will not be recommended because of significantly compromised accuracy. In summary, 
from SE perspective, LSOVLR greatly improves accuracy for 74% (434) of the studied data sets 
and CEI and LSOVLR has similar accuracy for 26% (152) of these data sets. 

 

 
                                 Figure 2. SE Ratio CEI over LSOVLR 

 

 
Figure 3 SE Ratio Distribution 



 

 

P-value of Intercept 

As mentioned before, CEI is basically a one variable linear relationship with the intercept 
of zero and the slope of the ratio of annual total energy over total production. For LSOVLR, by 
minimizing the sum of the squares of the errors between projected and actual sample values, the 
intercept and slope are determined with some consideration of the monthly energy and 
production variation. In other words, the fundamental differences between CEI and LSOVLR are 
the methodologies of obtaining linear relationship’s intercepts and slopes. 

The p-value of intercept tests the hypothesis that the intercept equals to zero (Kutner 
2003). The smaller the p-value is; the more likely the intercept is non-zero or the more likely the 
assumption of zero intercept in CEI is not true. On the other hand, the p-value of slope tests the 
hypothesis that the slope equals to zero. Since CEI approach only assumes the intercept of zero, 
only the p-value of intercept has been examined in this study. 

Figure 4 shows the intercept p-values for the studied data sets. It can be observed that for 
almost all plant sizes (electricity consumption perspective), intercept p-value ranges from 0 to 
1.0. Unlike SE ratio distribution, there is not much p-value range variation between plant sizes. 
From Figure 5, for 80% (469) of these data sets, the intercept p-value is less than 0.1. In other 
words, for these data sets, it is very likely that the intercept of zero hypothesis is invalid. On the 
hand, for other 20% (117) of these data sets, the intercept of zero hypothesis can be valid or it is 
highly uncertain that the intercept is zero. 

 

 
Figure 4. Intercept p-values 



 

 

 

Figure 5. Intercept p-value bin distribution 

SE Ratio and p-value of intercept 

SE ratio compares the overall statistical errors of CEI and LSOVLR and p-value of 
intercept examines the hypothesis of zero intercept (i.e. zero base energy consumption) assumed 
by CEI. When the zero-intercept assumption is not valid, it is very likely the error of CEI will be 
more significant and the SE ratio of CEI and LSOVLR will be greater. In other words, there 
should be some correlation between SE ratio and p-value of intercept.  

Figure 6 illustrates the correlation between SE ratio and p-value intercept. It can be 
observed that, for most data points, when p-value of intercept is less than 0.1, as p-value of the 
intercept decreases, SE ratio increases dramatically. In other words, when the assumption of zero 
intercept is more likely invalid, the accuracy of CEI will drop significantly. For outliers above 
the intercept p-value and SE ratio curve, their p-values are greater than 0.5 or the assumption of 
zero intercept is likely true, but their SE ratios are relatively high. This might be caused by the 
different slopes of CEI and LSOVRL. For outliers below the intercept p-value and SE ratio 
curve, their p-values is zero or the assumption of zero intercept is very likely untrue, but their SE 
ratios are relatively smaller. For these data points, even though LSOVRL makes more 
engineering sense, but LSOVRL’s advantage is not demonstrated through SE ratio. 

Figure 7 shows the data points distribution when considering both SE ratio and p-value of 
intercept. When SE ratio is greater than 1.1 and p-value of intercept is less than 0.1, LSOVLR is 
both more statistically accurate and made more engineering sense. 73% (428) of these data set 
fall into this category. When SE ratio is greater than 1.1 and p-value of intercept is greater than 
0.1, even though the assumption of zero intercept might be valid, LSOVLR is still more 
statistically accurate. 1% (5) of these data points are in this category. When SE ratio is less than 
1.1 and p-value of intercept is greater than 0.1, the assumption of zero intercept might be valid 
and LSOVLR does not significantly improve accuracy. 19% (112) of these data set is in this 



 

 

category. When SE ratio is less than 1.1 and p-value of intercept is less than 0.1, the assumption 
of zero intercept is very likely invalid, but LSOVLR does not significantly improve statistical 
accuracy. 7% (41) of these data set are in this category. In summary, for 81% (474) of the 
studied data sets, LSOVLR will be recommended to track facilities’ energy performance because 
LSOVLR improves accuracy, or makes more engineering sense, or both. On the other hand, only 
19% (112) of the studied data sets, CEI may be adopted to track facilities’ energy performance. 

 
Figure 6. SE ratio and p-value of intercept 

 

Figure 7. SE ratio and p-value of intercept bin distribution 



 

 

Conclusions 

This paper first has explained why CEI approach is fundamentally a linear relationship 
with zero intercept (zero base energy consumption) and a slope of the ratio of annual total energy 
consumption over production. Then 586 sets of monthly plants electricity and production data 
has been analyzed to quantitatively demonstrate the advantage of LSOVLR over CEI approach. 
It has been found that LSOVLR considerably improved accuracy for 74% (434) of the studied 
data sets while CEI and LSOVLR had similar accuracy for 26% (152) of these data sets. It has 
also been observed that for 80% (469) of these data sets, the intercept of zero assumption was 
very likely invalid and, for other 20% (117) of these data sets, intercept of zero assumption can 
be valid. Considering both SE ratio and p-value of intercept, for 81% (474) of the studied data 
sets, LSOVLR is a more accurate way to track facilities’ energy performance as it either 
improves accuracy or makes more engineering sense or both. On the other hand, only 19% (112) 
of the studied data sets, CEI may be adopted to track facilities’ energy performance. 

Future Work 

CEI and LSOVLR are different approaches to obtain both intercept and slope. This paper 
only studied the p-value of the intercept and its correlation with SE ratios. Future work will 
include studying the effect of CEI and LSOVLR derived slopes on the SE values and model 
accuracy.  

The findings in this paper support the improved accuracy of the LSOVLR approach 
under most circumstances and demonstrate that CEI is only potentially more beneficial for about 
19% of the analyzed plants’ energy data sets. Future work will analyze and evaluate under which 
plant-related circumstances (industry type, plant size, plant age, operation shifts, product types, 
etc) the CEI approach produces comparable results to the LSOVLR approach. Doing so will help 
facility energy managers understand where the CEI approach can be confidently used and where 
the LSOVLR approach may provide more accurate energy tracking results. 

The conclusions are based on the SE ratio threshold of 1.1. Future work will also include 
the sensitivity study of SE ratio threshold.  

Lastly, other future work includes expanding the comparison approach to incorporate 
advanced regression and energy tracking techniques (for example, comparing cumulative sum of 
differences for the CEI and LSOVLR approaches).  This paper only analyzed the CEI versus a 
one-variable, production-based regression model.  The authors will investigate the relative 
accuracy improvement of multi-linear models and non-linear models versus the CEI approach.  
In addition, the authors will explore categorizing the slope and intercept values by industry type 
to see if additional macro-trends can be identified. 
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