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Abstract. In this study, we present a novel application of sketch gesture
recognition on eye-movement for biometric identification and estimating
task expertise. The study was performed for the task of mammographic
screening with simultaneous viewing of four coordinated breast views as
typically done in clinical practice. Eye-tracking data and diagnostic de-
cisions collected for 100 mammographic cases (25 normal, 25 benign, 50
malignant) and 10 readers (three board certified radiologists and seven
radiology residents), formed the corpus for this study. Sketch gesture
recognition techniques were employed to extract geometric and gesture-
based features from saccadic eye-movements. Our results show that sac-
cadic eye-movement, characterized using sketch-based features, result in
more accurate models for predicting individual identity and level of ex-
pertise than more traditional eye-tracking features.
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1 Introduction

Survival of breast cancer disease is largely dependent on early detection through
the annually recommended mammographic screening process. Studies show that
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2 Geometry

through early detection, while the disease is localized, patients have a 98.5%
relative survival rate in comparison to a 25% survival rate when the cancer is
metastasized; a point at which the disease becomes incurable [42].

The timely detection of breast cancer is made possible through a process
known as mammographic cancer screening. Mammographic screening is a spe-
cialized examination of X-ray images of interior breast tissues by a trained ra-
diologist. Achieving expertise in radiology requires specialized training, which
consists of 5 - 7 years of Radiology residency and fellowship, and years of expe-
rience during which the practitioner develops an intuition for the task. Expert
radiologists exhibit notably outstanding characteristics, such as increased speed
and higher overall accuracy with which he/she makes decisions on the pathology
of an image, which differentiate them from non-experts. However, the length of
training, and the specific nature and duration experience necessary to achieve
expertise has been the subject of much research in medical imaging [5,30,23].

Although the exact relationship between experience and expertise remains
unclear, one approach to establishing a quantitative relationship between the
two, within the context of mammography, is through identifying differences in
visual search behavior between experts and non-expert image readers [30,23]. In a
study of six image readers (board certified radiologists and Radiology residents),
Krupinski [22] compared cumulative cluster dwell times on 20 mammographic
cases between experience groups. A comparison of the median values for expe-
rienced and inexperienced image readers revealed that experienced readers tend
to have shorter dwell times. Their findings suggest that temporal measures of
visual search behavior may be important factors in differentiating experience
level of image readers.

Kundel and LaFolette [25] evaluated the eye-movements of 24 subjects, which
included laymen, medical students, and experienced radiologists while viewing
normal and abnormal chest radiographs. They reported an evolution of observers’
scanpaths from the localized central patterns of first-year medical students to
the circumferential patterns of the experienced radiologist. They noted that,
in addition to the distinct nature of experienced radiologists’ scanning patterns,
experienced radiologists also moved their eyes to the target faster and were more
accurate at interpreting what they saw. Kundel and LaFolette’s findings suggest
that geometric properties of scanning patterns formed during visual search may
be important factors in differentiating between experienced and inexperienced
image readers.

To investigate human factors associated with proficiency of diagnostic pathol-
ogy, Krupinski et al. [24] conducted a study examining the eye-movement of nine
image readers of varied experience level (medical students, Pathology residents,
and pathologists). They reported that, when compared with Radiology residents
and medical students, experienced pathologists exhibited longer saccades on av-
erage (measured in seconds). A similar trend was noted when comparing medical
students Radiology residents.

In addition, they reported that the average saccade velocity for experienced
pathologists was lower in comparison with Radiology residents, who’s average
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velocity was higher than those recorded for medical students. They noted that
the decreasing trend in saccade velocity with years of experience was consistent
within the experienced pathology group (board certified pathologists), with the
more experienced pathologists exhibiting a significantly lower average saccade
velocity than the less experienced pathologists. Krupinski et al’s findings suggest
that distance and velocity measures of eye-movement during visual search in
diagnostic pathology may also be important factors in differentiating between
experienced and inexperienced readers.

In this paper, we describe a novel application of sketch gesture recognition
to extract discriminative information from eye-tracking data for the purpose of
user identification and for determination of task proficiency in Radiology. The
remainder of this paper is organized as follows. Section 2 provides a general
introduction to the domain of sketch recognition along with related. Section 2
also covers related work in eye movement-based biometric identification. Section
3 describes our experimental procedure and data processing methods. Section
4 presents the results from our experiments. Sections 5 gives a brief discussion
of results followed by conclusions and acknowledgements in Sections 6 and 7
respectively.

2 Related Work

2.1 Sketch Gesture Recognition

Sketch is considered a natural form of communication involving free form shapes,
letters, and numbers, which encode contextual meaning. Sketches can be consid-
ered as a special class of gestures. The fundament in sketch recognition involves
encoding patterns contained within a sketch gesture in a manner, which permits
accurate interpretation and inference based on the intent of the author of the
sketch gesture [16]. The domain of sketch recognition utilizes machine intelli-
gence to capture and interpret intent of the author making the sketch gestures.
The correct interpretation of gesture intent enables the integration of sketch ges-
tures in user interface systems, which in turn enables intelligent manipulation
and computation on the recognized input.

There are numerous algorithmic contributions to general artificial intelli-
gence from the domain of sketch recognition. The majority of sketch recog-
nition algorithms fall into one of three broad categories: geometry-based al-
gorithms [34], vision-based (appearance-based) recognition algorithms [20,32],
and gesture-based (motion-based) algorithms [40,27], or hybrid combinations of
these [7].

Geometry-based algorithms apply geometric relationships and constraints to
describe primitive (basic) shapes, which combine to form recognizable high-level
shapes [34]. Appearance-based recognition algorithms rely on the appearance of
a sketched shape; ignoring timing and ordering constraints of data points [38].
These algorithms rely on recognition techniques, such as template-matching, on
the snapshot of a sketched shape to distinguish between shapes [20,32]. Gesture-
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based (motion-based) recognition algorithms rely primarily on the path of mo-
tion of a strokes that make up a sketch shape. Gesture-based algorithms char-
acterize shapes based on how individual strokes are drawn (the path of each
stroke) in contrast with the shape of the stroke, even though the latter can be
correlated. These types of algorithms were initially conceptualized for identifica-
tion of a small set of application-specific gesture commands [40,27]. Rubine [40]
developed a pen input gesture-based recognition system (GRANDMA), which
enabled recognition of single stroke gestures through simple trainable linear clas-
sifiers. In this work, Rubine proposed and evaluated 13 features for classifying
ten different gesture datasets, each containing 15 classes, and reported an aver-
age accuracy of 98%. In a followup work, Long et al. [27] proposed 11 additional
features to those developed by Rubine.

Sketch recognition algorithms were previously applied to solve challenging
pattern recognition problems in other domains [14,43,26]. Dixon and Hammond
in 2010 [9,15] and Pramanik and Bhattacharjee in 2012 [36] applied sketch recog-
nition algorithms to identify faces in images from sketched drawings. They re-
ported an average of 86% similarity with the top five matches using their method,
which was significantly higher than averages from the two alternatives presented
(eigenface: 43%, and sketch transform method: 80%).

Cig and Sezgin [6] developed a eye-movement interaction system, which inter-
prets eye-movement patterns as auxiliary commands to augment pen-based ges-
tures as a mode selection mechanism (drag, minimize, scroll etc.) during sketch
interaction. Their results demonstrated that manipulation commands can be
recognized with 88% accuracy using natural gaze behavior during pen interac-
tions. In [32], Ouyang and Davis presented a robust, multiple domain sketch
recognition system, which uses vision based decomposition methods to classify
hand-drawn symbols. Their system represented symbols as a set of feature im-
ages, in contrast to geometric or temporally ordered data points. These image
features capture properties of the constituent strokes in a sketch symbol, such
as orientation and the location of end points.

More advanced systems [13,45] are able to identify high-level shapes by us-
ing geometry-based algorithms to characterize its constituent low-level shapes.
Valentine et al. developed Mechanix, an intelligent, interactive, on-line tutoring
system, which allows engineering students to enter planar truss and free-body
diagram solutions to homework problems [45]. The work reported in this paper
does not represent the first time sketch-based features have been applied to hu-
man motions other than pen [33,29,2], but it is the first time they have been
applied to characterize eye-movement.

2.2 Eye-Movement as a Biometric

Biometrics refer to authentication techniques, which rely on easily verifiable
physical characteristics of an individual. Biometric identifiers are categorized as
measurable physiological and behavioral properties of the individual. Physiolog-
ical characteristics are measures related to some property of the physical body,
which include fingerprint, footprint, palmprint, palm veins, face, DNA, iris, and
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retina. Behavioral characteristics are measures specific the behavior of a person
(behaviometrics), which include typing cadence, gait, hand-writing, and voice.
Eye-movements do not easily lend themselves to forgery, since they are largely
dependent on brain activity and extra-ocular muscle characteristics, which are
unique to the individual not unlike the biomechanics of walking (gait). This
property makes eye-movement an attractive option for biometric identification.

In a previous work, Noton and Stark [31] observed that individuals tend to
repeat certain scanpath trajectories during repeated viewings of a given pat-
tern. In their experiments, they tested this theory, coined scanpath theory, and
found that the general scanpath for a subject during a first viewing of a pat-
tern was repeated in initial eye-movements of approximately two-thirds (65%) of
subsequent viewings. In addition, Noton and Stark observed that the scanpath
produced by an individual for a given stimulus pattern was unique and varied
for each subject [31]. These findings were also supported by subsequent research
in reading related information processing [39,41].

Eye-movements were first explored as a potential biometric identifier in [21].
In this work, Kasprowski and Ober used a combination of eye reaction time
(the period of time between introduction of stimulus and eye reaction), and
stabilization time (the time taken for the eye to fixate on a new location after
stimulus), as features for a predictive model. Using data from nine subjects, they
reported a best average false acceptance rate of 1.48% achieved with a k-nearest
neighbor classifier (k=3).

Subsequently, researchers explored various eye-movement measures includ-
ing: gaze trajectory [8,11], gaze velocity [46], and pupil size [3] with reasonable
success. Galdi et al. developed a gaze analysis (GAS) soft-biometric based on
user behavior during observation of particular objects such as facial images [11].
The GAS system constructs a user profile using a fixed area of interest-based
feature vector, which is computed using the order-independent cumulative dura-
tion of fixations on the respective area of interest. The system was tested on 88
subjects and gave encouraging results on user identification by computing the
profile with the lowest Euclidean distance from the test sample.

Yoon et al. explored gaze as a biometric by examining the scanpath of 12
subjects viewing 50 images of patterns with varied spatial characteristics. They
modeled gaze velocity using Hidden Markov Models to create unique profiles for
each subject. Using a leave-one-out cross-validation scheme, they reported an
average performance accuracy in user identification ranging between 53% and
76% [46].

Holland and Oleg evaluated eye movement-based metrics as a feature for bio-
metric identification. They recorded eye-movements while subjects performed a
challenging reading task. From the recorded data, they extracted eye-tracking
features and scanpath measures including: fixation count, fixation duration, sac-
cade amplitude and velocity. Applying an information fusion method, they com-
bined these features and reported a 27% error rate in a subject identification
task [18].
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3 Materials and Methods

3.1 Image dataset

For the proposed study, we selected 100 screen-film mammograms from a corpus
of mammographic images, digitized using a high resolution LUMISYS scanner
(50m per pixel, 12 bit), sourced from the University of South Floridas Digital
Database for Screening Mammography (DDSM) [17]. Each case provided by the
DDSM database is accompanied by associated patient information, the cranio-
caudal (CC) and the mediolateral oblique (MLO) view mammographic images
of both the left and the right breasts. Abnormal cases are accompanied by du-
plicate images containing pixel level ground truth markings of abnormalities,
and ground truth subtlety values using the BI-RADSTM lexicon [37] established
via biopsy, additional imaging, or two-year follow-up. The selected set included
clinically actionable cases covering a broad range of mass margin and shape char-
acteristics. Of the 100 selected cases, 50 cases included biopsy-proven malignant
masses, 25 cases included biopsy-proven benign masses, and the remaining 25
cases were normal as determined during a 2-year cancer-free follow-up patient
evaluation. A description of the images used in our experiments are provided in
greater detail in a previous publication [1].

3.2 Experimental Procedure

Ten readers with varied levels of expertise (Radiology residents and board cer-
tified radiologists) were recruited from an academic institution to conduct a
blind review of the selected mammograms for this study. Each reader was out-
fitted with an H6 headmounted eye-tracking device developed by Applied Sci-
ence Laboratories (ASL, Bedford, MA, USA). Readers were then presented with
the selected mammographic images on medical grade monitors (dual-head 5MP
mammo-grade Totoku LCD monitors calibrated to the DICOM display stan-
dard), and asked to report on location and provide a corresponding BI-RADSTM

rating of any suspicious mass through a graphical user interface (GUI) custom
designed for this experiment. A more detailed overview of the study participants,
software and hardware, and the experimental protocol is provided in greater de-
tail in a previous publication [1].

3.3 Eye-Movement Detection

Eye-movements refer to voluntary and involuntary change in the configuration
of the eyes, which help the subject to acquire, fixate or track visual stimuli. The
movement of the human eye is controlled by pairs of muscles, who’s combined
and coordinated effect (depicted in Figure 1) is responsible for horizontal (yaw),
vertical (pitch), and torsional (roll) eye-movements, respectively; enabling them
to control the three-dimensional orientation of the eye.

Three antagonistic pairs of muscles: the lateral and medial rectus muscles,
the superior and inferior rectus muscles, and the superior and inferior oblique
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(a) Mechanics of lateral
rectus muscle.

(b) Mechanics of medial
rectus muscle.

(c) Mechanics of inferior
rectus muscle.

(d) Mechanics of supe-
rior rectus muscle.

(e) Mechanics of supe-
rior oblique muscle.

(f) Mechanics of inferior
oblique muscle.

Fig. 1: Superior view of muscles responsible for horizontal (yaw), vertical (pitch), and
torsional (roll) eye-movements (From Lynch [28]).

muscles, are responsible for the characteristic eye-movements (illustrated in Fig-
ure 1) along different axes: horizontal adduction toward the nose or abduction
away from it, vertical elevation or depression, and intorsion or extorsion move-
ments that bring the top of the eye toward or away from the nose respectively.

According to Donders law [44], orientation uniquely determines the direction
of gaze independent of how the eye was previously orientated. Large sections
of the brain control the eye muscles to direct gaze to the desired location in
space. Humans primarily engage in seven types of voluntary and involuntary
eye-movement: fixation, saccade, glissade, smooth pursuit, microsaccade, tremor,
and drift [19]. From eye-tracking data recorded from each reader while reviewing
the four mammographic images across two monitors, we extracted fixations and
saccades.

A fixation refers to a state in which the eyes remain relatively still (or within
a minute spatial radius) over a period of time, such as when the eyes pause on
a given word while reading text. The rapid motion of the eye from one fixation
to another (such as from one word to another while reading text) is known as
a saccade. Saccades are considered the fastest movement the body can produce;
typically taking 3080 ms to complete. An important peculiarity of saccades is
that they rarely take the shortest path between two points, but instead undergo
one of several (often suboptimal) paths resulting in shapes and curvatures 2.
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Fig. 2: Sample saccade recorded during a mammographic
reading.

Although there is no universally excepted method for computing fixations,
there are parameters based on eye physiology, which permit a reasonable criteria
for approximating fixations from gaze data. To identify fixations, we computed
the average x and y coordinates for gaze points measured over a period of time
during which the point-of-gaze continuously remains within an area (approxi-
mately 1◦ visual angle) for a minimum amount of time (approximately 100ms
for our algorithm). Since saccades are described in terms of the gaze data between
fixations, we computed saccadic events as gaze points connecting the completion
of one fixation to the beginning of the next fixation. Saccadic movements between
displays (jumping from one screen to the other), thus between mammographic
image views, were excluded from our analysis.

3.4 Gesture-based and Geometry-based Features

Once fixation and saccadic events were computed, we applied feature extraction
algorithms developed for sketch recognition to characterize the shape and curva-
ture of individual saccadic movements. Since gaze scanpath is an aggregate shape
consisting of individual saccadic movements, aggregating features extracted from
saccadic movements will, in principle, provide an accurate characterization of the
scanpath.
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Fig. 3: Rubine’s features capture properties associated with
the shape a sample saccade from mammographic reading.

Gesture-based features are dependent on how individual strokes are drawn
(i.e. the path of each stroke) in contrast to the final geometric shape of the
stroke, although the latter can be correlated. For this reason, gesture-based fea-
tures contain subtle user-dependent variations, which are useful in differentiating
between users [10]. Based on work by Rubine [40], Long et al. [27], and Paulson et
al. [35], we extracted 29 gesture-based and vision-based features, which were pre-
viously demonstrated as being efficiently computable in real-time given a large
input size, robust to noise, and capable of encoding semantically meaningful and
discriminative information about shapes.

Drawing inspiration from work by Ouyang and Davis [32], we computed an
orientation based feature, which captures the direction of the scanpath. The
intuition behind this feature is the tendency of the readers’ gaze scanpath to
follow a specific direction indicating individual behavioral adaptations resulting
in a preferred direction for scanning an image. This value is computed as an
aggregate of point to point directionality of constituent gaze points in a saccade
mapped to one of 12 angles indicating the cardinal direction.

4 Analysis and Results

In this section, we present performance results of sketch-based eye-movement
features on two tasks: predicting reader identity, and predicting reader exper-
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Table 1: Final feature subsets.

No. Source Feature Description

s8 Sketch Length of gesture Length of saccade

s10 Sketch Angle of gesture Curvature of saccade

s12 Sketch Gesture duration Duration of saccade

s17 Sketch Linear efficiency Ratio of saccade length to pixel-wise distance

s18 Sketch Spatial efficiency Ratio of saccade length to area covered

s30 Sketch Gesture orientation Orientation of saccade

f1 Eye Pupil size Average pupil size

f2 Eye Inter-fixation duration Time between fixations

f3 Eye Fixation duration Duration of fixation

f4 Eye Scanpath length Length of scanpath

f5 Eye Inter-fixation degree Visual angle between fixations

f6 Eye No. of fixations Total No. of fixations

f7 Eye Fixation rate Rate of fixations

tise. For comparison purposes, we examined the performance results of tradi-
tional eye-tracking features on the same set of tasks. For both sets of features,
we first performed feature subset selection to reduce dimensionality of feature
representation.

First, since the dependent variable (reader identity identity) is nominal, fea-
tures were ranked using a combination of model-based, information gain ratio-
based, and correlation-based ranking. To compute the model-based ranking, a
k-nearest neighbor classifier was trained (one per feature) on a randomly selected
training and test subset to predict the identity of each reader.

Information gain (IG) measures the expected reduction in entropy resulting
from a partitioning of a dataset based on the values of a given feature. However,
IG is not normalized and can therefore be biased in favor of large-valued features.
For this reason, we employ the information gain ratio to obtain a gain ratio-based
rank for each feature. The information gain ratio (IGR) resolves the limitations
of IG by taking the number and size of partitions into account when choosing
an attribute, thereby reducing bias towards large-valued attributes.

Next, the ten highest ranked features were selected by combining the gain
ratio-based and model-based ranking methods. The final feature set was further
reduced by eliminating highly correlated features. Table 1 provides the final
subset of features from both the sketch-based features and the traditional eye-
tracking features.

We then evaluated the efficacy of both feature subsets by training a Random
Forest classifier [4] using a k-fold cross-validation scheme (k = 10). For each
fold, a 90% of the cases were set aside for training the model, and the remainder
10% was utilized for model evaluation. Note that for each fold, identical cases
(identified by case id) were selected from each reader for model training and
evaluation. The aggregated (mean) predictive value over all k folds served as the
final performance evaluation for the predictive model. All training and testing
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Table 2: Performance metrics (F-score) for sketch-based and tra-
ditional eye-tracking features for biometric identification task.

Reader Sketch Eye-tracking ZeroR

N1 0.94 0.75 0.1

N2 0.88 0.74 0.1

N3 0.9 0.66 0.1

A1 0.87 0.59 0.1

A2 0.87 0.65 0.1

A3 0.92 0.64 0.1

A4 0.95 0.86 0.1

E1 0.87 0.8 0.1

E2 0.88 0.7 0.1

E3 0.84 0.62 0.1

Avg. 0.89 0.7 0.1

evaluations were performed using WEKA software package [12]; an open source
machine learning software for building and testing predictive models.

4.1 Predicting Reader Identity

To test the effectiveness of sketch-based features on a biometric identification, we
developed a between-subject predictive model using a Random Forest classifier
evaluated using a k-fold cross-validation partitioning scheme (k = 10) as pre-
viously described. Multiple (k) rounds of cross-validation were performed using
different partitions, and the validation results were averaged over all rounds in
to reduce variability. As a baseline, we include the results of a majority classifier
(ZeroR). A ZeroR classifier is a simple majority rule classifier, which classifies
all input test samples as the majority or modal class independent of feature
values of the input sample. In Table 2, we report F-score (the harmonic mean
of precision and recall) performance metrics for the biometric identification task

Table 3: Confusion matrix for sketch-based features for biometric identification task.

PREDICTED

A
C
T
U
A
L

NR1 NR2 NR3 AR1 AR2 AR3 AR4 E1 E2 E3
NR1 93 1 0 2 0 1 0 0 0 3
NR2 0 90 1 1 1 0 3 4 0 0
NR3 2 0 91 3 0 0 3 0 0 1
AR1 1 2 0 94 0 0 0 0 1 2
AR2 2 0 1 2 83 3 0 2 2 5
AR3 4 3 0 1 3 89 0 0 0 0
AR4 0 1 0 2 0 0 96 1 0 0
E1 1 2 2 0 0 0 0 85 7 3
E2 0 1 1 3 2 0 0 8 85 0
E3 3 1 3 4 1 0 0 2 3 83
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Table 4: Performance metrics (F-score) for sketch-based and eye-
tracking features for reader expertise prediction task.

Class Sketch Eye-tracking ZeroR

NR 0.9 0.77 0.4

AR 0.93 0.8 0.4

E 0.91 0.83 0.4

Avg. 0.91 0.8 0.4

using sketch-based features. For comparison purposes, Table 2 also includes per-
formance metrics using eye-tracking features for the same task. The confusion
matrix provided in Table 3 illustrates the instances of error when predicting the
actual class label for the sketch-based models.

4.2 Predicting Reader Expertise

We grouped each of the 10 participating readers into one of three experience
levels: new trainee resident (NR), advanced trainee resident (AR), and expert
radiologist (E). Next, utilizing a similar cross-validation partitioning scheme, we
evaluated the efficacy of sketch-based features in predicting the experience level
(expertise) of each reader. In Table 4,we report F-score performance metrics
for the reader expertise prediction task using sketch-based features and include
the performance of eye-tracking features for the same task for comparison. The
confusion matrix provided in Table 5 illustrates the instances of error when
predicting the actual class label for the sketch-based models.

5 Discussion

The final set of features (see Table 1) include four measures related to motion:
the orientation, duration, length, and rotational change of the shape formed by
the saccade, and two measures of visual appearance: ratio of saccade length to
overall size (s16 ), and the ratio of saccade length to the actual inter-fixation
distance (s17 ). The highest ranked feature, saccade orientation, explains the
tendency of the image readers’ saccadic scanpath to follow a specific direction.
We speculate that this feature captures coordinated muscle movements result-
ing from adaptations of repetitive behavior over time, which are specific to the

Table 5: Confusion matrix of predictive model for reader ex-
pertise using sketch-based features from eye-movement.

PREDICTED

A
C
T
U
A
L NR AR E

NR 270 17 13
AR 15 370 15
E 15 13 272



Lecture Notes in Computer Science: Authors’ Instructions 13

individual. This observation is not unlike the uniqueness of the biomechanics of
walking (gait). However, more detailed studies and experimental data is required
to validate this speculative statement.

Previous studies in mammography have identified some measures of direc-
tion, duration, and lengths of saccadic movements as containing discriminative
information about the experience in radiology [25,30,24]. Intuitively, both density
metrics (s16 and s17 ) capture the spatial efficiency of the saccadic movements.
While s16 measures the linear efficiency of the scanpath, s17 measures the two-
dimensional spatial efficiency of the scanpath. Both features give a piecewise
decomposition of the geometric properties of the scanpath formed by the image
reader during the screening process. Previous studies have suggested that mea-
sures of overall scanpath formed during the viewing of a mammographic case
are related to the individual and experience [25,31]. The scanpath has also been
studied as a biometric for individual identification under varied image viewing
conditions unrelated to mammography [46,18]. To the best of our knowledge,
these features were never applied in predictive models as biometric identifiers or
for predicting experience level. Additionally, the characterization using gesture
recognition methods have never been explored until now.

6 Conclusions

In this study, we proposed and evaluated two methods for extracting features,
which contain discriminative information about the identity and the level of
expertise of a radiologist in screening mammography. These features character-
ize changes in positional and non-positional measures of eye-movement. First,
we applied sketch recognition algorithms to extract gesture and geometry-based
features from eye-tracking data. These features give a fine-grained characteriza-
tion of the scanpath by aggregating the spatial (shape), directional, and kinetic
properties of individual saccadic movements. We compared the effectiveness of
these sketch-based features with more traditional metrics from eye-tracking.

Using a corpus of eye-movement and pupillary data from 100 mammographic
cases reviewed by ten readers of varied experience level, recorded under clini-
cally equivalent experimental conditions, the findings presented in this study
establishes the following generalizable trends:

1. During the mammographic screening task, positional and non-positional
measures of changes in the eye can provide sufficient discriminative infor-
mation about the identity of an image reader.

2. Positional and non-positional measures of changes in the eye provide suffi-
cient discriminative characterization of the readers’ level of expertise for a
given task (mammographic screening).

3. Both positional and non-positional measures perform significantly better
than random chance at predicting the readers’ identity and level of expertise.

4. Sketch-based features of eye-movement result in more accurate predictive
models when compared with more traditional eye-tracking features.
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