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Agenda

 The Simulation Process

 Geometry Basics

 Mesh Representations

 Mesh Generation Methods

 Tet/Tri Meshing Methods

 Surface Meshing Basics

 Smoothing

 Tet vs. Hex Meshing

 Structured vs. Unstructured

 Structured Hex Methods

 Unstructured Hex Methods

 Hex Dual Representations

 Overlay Grid

 Automatic Block 
Decomposition

 Hybrid Methods

Part I             8:00-9:30AM Part II         10:00-11:30AM
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Hex Meshing Software

Unstructured
• Cubit/Trelis, Sandia National Laboratories, Csimsoft
• Hexotic, INRIA, France, Distene
• Harpoon, Sharc
• Kubrix, Simulation Works
• Hexpress, Numeca
• Hypermesh, Altair
• Patran, MSC Software

Structured/Multiblock
• TrueGrid, XYZ Scientific Applications, Inc.
• GridPro, Program Development Company
• ICEM CFD, Ansys, Inc.
• Gridgen, Pointwise, Inc. 

A Representative Sample
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Survey Paper on 
Hex Mesh Generation

I recommend this survey paper for people entering the field 
of hex mesh generation:

J. Sarrate, E. Ruiz-Gironés and X. Roca, "Unstructured 
and Semi-Structured Hexahedral Mesh Generation 
Methods," Computational Technology Reviews, Volume 10, 
2014, http://www.ctresources.info/ctr/paper.html?id=60
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Hexahedra
8 nodes
12 edges
6 faces

Semi-Automatic & Manual Generation
Constrained Modifications

Tetrahedra (simplex)
4 nodes
6 edges
4 faces

Automated Generation
Locally Modifiable

Hexahedra vs. Tetrahedra

Finite element meshes can be generated with either tetrahedral or hexahedral elements.  
Automatic tetrahedral meshing is generally considered a solved problem, while 
hexahedral meshing is still an open problem.



6 Matt Staten

Advancing Front Element Creation

Only a single node is required to finish the tet element
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Advancing Front Element Creation

To Complete the hex, 4 well positioned nodes are required,
which may not be readily available.
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Advancing Front Element Creation

To Complete the hex, 4 well positioned nodes are required,
which may not be readily available.  Significant warp & twist 
are often required to build hex elements.
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Local Modifications to Meshes

Triangle and tetrahedral 
meshes can be easily 
modified locally.

In contrast, to maintain a 
conforming non-hybrid 
mesh, small changes to 
quadrilateral and 
hexahedral meshes 
propagate through the 
mesh due to topology 
constraints.
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Global Propagation of Hexahedral
Constraints on Assembly Models

a geometric feature here

could propagate mesh changes through the 
assembly to the other end.
This does not occur with
tetrahedral meshes.

When generating all-hexahedral conforming mesh through interfaces in an 
assembly,

This propagation of constraints 
makes automatic generation of 
hexahedral meshes challenging, and 
efficient parallelization nearly 
impossible. 
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Tet Meshing Vs. Hex Meshing
Tet Meshing
1. Fully Automated, mostly push-button
2. Generate millions of elements in 

minutes/seconds
3. User time generally minutes/hours
4. Can require 4-10X number of 

elements to achieve same accuracy 
as all-hex mesh

5. Tet-Locking phenomenon for linear 
tet results in stiffer physics

6. Preferred by many academics for 
mathematic properties in generation

Hex Meshing
1. Partially automated, some manual
2. Can require major user effort/expertise 

to prepare geometry to accept a hex 
mesh

3. User time to generate mesh may be 
typically days/weeks/months

4. Computational methods may prefer or 
require hex element

5. Preferred by many analysts for solution 
accuracy

6. Heavily used in industry & national labs.  
Absent from academia with only a few 
exceptions.

The engineering analysts must make the 
decision of whether tet or hex elements are 

used.  There is heavy demand for both.
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Structured vs. Unstructured

Structured Unstructured
1. Interior node valence is constant.

ie. number of elements at each 
interior node=4

2. Meshing algorithm relies on 
specific topology constraints.
ie. number of sides=4

1. Interior node valence varies.
ie. number of elements at each 
node=3,4,5…

2. Meshing algorithm applies to 
arbitrary topology
ie. number of sides is arbitrary



13

Structured vs. Unstructured

mapped 
meshing

sweeping

block structured

decomposition + 
sweeping

grid-based

unconstrained 
plastering

H-morph

Structured Unstructured
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Mapped Meshing

6

6

3

3

•4 topological 
sides
•opposite sides 
must have similar 
intervals

Geometry 
Requirements

Algorithm

•Trans-finite 
Interpolation 
(TFI)
•maps a regular 
lattice of quads 
onto polygon 

(Thompson,88;99)
(Cook,82)
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Mapped Meshing

•6 topological 
surfaces
•opposite surfaces 
must have similar 
mapped meshes

Geometry 
Requirements

3D Mapped Meshing
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Transfinite Interpolation

A B

CD
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Transfinite Interpolation
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Transfinite Interpolation
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Transfinite Interpolation
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Transfinite Interpolation
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Transfinite Interpolation
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Transfinite Interpolation
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Transfinite Interpolation
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Transfinite Interpolation
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Block Structured Meshing

TrueGrid
http://www.truegrid.com

Geometry manually 
decomposed into 8 blocks 
(hexahedral regions)

Map mesh generated in 
each region 

Total 72 blocks for this example 
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Block Structured Meshing

http://www.gridpro.com/gridgallery/tmachinery.html http://www.pointwise.com/case/747.htm

Many sophisticated tools available for interactive 
decomposition of geometry into blocks
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Midpoint subdivision

Regular convex 
polygons
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Midpoint subdivision

Regular convex 
polygons

Each side is 
subdivided and one 
node placed at the 
interior to create 
quadrilaterals 
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Midpoint subdivision

Regular convex 
polygons

Each side is 
subdivided and one 
node placed at the 
interior to create 
quadrilaterals 

Each individual 
quadrilateral is map 
meshed

Each side must 
have matching 
intervals
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Midpoint subdivision

Requires 3-valent vertices and 
convex polyhedron

3D Midpoint subdision
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Midpoint subdivision

Sibdivide each surface into 
quadrilaterals using 2D subdivision
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Midpoint subdivision

Add interior node and generate hexahedral regions.
3 hex faces surrounding boundary vertices and 3 faces 
at the interior node 
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Midpoint subdivision

Map Mesh each of the hexahedral regions
Ensure curve and surface intervals match between regions
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Sub-mapping

i

j
+3i

+3i

+2j

q -1j

•Blocky-type surfaces (principally 
90 degree angles)

Geometry Requirements

  0iInterval
This image cannot currently be displayed.

(White,95)

+2i

+3j

-8i

-4j
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Sub-mapping

•Automatically decomposes 
surface into mappable regions 
based on assigned intervals

(White,95)
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Sub-mapping

+12j

-4k

-5i

+5j

-4k

-5j

i

j

k

  0iInterval

  0jInterval

  0kInterval

3D Sub-mapping
(White, 95)
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Sub-mapping

i
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  0iInterval

  0jInterval

  0kInterval

3D Sub-mapping
(White, 95)
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Sub-mapping
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  0iInterval

  0jInterval

  0kInterval

3D Sub-mapping
(White, 95)
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Sub-mapping

i

j

k

  0iInterval

  0jInterval

  0kInterval

Geometry Requirements

•Blocky-type volumes 
•Near 90 degree angles

•All surfaces mapable or submapable

3D-Sub-mapping

3D Sub-mapping
(White, 95)
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Sweeping

Matt Staten

Sweep Direction

1-to-1 sweepable

Current CUBIT Capability

Source surface is 
meshed with all quad 
mesh
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Sweeping

Matt Staten

Sweep Direction

1-to-1 sweepable

Current CUBIT Capability

Source mesh is swept 
along sweep direction 
towards the targets.
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Sweeping

Matt Staten

Sweep Direction

1-to-1 sweepable

Current CUBIT Capability

Source mesh is swept 
along sweep direction 
towards the targets.
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Sweeping

Matt Staten

Sweep Direction

1-to-1 sweepable

Current CUBIT Capability

Source mesh is swept 
along sweep direction 
towards the targets.
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Sweeping

Matt Staten

Sweep Direction

1-to-1 sweepable

Current CUBIT Capability

Source mesh is swept 
along sweep direction 
towards the targets.
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Sweeping

Steve Owen

Typical one-to-one sweeps

translation rotation inside-out
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Sweeping

An input volume that is 2.5D, with source and all wall faces meshed.
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Sweeping
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Sweeping
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Weighted Residual Method

Centroid SC
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Weighted Residual Method

Layer 1
Centroid 1C
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Weighted Residual Method

Centroid

Layer 1
CentroidCentroid 1C

SC
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Weighted Residual Method

Centroid

Layer 1
Centroid
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Weighted Residual Method

Centroid

Layer 1
CentroidCentroid

This image cannot currently be displayed.

1C

SC
M

SP

1P

Residual Error iR

M

iR



54

Weighted Residual Method
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Layer 1
CentroidCentroid

 


npts

i iiS RwPP
11 M

1C

SC
M

SP

1P

Residual Error iR

M

iR

SP

M

1P

Weighted 
Residual

 






npts

j j

i
i

d

d
w

1

2

2

id

id

id



55

One-to-many Sweeping

Matt Staten

n-to-1 sweepable

Sweep Direction

Source 1

Target

Source 2
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One-to-many Sweeping

Matt Staten

n-to-1 sweepable

Sweep Direction

First source surface is 
meshed with all quad 
mesh
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One-to-many Sweeping

Matt Staten

n-to-1 sweepable

Sweep Direction

First source mesh is 
swept in sweep direction 
until it meets with 
another source
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One-to-many Sweeping

Matt Staten

n-to-1 sweepable

Sweep Direction

First source mesh is 
swept in sweep direction 
until it meets with 
another source
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One-to-many Sweeping

Matt Staten

n-to-1 sweepable

Sweep Direction

The second source is 
then meshed with all 
quads and merged with 
quads being swept from 
the first source.
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One-to-many Sweeping

Matt Staten

n-to-1 sweepable

Sweep Direction

Combined mesh is 
swept towards a 
single target.
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One-to-many Sweeping

Matt Staten

n-to-1 sweepable

Sweep Direction

Combined mesh is 
swept towards a 
single target.
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One-to-many Sweeping

Matt Staten

n-to-1 sweepable

Sweep Direction

Combined mesh is 
swept towards a 
single target.
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Many-to-many Sweeping

Matt Staten

Sweep Direction

Source 1

Source 2

Target 1

Target 2

n-to-m sweepable
Multi-Sweep
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Many-to-many Sweeping

Matt Staten

Sweep Direction

The footprints of the 
multiple targets must be 
imprinted onto the 
sources.  This is done 
with virtual partitioning.

n-to-m sweepable
Multi-Sweep



65

Many-to-many Sweeping

Matt Staten

Sweep Direction

Virtual partitioning 
decomposes the solid 
into n-to-one sweepable
sub-volumes.

n-to-m sweepable
Multi-Sweep
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Many-to-many Sweeping

Matt Staten

Sweep Direction

Each partition is 
meshed individually.

n-to-m sweepable
Multi-Sweep
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Many-to-many Sweeping

Matt Staten

Sweep Direction

Virtual partitions are 
deleted leaving the final 
mesh.

n-to-m sweepable
Multi-Sweep
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Many-to-many Sweeping

Examples of 
Many-to-many 
sweeping with 
CUBIT
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Partition & Sweeping

Matt Staten

More complex solids can 
be meshed by first doing 
manual partitioning into 
several sweepable sub-
solids.
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Partition & Sweeping

Matt Staten

More complex solids can 
be meshed by first doing 
manual partitioning into 
several sweepable sub-
solids.
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Partition & Sweeping

Matt Staten

More complex solids can 
be meshed by first doing 
manual partitioning into 
several sweepable sub-
solids.
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Partition & Sweeping

Matt Staten

More complex solids can 
be meshed by first doing 
manual partitioning into 
several sweepable sub-
solids.
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Partition & Sweeping

Matt Staten

More complex solids can 
be meshed by first doing 
manual partitioning into 
several sweepable sub-
solids.
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Partitioning & Sweeping Very Complex Solids

Matt Staten

“Any” geometry, regardless of 
complexity, can be meshed by first 
decomposing it into sweepable sub-
solids.  Decomposition step of 
complex solids requires tedium, 
experience, and creativity and often 
lots of time.
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Engineering Analysis with Geometry
Conforming Hexahedral Elements

4%

6%6%14
%

21

%

32
%

8% 4% 5%

1%
Owen [102]
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Engineering Analysis with Geometry
Conforming Hexahedral Elements

4%

6%6%14
%

21

%

32
%

8% 4% 5%

1%
73%

of user time spent in 
mesh preparation

Owen [102]



77

Structured vs. Unstructured

mapped 
meshing

sweeping

block structured

decomposition + 
sweeping

grid-based

unconstrained 
plastering

H-morph

Structured Unstructured
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Triangle splitting

•Each triangle split into 3 quads
•Typically results in poor angles
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Indirect Hex

•Each tetrahedtra split into 4 hexahedra
•Typically results in poor angles
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Tetrahedra splitting

•Each tetrahedtra split into 4 hexahedra
•Typically results in poor angles (Taniguchi, 96)
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Tetrahedra splitting

•Each tetrahedtra split into 4 hexahedra
•Typically results in poor angles (Taniguchi, 96)
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Tetrahedra splitting

•Example of geometry meshed by tetrahedrasplitting
•Cubit’s T-Hex algorithm
•Quality is rarely sufficient for FEA
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Triangle Merging

•Two adjacent triangles combined into a single quad 
•Test for best local choice for combination
•Triangles can remain if attention is not paid to order 
of combination 
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Triangle Merging

•Two adjacent triangles combined into a single quad 
•Test for best local choice for combination
•Triangles can remain if attention is not paid to order 
of combination 
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Triangle Merging

•Two adjacent triangles combined into a single quad 
•Test for best local choice for combination
•Triangles can remain if attention is not paid to order 
of combination 
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Directed Triangle Merging

• Merging begins at a boundary
• Advances from one set of triangles 

to the next
• Attempts to maintain even number 

of intervals on any loop
• Can produce all-quad mesh
• Can also incorporate triangle 

splitting
• (Lee and Lo, 94)
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Q-Morph

A B

NB

 

NA

  C

D

Triangle Merge
with local 
transformations
•Uses an advancing 
front approach

•Local swaps applied 
to improve resulting 
quad

•Any number of 
triangles merged to 
create a quad

•Attempts to maintain 
even number of 
intervals on any loop

•Produces all-quad 
mesh from even 
intervals

• (Owen, 99) 
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Q-Morph

A B

D C

Triangle Merge
with local 
transformations
•Uses an advancing 
front approach

•Local swaps applied 
to improve resulting 
quad

•Any number of 
triangles merged to 
create a quad

•Attempts to maintain 
even number of 
intervals on any loop

•Produces all-quad 
mesh from even 
intervals

• (Owen, 99) 
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Q-Morph
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Q-Morph



91

Q-Morph
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Q-Morph
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Q-Morph
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Q-Morph
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Q-Morph

Q-Morph
Lee,Lo 
Method
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H-Morph

A
B

C
D

A
B

C
D

E

A
B

C
D

EF

A
B

C
D

EF

G

A
B

C
D

EF

GH

A
B

C
D

E
F

GH

Edges and faces are recovered from a tet mesh to form the 
boundary of an element.  Tets are then merged to form the hex. 
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H-Morph

(Owen, 00)

Example H-Morph meshing procedure

“Hex-Dominant Meshing”
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H-Morph

(Owen, 00)

Example H-Morph meshing procedure

“Hex-Dominant Meshing”
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H-Morph
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Paving

•Advancing Front: Begins with front at boundary
•Forms rows of elements based on front angles
•Must have even number of intervals for all-quad mesh

(Blacker,92)(Cass,96)
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Paving

•Advancing Front: Begins with front at boundary
•Forms rows of elements based on front angles
•Must have even number of intervals for all-quad mesh

(Blacker,92)(Cass,96)



102

Paving

•Advancing Front: Begins with front at boundary
•Forms rows of elements based on front angles
•Must have even number of intervals for all-quad mesh

(Blacker,92)(Cass,96)
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Paving

•Advancing Front: Begins with front at boundary
•Forms rows of elements based on front angles
•Must have even number of intervals for all-quad mesh

Form new 
row and 

check for 
overlap

(Blacker,92)(Cass,96)
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Paving

•Advancing Front: Begins with front at boundary
•Forms rows of elements based on front angles
•Must have even number of intervals for all-quad mesh

Insert 
“Wedge”

(Blacker,92)(Cass,96)
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Paving

•Advancing Front: Begins with front at boundary
•Forms rows of elements based on front angles
•Must have even number of intervals for all-quad mesh

Seams

(Blacker,92)(Cass,96)
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Paving

•Advancing Front: Begins with front at boundary
•Forms rows of elements based on front angles
•Must have even number of intervals for all-quad mesh

Close 
Loops and 

smooth

(Blacker,92)(Cass,96)
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Paving
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Plastering

(Blacker, 93)•3D extension of “paving”
•Row-by row or element-by-element
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Plastering

•3D extension of “paving”
•Row-by row or element-by-element

(Blacker, 93)
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Plastering

•3D extension of “paving”
•Row-by row or element-by-element

(Blacker, 93)
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Plastering

•3D extension of “paving”
•Row-by row or element-by-element

(Blacker, 93)
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•3D extension of “paving”
•Row-by row or element-by-element

(Blacker, 93)

Plastering
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•3D extension of “paving”
•Row-by row or element-by-element

(Blacker, 93)

Plastering
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•3D extension of “paving”
•Row-by row or element-by-element

(Blacker, 93)

Plastering
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Hex-tet plastering

Exterior Hex mesh RemainingVoid

Ford Crankshaft

Plastering+Tet Meshing

“Hex-Dominant Meshing”
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Quadrilateral
Dual Representation

The elemental 
representation of a 
mesh, composed of 
elements, edges, and 
nodes, is known as the 
primal.

Quadrilateral meshes 
have a dual
representation, similar
to the voroni skeleton
of a triangular
delaunay mesh.
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A dual vertex, vi, is 
defined at the 
centroid of each 
quadrilateral 
element.

A dual vertex is also 
placed at the 
centroid of every 
boundary edge.

Quadrilateral
Dual Representation
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Connecting the dual 
vertices through 
adjacent elements 
creates the edges of 
the dual.

Quadrilateral
Dual Representation
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Quadrilateral meshes 
have an inherent row 
structure.  The red 
quads illustrate one 
row.

Each row 
corresponds to one 
dual chord.

Quadrilateral
Dual Representation
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Quadrilateral
Dual Representation

Matt Staten

The set of all dual 
edges which connect  
quads in each row 
forms a dual chord, 
ci.
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Quadrilateral
Dual Representation

Matt Staten

Each dual edge is 
part of exactly one 
dual chord.

The vertex at the 
centroid of a quad is 
the intersection of 2 
dual chords.
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Dual chords must be either circular, or connect two boundaries.

Quadrilateral
Dual Representation

CircularConnects two 
boundaries
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Hexahedral
Dual Representation

The elemental 
representation of a 
hexahedral mesh, 
composed of 
hexahedra, faces, 
edges, and nodes, is 
known as the primal.

Hexahedral meshes 
also have a dual
representation, similar
to the voroni skeleton
of a triangular
delaunay mesh.
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Hexahedral
Dual Representation

A dual vertex, vi, is 
defined at the 
centroid of each 
hexahedral element, 
boundary quad face, 
and boundary edge.
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Hexahedral
Dual Representation

Connecting the dual 
vertices through 
adjacent elements 
creates the edges and 
faces of the dual.
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Quad/Hex Mesh Dual

Hexahedral meshes have an inherent layer structure.  Each layer forms a sheet, having 
both a primal and a dual representation.

Dual SheetPrimal Sheet
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Another way to define a 
sheet is through edge 
traversal.

Create a group of edges 
by propagating from a 
single edge through 
adjacent hexahedra and 
through their 
topologically opposite 
edges.

Connecting midpoints 
of edges forms the dual 
sheet.

The hexahedra traversed 
forms the primal sheet.

Hexahedral
Dual Representation



128

Whisker Weaving

• Start with conformal quad mesh on surface.
• Must have even number of quads on boundary
• Complete chord loop can be defined starting 
from an arbitrary quad on the surface
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Whisker Weaving

chord loop 1 chord loop 2 chord loop 3

Each chord loop 
must bound a 
complete sheet 
(layer of hexes)

Sheet diagrams
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Whisker Weaving

Each chord loop 
must bound a 
complete sheet 
(layer of hexes)

Sheet diagrams

Chords 
(whiskers) 
advanced 
towards 
interior

sheet diagram 1 sheet diagram 2 sheet diagram 3
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Whisker Weaving

Logic to 
intersect 
chords is 
used. 
Intersection 
of chords 
represents 
one hex in 
the primal

Each chord loop 
must bound a 
complete sheet 
(layer of hexes)

Sheet diagrams

chord loop 1 chord loop 2 chord loop 3
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Whisker Weaving

Exactly four 
chords per 
intersection is 
required

Each chord loop 
must bound a 
complete sheet 
(layer of hexes)

Sheet diagrams

Dangling 
chords 
(whiskers) 
must be 
resolved

sheet diagram 1 sheet diagram 2 sheet diagram 3
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Whisker Weaving

Completed 
sheet 
diagram 
represents 
one 
completed 
hex layer

Each chord loop 
must bound a 
complete sheet 
(layer of hexes)

Sheet diagrams

sheet diagram 1 sheet diagram 2 sheet diagram 3
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Whisker Weaving

sheet diagram 1 sheet diagram 2 sheet diagram 3

Sheet 
diagrams are 
completed for 
every chord 
loop defined in 
the surface 
mesh

Completed 
sheet 
diagram 
represents 
one 
completed 
hex layer
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Whisker Weaving

sheet diagram 1 sheet diagram 2 sheet diagram 3

Sheet 
diagrams are 
completed for 
every chord 
loop defined in 
the surface 
mesh

Primal hex 
topology of 
the layer can 
be extracted 
from the 
sheet 
diagram 
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Whisker Weaving

sheet diagram 1 sheet diagram 2 sheet diagram 3

Sheet 
diagrams are 
completed for 
every chord 
loop defined in 
the surface 
mesh

Primal hex 
topology of 
the layer can 
be extracted 
from the 
sheet 
diagram 
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Whisker Weaving

sheet diagram 1 sheet diagram 2 sheet diagram 3

Extracting 
primal hex 
topology from 
each 
completed 
sheet diagram 
will construct 
the complete 
topology of the 
mesh

Primal hex 
topology of 
the layer can 
be extracted 
from the 
sheet 
diagram 
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Whisker Weaving

Examples of successful meshes using 
whisker weaving
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STL MRI Brain Model, Courtesy Bryce Owen
Brigham Young University, Provo, UT

Weapon Component Models Courtesy Stephen Recchia, 
US Army, Picitinni.  Used with Permission

Weapon Component 
model, Sandia Labs

Eros Asteroid, STL Model

Overlay Grid Method

139

V2 model 
courtesy Ansys, Inc
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Overlay Grid Method
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Overlay Grid Method
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Overlay Grid Method
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Overlay Grid Method
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Overlay Grid Method
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Overlay Grid Method

Geometry faults 
such as Gaps 
and Overlaps
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Overlay Grid Method

Geometry faults 
such as Gaps 
and Overlaps

Geometry is first converted to “Volume Fraction” Data before meshing.
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Interface Approximation
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Interface Approximation
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A:0.55
B:0.45

A:0.11
B:0.89

A:1.00
B:0.00

A:0.47
B:0.53

Interface Approximation
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M i
0

A:0.55
B:0.45

A:0.11
B:0.89

A:1.00
B:0.00

A:0.47
B:0.53

Interface Approximation
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M i
0

Pcross

Pcross Ncross

Ncross

Interface Approximation
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Pnew(M i
0 )

Nnew

Interface Approximation
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A:0.55
B:0.45

A:0.11
B:0.89

A:1.00
B:0.00

A:0.47
B:0.53

Interface Approximation
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Interface Approximation

Official Use Only / Export Controlled Information
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Interface Approximation

Official Use Only / Export Controlled Information
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Interface Approximation

Official Use Only / Export Controlled Information
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Hex Refinement

160

3-Refinement 2-Refinement
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Hex Refinement

161

3-Refinement 2-Refinement
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Hex Refinement

162

element
layer pair

single element
layer

3-Refinement 2-Refinement
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2-Refinement Templates
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Multi-level Refinement
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Multi-level Refinement
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Multi-level Refinement
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Overlay-Grid Methods
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Overlay-Grid Methods
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Capturing Features in a CAD Model
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Grid-Based Methods

Original geometry
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Grid-Based Methods

Overlay Grid
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Capturing Features

Four valent vertex at 
apex of pyramid

Three valent nodes 
in base mesh

A base mesh may not  have adequate 
topology for embedding to occur

Topologic 
Equivalence
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A base mesh may not  have adequate 
topology for embedding to occur

Original geometry

Base Mesh 1: Hexes 
completely contained 
within geometry

Base Mesh 2: Hexes interior 
and intersecting the geometry

Topologic 
Equivalence

Capturing Features
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Mesh Generation Process

Initialize 
overlay 
mesh

Match 
nodes to 
vertices

Match 
edges to 
curves

Mesh-First Mesh Generation

Modify mesh to 
meet local size 
requirements

Match 
tris/quads 
to surfaces

Smoothing/
Cleanup

Match 
tets/hexes 
to volumes

Remove 
exterior 
mesh
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Capturing Features
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Capturing Features
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Capturing Features
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Capturing Features
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Capturing Features
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Capturing Features
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Capturing Features
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Capturing Features
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Capturing Features
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Automatic Block Decomposition

Midpoint 
subdivision

Many-to-
many 
sweeping

Sub-
mapping
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Medial Axis

Medial Axis

(Price, 95;97)(Tam,91)

•Medial Object - Roll a Maximal circle or sphere through the model.  The 
center traces the medial object 
•Medial Object used as a tool to automatically decompose model into 
simpler mapable or sweepable parts
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Medial Axis

Medial Axis
•Medial Object - Roll a Maximal circle or sphere through the model.  The 
center traces the medial object 
•Medial Object used as a tool to automatically decompose model into 
simpler mapable or sweepable parts (Price, 95;97)(Tam,91)



189

Medial Axis

Medial Axis
•Medial Object - Roll a Maximal circle or sphere through the model.  The 
center traces the medial object 
•Medial Object used as a tool to automatically decompose model into 
simpler mapable or sweepable parts (Price, 95;97)(Tam,91)
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Medial Axis

Medial Axis
•Medial Object - Roll a Maximal circle or sphere through the model.  The 
center traces the medial object 
•Medial Object used as a tool to automatically decompose model into 
simpler mapable or sweepable parts (Price, 95;97)(Tam,91)
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Medial Axis

Medial Axis
•Medial Object - Roll a Maximal circle or sphere through the model.  The 
center traces the medial object 
•Medial Object used as a tool to automatically decompose model into 
simpler mapable or sweepable parts (Price, 95;97)(Tam,91)
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Medial Axis

Medial Axis
•Medial Object - Roll a Maximal circle or sphere through the model.  The 
center traces the medial object 
•Medial Object used as a tool to automatically decompose model into 
simpler mapable or sweepable parts (Price, 95;97)(Tam,91)
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Medial Axis

Medial Axis
•Medial Object - Roll a Maximal circle or sphere through the model.  The 
center traces the medial object 
•Medial Object used as a tool to automatically decompose model into 
simpler mapable or sweepable parts (Price, 95;97)(Tam,91)
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Medial Axis

Medial Axis + Midpoint Subdivision 
(Price, 95) (Sheffer, 98)

Embedded Voronoi Graph
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Block decomposition using 
Medial Axis

Boundary with medial axis Four sides sub-regions 
(between boundary entities in proximity)

Five sided sub-regions Six sided sub-regions

Cecil Armstrong – Queens University, Belfast



196

Frame Fields

Each quad in a mesh has 2 inherent directions.  We can extract a field of 
local direction frames from any quad mesh.

A mesh generated with Paving

Reference: “Kowalski, Ledoux, Frey, “A PDE based approach to multi 
domain partitioning and quadrilateral meshing,” IMR21, 2012.
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Properties of Frame Fields

Property 1:
There are singularities defined at the 
zeros of the piecewise linear interpolation 
of the frame fields.

No singularity

Case 1: Full 360○ turn

Singularity 3

Case 2: 270○ turn 

Singularity 5

Case 3: 450○ turn 

Property 2:
You can trace streamlines by 
interpolating the frames.  In general 
Streamlines proceed in 2 directions 
from any point.

Steamlines that end at singularities are 
called separatrices.

Reference: “Kowalski, Ledoux, Frey, “A PDE based 
approach to multidomain partitioning and quadrilateral 
meshing,” IMR21, 2012.
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Can we first generate a frame field
and then generate a quad mesh from it?

Yes, Kowalski (IMR21) builds a frame field by solving a PDE (Laplace) with 
Dirichlet BCs over a triangle mesh.

For BCs, normals and tangents are computed for each boundary node.
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N-Rosy Definition

�������
= 4
∗ ��	%	360

= 4 ∗ ��	%	360

�� =
�������

4

�� = �� + 90°

Convert any planar coordinate frame 
into a single planar vector.

��

��
�������

�����:	 ��, ��

90°	 rotations of a frame are equivalent
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2D Frame Fields

STEP 1: Build a planar tri mesh on the surface. Compute 
BCS: n-rosy from tangent/normal at each boundary node.
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2D Frame Fields

STEP 2: Compute BCS: n-rosy from tangent/normal at each 
boundary node.
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2D Frame Fields

STEP 3:  Solve Laplace equation.
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2D Frame Fields

STEP 4: Convert back to frames, compute singular points, 
trace separatrices, yielding a block decomposition.
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2D Frame Fields

STEP 5: Map each block decomposition.
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Frame Field Examples
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Volumetric Frame Fields

N. Kowalski, F. Ledoux, P. Frey, “Block 
Structured Hexahedral Meshes for CAD 
Models using 3D Frame Fields”, 
International Meshing Roundtable 2014

Initial Tet Mesh Frame field generated 
over Tet Mesh, via 

optimization approach

Singularity graph 
extracted defining block 

structure

Mesh generated on 
blocks
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Volumetric Parameterizations

 J. Gregson, A. Sheffer, E. Zhang, “All-hex Mesh Generation via Volumetric 
PolyCube Deformation,” Eurographics Symposium on Geometry Processing, July 
2011

PolyCube
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Volumetric Parameterizations

 M. Nieser, U. Reitebuch, K. Polthier, 
“CubeCover – Parameterizations of 3D 
Volumes”, Eurographics Symposium 
on Geometry Processing 2011

 Y. Li, Y. Liu, W. Xu, W. Wang, B. Guo, 
“All-Hex Meshing using Singularity-
Restricted Field,” Microsoft Research 
Asia, The University of Hong Kong

CubitCover

Singularity Restricted Fields
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Hex Meshing and IsoGeometrics

 Direct Generation of T-Splines

 Y. Zhang, W. Wang, T.J.R. Hughes, 
“Solid T-Spline Construction from 
Boundary Representations for Genus-
Zero Geometry,” ICES Report 11-40, 
November 2011

 W. Wang, Y. Zhang, L. Liu, T.J.R. 
Hughes, “Solid T-Spline Construction 
from Boundary Triangulations with 
Arbitrary Genus Topology”, ICES 
Report 12-13, April 2012

 Y. Zhang, W. Wang, T.J.R. Hughes, 
“Conformal Solid T-Spline 
Construction from Boundary T-spline 
Representations,” ICES Report 12-29, 
July 2012

 And others…
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Hybrid Methods

CFD Meshing

Image courtesy of acelab, University of Texas, Austin, 
http://acelab.ae.utexas.edu

Image courtesy of Roy P. Koomullil, Engineering Research 
Center, Mississippi State University, 
http://www.erc.msstate.edu/~roy/
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Hybrid Methods

Advancing Layers Method
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Hybrid Methods

Advancing Layers Method

Discretize Boundary
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Hybrid Methods

Advancing Layers Method

Define Normals at boundary nodes

(Pirzadeh, 
1994)
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Hybrid Methods

Advancing Layers Method

Generate nodes along normals according to distribution function
Form layer

Distance from wall

E
le

m
e
n
t 
si

ze

distribution 
function
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Hybrid Methods

Advancing Layers Method

Generate nodes along normals according to distribution function
Form layer

Distance from wall

E
le

m
e
n
t 
si

ze

distribution 
function
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Hybrid Methods

Advancing Layers Method

Generate nodes along normals according to distribution function
Form layer

Distance from wall

E
le

m
e
n
t 
si

ze

distribution 
function
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Hybrid Methods

Advancing Layers Method

Define new boundary for 
triangle mesher
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Hybrid Methods

Mesh with triangles
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Hybrid Methods

Convex Corner Concave Corner
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Hybrid Methods

Convex Corner Concave Corner
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Hybrid Methods

Convex Corner Concave Corner
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Hybrid Methods

Convex Corner Concave Corner

Blend 
Regions
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Hybrid Meshes

Convex Corner Concave Corner

Blend 
Regions
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Hybrid Methods

Convex Corner Concave Corner

Blend 
Regions
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Hybrid Methods

Convex Corner Concave Corner

Smoothed Normals
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Hybrid Methods

Convex Corner Concave Corner

Smoothed Normals
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Hybrid Methods

Convex Corner Concave Corner

Smoothed Normals
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Hybrid Methods

Multiple Normals


Define Normals 
every  degrees
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Hybrid Methods

Multiple Normals
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Hybrid Methods

Intersecting Boundary Layers
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Hybrid Methods

Intersecting Boundary Layers
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Hybrid Methods

Intersecting Boundary Layers

Delete 
overalppaing 
elements
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Hybrid Methods

Intersecting Boundary Layers
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Hybrid Methods

Image courtesy of SCOREC, Rensselaer Polytechnic 
Institute, http://www.scorec.rpi.edu/

(Garimella, 
Shephard, 
2000)
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Hybrid Methods

http://www.ansys.com/products/icemcfd-mesh/tetra/hybrid.htmlANSYS ICEM CFD

Hexahedron boundary layer with 
interior tetrahedra

Prism (wedge) boundary layer 
with tet transition to interior 
regular hexahedron grid
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Hybrid Methods

http://www.ansys.com/products/icemcfd-mesh/hexa/index.htmANSYS ICEM CFD

Multi-block structured grid combined with tetrahedron far-field mesh


