
1

Photos placed in horizontal position
with even amount of white space

between photos and header

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Steven Owen

An Introduction to Automatic
Mesh Generation Algorithms

Short Course, September 26, 2016
Washington, DC

Sandia National Laboratories

SAND2016-9194C

2

Agenda

 The Simulation Process

 Geometry Basics

 Mesh Representations

 Mesh Generation Methods

 Tet/Tri Meshing Methods

 Surface Meshing Basics

 Smoothing

 Tet vs. Hex Meshing

 Structured vs. Unstructured

 Structured Hex Methods

 Unstructured Hex Methods

 Hex Dual Representations

 Overlay Grid

 Automatic Block
Decomposition

 Hybrid Methods

Part I 8:00-9:30AM Part II 10:00-11:30AM

3

Classical References

J. F. Thompson, B. K. Soni, and N. P. Weatherill, eds.,
Handbook of Grid Generation, CRC Press, 1998.
Block-structured grids:
• Transfinite-interpolation, Elliptic and hyperbolic PDE

systems, Harmonic mappings, ...
• Unstructured grids: Quadtrees and Octrees methods,
• Advancing-front methods, Delaunay-Voronoi methods,
• Anisotropic Grid generation, ...

P. J. Frey and P.-L. George, Mesh Generation - Application to
Finite Elements, Hermes Science Publishing, Oxford, UK, 1st
ed., 2000, 2nd ed. 2008.
• A comprehensive survey of Tetrahedral mesh generation

methods: Quadtree-octree methods, Advancing-front methods,
Delaunay-based methods, ...

4

Simulation Process

3

2

1. Build CAD Model 2. Mesh 3. Apply Loads and
Boundary Conditions

4. Computational Analysis
5. Visualization

2 kN

5

Adaptive Simulation Process

3

2

1. Build CAD Model 2. Mesh 3. Apply Loads and Boundary Conditions

4. Computational Analysis

7. Visualization

2 kN

5. Error Estimation

Error?

6. Remesh/Refine/Improve

Adaptivity Loop

Error < 

Error > 

User
supplies meshing

parameters

Analysis Code
supplies meshing

parameters

6

Geometry

vertices: x,y,z
location

7

curves: bounded by
two vertices

Geometry

vertices: x,y,z
location

8

Geometry

surfaces: closed
set of curves

curves: bounded by
two verticesvertices: x,y,z

location

9

Geometry

surfaces: closed
set of curves

volumes: closed set
of surfaces

curves: bounded by
two verticesvertices: x,y,z

location

10

Geometry

Volume 1

Surface 1 Surface 2 Surface 3 Surface 4 Surface 5 Surface 6

Volume 2

Surface 8 Surface 9 Surface 10 Surface 11

Surface 7

Volume 1

Volume 2

Surface 11

Surface 7

Manifold Geometry:
Each volume maintains
its own set of unique
surfaces

11

Geometry

Volume 1

Surface 1 Surface 2 Surface 3 Surface 4 Surface 5 Surface 6

Volume 2

Surface 8 Surface 9 Surface 10

Surface 7

Volume 1

Volume 2

Surface 7

Non-Manifold
Geometry: Volumes
share matching surfaces

12

Geometry

Mesh Generation Algorithm

Geometry Engine

13

Geometry

Paving

Geometry Engine

Triangle
Advancing

Front

Delaunay
Tet Mesher

Hex
Sweeping

Tool

14

Geometry

Paving

Geometry Engine

Triangle
Advancing

Front

Delaunay
Tet Mesher

Hex
Sweeping

Tool

Surface::project_to()

Surface::normal_at()

Surface::curvature_at()

Curve::project_to()

Geometry Query

Curve::vertices()

Volume::surfaces()

Surface::curves()

Vertex::curves()

Topology Query

15

Geometry

Paving

ACIS, OpenCascade, Catia, Facets, …

Triangle
Advancing

Front

Delaunay
Tet Mesher

Hex
Sweeping

Tool

Surface::project_to()

Surface::normal_at()

Surface::curvature_at()

Curve::project_to()

Geometry Query

Curve::vertices()

Volume::surfaces()

Surface::curves()

Vertex::curves()

Topology Query

16

Geometry

Paving

CAD Abstraction

Triangle
Advancing

Front

Delaunay
Tet Mesher

Hex
Sweeping

Tool

ACIS
Open

Cascade
Catia Facets

Surface::project_to()

Surface::normal_at()

Surface::curvature_at()

Curve::project_to()

Geometry Query

Curve::vertices()

Volume::surfaces()

Surface::curves()

Vertex::curves()

Topology Query

17

Mesh Representation

0D 1D 2D

3D

mass beam

triangle

quadrilateral

tetrahedra

hexahedra
wedge

pyramid

18

Mesh Representation

Node

Element

Node-Element
Connectivity Only

Node

Edge

Face

Element

Cyclic Connectivity

Node

Edge

Face

Element

Doubley-Linked
Connectivity

Node

Edge

Face

Element

Virtual Edges
and/or Faces

SpeedSlower Faster

Memory UsageLow memory High memory

19

Mesh Representation

Geometry Associativity

NodeVertex

Curve Edge List

Face ListSurface

Volume Element List

Boundary Conditions applied to
geometric entities.

Delete/Modify mesh defined on
geometric entity

Operations on mesh entities
require conformity to geometry

20

Mesh Generation Methods

Geometry First Mesh First

mesh
vertices
mesh
curves

mesh
surfaces

Nodes
projected to
geometry

21

Mesh Generation Methods

Geometry First Mesh First

22

Mesh Generation Methods

Geometry First Mesh First

• AKA. Bottom-up Meshing
• Advancing Front
• Delaunay Methods

• AKA. Overlay Grid
• Octree Methods
• Grid-based Methods

• Boundary constrained
• Dimension n mesh is input for dimension

n+1

• No Boundary constraints
• Boundary nodes placed based on

intersection and/or projection

• Incremental Workflow
• One entity at a time
• Neighbors conform

• All-in-one Workflow
• All geometry at once
• Neighbors will not conform

• More control over mesh quality and
element placement

• Boundary layers
• Directionality

• Less control over mesh quality and
element placement

• Orientation of initial mesh w.r.t. geometry
effects final mesh

• Structured meshing requires special
case topologies

• Pave-sweep
• Block-structured
• Manual/Automated decomposition required

• No special case topologies for hex
meshing

• No special case decompositions needed

23

Mesh Generation Process

Mesh
Vertices

Mesh
Curves

Verify/correct for
sizing criteria on
curves

Set up sizing
function for
surface

Mesh
surface

Set up sizing
function for
volume

Mesh
volume

Smooth/Cleanup
surface mesh

Verify
Quality

Verify
Quality

Smooth/Cleanup
volume mesh

For each surface

For each volume

Geometry-First Mesh Generation

Apply Manual
Sizing, Match
Intervals

24

Mesh Generation Process

Initialize
overlay
mesh

Match
nodes to
vertices

Match
edges to
curves

Mesh-First Mesh Generation

Modify mesh to
meet local size
requirements

Match
tris/quads
to surfaces

Smoothing/
Cleanup

Match
tets/hexes
to volumes

Remove
exterior
mesh

25

Tri/Tet
Methods

http://www.simulog.fr/mesh/gener2.htm

Octree
Advancing Front
Delaunay

http://www.ansys.com

26

Tet Meshing Software

Commercial
• Tetmesh-GHS3D, INRIA, Rocquencourt, Distene France.
• MeshSim, SCOREC, RPI, Simmetrix Inc. USA.
• SolidMesh, AFLR mesh generator, SimCenter, Mississippi State Uni.,

(Altair Hypermesh)

Open Source
• Netgen, TU Vienna.
• Gmsh, Uni. Liege & Uni. Catholique de Louvain.
• GRUMMP, University of British Columbia.
• Pyramid, UC Berkeley.
• CGALmesh, INRIA, Sophia-Antipolis.
• TetGen, Weierstrass Institute, Berlin.

A Representative Sample

27

Octree/Quadtree

•Define intial bounding box (root of quadtree)
•Recursively break into 4 leaves per root to resolve geometry
•Find intersections of leaves with geometry boundary
•Mesh each leaf using corners, side nodes and intersections with geometry
•Delete Outside
•(Yerry and Shephard, 84), (Shepherd and Georges, 91)

28

Octree/Quadtree

QMG,
Cornell University

29

Octree/Quadtree

QMG,
Cornell University

30

Advancing Front

A B

C

•Begin with boundary mesh - define as initial front
•For each edge (face) on front, locate ideal node C based on front AB

31

Advancing Front

A B

C
r

•Determine if any other nodes on current front are within search
radius r of ideal location C (Choose D instead of C)

D

32

Advancing Front

•Book-Keeping: New front edges added and deleted from front as
triangles are formed
•Continue until no front edges remain on front

D

33

Advancing Front

•Book-Keeping: New front edges added and deleted from front as
triangles are formed
•Continue until no front edges remain on front

34

Advancing Front

•Book-Keeping: New front edges added and deleted from front as
triangles are formed
•Continue until no front edges remain on front

35

Advancing Front

•Book-Keeping: New front edges added and deleted from front as
triangles are formed
•Continue until no front edges remain on front

36

Advancing Front

A

B

C

•Where multiple choices are available, use best quality (closest
shape to equilateral)
•Reject any that would intersect existing front
•Reject any inverted triangles (|AB X AC| > 0)
•(Lohner,88;96)(Lo,91)

r

37

Advancing Front

A

B

C

38

Advancing Front

A

B

C

D

39

Advancing Front

A

B

C

D

40

Advancing Front

A

B

C

D

r

41

Advancing Front

A

B

C

D

r

42

Advancing Front

A

B

C

D

r

43

Advancing Front

A

B

C

D

44

Advancing Front

Ansys, Inc.
www.ansys.com

45

Delaunay

Triangle
Jonathon Shewchuk
http://www-2.cs.cmu.edu/~quake/triangle.html

Tetmesh-GHS3D
INRIA, France
http://www.simulog.fr/tetmesh/

46

Delaunay

circumcircle

Empty Circle Property:
No other vertex is contained within the circumcircle of
any triangle

47
47

22 yxCByAx 
























































2
3

2
3

2
2

2
2

2
1

2
1

33

22

11

1

1

1

yx

yx

yx

C

B

A

yx

yx

yx

22,
2

,
2

cccc yxCr
B

y
A

x 

Computing the Circumcircle center and radius

 11, yx

 22 , yx

 33 , yx

 cc yx ,

r

Delaunay

48

Delaunay Triangulation:
Obeys empty-circle (sphere) property

Delaunay

49

Delaunay

Delaunay Triangulation:
Obeys empty-circle (sphere) property

50

Delaunay

Delaunay Triangulation:
Obeys empty-circle (sphere) property

51

Delaunay

Vornoi cell

Delaunay Triangulation:
Obeys empty-circle (sphere) property

52

Voronoi Diagram
Dual of a Delaunay Triangulation

Delaunay

53

Delaunay

Empty Sphere Property:
No other vertex is contained within the circumsphere of
any tetrahedron

circumsphere

54

Delaunay

circumsphere

Empty Sphere Property:
No other vertex is contained within the circumsphere of
any tetrahedron

55

Lawson Algorithm
•Locate triangle containing X
•Subdivide triangle
•Recursively check adjoining
triangles to ensure empty-circle
property. Swap diagonal if
needed
•(Lawson,77)

X

Given a Delaunay
Triangulation of n nodes, How
do I insert node n+1 ?

Delaunay

56

X

Delaunay

Lawson Algorithm
•Locate triangle containing X
•Subdivide triangle
•Recursively check adjoining
triangles to ensure empty-circle
property. Swap diagonal if
needed
•(Lawson,77)

57

Bowyer-Watson Algorithm
•Locate triangle that contains
the point
•Search for all triangles whose
circumcircle contain the point
(d<r)
•Delete the triangles (creating
a void in the mesh)
•Form new triangles from the
new point and the void
boundary
•(Watson,81)

X

r c

d

Given a Delaunay
Triangulation of n nodes, How
do I insert node n+1 ?

Delaunay

58

X

Bowyer-Watson Algorithm
•Locate triangle that contains
the point
•Search for all triangles whose
circumcircle contain the point
(d<r)
•Delete the triangles (creating
a void in the mesh)
•Form new triangles from the
new point and the void
boundary
•(Watson,81)

Delaunay

Given a Delaunay
Triangulation of n nodes, How
do I insert node n+1 ?

59

Delaunay

60

insert point

X

Delaunay

61

insert point

X

cavity

Delaunay

62

insert point

X

filled cavity

Delaunay

63

•Begin with Bounding Triangles (or Tetrahedra)

Delaunay

64

Delaunay

•Insert boundary nodes using Delaunay method
(Lawson or Bowyer-Watson)

65

Delaunay

•Insert boundary nodes using Delaunay method
(Lawson or Bowyer-Watson)

66

Delaunay

•Insert boundary nodes using Delaunay method
(Lawson or Bowyer-Watson)

67

Delaunay

•Insert boundary nodes using Delaunay method
(Lawson or Bowyer-Watson)

68

Delaunay

•Insert boundary nodes using Delaunay method
(Lawson or Bowyer-Watson)

69

Delaunay

•Recover boundary
•Delete outside triangles
•Insert internal nodes

70

Delaunay

Node Insertion Methods

Grid Based
•Nodes introduced based on a regular lattice
•Lattice could be rectangular, triangular, quadtree, etc…
•Outside nodes ignored

h

71

Grid Based
•Nodes introduced based on a regular lattice
•Lattice could be rectangular, triangular, quadtree, etc…
•Outside nodes ignored

Delaunay

Node Insertion Methods

72

Delaunay

Circumcenter (“Guaranteed Quality”)
•Nodes introduced at triangle circumcenters
•Order of insertion based on minimum angle of any triangle
•Continues until minimum angle > predefined minimum



)30(

(Chew,Ruppert,Shewchuk)

Node Insertion Methods

73

Delaunay

Circumcenter (“Guaranteed Quality”)
•Nodes introduced at triangle circumcenters
•Order of insertion based on minimum angle of any triangle
•Continues until minimum angle > predefined minimum)30(

(Chew,Ruppert,Shewchuk)

Node Insertion Methods

74

Delaunay

Advancing Front
•“Front” structure maintained throughout
•Nodes introduced at ideal location from current front edge

A B

C

(Marcum,95)

Node Insertion Methods

75

Delaunay

Advancing Front
•“Front” structure maintained throughout
•Nodes introduced at ideal location from current front edge

(Marcum,95)

Node Insertion Methods

76

Delaunay

Edges
•Nodes introduced along existing edges at l=h
•Check to ensure nodes on nearby edges are not too close

h

h

h

(George,91)

Node Insertion Methods

77

Delaunay

Edges
•Nodes introduced at along existing edges at l=h
•Check to ensure nodes on nearby edges are not too close

(George,91)

Node Insertion Methods

78

Delaunay

Boundary Intersection
•Nodes and edges introduced where Delaunay edges
intersect boundary

Boundary Constrained

79

Delaunay

Boundary Intersection
•Nodes and edges introduced where Delaunay edges
intersect boundary

Boundary Constrained

80

Delaunay

Local Swapping
•Edges swapped between adjacent pairs of triangles until
boundary is maintained

Boundary Constrained

81

Delaunay

Local Swapping
•Edges swapped between adjacent pairs of triangles until
boundary is maintained

Boundary Constrained

82

Delaunay

Local Swapping
•Edges swapped between adjacent pairs of triangles until
boundary is maintained

Boundary Constrained

83

Delaunay

Local Swapping
•Edges swapped between adjacent pairs of triangles until
boundary is maintained

Boundary Constrained

84

Delaunay

Local Swapping
•Edges swapped between adjacent pairs of triangles until
boundary is maintained

(George,91)(Owen,99)

Boundary Constrained

85

D C

VS

Delaunay

Local Swapping Example
•Recover edge CD at vector Vs

Boundary Constrained

86

D C

E1

E2

E3

E4E5

E6
E7

E8

Local Swapping Example
•Make a list (queue) of all edges Ei, that intersect Vs

Delaunay

Boundary Constrained

87

D C
E1

E2

E3

E4E5

E6
E7

E8

Delaunay

Local Swapping Example
•Swap the diagonal of adjacent triangle pairs for each
edge in the list

88

D C

E2

E3

E4E5

E6
E7

E8

Delaunay

Local Swapping Example
•Check that resulting swaps do not cause overlapping
triangles. If they do, then place edge at the back of the
queue and try again later

89

D C

E3

E4E5

E6
E7

E8

Delaunay

Local Swapping Example
•Check that resulting swaps do not cause overlapping
triangles. If they do, then place edge at the back of the
queue and try again later

90

D C

E6

Delaunay

Local Swapping Example
•Final swap will recover the desired edge.
•Resulting triangle quality may be poor if multiple
swaps were necessary

Does not maintain
Delaunay criterion!

91

Delaunay

A

C

D E

B

3D Local Swapping
•Requires both boundary edge recovery and boundary
face recovery

Edge Recovery
•Force edges into triangulation by
performing 2-3 swap transformation

ABC = non-conforming face

DE = edge to be recovered

(George,91;99)(Owen,00)

Boundary Constrained

92

Delaunay

A

B

C

D E

3D Local Swapping
•Requires both boundary edge recovery and boundary
face recovery

Edge Recovery
•Force edges into triangulation by
performing 2-3 swap transformation

ABC = non-conforming face

DE = edge to be recovered

ABCE
ACBD

2-3 Swap

(George,91;99)(Owen,00)

Boundary Constrained

93

Delaunay

A

B

C

D E

3D Local Swapping
•Requires both boundary edge recovery and boundary
face recovery

Edge Recovery
•Force edges into triangulation by
performing 2-3 swap transformation

ABCE
ACBD

2-3 Swap

BAED
CBED
ACED

DE = edge recovered

(George,91;99)(Owen,00)

Boundary Constrained

94

Delaunay

A

C

D E

B

3D Local Swapping
•Requires both boundary edge recovery and boundary
face recovery

Edge Recovery
•Force edges into triangulation by
performing 2-3 swap transformation

DE = edge recovered

ABCE
ACBD

2-3 Swap

BAED
CBED
ECED

(George,91;99)(Owen,00)

Boundary Constrained

95

Delaunay

3D Edge Recovery
•Form queue of faces through which edge AB will pass
•Perform 2-3 swap transformations on all faces in the list
•If overlapping tets result, place back on queue and try again later
•If still cannot recover edge, then insert “steiner” point

Edge AB to be recovered

Exploded view of tets
intersected by AB

96

Delaunay

2-3 Swap 2-2 Swap Face Split Edge Split Edge Suppress

abce, acbd

abde, bcde, cade

aceb, adcb

adeb, edcb

abce, acbd

abfe, bcfe, cafe
bafd, cbfd, acfd

abnini+1 {i=1…N}

abnini+1,
cbnini+1 {i=1…N}

abnini+1 {i=1…N}

nm,knm.jnm.ia,
nm,knm.jnm.ib {m=1…M}

N = no. adj. tets at edge ab M = no. unique trias in
polygon P={n1,n2,n3}

97

Surface Meshing

Direct 3D Meshing Parametric Space Meshing

u

v

•Elements formed in 3D using
actual x-y-z representation of
surface

•Elements formed in 2D using parametric
representation of surface
•Node locations later mapped to 3D

98

Surface Meshing

A

B

3D Surface Advancing Front
•form triangle from front edge AB

99

A

B

Surface Meshing

C

NC

3D Surface Advancing Front
•Define tangent plane at front by
averaging normals at A and B

Tangent plane

100

Surface Meshing

A

B

C

NC

D

3D Surface Advancing Front
•define D to create ideal triangle on
tangent plane

101

A

B

C

NC

D

3D Surface Advancing Front
•project D to surface (find closest
point on surface)

Surface Meshing

102

Surface Meshing

3D Surface Advancing Front
•Must determine overlapping or intersecting
triangles in 3D. (Floating point robustness
issues)
•Extensive use of geometry evaluators (for
normals and projections)
•Typically slower than parametric
implementations
•Generally higher quality elements
•Avoids problems with poor parametric
representations (typical in many CAD
environments)
•(Lo,96;97); (Cass,96)

103

Surface Meshing

Parametric Space Mesh Generation
•Parameterization of the NURBS provided by the CAD model can be used to
reduce the mesh generation to 2D

u

v

u

v

104

Surface Meshing

Parametric Space Mesh Generation
•Isotropic: Target element shapes are
equilateral triangles

•Equilateral elements in parametric
space may be distorted when mapped to
3D space.
•If parametric space resembles 3D space
without too much distortion from u-v
space to x-y-z space, then isotropic
methods can be used.

u

v

u

v

105

Surface Meshing

•Parametric space can be “customized” or warped so that isotropic methods can be used.
•Works well for many cases.
•In general, isotropic mesh generation does not work well for parametric meshing

u

v

u

v

Parametric Space Mesh Generation

Warped parametric space

106

Surface Meshing

u

v

u

v

•Anisotropic: Triangles are stretched based on a
specified vector field

•Triangles appear stretched in 2d
(parametric space), but are near equilateral
in 3D

Parametric Space Mesh Generation

107

Surface Meshing

•Stretching is based on field of surface derivatives

Parametric Space Mesh Generation

u

v

x

y

z










z

u

y

u

x

u












,,










z

v

y

v

x

v












,,











z

v

y

v

x

v












,,v










z

u

y

u

x

u












,,u

uu E vu F vv G











GF

FE
)(XM

•Metric, M can be defined at every location on
surface. Metric at location X is:

108

Surface Meshing

•Distances in parametric space can now be measured as a function of direction and
location on the surface. Distance from point X to Q is defined as:

XQXQXQl T)()(XM

u

v

x

y

z

Parametric Space Mesh Generation

X

Q

)(XQl

u

v

X Q

)(XQl

M(X)

109

Surface Meshing

Parametric Space Mesh Generation
•Use essentially the same isotropic methods for 2D mesh generation, except distances
and angles are now measured with respect to the local metric tensor M(X).
•Can use Delaunay (George, 99) or Advancing Front Methods (Tristano,98)

110

Surface Meshing

Parametric Space Mesh Generation

•Is generally faster than 3D methods
•Is generally more robust (No 3D
intersection calculations)
•Poor parameterization can cause
problems
•Not possible if no parameterization is
provided

•Can generate your own
parametric space (Flatten 3D
surface into 2D) (Marcum, 99)
(Sheffer,00)

111

Smoothing

P1

P2

P3

P4

P5

P

Laplacian
(Field, 1988)

112

Smoothing

P1

P2

P3

P5
P

Laplacian
n

n

i
i

 1

P

P

Centroid of
attached nodes

(Field, 1988)

P4

113

Smoothing

P1

P2

P3

P5

P

Laplacian
n

n

i
i

 1

P

P

Centroid of
attached nodes

Can create
inverted elements

P4

P6

114

Smoothing

P6
P2

P3

P4

P5

P

Laplacian
n

n

i
i

 1

P

P

P1

Centroid of
attached nodes

Can create
inverted elements

115

Smoothing

P1

P2

P3

P5

P

Laplacian
n

n

i
i

 1

P

P

P4

P6

Constrained Laplacian: Do not
move node unless minimum
distortion metric is improved

Centroid of
attached nodes

Can create
inverted elements

116

Smoothing

Smoothing Procedure

LET iter=0
SET all NODE v to active
REPEAT (main smoothing loop)

FOR EACH NODE v DO:
1. If v has been deactivated from smooth, then CONINUE.
2. distance moved = move_node(v)
3. If distance moved < move tolerance, then

deactivate v
Else,

Allow move.
If neighbor node to v is inactive, then activate it.

END DO
iter++;

UNTIL all nodes are deactivated OR iter > MAX_ITER (end of main smoothing loop)

117

Smoothing











y

x

min
x

min
y

Optimization-
Based
Method

Compute shape
metric i for each
quad at P

Choose min to
optimize

Compute gradient
vector g=gmin by
perturbing small 
in x and y

P

gPP new













i

i

gggg
minmin




Steepest descent
optimization

(Canann, Tristano,
Staten, 1998)

118

Smoothing











y

x

min
x

min
y

Optimization-
Based
Method

Compute shape
metric i for each
quad at P

Choose min to
optimize

Compute gradient
vector g=gmin by
perturbing small 
in x and y

gPP new

Steepest descent
optimization














i

i

gggg
minmin




(Canann, Tristano,
Staten, 1998)

119

Smoothing











y

x

min
x

min
y

Optimization-
Based
Method

Compute shape
metric i for each
quad at P

Choose min to
optimize

Compute gradient
vector g=gmin by
perturbing small 
in x and y

gPP new

Steepest descent
optimization

(Canann, Tristano,
Staten, 1998)














i

i

gggg
minmin




120

Smoothing

l1

l2

l3

A

B

C
Triangle Distortion Metric

NS

A B

C

B A

C

A

B

C

= Surface normal

=1 =0 =-1

2
3

2
2

2
1

)(
3)()(

lll

ABCarea
IABC




 
  0 1

0 1






S

S

CBCAfor

CBCAfor
I

N

N

(Canann, Tristano, Staten, 1998)

121

Smoothing

A

B

C

D

4321  

)(ABC
)(BCD)(DAB

)(CDA
Compute four triangle metrics

Order metrics in descending order

21

43




 

Quad Distortion Metric

(Lee, Lo, 1994)

122

Smoothing

Combined Laplacian and Optimization
Based Smoothing
Compute initial distortion metrics for all elements
LET iter=0
SET all NODE v to active
REPEAT (main smoothing loop)

FOR EACH NODE v DO:
1. If v has been deactivated from smooth, then CONINUE.
2. If v wasn’t moved by optimization-based smoothing in last iteration, then

distance_moved = move_node_laplacian(v)
3. If (iter >= 2) then

distance_moved = move_node_optimize(v)
4. If distance_moved < move_tolerance AND min > min_allowable_metric, then

deactivate v
Else,

Allow move, and update adjacent distortion metrics to v.
If neighbor node to v is inactive, then activate it.

END DO
iter++;

UNTIL all nodes are deactivated OR iter > MAX_ITER (end of main smoothing loop)

(Canann, Tristano, Staten, 1998)
(Freitag, 1997)

