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Agenda

Part | 8:00-9:30AM
The Simulation Process
Geometry Basics
Mesh Representations
Mesh Generation Methods
Tet/Tri Meshing Methods
Surface Meshing Basics
Smoothing
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Part |l 10:00-11:30AM

Tet vs. Hex Meshing
Structured vs. Unstructured
Structured Hex Methods
Unstructured Hex Methods
Hex Dual Representations
Overlay Grid

Automatic Block
Decomposition

Hybrid Methods
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Classical References i

J. F. Thompson, B. K. Soni, and N. P. Weatherill, eds.,
Handbook of Grid Generation, CRC Press, 1998.
Block-structured grids:
Transfinite-interpolation, Elliptic and hyperbolic PDE
systems, Harmonic mappings, ...
Unstructured grids: Quadtrees and Octrees methods,
Advancing-front methods, Delaunay-Voronoi methods,
Anisotropic Grid generation, ...

P.J. Frey and P.-L. George, Mesh Generation - Application to

Finite Elements, Hermes Science Publishing, Oxford, UK, 1st

ed., 2000, 2nd ed. 2008.

* A comprehensive survey of Tetrahedral mesh generation
methods: Quadtree-octree methods, Advancing-front methods,
Delaunay-based methods, ...




Simulation Process
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1. Build CAD Model

4. Computational Analysis
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3. Apply Loads and
Boundary Conditions
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5. Visualization
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Adaptive Simulation Process —N
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Adaptivity Loop
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Geometry =

vertices: Xx,),z

location \
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Geometry =
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Geometry =

. curves: bounded by surfaces: closed
vertices: x,),z wo vertices set of curves

location

volumes: closed set
of surfaces




Geometry
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Manifold Geometry:
Each volume maintains
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Geometry =

Non-Manifold
Geometry: Volumes
share matching surfaces

Volume 2

Surface 7 y v
Surface 9 Surface 10
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Geometry =

Mesh Generation Algorithm

{ 1

Geometry Engine
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Geometry =

Triangle Hex

. Delaunay .
Advancing Tet Mesher Sweeping
Front Tool

Geometry Engine
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Geometry =

i H
Triangle Dl ex

Geometry Query Ad‘lgigfling Tet Mesher Sw;zzllng Topology Query

Curve::project_to() Surface::curves()
Surface::project_to() Curve::vertices()

Surface::normal_at() Volume::surfaces()
Surface::curvature_at() Vertex::curves()

Geometry Engine
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Geometry =

i H
Triangle Dl ex

Geometry Query Ad‘lgigfling Tet Mesher Sw;zzllng Topology Query

Curve::project_to() Surface::curves()
Surface::project_to() Curve::vertices()

Surface::normal_at() Volume::surfaces()
Surface::curvature_at() Vertex::curves()

ACIS, OpenCascade, Catia, Facets, ..|




Geometry

Geometry Query

Triangle
Advancing
Front

Delaunay
Tet Mesher

Hex
Sweeping
Tool

Curve::project_to()
Surface::project_to()

Surface::normal_at()
Surface::curvature_at()

CAD Abstraction

Open
Cascade

Catia

Facets
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Topology Query
Surface::curves()
Curve::vertices()
Volume::surfaces()
Vertex::curves()
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Mesh Representation =

Node-Element Virtual Edges Cyclic Connectivity Doubley-Linked
Connectivity Only and/or Faces Connectivity

—» Node —> Node Node

I f v

Edge Edge

T il

Face Face

T L4

Element Element Element Element

- Specd om—
‘ Memory Usage High memory *




Mesh Representation

Geometry Associativity

h 4

Vertex

Boundary Conditions applied to
geometric entities.

Delete/Modify mesh defined on
Edge geometric entity

Operations on mesh entities
require conformity to geometry

Face List
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Mesh First

gecometry
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Mesh First
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Mesh Generation Methods

* AKA. Bottom-up Meshing

e Advancing Front
Y
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Mesh Generation Process

Apply Manual
Sizing, Match
Intervals
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Verify/correct for
sizing criteria on

Set up sizing
function for

surface

Smooth/Cleanup
surface mesh

Quality

For each volume

Set up sizing
function for

Smooth/Cleanup
volume mesh

Geometry-First Mesh Generation
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Mesh Generation Process e

Initialize Modify mesh to
overlay meet local size
mesh requirements

Match Match Match Match
nodes to edges to tris/quads tets/hexes
vertices curves to surfaces to volumes

Remove
exterior
mesh

Smoothing/
Cleanup

Mesh-First Mesh Generation
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Octree
Advancing Front
Delaunay

s
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http://www.ansys.com
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Tet Meshing Software =

A Representative Sample

Commercial

e Tetmesh-GHS3D, INRIA, Rocquencourt, Distene France.

e  MeshSim, SCOREC, RPI, Simmetrix Inc. USA.

* SolidMesh, AFLR mesh generator, SimCenter, Mississippi State Uni.,
(Altair Hypermesh)

Open Source

Netgen, TU Vienna.

Gmsh, Uni. Liege & Uni. Catholique de Louvain.
GRUMMP, University of British Columbia.
Pyramid, UC Berkeley.

CGALmesh, INRIA, Sophia-Antipolis.

TetGen, Weierstrass Institute, Berlin.
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Octree/Quadtree e

*Define intial bounding box (root of quadtree)

*Recursively break into 4 leaves per root to resolve geometry

*Find intersections of leaves with geometry boundary

*Mesh each /eaf using corners, side nodes and intersections with geometry
*Delete Outside

*(Yerry and Shephard, 84), (Shepherd and Georges, 91)




Octree/Quadtree

QMG,
Cornell University
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Octree/Quadtree =

QMG,
Cornell University
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Advancing Front =

A B

*Begin with boundary mesh - define as initial front
*For each edge (face) on front, locate ideal node C based on front AB
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Advancing Front =

A

*Determine if any other nodes on current front are within search
radius r of ideal location C (Choose D instead of C)
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Advancing Front =

*Book-Keeping: New front edges added and deleted from front as
triangles are formed
*Continue until no front edges remain on front
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Advancing Front =

*Book-Keeping: New front edges added and deleted from front as
triangles are formed
*Continue until no front edges remain on front
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Advancing Front =

*Book-Keeping: New front edges added and deleted from front as
triangles are formed
*Continue until no front edges remain on front
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Advancing Front =

*Book-Keeping: New front edges added and deleted from front as
triangles are formed
*Continue until no front edges remain on front
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Advancing Front =

*Where multiple choices are available, use best quality (closest
shape to equilateral)

*Reject any that would intersect existing front

*Reject any inverted triangles (JAB X AC| > 0)
*(Lohner,88;96)(L0,91)
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Advancing Front
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Advancing Front
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Advancing Front e,




Advancing Front
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Advancing Front
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Delaunay =
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Triangle
Jonathon Shewchuk
http://www-2.cs.cmu.edu/~quake/triangle.html

Tetmesh-GHS3D
INRIA, France
http://www.simulog.fr/tetmesh/
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Delaunay =

Empty Circle Property:
No other vertex is contained within the circumcircle of
any triangle
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Delaunay

Computing the Circumcircle center and radius

(X3aJ’3)

Ax+By+C=x"+)’ EA
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A
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Delaunay

1

Deladpay Triangulation:
Obeys empty-circle (sphere) property

!
/
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Delaunay

Delaunay Triangulation:
Obeys empty-circle (sphere) property
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Delaunay

Delaunay Triangulation:
Obeys empty-circle (sphere) property
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Delaunay

Delaunay Triangulation:
Obeys empty-circle (sphere) property
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Delaunay

/ Voronoi Diagram
" Dual ofia Delaunay Triangulation
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Delaunay

circumsphere

o
Empty Sphere Property:

No other vertex is contained within the circumsphere of
any tetrahedron
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Delaunay

circumsphere

o
Empty Sphere Property:

No other vertex is contained within the circumsphere of
any tetrahedron




Delaunay

Sandia
National
Laboratories

Given a Delaunay
Triangulation of n nodes, How
do I insert node n+1 ?

Lawson Algorithm

Locate triangle containing X
*Subdivide triangle
*Recursively check adjoining
triangles to ensure empty-circle
property. Swap diagonal if
needed

*(Lawson,77)




Delaunay
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Lawson Algorithm

Locate triangle containing X
*Subdivide triangle
*Recursively check adjoining
triangles to ensure empty-circle
property. Swap diagonal if
needed

*(Lawson,77)




Delaunay

Given a Delaunay
Triangulation of #n nodes, How
do I insert node n+1 ?
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Bowyer-Watson Algorithm
Locate triangle that contains
the point

*Search for all triangles whose
circumcircle contain the point
(d<r)

*Delete the triangles (creating
a void in the mesh)

*Form new triangles from the
new point and the void
boundary

*(Watson,81)
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Given a Delaunay
Triangulation of #n nodes, How
do I insert node n+1 ?
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Bowyer-Watson Algorithm
Locate triangle that contains
the point

*Search for all triangles whose
circumcircle contain the point
(d<r)

*Delete the triangles (creating
a void in the mesh)

*Form new triangles from the
new point and the void
boundary

*(Watson,81)
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Delaunay
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Delaunay




Delaunay




Delaunay
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Delaunay =

*Begin with Bounding Triangles (or Tetrahedra)




Sandia

Delaunay =

Insert boundary nodes using Delaunay method
(Lawson or Bowyer-Watson)
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Delaunay =

Insert boundary nodes using Delaunay method
(Lawson or Bowyer-Watson)
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Delaunay =

Insert boundary nodes using Delaunay method
(Lawson or Bowyer-Watson)
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Delaunay =

Insert boundary nodes using Delaunay method
(Lawson or Bowyer-Watson)




Sandia

Delaunay =

Insert boundary nodes using Delaunay method
(Lawson or Bowyer-Watson)
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Delaunay =

*Recover boundary
*Delete outside triangles
Insert internal nodes
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Delaunay =

Node Insertion Methods

Grid Based

*Nodes introduced based on a regular lattice

Lattice could be rectangular, triangular, quadtree, etc...
*Outside nodes ignored
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Delaunay =

Node Insertion Methods

Grid Based

*Nodes introduced based on a regular lattice

Lattice could be rectangular, triangular, quadtree, etc...
*Outside nodes ignored
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Delaunay =

Node Insertion Methods

-

Circumcenter (“Guaranteed Quality”)

*Nodes introduced at triangle circumcenters

*Order of insertion based on minimum angle of any triangle
*Continues until minimum angle > predefined minimum
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Delaunay =

Node Insertion Methods

Circumcenter (“Guaranteed Quality”)

*Nodes introduced at triangle circumcenters

*Order of insertion based on minimum angle of any triangle
*Continues until minimum angle > predefined minimum
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Delaunay =

Node Insertion Methods

A B

Advancing Front

*“Front” structure maintained throughout

*Nodes introduced at ideal location from current front edge
(Marcum,95)
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Delaunay =

Node Insertion Methods

Advancing Front

*“Front” structure maintained throughout

*Nodes introduced at ideal location from current front edge
(Marcum,95)
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Delaunay =

Node Insertion Methods

Edges
*Nodes introduced along existing edges at [=h
*Check to ensure nodes on nearby edges are not too close

(George,91)
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Delaunay =

Node Insertion Methods

Edges
*Nodes introduced at along existing edges at /[=h
*Check to ensure nodes on nearby edges are not too close

(George,91)
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Delaunay =

Boundary Constrained

Boundary Intersection
*Nodes and edges introduced where Delaunay edges
intersect boundary
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Delaunay =

Boundary Constrained

Boundary Intersection
*Nodes and edges introduced where Delaunay edges
intersect boundary
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Delaunay =

Boundary Constrained

Local Swapping
*Edges swapped between adjacent pairs of triangles until
boundary is maintained
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Delaunay =

Boundary Constrained

Local Swapping
*Edges swapped between adjacent pairs of triangles until
boundary is maintained
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Delaunay =

Boundary Constrained

Local Swapping
*Edges swapped between adjacent pairs of triangles until
boundary is maintained
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Delaunay =

Boundary Constrained

Local Swapping
*Edges swapped between adjacent pairs of triangles until
boundary is maintained
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Delaunay =

Boundary Constrained

Local Swapping
*Edges swapped between adjacent pairs of triangles until

boundary is maintained
(George,91)(Owen,99)
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Local Swapping Example
*Recover edge CD at vector V|

Boundary Constrained
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Local Swapping Example
*Make a list (queue) of all edges E,, that intersect V

Boundary Constrained
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Local Swapping Example
*Swap the diagonal of adjacent triangle pairs for each
edge in the list
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Local Swapping Example

*Check that resulting swaps do not cause overlapping
triangles. If they do, then place edge at the back of the
queue and try again later
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Local Swapping Example

*Check that resulting swaps do not cause overlapping
triangles. If they do, then place edge at the back of the
queue and try again later
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Does not maintain
Delaunay criterion!

Local Swapping Example
*Final swap will recover the desired edge.

*Resulting triangle quality may be poor if multiple
swaps were necessary
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Delaunay =

Boundary Constrained

Edge Recovery
B *Force edges into triangulation by

DE = edge to be recovered . .
performing 2-3 swap transformation

D E

ABC = non-conforming face

A

3D Local Swapping
*Requires both boundary edge recovery and boundary

face recovery
(George,91;99)(Owen,00)
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Delaunay =

Boundary Constrained

Edge Recovery
B *Force edges into triangulation by

DE = edge to be recovered . _
performing 2-3 swap transformation

D E

ABC = non-conforming face

A

3D Local Swapping
*Requires both boundary edge recovery and boundary

face recovery
(George,91;99)(Owen,00)
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Delaunay =

Boundary Constrained

Edge Recovery
B *Force edges into triangulation by

DE = edge recovered . .
performing 2-3 swap transformation

E

A

3D Local Swapping
*Requires both boundary edge recovery and boundary

face recovery
(George,91;99)(Owen,00)
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Delaunay =

Boundary Constrained

Edge Recovery
B *Force edges into triangulation by

DE = edge recovered . .
performing 2-3 swap transformation

E

A

3D Local Swapping
*Requires both boundary edge recovery and boundary

face recovery
(George,91;99)(Owen,00)
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Delaunay =

Edge AB to be recovered

Exploded view of tets
intersected by AB

3D Edge Recovery
*Form queue of faces through which edge AB will pass
*Perform 2-3 swap transformations on all faces in the list

If overlapping tets result, place back on queue and try again later
oIf still cannot recover edge, then insert “steiner” point




2-3 Swap

abce, acbd

<

b e

e
S

abde, bcde, cade

Delaunay

2-2 Swap Face Split

d

adeb, edcb abfe, bcfe, cafe
bafd, cbfd, acfd

Edge Split

n;

abn;n;,4,
cbn;n;.4 {i=1...N}

N =no. ad;. tets at edge ab

Sandia
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Edge Suppress

a

AN

b

abnn,,, {i=1...N}

N kN jNm 0 {M=1...M}

M = no. unique ftrias in
polygon P={n,nz,n3}
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Surface Meshing 2

Direct 3D Meshing Parametric Space Meshing

Elements formed in 3D using Elements formed in 2D using parametric
actual x-y-z representation of representation of surface
surface *Node locations later mapped to 3D




Surface Meshing =

3D Surface Advancing Front
«form triangle from front edge AB




Surface Meshing =

/Tangentplane

3D Surface Advancing Front
*Define tangent plane at front by
averaging normals at A and B




Surface Meshing =

3D Surface Advancing Front
«define D to create ideal triangle on
tangent plane




Surface Meshing =

3D Surface Advancing Front
eproject D to surface (find closest
point on surface)




Surface Meshing

3D Surface Advancing Front
*Must determine overlapping or intersecting
triangles in 3D. (Floating point robustness
issues)

*Extensive use of geometry evaluators (for
normals and projections)

*Typically slower than parametric
implementations

*Generally higher quality elements
*Avoids problems with poor parametric
representations (typical in many CAD
environments)

*(L0,96;97); (Cass,96)
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Surface Meshing 2

Parametric Space Mesh Generation

*Parameterization of the NURBS provided by the CAD model can be used to
reduce the mesh generation to 2D

AW B

SETERER
WA e
AN =
q.‘-"lm?.i AVAFJEE":{!;E.‘ e
R T s

T ST

< SIS
™ th ﬁ? v

- i‘;_"#"‘

i e e s,
ﬂ‘ﬁ'# F"' [

)
I A
b




Sandia
National

Surface Meshing

Parametric Space Mesh Generation

[sotropic: Target element shapes are
equilateral triangles
*Equilateral elements in parametric
space may be distorted when mapped to
3D space.
o[f parametric space resembles 3D space
without too much distortion from u-v
space to x-y-z space, then isotropic
methods can be used.
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Surface Meshing 2

Parametric Space Mesh Generation

*Parametric space can be “customized” or warped so that isotropic methods can be used.
*Works well for many cases.

In general, 1sotropic mesh generation does not work well for parametric meshing

Warped parametric space




Surface Meshing

Parametric Space Mesh Generation

*Anisotropic: Triangles are stretched based on a
specified vector field
*Triangles appear stretched in 2d
(parametric space), but are near equilateral
in 3D

Sandia
National _
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Surface Meshing

Parametric Space Mesh Generation

Stretching is based on field of surface derivatives

ou ou ou ov Oov Ov
Au == ) ) AV = —,—,—
ox oy Oz ox oy Oz
*Metric, M can be defined at every location on
surface. Metric at location X is:

E F
M(X):{F G}

E =Au-Au F=Au-Av G =Av-Av

e A
A

Sandia
National _
Laboratories

34 i
TR S
= BT




Sandia

Surface Meshing 2

Parametric Space Mesh Generation

*Distances in parametric space can now be measured as a function of direction and
location on the surface. Distance from point X to Q is defined as:

1(X0) ~+ X0TM(X)X0
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Surface Meshing 2

Parametric Space Mesh Generation

*Use essentially the same isotropic methods for 2D mesh generation, except distances
and angles are now measured with respect to the local metric tensor M(X).
*Can use Delaunay (George, 99) or Advancing Front Methods (Tristano,98)
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Surface Meshing

Parametric Space Mesh Generation

*[s generally faster than 3D methods
*[s generally more robust (No 3D
intersection calculations)
*Poor parameterization can cause
problems
*Not possible if no parameterization is
provided
*Can generate your own
parametric space (Flatten 3D
surface into 2D) (Marcum, 99)
(Sheffer,00)
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Smoothing =

P,

(Field, 1988) .
Laplacian




Smoothing

(Field, 1988)

P,

Laplacian

Sandia
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Centroid of
attached nodes

P;




Smoothing

Laplacian
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Centroid of
attached nodes

Can create
inverted elements
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Laplacian
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Centroid of
attached nodes

Can create
inverted elements




Smoothing

Laplacian
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Centroid of
attached nodes

Can create
inverted elements




Smoothing

Smoothing Procedure

LET iter=0
SET all NODE v to active
REPEAT (main smoothing loop)

FOR EACH NODE v DO:
1. If v has been deactivated from smooth, then CONINUE.

2. distance moved = move_ node (V)
3. If distance moved < move tolerance, then
deactivate v
Else,
Allow move.
If neighbor node to v is inactive, then activate it.
END DO

iter++;
UNTIL all nodes are deactivated OR iter > MAX ITER (end of main smoothing loop)
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(Canann, Tristano,
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Smoothing h) =,

Triangle Distortion Metric

"’4 NS = Surface normal ared ( A B C)

P +15 +13
7 1 for (CAxCB)-NS >0
-1 for (CAxCB)-NS <0

C

a(ABC) = ()3

(Canann, Tristano, Staten, 1998)
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Quad Distortion Metric

Compute four triangle metrics
a(AABC) a(ACDA4)
a(ABCD) a(ADAB)

B Order metrics in descending order
0] > 04} > (0 > Oy
_ 02107

p

a1y

(Lee, Lo, 1994)




Smoothing

Combined Laplacian and Optimization
Based Smoothing

Sandia
National
Laboratories

Compute initial distortion metrics for all elements
LET iter=0
SET all NODE v to active
REPEAT (main smoothing loop)
FOR EACH NODE v DO:
1. If v has been deactivated from smooth, then CONINUE.
2. If v wasn’t moved by optimization-based smoothing in last iteration, then
distance moved = move_node laplacian(v)
If (iter >= 2) then
distance moved = move_node_ optimize (v)
If distance moved < move tolerance AND ag,;, > min allowable metric, then
deactivate v
Else,
Allow move, and update adjacent distortion metrics to v.
If neighbor node to v is inactive, then activate it.
END DO
iter++;
UNTIL all nodes are deactivated OR iter > MAX ITER (end of main smoothing loop)

(Canann, Tristano, Staten, 1998)
(Freitag, 1997)




