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Agenda

 The Simulation Process

 Geometry Basics

 Mesh Representations

 Mesh Generation Methods

 Tet/Tri Meshing Methods

 Surface Meshing Basics

 Smoothing

 Tet vs. Hex Meshing

 Structured vs. Unstructured

 Structured Hex Methods

 Unstructured Hex Methods

 Hex Dual Representations

 Overlay Grid

 Automatic Block 
Decomposition

 Hybrid Methods

Part I             8:00-9:30AM Part II         10:00-11:30AM
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Classical References

J. F. Thompson, B. K. Soni, and N. P. Weatherill, eds., 
Handbook of Grid Generation, CRC Press, 1998.
Block-structured grids: 
• Transfinite-interpolation, Elliptic and hyperbolic PDE 

systems, Harmonic mappings, ...
• Unstructured grids: Quadtrees and Octrees methods,
• Advancing-front methods, Delaunay-Voronoi methods,
• Anisotropic Grid generation, ...

P. J. Frey and P.-L. George, Mesh Generation - Application to 
Finite Elements, Hermes Science Publishing, Oxford, UK, 1st 
ed., 2000, 2nd ed. 2008.
• A comprehensive survey of Tetrahedral mesh generation 

methods: Quadtree-octree methods, Advancing-front methods, 
Delaunay-based methods, ...
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Simulation Process

3

2

1. Build CAD Model 2. Mesh 3. Apply Loads and 
Boundary Conditions

4. Computational Analysis
5. Visualization

2 kN
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Adaptive Simulation Process

3

2

1. Build CAD Model 2. Mesh 3. Apply Loads and Boundary Conditions

4. Computational Analysis

7. Visualization

2 kN

5. Error Estimation

Error?

6. Remesh/Refine/Improve

Adaptivity Loop

Error < 

Error > 

User
supplies meshing 

parameters

Analysis Code
supplies meshing 

parameters
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Geometry

vertices: x,y,z 
location
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curves: bounded by 
two vertices

Geometry

vertices: x,y,z 
location
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Geometry

surfaces: closed 
set of curves

curves: bounded by 
two verticesvertices: x,y,z 

location
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Geometry

surfaces: closed 
set of curves

volumes: closed set 
of surfaces

curves: bounded by 
two verticesvertices: x,y,z 

location
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Geometry

Volume 1

Surface 1 Surface 2 Surface 3 Surface 4 Surface 5 Surface 6

Volume 2

Surface 8 Surface 9 Surface 10 Surface 11

Surface 7

Volume 1

Volume 2

Surface 11

Surface 7

Manifold Geometry: 
Each volume maintains 
its own set of unique 
surfaces
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Geometry

Volume 1

Surface 1 Surface 2 Surface 3 Surface 4 Surface 5 Surface 6

Volume 2

Surface 8 Surface 9 Surface 10

Surface 7

Volume 1

Volume 2

Surface 7

Non-Manifold 
Geometry: Volumes 
share matching surfaces
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Geometry

Mesh Generation Algorithm

Geometry Engine
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Geometry

Paving

Geometry Engine

Triangle
Advancing 

Front

Delaunay
Tet Mesher

Hex
Sweeping 

Tool
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Geometry

Paving

Geometry Engine

Triangle
Advancing 

Front

Delaunay
Tet Mesher

Hex
Sweeping 

Tool

Surface::project_to()

Surface::normal_at()

Surface::curvature_at()

Curve::project_to()

Geometry Query

Curve::vertices()

Volume::surfaces()

Surface::curves()

Vertex::curves()

Topology Query
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Geometry

Paving

ACIS, OpenCascade, Catia, Facets, …

Triangle
Advancing 

Front

Delaunay
Tet Mesher

Hex
Sweeping 

Tool

Surface::project_to()

Surface::normal_at()

Surface::curvature_at()

Curve::project_to()

Geometry Query

Curve::vertices()

Volume::surfaces()

Surface::curves()

Vertex::curves()

Topology Query



16

Geometry

Paving

CAD Abstraction

Triangle
Advancing 

Front

Delaunay
Tet Mesher

Hex
Sweeping 

Tool

ACIS
Open

Cascade
Catia Facets

Surface::project_to()

Surface::normal_at()

Surface::curvature_at()

Curve::project_to()

Geometry Query

Curve::vertices()

Volume::surfaces()

Surface::curves()

Vertex::curves()

Topology Query
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Mesh Representation

0D 1D 2D

3D

mass beam

triangle

quadrilateral

tetrahedra

hexahedra
wedge

pyramid



18

Mesh Representation

Node

Element

Node-Element 
Connectivity Only

Node

Edge

Face

Element

Cyclic Connectivity

Node

Edge

Face

Element

Doubley-Linked 
Connectivity

Node

Edge

Face

Element

Virtual Edges 
and/or Faces

SpeedSlower Faster

Memory UsageLow memory High memory
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Mesh Representation

Geometry Associativity

NodeVertex

Curve Edge List

Face ListSurface

Volume Element List

Boundary Conditions applied to 
geometric entities.  

Delete/Modify mesh defined on 
geometric entity 

Operations on mesh entities 
require conformity to geometry
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Mesh Generation Methods

Geometry First Mesh First

mesh 
vertices
mesh 
curves

mesh 
surfaces

Nodes 
projected to 
geometry
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Mesh Generation Methods

Geometry First Mesh First
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Mesh Generation Methods

Geometry First Mesh First

• AKA. Bottom-up Meshing
• Advancing Front
• Delaunay Methods

• AKA. Overlay Grid
• Octree Methods
• Grid-based Methods

• Boundary constrained
• Dimension n mesh is input for dimension 

n+1

• No Boundary constraints
• Boundary nodes placed based on 

intersection and/or projection

• Incremental Workflow
• One entity at a time
• Neighbors conform

• All-in-one Workflow
• All geometry at once
• Neighbors will not conform

• More control over mesh quality and 
element placement

• Boundary layers
• Directionality

• Less control over mesh quality and 
element placement

• Orientation of initial mesh w.r.t. geometry 
effects final mesh

• Structured meshing requires special 
case topologies

• Pave-sweep
• Block-structured
• Manual/Automated decomposition required

• No special case topologies for hex 
meshing

• No special case decompositions needed
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Mesh Generation Process

Mesh
Vertices

Mesh 
Curves

Verify/correct for 
sizing criteria on 
curves

Set up sizing 
function for 
surface

Mesh 
surface

Set up sizing 
function for 
volume

Mesh 
volume

Smooth/Cleanup 
surface mesh

Verify 
Quality

Verify 
Quality

Smooth/Cleanup 
volume mesh

For each surface

For each volume

Geometry-First Mesh Generation

Apply Manual 
Sizing, Match 
Intervals
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Mesh Generation Process

Initialize 
overlay 
mesh

Match 
nodes to 
vertices

Match 
edges to 
curves

Mesh-First Mesh Generation

Modify mesh to 
meet local size 
requirements

Match 
tris/quads 
to surfaces

Smoothing/
Cleanup

Match 
tets/hexes 
to volumes

Remove 
exterior 
mesh
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Tri/Tet 
Methods

http://www.simulog.fr/mesh/gener2.htm

Octree
Advancing Front
Delaunay

http://www.ansys.com
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Tet Meshing Software

Commercial
• Tetmesh-GHS3D, INRIA, Rocquencourt, Distene France. 
• MeshSim, SCOREC, RPI, Simmetrix Inc. USA.
• SolidMesh, AFLR mesh generator, SimCenter, Mississippi State Uni., 

(Altair Hypermesh)

Open Source
• Netgen, TU Vienna.
• Gmsh, Uni. Liege & Uni. Catholique de Louvain.
• GRUMMP, University of British Columbia.
• Pyramid, UC Berkeley.
• CGALmesh, INRIA, Sophia-Antipolis.
• TetGen, Weierstrass Institute, Berlin.

A Representative Sample
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Octree/Quadtree

•Define intial bounding box (root of quadtree)
•Recursively break into 4 leaves per root to resolve geometry
•Find intersections of leaves with geometry boundary
•Mesh each leaf using corners, side nodes and intersections with geometry
•Delete Outside
•(Yerry and Shephard, 84), (Shepherd and Georges, 91)
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Octree/Quadtree

QMG, 
Cornell University
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Octree/Quadtree

QMG, 
Cornell University
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Advancing Front

A B

C

•Begin with boundary mesh - define as initial front
•For each edge (face) on front, locate ideal node C based on front AB
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Advancing Front

A B

C
r

•Determine if any other nodes on current front are within search 
radius r of ideal location C (Choose D instead of C)

D
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Advancing Front

•Book-Keeping:  New front edges added and deleted from front as 
triangles are formed
•Continue until no front edges remain on front

D
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Advancing Front

•Book-Keeping:  New front edges added and deleted from front as 
triangles are formed
•Continue until no front edges remain on front
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Advancing Front

•Book-Keeping:  New front edges added and deleted from front as 
triangles are formed
•Continue until no front edges remain on front



35

Advancing Front

•Book-Keeping:  New front edges added and deleted from front as 
triangles are formed
•Continue until no front edges remain on front
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Advancing Front

A

B

C

•Where multiple choices are available, use best quality (closest 
shape to equilateral)
•Reject any that would intersect existing front
•Reject any inverted triangles (|AB X AC| > 0)
•(Lohner,88;96)(Lo,91)

r
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Advancing Front

A

B

C
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Advancing Front

A

B

C

D
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Advancing Front

A

B

C

D
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Advancing Front

A

B

C

D

r
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Advancing Front

A

B

C

D

r
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Advancing Front

A

B

C

D

r
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Advancing Front

A

B

C

D
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Advancing Front

Ansys, Inc.
www.ansys.com
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Delaunay

Triangle
Jonathon Shewchuk
http://www-2.cs.cmu.edu/~quake/triangle.html

Tetmesh-GHS3D
INRIA, France
http://www.simulog.fr/tetmesh/
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Delaunay

circumcircle

Empty Circle Property: 
No other vertex is contained within the circumcircle of 
any triangle
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Delaunay
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Delaunay Triangulation: 
Obeys empty-circle (sphere) property

Delaunay
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Delaunay

Delaunay Triangulation: 
Obeys empty-circle (sphere) property
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Delaunay

Delaunay Triangulation: 
Obeys empty-circle (sphere) property
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Delaunay

Vornoi cell

Delaunay Triangulation: 
Obeys empty-circle (sphere) property
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Voronoi Diagram
Dual of a Delaunay Triangulation

Delaunay
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Delaunay

Empty Sphere Property: 
No other vertex is contained within the circumsphere of 
any tetrahedron

circumsphere
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Delaunay

circumsphere

Empty Sphere Property: 
No other vertex is contained within the circumsphere of 
any tetrahedron
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Lawson Algorithm
•Locate triangle containing X
•Subdivide triangle
•Recursively check adjoining 
triangles to ensure empty-circle 
property.  Swap diagonal if 
needed
•(Lawson,77)

X

Given a Delaunay 
Triangulation of n nodes, How 
do I insert node n+1 ?

Delaunay
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X

Delaunay

Lawson Algorithm
•Locate triangle containing X
•Subdivide triangle
•Recursively check adjoining 
triangles to ensure empty-circle 
property.  Swap diagonal if 
needed
•(Lawson,77)
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Bowyer-Watson Algorithm
•Locate triangle that contains 
the point
•Search for all triangles whose 
circumcircle contain the point 
(d<r)
•Delete the triangles (creating 
a void in the mesh)
•Form new triangles from the 
new point and the void 
boundary
•(Watson,81)

X

r c

d

Given a Delaunay 
Triangulation of n nodes, How 
do I insert node n+1 ?

Delaunay
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X

Bowyer-Watson Algorithm
•Locate triangle that contains 
the point
•Search for all triangles whose 
circumcircle contain the point 
(d<r)
•Delete the triangles (creating 
a void in the mesh)
•Form new triangles from the 
new point and the void 
boundary
•(Watson,81)

Delaunay

Given a Delaunay 
Triangulation of n nodes, How 
do I insert node n+1 ?
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Delaunay
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insert point

X

Delaunay
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insert point

X

cavity

Delaunay
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insert point

X

filled cavity

Delaunay



63

•Begin with Bounding Triangles (or Tetrahedra)

Delaunay
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Delaunay

•Insert boundary nodes using Delaunay method 
(Lawson or Bowyer-Watson)
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Delaunay

•Insert boundary nodes using Delaunay method 
(Lawson or Bowyer-Watson)



66

Delaunay

•Insert boundary nodes using Delaunay method 
(Lawson or Bowyer-Watson)
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Delaunay

•Insert boundary nodes using Delaunay method 
(Lawson or Bowyer-Watson)
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Delaunay

•Insert boundary nodes using Delaunay method 
(Lawson or Bowyer-Watson)
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Delaunay

•Recover boundary
•Delete outside triangles
•Insert internal nodes
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Delaunay

Node Insertion Methods

Grid Based
•Nodes introduced based on a regular lattice
•Lattice could be rectangular, triangular, quadtree, etc…
•Outside nodes ignored

h
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Grid Based
•Nodes introduced based on a regular lattice
•Lattice could be rectangular, triangular, quadtree, etc…
•Outside nodes ignored

Delaunay

Node Insertion Methods
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Delaunay

Circumcenter (“Guaranteed Quality”)
•Nodes introduced at triangle circumcenters
•Order of insertion based on minimum angle of any triangle
•Continues until minimum angle > predefined minimum  



)30( 

(Chew,Ruppert,Shewchuk)

Node Insertion Methods
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Delaunay

Circumcenter (“Guaranteed Quality”)
•Nodes introduced at triangle circumcenters
•Order of insertion based on minimum angle of any triangle
•Continues until minimum angle > predefined minimum  )30( 

(Chew,Ruppert,Shewchuk)

Node Insertion Methods
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Delaunay

Advancing Front
•“Front” structure maintained throughout
•Nodes introduced at ideal location from current front edge

A B

C

(Marcum,95)

Node Insertion Methods
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Delaunay

Advancing Front
•“Front” structure maintained throughout
•Nodes introduced at ideal location from current front edge

(Marcum,95)

Node Insertion Methods
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Delaunay

Edges
•Nodes introduced along existing edges at l=h
•Check to ensure nodes on nearby edges are not too close

h

h

h

(George,91)

Node Insertion Methods
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Delaunay

Edges
•Nodes introduced at along existing edges at l=h
•Check to ensure nodes on nearby edges are not too close

(George,91)

Node Insertion Methods
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Delaunay

Boundary Intersection
•Nodes and edges introduced where Delaunay edges 
intersect boundary

Boundary Constrained
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Delaunay

Boundary Intersection
•Nodes and edges introduced where Delaunay edges 
intersect boundary

Boundary Constrained



80

Delaunay

Local Swapping
•Edges swapped between adjacent pairs of triangles until 
boundary is maintained

Boundary Constrained
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Delaunay

Local Swapping
•Edges swapped between adjacent pairs of triangles until 
boundary is maintained

Boundary Constrained



82

Delaunay

Local Swapping
•Edges swapped between adjacent pairs of triangles until 
boundary is maintained

Boundary Constrained
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Delaunay

Local Swapping
•Edges swapped between adjacent pairs of triangles until 
boundary is maintained

Boundary Constrained



84

Delaunay

Local Swapping
•Edges swapped between adjacent pairs of triangles until 
boundary is maintained

(George,91)(Owen,99)

Boundary Constrained
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D C

VS

Delaunay

Local Swapping Example
•Recover edge CD at vector Vs

Boundary Constrained
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D C

E1

E2

E3

E4E5

E6
E7

E8

Local Swapping Example
•Make a list (queue) of all edges Ei, that intersect Vs

Delaunay

Boundary Constrained
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D C
E1

E2

E3

E4E5

E6
E7

E8

Delaunay

Local Swapping Example
•Swap the diagonal of adjacent triangle pairs for each 
edge in the list
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D C

E2

E3

E4E5

E6
E7

E8

Delaunay

Local Swapping Example
•Check that resulting swaps do not cause overlapping 
triangles.  If they do, then place edge at the back of the 
queue and try again later
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D C

E3

E4E5

E6
E7

E8

Delaunay

Local Swapping Example
•Check that resulting swaps do not cause overlapping 
triangles.  If they do, then place edge at the back of the 
queue and try again later
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D C

E6

Delaunay

Local Swapping Example
•Final swap will recover the desired edge.
•Resulting triangle quality may be poor if multiple 
swaps were necessary

Does not maintain 
Delaunay criterion!
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Delaunay

A

C

D E

B

3D Local Swapping
•Requires both boundary edge recovery and boundary 
face recovery

Edge Recovery
•Force edges into triangulation by 
performing 2-3 swap transformation 

ABC = non-conforming face

DE = edge to be recovered

(George,91;99)(Owen,00)

Boundary Constrained
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Delaunay

A

B

C

D E

3D Local Swapping
•Requires both boundary edge recovery and boundary 
face recovery

Edge Recovery
•Force edges into triangulation by 
performing 2-3 swap transformation 

ABC = non-conforming face

DE = edge to be recovered

ABCE
ACBD

2-3 Swap

(George,91;99)(Owen,00)

Boundary Constrained
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Delaunay

A

B

C

D E

3D Local Swapping
•Requires both boundary edge recovery and boundary 
face recovery

Edge Recovery
•Force edges into triangulation by 
performing 2-3 swap transformation 

ABCE
ACBD

2-3 Swap

BAED
CBED
ACED

DE = edge recovered

(George,91;99)(Owen,00)

Boundary Constrained
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Delaunay

A

C

D E

B

3D Local Swapping
•Requires both boundary edge recovery and boundary 
face recovery

Edge Recovery
•Force edges into triangulation by 
performing 2-3 swap transformation 

DE = edge recovered

ABCE
ACBD

2-3 Swap

BAED
CBED
ECED

(George,91;99)(Owen,00)

Boundary Constrained
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Delaunay

3D Edge Recovery
•Form queue of faces through which edge AB will pass
•Perform 2-3 swap transformations on all faces in the list
•If overlapping tets result, place back on queue and try again later
•If still cannot recover edge, then insert “steiner” point 

Edge AB to be recovered

Exploded view of tets 
intersected by AB
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Delaunay

2-3 Swap 2-2 Swap Face Split Edge Split Edge Suppress

abce, acbd

abde, bcde, cade

aceb, adcb

adeb, edcb

abce, acbd

abfe, bcfe, cafe
bafd, cbfd, acfd 

abnini+1 {i=1…N}

abnini+1, 
cbnini+1 {i=1…N} 

abnini+1 {i=1…N}

nm,knm.jnm.ia, 
nm,knm.jnm.ib {m=1…M} 

N = no. adj. tets at edge ab M = no. unique trias in 
polygon P={n1,n2,n3}
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Surface Meshing

Direct 3D Meshing Parametric Space Meshing

u

v

•Elements formed in 3D using 
actual x-y-z representation of 
surface

•Elements formed in 2D using parametric 
representation of surface
•Node locations later mapped to 3D
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Surface Meshing

A

B

3D Surface Advancing Front
•form triangle from front edge AB
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A

B

Surface Meshing

C

NC

3D Surface Advancing Front
•Define tangent plane at front by 
averaging normals at A and B

Tangent plane
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Surface Meshing

A

B

C

NC

D

3D Surface Advancing Front
•define D to create ideal triangle on 
tangent plane
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A

B

C

NC

D

3D Surface Advancing Front
•project D to surface (find closest 
point on surface)

Surface Meshing
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Surface Meshing

3D Surface Advancing Front
•Must determine overlapping or intersecting 
triangles in 3D.  (Floating point robustness 
issues)
•Extensive use of geometry evaluators (for 
normals and projections)
•Typically slower than parametric 
implementations
•Generally higher quality elements
•Avoids problems with poor parametric 
representations (typical in many CAD 
environments)
•(Lo,96;97); (Cass,96)  
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Surface Meshing

Parametric Space Mesh Generation
•Parameterization of the NURBS provided by the CAD model can be used to 
reduce the mesh generation to 2D 

u

v

u

v
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Surface Meshing

Parametric Space Mesh Generation
•Isotropic: Target element shapes are 
equilateral triangles

•Equilateral elements in parametric 
space may be distorted when mapped to 
3D space.
•If parametric space resembles 3D space 
without too much distortion from u-v
space to x-y-z space, then isotropic 
methods can be used.

u

v

u

v
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Surface Meshing

•Parametric space can be “customized” or warped so that isotropic methods can be used.
•Works well for many cases.
•In general, isotropic mesh generation does not work well for parametric meshing

u

v

u

v

Parametric Space Mesh Generation

Warped parametric space
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Surface Meshing

u

v

u

v

•Anisotropic: Triangles are stretched based on a 
specified vector field

•Triangles appear stretched in 2d 
(parametric space), but are near equilateral 
in 3D

Parametric Space Mesh Generation



107

Surface Meshing

•Stretching is based on field of surface derivatives

Parametric Space Mesh Generation
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•Metric, M can be defined at every location on 
surface.  Metric at location X is:
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Surface Meshing

•Distances in parametric space can now be measured as a function of direction and 
location on the surface.  Distance from point X to Q is defined as:

XQXQXQl T )()( XM

u

v

x

y

z

Parametric Space Mesh Generation

X

Q

)(XQl

u

v

X Q

)(XQl

M(X)
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Surface Meshing

Parametric Space Mesh Generation
•Use essentially the same isotropic methods for 2D mesh generation, except distances 
and angles are now measured with respect to the local metric tensor M(X).
•Can use Delaunay (George, 99) or Advancing Front Methods (Tristano,98)
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Surface Meshing

Parametric Space Mesh Generation

•Is generally faster than 3D methods
•Is generally more robust (No 3D 
intersection calculations)
•Poor parameterization can cause 
problems
•Not possible if no parameterization is 
provided

•Can generate your own 
parametric space (Flatten 3D 
surface into 2D) (Marcum, 99) 
(Sheffer,00)
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Smoothing

P1

P2

P3

P4

P5

P

Laplacian
(Field, 1988)
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Smoothing

P1

P2

P3

P5
P

Laplacian
n

n

i
i

 1

P

P

Centroid of 
attached nodes

(Field, 1988)

P4
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Smoothing

P1

P2

P3

P5

P

Laplacian
n

n

i
i

 1

P

P

Centroid of 
attached nodes

Can create 
inverted elements 

P4

P6
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Smoothing Procedure

LET iter=0
SET all NODE v to active
REPEAT (main smoothing loop)

FOR EACH NODE v DO:
1.  If v has been deactivated from smooth, then CONINUE.
2.  distance moved = move_node(v)
3.  If distance moved < move tolerance, then

deactivate v
Else,

Allow move.
If neighbor node to v is inactive, then activate it.

END DO
iter++;

UNTIL all nodes are deactivated OR iter > MAX_ITER (end of main smoothing loop)
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Steepest descent 
optimization

(Canann, Tristano, 
Staten, 1998)
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Compute four triangle metrics

Order metrics in descending order
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Quad Distortion Metric

(Lee, Lo, 1994)
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Combined Laplacian and Optimization 
Based Smoothing
Compute initial distortion metrics for all elements
LET iter=0
SET all NODE v to active
REPEAT (main smoothing loop)

FOR EACH NODE v DO:
1.  If v has been deactivated from smooth, then CONINUE.
2.  If v wasn’t moved by optimization-based smoothing in last iteration, then 

distance_moved = move_node_laplacian(v)
3.  If (iter >= 2) then

distance_moved = move_node_optimize(v)
4.  If distance_moved < move_tolerance AND min > min_allowable_metric, then

deactivate v
Else,

Allow move, and update adjacent distortion metrics to v.
If neighbor node to v is inactive, then activate it.

END DO
iter++;

UNTIL all nodes are deactivated OR iter > MAX_ITER (end of main smoothing loop)

(Canann, Tristano, Staten, 1998)
(Freitag, 1997)


