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Abstract: We present a computational framework that facilitates the construction, instantia-
tion, and analysis of large-scale optimization and simulation applications of coupled energy
networks. The framework integrates the optimization modeling package PLASMO and the
simulation package DMNetwork (built around PETSc). These tools use a common graph-
based abstraction that enables us to achieve compatibility between data structures and to
build applications that use network models of different physical fidelity. We also describe
how to embed these tools within complex computational workflows using SWIFT, which
is a tool that facilitates parallel execution of multiple simulation runs and management of
input and output data. We discuss how to use these capabilities to target coupled natural
gas and electricity systems.
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1. Motivation

There is an increasing need to create optimization and simulation models to design, operate,
and analyze interactions between infrastructure networks. This is technically challenging,
as different infrastructures present different physical phenomena and constraints at different
scales. The nature of the equations describing such phenomena and numerical techniques to
address them can be drastically different and complicates the creation of computational tools
capable of handling coupled systems. For instance, optimization of natural gas networks
often needs to capture slow transient effects using partial differential equations [4, 17, 6].
Such dynamics result, from instance, from sudden withdrawals of natural gas that propagate
throughout the network and affect gas delivery to power plants and grid operations [11].
In this work, we present a computational framework that integrates powerful optimiza-
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tion, simulation, and workflow management tools: PLASMO , DMNetwork, and SWIFT. PLASMO is
a graph-based algebraic modeling language that facilitates the construction of structured op-
timization models and provides interfaces to large-scale parallel optimization solvers DSP
[9] and PIPS-NLP [5], as well as off-the-shelf solvers (e.g., IPOPT [12]). DMNetworKk is a
modeling package that facilitates the implementation of network models and uses PETSc
libraries to perform high-resolution dynamic simulations on parallel computers [1]. SWIFT
is a scripting language that facilitates deployment and management of computational tasks
on high-performance computing environments [16]. By interfacing these capabilities, our
framework allows us to construct sophisticated applications for coupled infrastructure net-
works and to leverage high-performance computing architectures. We demonstrate the ca-
pabilities by using cases studies arising in the optimization and simulation of coupled natu-
ral gas and electric networks.

We highlight that, seamless integration of different optimization and simulation tools is
achieved by using a common graph-based abstraction in which infrastructure components are
represented as nodes and edges. Such an abstraction facilitates the construction of complex
hierarchical networks models (networks of networks) coupled at different levels, facilitates
collaboration by enabling model and data sharing and re-use, facilitates input-output data
management and transfer, and facilitates the construction of workflows to explore algorith-
mic performance and to perform model validation and verification.

2. PLASMO

PLASMO (Platform for Scalable Modeling and Optimization) is a Julia-based modeling
framework that facilitates the construction and analysis of structured optimization mod-
els. To do this, it leverages a hierarchical graph abstraction wherein nodes and edges can
be associated with mathematical models and connectivity constraints (physical or logical).
Given a graph structure with models and connections, PLASMO can produce either a pure
(flattened) optimization model to be solved using any off-the-shelf optimization solvers such
as IPOPT [12], or it can communicate structures to parallel solvers such as DSP [9] or PIPS
[5]. By using a graph abstraction, a model can be created in collaborative form where differ-
ent modelers develop different components. The hierarchical graph abstraction also induces
hierarchical data structures, which makes input and output data easier to parse and analyze.

2.1. Graph Abstraction

PLASMO incorporates a graph-based abstraction for model representation and interaction
that facilitates coupling of submodels without requiring underlying changes to those mod-
els. To do this, the PLASMO graph associates individual models with nodes and edges and
uses the graph topology to create coupling constraints among edges and neighbors to en-
force physical or logical connections. Figure 1 illustrates the basic graph concept for a simple
power grid system. Within the figure, we present a graph topology of four nodes with as-
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Fig. 1: Adding model components to a graph topology

sociated physical models for a power grid bus, generator, and load. The bus is coupled
to its neighbors through a coupling statement (explained later), which aggregates the load
and generator connected to the bus. In more practical applications, it is useful to organize
a model into a hierarchy of such nodes themselves to create large hierarchical network sys-
tems. This is straightforward given the PLASMO hierarchical graph object. Sub-systems can
be completely specified as illustrated in Figure 1, and then encapsulated into a node within
a larger graph. Figure 2 illustrates a hierarchical graph containing two separate grid sys-
tems (graphs) connected by a transmission line in the context of a network (parent graph).
Graph hierarchy is accomplished while retaining the overall connectivity structure in subn-
odes. This means that an equivalent graph can be constructed without the use of hierarchies,
but it would not benefit from the coupling context across layers. The hierarchical structure
automatically differentiates between edges and nodes connected within a local graph and
those connected between subgraphs. Referencing Figure 2 again, the total degree of bus
one is equal to four, but at the regional level its total degree is only one (the edge with the
power line model). This abstraction makes it straightforward to develop models for smaller
systems, and then connect nodes containing such smaller systems to larger systems at the
topology level of interest. Such a setting can be used to create networks that span local,
regional, and national scales. In our simple example, for instance, bus one is coupled to
a generator and two loads where the coupling defines total bus generation and load. It is
then coupled at the regional level to bus two, which defines the power balance across the
bus. For massive problems, the graph abstraction can be used directly to perform partition-
ing and aggregation tasks that can in turn be used to develop sophisticated decentralized
solution schemes (e.g., neighbor-to-neighbor, price coordination). Partitioning, in particu-
lar, induces problem structure that can be exploited by parallel solvers such as DSP[9] and
PIPS-NLP[5].
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2.2. Model Construction

PLASMO models are constructed in the Julia [3] language building upon the JuMP (Julia
for Mathematical Programming)[7] framework. Julia is a high-level, high-performance pro-
gramming language for technical computing with speeds comparable to pure C/C++. JUuMP
is an optimization package written in Julia that contains an abstract model object for mod-
eling general mathematical programs with interfaces to off-the-shelf optimization solvers
such as Ipopt and Gurobi. PLASMO builds on the core JUMP model object and associated
processing tools (e.g., automatic differentiation) for the construction of high-level and struc-
tured models. This also allows PLASMO to manage input and solution data for individual
modeling objects.

PLASMO Function Description

graph = Graph() Creates a PLASMO graph

node = Node(g::Graph) or Adds a node to Graph g.

node = Node(g::Graph,m::Model) Sets the node model if provided.
edge = Edge(g::Graph) or Adds an edge to Graph g.

edge = Edge(g::Graph,m::Model)
node = addgraph(g::Graph,sg::Graph)

Sets the edge model if provided.
Create a new node in graph containing a subgraph

edges_in(g::Graph,node::Node)

Retrieves the edges into node that are at the level of graph

edges_out(g::Graph,node::Node)

Retrieves the edges out of node that are at the level of
graph

neighbors_in(g::Graph,node::Node)

Retrieves the neighbors with edges into node that are at
the level of graph

neighbors_out(g::Graph,node::Node)

Retrieves the neighbors with edges out of node that are at
the level of graph

setmodel(ne::NodeOrEdge)

Set the model for a node or edge

setcouplingfunction(ne::NodeOrEdge)

Set the coupling function for a node or edge

@couple()

macro to perform quick node and edge couplings using
expressions

model = generatemodel(g::Graph)

Create a flat optimization model from the graph

storecurrentsolution(g::Graph)

Hold the current solution from the most recent model

setcurrentsolution(g::Graph)

Initialize node and edge models with current solution

Table 1 Core PLASMO functions

To demonstrate PLASMO model construction features, we develop component models for
both power grid and natural gas systems, and then combine them using functionality from
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Table 1 to create hierarchical (networks of networks) systems representative of the physical
infrastructure.

2.2.1. Example: Power Grid Model: For the power grid model, we focus on the well-known
economic dispatch problem. This problem is solved by ISOs to balance electric supply
and demand and to price electricity in intraday operations. Consider the following basic
continuous-time economic dispatch problem:

T
min 9" = / Zafg,-(r)dT (2.1a)
0 geg
s.t. dg;@ — (1), i€G (2.1b)
Z gi(T) — Z d;(t) + Z fo(T) — Z fo(T) =0, neN (2.1¢)
1€Gn JEDy, LeLree LeLsnd

Here, 7 € [0, 7] denotes the time dimension where 7 is the final time. We define the sets of
electricity generators as G, the set of electrical loads as D, the set of network nodes as NV, and
the set of transmission lines (links) as £. For each link ¢ € T we denote snd(t) € N as the
sending node and rec(t) € N as the receiving node. Using such notation we can construct
the sets £ and £5"?, which denote the set of flows entering and leaving node n € N. To
simplify the discussion, we do not show capacity, ramping, or DC flow constraints.

In the context of the PLASMO graph, this formulation can be represented with four types
of model components: generators, loads, buses (nodes), and transmission lines (edges) be-
tween buses. Each component has its own attributes (variables, objectives, and constraints).
We can abstract the topology into a hierarchical graph as shown in Figure 2. Each bus is a
central node connected to generation and load nodes within its own low-level graph and
connected to other buses through tie lines within a higher level graph. Snippet 1 demon-
strates the individual Julia functions for the different components of the economic dis-
patch problem. For simple cases, models can be coupled without directly instantiating node
and edge data structures using the @couple macro. Snippet 1 shows one way a bus could
be coupled to its generators and loads.
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Snippet 1: Building a Grid Model using PLASMO Graph and Modeling Components

# Build grid
time = 1:N # define a time discretization to model dynamics
grid = Graph()

bus = busmodel()

gen = genmodel()

loadl = loadmodel()

load2 = loadmodel()

@couple(grid, [t=time], bus.busgen[t] == gen.Pgen[t])

@couple(grid, [t=time], bus.busgen[t] == loadl.Pload[t] + load2.Pload[t])

# A bus with generation and load

function busmodel()
m = Model()
@variable(m,busgen[time]>= 0) #bus generation
@variable(m,busload[time]>= 0) #bus load
return m

end

# A generator model
function genmodel()
m = Model()
@variable(m,0 <= Pgen[time] <= capacity) #power generation
@variable(m,genCost)
@constraint(m,genCost== sum{costxPgen[t],t = time}) #generation cost

@objective(m,Min, genCost)
return m
end

# A load model

function loadmodel()
m = Model()
@variable(m,Pload[time] >= 0)
return m

end

@constraint(m,ramp_ub[t = time[l:end-1]]1,Pgen[t+1]-Pgen[t] <= +max_ramp)
@constraint(m,ramp_lb[t = time[l:end-1]],Pgen[t]-Pgen[t+1] >= -max_ramp)

#ramp limit
#ramp limit

We produce a complete grid system model from Figure 2 by coupling bus nodes on a
higher level graph (e.g., representing a regional grid) wherein the nodes are individual grid
systems (e.g., representing a local grid). Coupling expressions given directly between two
models (or nodes) facilitates quick model building, but more complex models typically re-
quire user defined coupling functions around nodes and edges. Snippet 2 simply defines
a coupling function around the buses, and we provide the higher level graph to query the
edges that connect across individual grid systems. By using a coupling function, a bus can
be coupled to an arbitrary number of generators and loads. This also facilitates mixing var-
ious generator and load models around a bus. For example, it would be possible to model
multiple types of generators subject to different sets of constraints. Similarly, we could also
have defined different types of buses with different generators and loads. PLASMO provides
flexibility to consider all these alternatives.
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Snippet 2: Building a Grid Model using PLASMO Graph and Coupling Function

function couplegridnode(m::JuMP.Model,node: :Node,graph::Graph)

busgen = getvariable(node, :busgen)

busload = getvariable(node, :busload)

links_in = edges_in(graph,node)

links_out = edges_out(graph,node)

@constraint(m,powerbalance[t = time],

0 == sum{getvariable(links_in[i],:P)[t],i = 1l:n_edges_in(graph,node)}

- sum{getvariable(links_out[i],:P)[t], i = 1:n_edges_out(graph,node)}

+ busgen[t] - busload[t])
end
grid_network = Graph()
addgraph(grid_region,grid_system) #add grid system as a node
addgraph(grid_region,another_grid_system) #add another grid system with a bus and loads
edge = Edge(grid_region,busnode,another_busnode) # define edge between systems
setmodel (edge, tielinemodel()) #set the edge model to a tie-line
setcouplingfunction(grid_region,busnode, couplegridnode)
setcouplingfunction(grid_region,another_busnode, couplegridnode)

2.2.2. Example: Coupled Power Grid and Natural Gas Networks: The gas network can be
abstracted in the same way as the power grid model. Junction nodes are analogous to the
power grid bus in that they receive gas from suppliers (generators) and send it to their re-
spective demands (loads). At a higher level, junctions are connected to other junctions over
long distances by links (pipelines) which may or may not include compressor stations (ac-
tive or passive). Mathematically, the gas network delivery problem can be summarized by
the set of equations shown in (2.2). The nonlinear transport equations (2.2b)-(2.2c) capture
the spatiotemporal dynamics of flow and pressure. The boundary conditions for the trans-
port equations are given by (2.2e)-(2.2f), and the balance at each node is given by (2.2h).
The junction node pressures are given by 6,,(-), n € N. Symbols Ag,(-), ¢ € L, denote the
compressor pressure increments in the case of active links. 0,,q(¢)(-) and Oguq00) (<) + Ab(+)
are hence, the inlet and outlet pressures for the compressors. The total compression power
for the active links is given by (2.2i) and the costs of compression are «f. The gas supply
flows are denoted as s;(-), the delivered gas demands are d;(-), the gas demand targets are
d;arget(«), and the actual delivered gas demands are denoted as d;(-). Symbol o denotes the
value of the delivered gas and o}’ is the cost of compression. The system seeks to maximize
the amount of gas delivered at the multiple demand locations while minimizing the total
compression cost. We note that the variable names and notation used in the natural gas
model conflict with those used in the power grid model. Such conflicts can be dealt with in
a straightforward manner in PLASMO by modularizing (compartmentalizing) models. With
this we also allow users to reuse existing modeling components. This is a useful feature
of structured modeling as opposed to using off-the-shelf modeling languages that need to
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embed all variables and constraints into a single model.

min ¢ = /0 (Z ol Py(t) — Za?c@(ﬂ) dr

s.t.

jeD
Ope(z,7) 1 pu(z,7)0fe(z,7)
or Agpe(z,7) O

iaff(x’T)_i_apf(va)_i_ 8/\4 fﬁ(x’7)|f€(xv7_)|
A, or O 2Dy pelx,T)

pe(z,7) = pe(x,7), LEL x€X
Pe(Le, T) = Oree(o)(7), L € L
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0 < dj(r) < d"(7), j € D.

(2.2a)

(2.2b)

(2.2¢)

(2.2d)
(2.2e)
(2.2f)

(2.2¢)
(2.2h)

(2.2i)

(2.2j)

The implementation of the gas dynamics equations is relatively straightforward. Gas

systems are connected across graphs as given in Figure 1. In the interest of modeling gas

networks, we can use the same graph but embed different physical models to nodes to cre-

ate different types of problem formulations. For instance, we can create steady-state and

dynamic versions of pipelines. This gives us the ability to solve easier versions or subcom-

ponents of a model to initialize (warm-start) more complicated ones. This again allows the

user to re-use a certain existing graph structure and just modify the nature of the physical

component associated to a given node.

2.2.3. Example: Coupling Power Grid and Natural Gas Networks: Finally, the graph hi-
erarchy facilitates coupling of interdependent network models. Extending the multi-level

system presented in Figure 2 for the electric grid, Snippet 3 shows how to couple the grid

and gas networks using physical associations between grid generators and gas demands.

The complete coupled grid-gas system is shown in Figure 3.
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Fig. 3: Coupling grid and gas networks across PLASMO graph hierarchy

Snippet 3: Coupling Power Grid and Gas Network
function couple_gas_demand(m::JuMP.Model,edge: :Edge,graph::Graph)

gen_node = getconnectedfrom(edge)
Pgend = getvariable(gen_node, :Pgend) #gas-fired generator requested gas
demand_node = getconnectedto(edge)
fdemand = getvariable(demand_node, :fdemand) #total gas demand
fdeliver = getvariable(demand_node, :fdeliver) #gas delivered to generator
@constraint(m,couple[t = timel],fdemand[t] == Pgend[t] + eps)
@constraint(m,limit[t = time], Pgend[t] <= fdeliver[t] - eps)

end

# construct grid-gas model

grid_gas_network = Graph() #create graph

addgraph(grid_gas_network,grid_network) #add gas network as a node
addgraph(grid_gas_network_network) #add grid network as a node

edge = Edge(grid_gas_network,gennode,demandnode) #create an edge at the grid-gas level
setcouplingfunction(grid_gas_network,edge,couple_gas_demand) #set coupling on tie line

2.3. Solving Models, Warm-Starting, and Navigating Results

PLASMO provides interfaces to the same solvers accessible through JUMP. From any given
PLASMO graph, it is possible to retrieve a flattened JUMP model that can be directly solved
with off-the-shelf solvers. For example, Snippet 4 refers to building a gas network model
containing gas supplies, junctions, demands, and transport equations and solves it with
Ipopt. Furthermore, querying model results is as simple as querying nodes and edges by
traversing the hierarchical graph. Snippet 4 shows how node and edge variables can be
directly queried from the solver solution.
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Snippet 4: Solving a Gas Network Optimization Model

using Ipopt #use Ipopt to solve nonlinear program

model = getmodel(gas_network) #builds and retrieves optimization model
model.solver = IpoptSolver()

solve(model) #gas_network stores references to solution values

query_edge = getedge(gas_network,1l) #get the first edge in a gas_network
pressures = getvalue(query_edge, :px) #retrieves the pressure profile for the edge

o Ul ke W N =

Because solution data is organized within the graph structure itself, it is possible to ex-
ploit the structure of the graph and develop solution strategies such as initializing (warm-
starting) highly no-linear problems with more computationally tractable approximations.
Figure 4 captures a possible workflow for initializing gas transport dynamics using a steady
state solution. Snippet 5 demonstrates how this is achieved in PLASMO using a single graph
and swapping out link component models on the same edge (exchanging steady-state and
dynamic transport equations).

Solve steady state Solve dynamic

optimization optimizlation
problem problem
4 ‘ 4 '
\ \
-y -y
\ \
| |
Set steady state Set dynamic pipe
pipe transport transport model

model

Fig. 4: Using PLASMO to implement a warm-starting optimization strategy

Snippet 5: Developing Warm-Starting Strategies with PLASMO

using PlasMO

query_edge = get_edges(gas_network,1l) #get edge in a gas_network
setmodel(query_edge,ssactivelink()) #append steady-state transport equations
ss_model = getmodel(gas_network) #create steady-state model

solve(model) #solve steady-state model

storecurrentsolution(gas_network) #store solution
setmodel(query_edge,activelink())#append dynamic transport equations
setcurrentsolution(query_edge)#use steady-state solution to initialize model
dynamic_model = generatemodel(gas_network)#set dynamic model
solve(dynamic_model)#solve dynamic model

© W N G R W N =

3. DMNetwork

Developing scalable simulation software for large-scale infrastructure networks is challeng-
ing due to the underlying unstructured and irregular geometry of the problem. DMNetwork
is a native programming framework in the PETSc [2] library that facilities expression of
network problems and thereby reduces the application development time.

10
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PETSc is an open source package for the numerical solution of large-scale applications
and provides the building blocks for the implementation of large-scale application codes on
parallel (and serial) computers. The wide range of sequential and parallel linear and nonlin-
ear solvers, time-stepping methods, preconditioners, reordering strategies, flexible runtime
options, ease of code implementation, debugging options, and a comprehensive source code
profiler have made PETSC an attractive experimentation platform for developing scientific
applications. Along with the numerical solvers, PETSc also provides abstractions through
the DM class for managing the application geometry and data.

DMNetworKk is a graph-based modeling framework. This is a subclass of the DM class that
provides for managing geometry and data for unstructured grids, particularly suited for
network applications. Its built on top of the DMP1lex subclass, a rewritten version of the Sieve
[10] framework. Delving on three basic elements of any network: nodes, edges, and data,
the framework provides abstractions for easily creating the network layout, partitioning,
data movement, and utility routines for extracting connectivity information.

Set up graph

\O |:> | DMNetworkLayoutSetup() |

Add physics DMNetworkAddComponent()
4 —— DMNetworkAddNumVariables()

Partition
f!—l—@: |:> | DMNetworkDistribute()
PO P1

KSPSolve()/SNESSolve()/TSSolve()

) _._@/'/&
Solve
9}! o \.\G [— KSPSetDM/SNESSetDM/TSSetDM()
PO P1

Fig. 5: Steps in creating, partitioning, and solving a network using DMNetwork

A key feature of this framework is that the user only needs to work with higher level
application specific abstractions while PETSC takes care of the underlying data manage-
ment; a feature consistent with the PETSc philosophy. We now discuss the salient features

of the DMNetwork framework next and list some of the utility routines. The core features of
DMNetwork are:

e Support for assigning different numbers of variables for any node or edge. This is par-
ticularly important for networks that comprise of sub-networks having heterogenous
characteristics.

e Any data, ‘component’ as we term it, can be attached with a node or edge. For example,
the component could be edge weights or vertex weights for graph problems, or equa-
tions describing the physical behavior of the component. Multiple components can be

11
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attached to an edge or node. Note the same abstraction is used in PLASMO .

Support for partitioning (called edge distribution) of the network graph using ParMetis
or Chaco partitioners. Components associated with nodes/edges are also distributed
to the appropriate processor when the network is partitioned.

The framework can create the linear operator or compute derivatives to construct the
Jacobian for the network. Global (parallel) vectors and local vectors for residual evalu-
ation can be created by DMNetwork.

DMNetwork also keeps track of the global and local offsets for use in function evaluation
or matrix assembly. It also stores information of the ‘ghost’ nodes (nodes that need
to perform communication with other processors). In other words, once a network is
partitioned, DMNetwork automatically redefines local and global variables.

While doing a calculation, most network applications require information about the
edges connected to a node, and/or the nodes covering an edge. The framework pro-
vides API routines to extract this information.

Full compatibility with all PETSC’s linear (KSP), nonlinear (SNES), and time-stepping
(TS) solvers. This allows simulation of both steady-state and dynamic models. Time-
steppers are adaptive, so high-resolution simulations are possible. This is an advantage
over PLASMO , in which a fixed time discretization scheme is often used to create coarse
but tractable optimization formulations.

Snippet 6 shows the main steps in creating a network object using DMNetwork for the gas
network simulation example. Once the network layout has been set up, the components are
registered with the network object via the function bMNetworkRegisterComponent () as shown in
Snippet 7. This register mechanism provides an “inventory" of the components incident on
the network. As with PLASMO , such inventories can be re-used to create applications. The
characteristics or data of each component is defined by a struct. The gas network DM can
then be used with any of the PETSC’s linear (KSP), nonlinear (SNES), or time-stepping (TS)
solvers.

Snippet 6: Gas network creation

/* Create an empty network object x*/

DMNetworkCreate (PETSC_COMM_WORLD, &gasdm) ;

/* Set number of nodes/links x/
DMNetworkSetSizes(gasdm,gasnet.nnode,gasnet.nlink, PETSC_DETERMINE, PETSC_DETERMINE);
/* Add link connectivity =/

DMNetworkSetEdgelList(gasdm,links);

/* Set up the network layout (no components added yet) x*/
DMNetworkLayoutSetUp(gasdm);

12


http://zavalab.engr.wisc.edu

http://zavalab.engr.wisc.edu

Snippet 7: Gas network component addition

/* Register the components in the network */
DMNetworkRegisterComponent(gasdm, ‘ ‘nodeinfo’’,sizeof(struct _p_NODE),&componentkey[0]);
DMNetworkRegisterComponent(gasdm, ‘ ‘linkinfo’’,sizeof(struct _p_LINK),b&componentkey[1]);
DMNetworkRegisterComponent(gasdm, ‘ ‘supinfo’’,sizeof(struct _p_SUPPLY),b&componentkey[2]);
DMNetworkRegisterComponent(gasdm, ‘ ‘deminfo’’,sizeof(struct _p_DEMAND),b&componentkey[3]);

/* Add network components (node data, link data, supply data, demand data ) */
int eStart, eEnd, vStart, vEnd,j;

DMNetworkGetEdgeRange (gasdm,&eStart, &eEnd) ;
for(i = eStart; i < eEnd; i++) {
/+ Add the component to this edge x*/
DMNetworkAddComponent (gasdm, i, componentkey[1],&gasnet.links[i-eStart]);
/* Add the number of variables x/
DMNetworkAddNumVariables(gasdm,i,gasnet.links[i-eStart].Nx*gasnet.links[i-eStart].dof);
}

DMNetworkGetVertexRange(gasdm,&vStart,&vEnd) ;
for(i = vStart; i < vEnd; i++) {
DMNetworkAddComponent (gasdm, i, componentkey[0],&gasnet.nodes[i-vStart]);
DMNetworkAddNumVariables(gasdm,i,2); CHKERRQ(ierr)
/* Add supply component if the node has a supply */
if (gasnet.nodes[i-vStart].nsup) {
for (j=0; j < gasnet.nodes[i-vStart].nsup; j++) {
DMNetworkAddComponent(gasdm, i, componentkey[2],&gasnet.supplies[gasnet.nodes[i-vStart].sup[j]]);
}
}
/* Add demand component if the node has a demand x/
if (gasnet.nodes[i-vStart].ndem) {
for (j=0; j < gasnet.nodes[i-vStart].ndem; j++) {
DMNetworkAddComponent(gasdm, i, componentkey[3],&gasnet.demands[gasnet.nodes[i-vStart].dem[j]]);
}
}
}
DMNetworkSetUp(gasdm) ;

4. Workflows

Computational analysis often requires the execution of optimization and simulation models
that are dependent. For instance, the outputs from a model become inputs to another model.
In some cases, models are often marginally different and instantiated with different sets of
data, variables, constraints, or algorithmic parameters. For example in a recent power sys-
tem study [8], several optimization models were solved with thousands of different wind
power generation scenarios for a Western Electricity Coordinating Council (WECC) test
system to evaluate the performance of a given network design. Efficient mechanisms are
needed to instantiate and manage multiple computational tasks.

As we have illustrated with the warm-starting example, PLASMO can use the graph struc-
ture to efficiently instantiate models with different sets of variables, constraints, and param-
eters. However, PLASMO does not enable task management in parallel computing environ-
ments. Achieving efficient task management in large computing clusters is challenging be-
cause it is necessary to communicate data and allocate appropriate processors to tasks. To
enable this, we interface PLASMO and DMNetwork with Swift. Swift [13] is a scripting
language that creates and manages workflows automatically by specifying how a series of
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computational tasks are executed. This workflow management tool also automates collec-
tion and distribution of data to computing nodes. By using Swift, we can run large parallel
jobs without modifying or adjusting PLASMO models and scripts.

Snippet 8: Swift script to run PLASMO Gas-Electric instances

type file;

# - Inputs ------ #

file runGas <"runGas.jl">;

file runGrid <"runGrid.jl">;

file runGasGrid <"runGasGrid.jl">;

file initialGasInput <"initialGasInput.txt">;

int n = 1; # Number of iterations for the decoupled systems

# oo Outputs ------ #

file gasOutputs[];

file gridOutputs[];

file coupled <"output/coupled.out">;

file comparison <"output/comparison.out">;

# - Applications ------ #

app (file _out) PlaSMO_coupled (file _runfile) {
julia @_runfile;

}

app (file _out) PlaSMO_decoupled (file _runfile, file _input) {
julia @ runfile @ input;

}

app (file _out) CompareSystems (file _gas, file _grid, file _coupled) {
julia @.gas, @.grid, @ coupled;

#o-e-- Workflow Elements ------ #
# Iterate decoupled systems
foreach i in [1:n] {

# run gas model

ifi==1{

gasInput = initialGasInput;
} else {

gasInput = gridOutputs[i-2];
}

# run grid model
gasOutputs[i-1] = PlaSMO_decoupled(runGas, gasInput;
gridOutputs[i-1] = PlaSMO_decoupled(runGrid, gasOutput);

}

# Run the coupled system

coupled = PlaSMO_coupled(runGasGrid);

# Compare the results

comparison = CompareSystem(gasOutputs[n], gridOutputs[n], coupled);

Snippet 8 shows the Swift script lines to run a number of PLASMO models for gas and
electricity systems and analyze the results from the runs. Swift takes care of workflow
management by taking input files and parameters (lines 3-7), executing the runs (lines 25-
39), and writing output files. In particular, if this runs on a cluster, the input files and the
output files are collected and distributed to computing clusters required for running the
PLASMO models. PLASMO models and a post-processing Julia script are modularized as ap-
plications in lines 14-22. Applications PlaSMO_coupled and PlaSMO_decoupled instan-
tiate and solve optimization models for the coupled gas-electricity system and decoupled
systems, respectively. Application CompareSystems runs a Julia script to visualize the re-
sults as a post-processing step. We highlight that Swift directly identifies which tasks of
the workflow are parallelizable and which ones are not; and automatically designs a suit-
able workflow to be executed in a parallel cluster. The Swift workflow for the decoupled
setting is shown in Figure 6.
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Fig. 6: Integration of PLASMO and Swift for instantiating a decoupled gas-electric instance.

5. Application Examples

We now demonstrate the application of PLASMO , DMNetwork, and Swift to two model
cases. We first illustrate how PLASMO can be used to construct and optimize a coarse gas
pipeline compression optimization problem, and then validate the solution using a fine res-
olution simulation in DMNetwork. In the second case, we use PLASMO to build an intercon-
nected model of the Illinois gas and electrical networks. We implement a Swift workflow
in which we simulate sequential (decoupled) and coordinated operations.

5.1. Q@Gas Pipeline Optimization

We consider the gas compressor system from [14] sketched in Figure 7. This system is com-
prised of 13 junctions, 12 pipelines, 10 compressors, one supply at the first junction, and one
demand at the last junction. The pressure at the supply is fixed at 34 bar, and the target
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pressure at the demand node is between 39 and 41 bar. Suction pressures should be main-
tained at 34 bar, and the nominal demand flow is 10x10° SCM/day. We build the model
in PLASMO using (2.2) and model components. Our objective is to develop an optimal gas
compression policy subject to power and pressure constraints, and verify that the resulting
solution is physically feasible using a high resolution simulation. Each link is discretized
using three spatial points to produce a coarse grid, and the full optimization model is pro-
duced from the PLASMO graph. We solve the resulting nonlinear optimization problem us-
ing IPOPT. The compression policies are then converted into DMNetwork data structures
for high-fidelity simulation with PETSc. We use DMNetwork to run the simulation at a
higher spatial resolution with both 10 and 50 grid points per link. The validation results
are illustrated in Figure 8, where we see that the PLASMO pressure profile is consistent with
the verified profile. This shows that, in practice, it is possible to construct a PLASMO graph
to quickly solve a coarsened decision problem, and use the same model to verify physical
feasibility.
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Fig. 7: Representation of a simple gas pipeline system
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Fig. 8: Coarse PLASMO optimization solution and verification using DMNetwork

Table 2 shows the computational improvement of using high fidelity simulation to verify
our optimization problem. Using a high resolution of N, =200 spatial mesh points and 24
time points over a 24 hour horizon, the optimization problem takes over fifteen minutes
to solve on an Intel(R) Core i7 CPU at 2.40GHz. The same optimization problem solves
in under three seconds using a coarse resolution of N, =3 points per pipeline segment at
the same time resolution. For comparison, running a dynamic simulation using a N, =200
point discretization mesh in addition to a 96 point time resolution takes about 20 seconds
with over a factor of 2 improvement using DMNetwork’s parallel simulation capabilities.
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Table 2 Scalability of PLASMO and DMNetwork for high-resolution pipeline system.

PLASMO with IPOPT (Nx=200)

# CPUs Solution Time [sec]

1 1006.16
DMNetwork (Nx=200)

# CPUs Solution Time [sec]
1 22.49
2 17.79
4 12.85
8 9.88

Table 3 Dispatch costs and computational times for Illinois system with different spatial resolutions (scm=
standard cubic meters and M$=million U.S. dollars).

0" [MS$] 9% [M$] Solution Time [sec]

Nx=3 35.32 -13.12 251
Nx =10 35.32 -13.20 2787
Nx =20 35.31 -13.15 9321

5.2. Coupled Gas-Electric Networks

We finally demonstrate the extensibility of PLASMO for modeling large coupled gas net-
works with a case study on the Illinois power grid and gas distribution systems. The power
grid system is modeled based on the data set from [15] comprising 2,522 transmission lines,
1,908 buses, 870 electric loads, and 225 generators of which 153 are gas-fired. Similarly, the
natural gas network is constructed using the basic topology reported in [6]. The gas network
contains 215 pipelines, 157 gas junctions, 12 compression stations, and 4 gas supply points.
The coupled topology is shown in Figure 10.

Using PLASMO we developed separate topologies for gas and electric systems, and sim-
ply couple the networks at gas-fired generators using the syntax from Snippet 3. Because
the entire model is presented in a graph abstraction, we reuse the same graph to solve both
the coupled system, as well as implement an iterative (decoupled) strategy. In the case of
the iterative strategy, we design the complete coupled topology, and solve grid and gas sys-
tems sequentially. Using this approach, we first optimize the Illinois grid dispatch problem
defined in equations (2.1), and pass the generator gas demands to the gas network system
which optimizes its own problem subject to equations (2.2). Figure 9 shows time profiles for
requested and delivered gas demands for two generators under coordinated and decoupled
settings. By the second iteration of the decoupled setting, we see both generators have ad-
justed their gas demands and re-optimized their operation based on actual realized gas de-
livery. The power grid system thus finds a new feasible dispatch once the delivered demands
become known. We then use the same PLASMO graph to solve the more computationally in-
tensive coordinated problem by creating a direct coupling function between generators and
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demands. We warm-start the new nonlinear problem using the solution from the decoupled
problem. We have found this to be key to solve the coupled problem robustly. This is another
benefit of using PLASMO to generate warm-starting strategies. Figure 10 shows the spatial
flow profiles throughout the gas system for the coupled and uncoupled problems at peak
time. Brighter links correspond to higher flows. We see that the coordinated setting (mid-
dle) exhibits more homogeneous profiles compared to the decoupled setting (right). This is
because coordination enables better balancing of pressures in the system, as discussed in [6].
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Fig. 9: Time profiles for requested and realized gas delivered for two Illinois power plants.

Fig. 10: Illinois grid and gas network (left), spatial flow profiles for coordinated dispatch
(middle), and decoupled dispatch (right).
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6. Conclusions

We have presented a computational framework that facilitates the construction, instantia-
tion, and analysis of large-scale optimization and simulation applications of coupled energy
networks. The framework integrates the optimization modeling package PLASMO and the
simulation package DMNetwo rk (built around PETSc). We also describe how to embed these
tools within complex computational workflows using SWIFT, which is a tool that facilitates
parallel execution of multiple simulation runs and management of input and output data.
We have found that the use of a common graph abstraction allows for seamless integration
of these tools. In addition, such an abstraction enables the creation of complex models in
collaborative environments and facilitates the design of warm-starting and infrastructure
coordination strategies.
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