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ABSTRACT

In the United States, manufacturing facilities accounted for about 32% of total domestic
energy consumption in 2014. Robust energy tracking methodologies are critical to understanding
energy performance in manufacturing facilities. Due to its simplicity and intuitiveness, the
classic energy intensity method (i.e. the ratio of total energy use over total production) is very
widely adopted. However, the classic energy intensity method does not consider the variation of
other relevant parameters (i.e. product type, feedstock type, weather, etc.). Furthermore, the
energy intensity method assumes that facilities’ base energy consumption (energy consumption
at zero production) is zero, which rarely holds true. Therefore, it is commonly recommended to
utilize regression models rather than the energy intensity approach for tracking improvements at
the facility level. Unfortunately, it is challenging for some energy managers to understand why
regression models are statistically better than the classic energy intensity method. While
anecdotes and qualitative information may convince some, many have major reservations about
the accuracy of regression models and whether it is worth the time and effort to gather data and
build quality regression models. This paper will explain why regression models are theoretically
and quantitatively more accurate for tracking energy performance improvements. Based on the
analysis of data from 114 manufacturing plants over 12 years, this paper will present quantitative
results on the importance of utilizing regression models over the energy intensity methodology.
This paper will also document scenarios where regression models do not have significant
relevance over the energy intensity method.

Introduction

In the United States, industrial facilities accounted for about 32% of total national energy
consumption in 2014 (EIA 2015). Improving energy efficiency of industrial facilities benefits
companies financially, mitigates energy-related business risks, and protects the environment by
reducing greenhouse gas emissions. To improve facilities’ energy efficiency, companies have
implemented energy conservation projects and adopted or advanced energy management
systems. To demonstrate energy savings from energy conservation projects and assess the
effectiveness of energy management systems, methodologies are required to accurately track the
energy performance of manufacturing facilities (ISO 2011; 2014).



The simplest approach is to compare the annual total energy consumption on utility bills.
This is the least accurate methodology as it does not consider the variation in products types,
production, scheduling or manufacturing processes. It only, to some extent, considers weather by
comparing similar time periods.

To minimize the influence of all relevant factors, many measurement and verification
protocols and energy tracking methodologies had been proposed (ASHRAE 2014; Kissock 2006;
Lammers 2011; Goldstein 2013; NEEA 2013; US DOE 2016; Therkelsen 2016). One approach
is to use classic energy intensity (CEI) which involves simply dividing annual total energy use
by annual total production of plants. Due to its simplicity and intuitiveness, this classic energy
intensity method is very widely adopted in industry. This is definitely some improvement from
the annual total energy consumption comparison; however, this simple energy efficiency metric
has some major flaws. As explained in the next section, using CEI comparison to track energy
performance fundamentally assumes that the base energy consumption (energy consumption
with no production) is zero. In other words, it is assumed that the relationship between total
energy and production can be represented by a straight line through origin with the slope as the
ratio of annual total energy consumption over production. Unfortunately, this zero base energy
assumption very rarely holds valid, because supporting energy systems or major manufacturing
equipment almost never unloads perfectly with production due to technological and operational
limitations (US DOE 2015).

A better approach is to utilize monthly energy (or shorter time periods) and production
data to generate linear regression models to represent the relationship between energy
consumption and production. These regression models can be used to normalize production and
even other parameters that affect energy consumption. Unfortunately, it is challenging for some
facility energy managers to understand why regression models are statistically better than
utilizing the CEI method. While anecdotes and qualitative information may convince some,
many have major reservations about the accuracy of regression models and whether it is worth
the time and effort to gather data and build quality regression models.

This paper will first explain why regression models are engineeringly and statistically
more accurate for tracking energy performance improvements. Then based on the analysis of 586
sets of manufacturing plants monthly electricity and production data from114 manufacturing
plants over 12 years, this paper will present quantitative results on the importance of utilizing
regression models over CEI methodology.

Theoretical Background
Engineering Perspective

The classic energy intensity method uses one single number, the ratio of annual total
energy consumption to production, to represent one whole year’s energy performance
characteristics and perform year-to-year energy performance comparisons. For example, the
annual energy consumption and production of year 1 and 2 are TE,, TP;, TE,, and TP,,
respectively. The energy savings (ES) percentage from year 2 to 1 will be:

ES(%) = 1= (TE;/TP,)/(TE,/TP,) (1



CEl is a basic production normalization approach. It is apparent that the only variable
considered in CEI is production. More importantly, this production normalization approach also
implicitly assumes that the relationship between production and energy consumption is linear
with zero base energy consumption (the energy consumption with no production) and a slope of
the ratio of annual total energy over production. To some facility energy managers, this
assumption is obscure and hard to understand. To illuminate this major underlying assumption,
Equation (1) is expanded to its full version as illustrated below.

To make a relatively fair comparison on energy performance for two years with different
production rates, one logic thought is to compare the projected energy consumption if both years
has the same production rates — the norm production rate (TPy).

Year 1 energy consumption for the norm production rate will be:
TEy, = TE,/TP;XTPy ()

Year 2 energy consumption for the norm production rate will be:
TEy, = TE,/TP,XTPy 3)

The energy savings percentage from year 2 to year 1 is:

ES(%) = 1— (TE,/TP,XTPy)/(TE,/TP;XTPy) (4)

After canceling TPx, Equation (4) becomes Equation (1).
ES(%) = 1—(TE,/TP,)/(TE,/TP,) (1

Equations 2 to 4 show the how Equation (1) is obtained. For equations (2) and (3), please
note that when TPy is zero, the TEx; and TEN; will be zero. In other words, if the production is
zero, the energy consumption will be zero. This almost never holds true for any manufacturing
plants, because manufacturing systems and supporting energy systems almost never perfectly
unload with production rate due to current technology and operation limitations. In fact, base
energy consumption for most manufacturing facilities can be up to 40% of its full load energy
consumption (DOE 2015).

Statistical Perspective

As described above, the CEI approach assumes that the relationship between production
and energy consumption is linear with zero intercept (i.e. zero base energy consumption) and
with a slope of the ratio of annual total energy over production. In other words, this approach
uses a linear regression through the origin to represent the relationship between energy
consumption and production. From a statistical perspective, linear regression through the origin
is not always the most accurate way to represent the relationship. Figure 1 shows the comparison
between a linear relationship through the origin with a slope of the ratio of total electricity use
over production (i.e. CEI) and the least squares one variable linear regression (LSOVLR) model
for an automobile assembly plant.
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Figure 1. CEI vs. LSOVLR

From Figure 1, it can be observed that LSOVLR graphically is a more accurate
representation of the relationship between energy consumption and production than the CEI
approach for this manufacturing plant. Statistically, the values of R* (Coefficient of
Determination) and SE (Standard Error of Regression) also quantitatively demonstrates that
LSOVLR is more accurate than CEI for this specific case.

Data Analysis
Manufacturing Plants Energy Usage Data
To demonstrate the advantage of LSOVLR over CEI, 586 sets of monthly electricity and

production data have been analyzed. This data set includes 12 years (2005-2016) of data from

114 manufacturing plants. The nine manufacturing subsectors included in this data set are shown
in Table 1.

Table 1. Manufacturing Subsectors of Energy Usage Data Sets

NAICS Manufacturing Subsectors
Petroleum and Coal Products
324 .
Manufacturing
325 Chemical Manufacturing
331 Primary Metal Manufacturing
333 Machinery Manufacturing
334 Computer and Electronic Product




Manufacturing

335 Electrical Equipment, Appliance, and
Component Manufacturing

336 Transportation Equipment Manufacturing
Furniture and Related Product

337 )
Manufacturing

339 Miscellaneous Manufacturing

SE Ratio

R”and Standard Error of Regression (SE) are two most common goodness-of-fit
statistical measures. R” basically is the percentage of the dependent variable variation that can be
explained by a linear model (Montgomery 2012). SE represents the average distance between the
actual values and the regressions output (Frost 2014). In other words, SE intuitively shows the
how close the predicted values are to the observed values.

S . _ [Z(-7)
tandard Error of Regression (SE) = Iy

Where:

Y; = Actual sample values

Y, = Predicted sample values

n = Number of samples

p = Number of variables not including the intercept

Due to its intuitiveness, SE is adopted as the method to decide how well a linear
regression model fits data. To compare the statistical error of CEI method and LSOVLR, when
the SE ratio of CEI over LSOVLR is greater than 1.1, it is interpreted that LSOVLR improved
accuracy. When the SE ratio is less than 1.1, it is interpreted that LSOVLR does not significantly
improve accuracy. Some measurement and verification protocols (e.g. ASHRAE 2014) have
uncertainty requirement of equal to or less than 10% and use 10% savings as approach selection
threshold. Therefore, this paper selects SE ratio threshold of 1.1 for demonstration purpose. SE
ratio threshold can be less or greater than 1.1 depending on the energy performance tracking
accuracy requirements by facilities and measurement and verification protocols to comply.
Please note that selecting different SE ratio thresholds might affect the conclusions.

Figure 2 shows the SE ratio of CEI over LSOVLR for various plant annual electricity
uses. It can be observed that SE ratio ranges from about 1.0 to 3.0 for almost all plant sizes
(electricity consumption perspective). For some plants with electricity consumption around
1.0x10° MMBtu, the SE ratio can be up to 9.6. It is also interesting that for plants with electricity
consumption more than 1.0x10° MMBtu and less than 2.0x10° MMBtu, the SE ratio is relatively
greater than smaller or larger plants, this might be worth future investigation.

Figure 3 shows that, for 152 data sets, the SE ratio is equal to or less than 1.1. In other
words, for these data sets, using CEI does not compromise much accuracy. There are 265 data
sets for which the SE ratio is greater than 1.1 and less than or equal to 2.0. This means for these



data sets LSOVLR has considerably improved accuracy. For the other 169 data sets, SE ratio is
greater than 2.0 and for some data sets, the SE ratios are up to 9.6 (Fig. 2). For these data sets,
CEI will not be recommended because of significantly compromised accuracy. In summary,
from SE perspective, LSOVLR greatly improves accuracy for 74% (434) of the studied data sets
and CEI and LSOVLR has similar accuracy for 26% (152) of these data sets.
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Figure 2. SE Ratio CEI over LSOVLR
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P-value of Intercept

As mentioned before, CEI is basically a one variable linear relationship with the intercept
of zero and the slope of the ratio of annual total energy over total production. For LSOVLR, by
minimizing the sum of the squares of the errors between projected and actual sample values, the
intercept and slope are determined with some consideration of the monthly energy and
production variation. In other words, the fundamental differences between CEI and LSOVLR are
the methodologies of obtaining linear relationship’s intercepts and slopes.

The p-value of intercept tests the hypothesis that the intercept equals to zero (Kutner
2003). The smaller the p-value is; the more likely the intercept is non-zero or the more likely the
assumption of zero intercept in CEI is not true. On the other hand, the p-value of slope tests the
hypothesis that the slope equals to zero. Since CEI approach only assumes the intercept of zero,
only the p-value of intercept has been examined in this study.

Figure 4 shows the intercept p-values for the studied data sets. It can be observed that for
almost all plant sizes (electricity consumption perspective), intercept p-value ranges from 0 to
1.0. Unlike SE ratio distribution, there is not much p-value range variation between plant sizes.
From Figure 5, for 80% (469) of these data sets, the intercept p-value is less than 0.1. In other
words, for these data sets, it is very likely that the intercept of zero hypothesis is invalid. On the
hand, for other 20% (117) of these data sets, the intercept of zero hypothesis can be valid or it is
highly uncertain that the intercept is zero.
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Figure 4. Intercept p-values
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Figure 5. Intercept p-value bin distribution
SE Ratio and p-value of intercept

SE ratio compares the overall statistical errors of CEI and LSOVLR and p-value of
intercept examines the hypothesis of zero intercept (i.e. zero base energy consumption) assumed
by CEI. When the zero-intercept assumption is not valid, it is very likely the error of CEI will be
more significant and the SE ratio of CEI and LSOVLR will be greater. In other words, there
should be some correlation between SE ratio and p-value of intercept.

Figure 6 illustrates the correlation between SE ratio and p-value intercept. It can be
observed that, for most data points, when p-value of intercept is less than 0.1, as p-value of the
intercept decreases, SE ratio increases dramatically. In other words, when the assumption of zero
intercept is more likely invalid, the accuracy of CEI will drop significantly. For outliers above
the intercept p-value and SE ratio curve, their p-values are greater than 0.5 or the assumption of
zero intercept is likely true, but their SE ratios are relatively high. This might be caused by the
different slopes of CEI and LSOVRL. For outliers below the intercept p-value and SE ratio
curve, their p-values is zero or the assumption of zero intercept is very likely untrue, but their SE
ratios are relatively smaller. For these data points, even though LSOVRL makes more
engineering sense, but LSOVRL’s advantage is not demonstrated through SE ratio.

Figure 7 shows the data points distribution when considering both SE ratio and p-value of
intercept. When SE ratio is greater than 1.1 and p-value of intercept is less than 0.1, LSOVLR 1is
both more statistically accurate and made more engineering sense. 73% (428) of these data set
fall into this category. When SE ratio is greater than 1.1 and p-value of intercept is greater than
0.1, even though the assumption of zero intercept might be valid, LSOVLR is still more
statistically accurate. 1% (5) of these data points are in this category. When SE ratio is less than
1.1 and p-value of intercept is greater than 0.1, the assumption of zero intercept might be valid
and LSOVLR does not significantly improve accuracy. 19% (112) of these data set is in this



category. When SE ratio is less than 1.1 and p-value of intercept is less than 0.1, the assumption
of zero intercept is very likely invalid, but LSOVLR does not significantly improve statistical
accuracy. 7% (41) of these data set are in this category. In summary, for 81% (474) of the
studied data sets, LSOVLR will be recommended to track facilities’ energy performance because
LSOVLR improves accuracy, or makes more engineering sense, or both. On the other hand, only

19% (112) of the studied data sets, CEI may be adopted to track facilities’ energy performance.
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Figure 6. SE ratio and p-value of intercept
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Conclusions

This paper first has explained why CEI approach is fundamentally a linear relationship
with zero intercept (zero base energy consumption) and a slope of the ratio of annual total energy
consumption over production. Then 586 sets of monthly plants electricity and production data
has been analyzed to quantitatively demonstrate the advantage of LSOVLR over CEI approach.
It has been found that LSOVLR considerably improved accuracy for 74% (434) of the studied
data sets while CEI and LSOVLR had similar accuracy for 26% (152) of these data sets. It has
also been observed that for 80% (469) of these data sets, the intercept of zero assumption was
very likely invalid and, for other 20% (117) of these data sets, intercept of zero assumption can
be valid. Considering both SE ratio and p-value of intercept, for 81% (474) of the studied data
sets, LSOVLR is a more accurate way to track facilities’ energy performance as it either
improves accuracy or makes more engineering sense or both. On the other hand, only 19% (112)
of the studied data sets, CEI may be adopted to track facilities’ energy performance.

Future Work

CEI and LSOVLR are different approaches to obtain both intercept and slope. This paper
only studied the p-value of the intercept and its correlation with SE ratios. Future work will
include studying the effect of CEI and LSOVLR derived slopes on the SE values and model
accuracy.

The findings in this paper support the improved accuracy of the LSOVLR approach
under most circumstances and demonstrate that CEI is only potentially more beneficial for about
19% of the analyzed plants’ energy data sets. Future work will analyze and evaluate under which
plant-related circumstances (industry type, plant size, plant age, operation shifts, product types,
etc) the CEI approach produces comparable results to the LSOVLR approach. Doing so will help
facility energy managers understand where the CEI approach can be confidently used and where
the LSOVLR approach may provide more accurate energy tracking results.

The conclusions are based on the SE ratio threshold of 1.1. Future work will also include
the sensitivity study of SE ratio threshold.

Lastly, other future work includes expanding the comparison approach to incorporate
advanced regression and energy tracking techniques (for example, comparing cumulative sum of
differences for the CEI and LSOVLR approaches). This paper only analyzed the CEI versus a
one-variable, production-based regression model. The authors will investigate the relative
accuracy improvement of multi-linear models and non-linear models versus the CEI approach.
In addition, the authors will explore categorizing the slope and intercept values by industry type
to see if additional macro-trends can be identified.

Acknowledgments
The authors thank the financial support from the Advanced Manufacturing Office of U.S.

Department of Energy. However, the opinions expressed here do not necessarily reflect the
policies of the sponsor.



References

ASHRAE. 2014. ASHRAE Guideline 14 2014: Measurement of Energy, Demand, and Water
Savings.

EIA. 2015. Monthly Energy Review (DOE/EIA-0035(2015/04)).

Frost, Jim. 2014. "Regression Analysis: How to Interpret S, the Standard Error of the
Regression". The Minitab Blog, Minitab Inc. http://blog.minitab.com/blog/adventures-in-
statistics-2/regression-analysis-how-to-interpret-s-the-standard-error-of-the-regression

Goldstein, D., J. Almaguer. 2013. Developing a Suite of Energy Performance Indicators (EnPIs)
to Optimize Outcomes. Niagara Falls, NY. ACEEE Summer Study on Energy Efficiency in
Industry 2013.

ISO. 2011. ISO 50001 — Energy Management System Standard — Requirement with Guidance for
Use.

ISO. 2014. ISO 50015 — Measurement and Verification of Organizational Energy Performance —
General Principles and Guidance.

Kissock, K., C. Eger. 2006. Measuring Industrial Energy Savings. Detroit, MI. Society of
Automotive Engineers World Congress and Exposition 2006.

Kutner, M., C. Nachtsheim, J. Neter. 2004. Applied Linear Regression Models. New York City,
NY: McGraw-Hill Education.

Lammers, N., F. Sever, B. Abels, K. Kissock. 2011. Measuring Progress with Normalized
Energy Intensity. Detroit, MI, USA. Society of Automotive Engineers World Congress
Conference 2011.

Montgomery, D. 2012. Introduction to Linear Regression Analysis. Hoboken, NJ: John Wiley &
Sons, Inc.

NEEA (Northwest Energy Efficiency Alliance). 2013. Energy Baseline Methodologies for
Industrial Facilities. Portland, OR. 2013.

Therkelsen, P., P. Rao, D. Sholes, B. Meffert, R. Green, S. Nimbalkar, A. McKane. 2016. The
Value of Regression Models in Determining Industrial Energy Savings. Berlin, Germany.
Industrial Efficiency Conference 2016.

US DOE. 2015. Quadrennial Technology Review.

US DOE. 2016. Superior Energy Performance Measurement and Verification, Washington DC.



