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This short paper presents the identi�cation of a metastable, isomeric-state decay in the neutron-rich odd-
odd, prolate-deformed nucleus 166Tb. The nucleus of interest was formed using the in-�ight �ssion of a 345 MeV
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per nucleon 238U primary beam at the RIBF facility, RIKEN, Japan. Gamma-ray transitions decaying from
the observed isomeric states in 166Tb were identi�ed using the EURICA gamma-ray spectrometer, positioned
at the �nal focus of the BigRIPS fragments separator. The current work identi�es a single discrete gamma-ray
transition of energy 119 keV which de-excites an isomeric state in 166Tb with a measured half-life of 3.5(4)
µs. The multipolarity assignment for this transition is an electric dipole and is made on the basis internal
conversion and decay lifetime arguments. Possible two quasi-particle Nilsson con�gurations for the initial and
�nal states which are linked by this transition in 166Tb are made on the basis of comparison with Blocked BCS
Nilsson calculations, with the predicted ground state con�guration for this nucleus arising from the coupling

of the ν 1
2

−
[521] and π 3

2

+
[411] Nilsson orbitals.

1. Introduction

The valence maximum nucleus 170Dy104 lies in the centre of the deformed region of prolate nuclear rotors
[1]. The particular details of which nuclear orbitals lie close to the Fermi surface and how they in�uence the
evolution of nuclear shapes can be studied by investigating the structure of odd-A and odd-odd nuclei close to
the even-even valence maximum core. The present work presents information on the possible single-particle
structures which are formed via proton-neutron deformed Nilsson orbital couplings in the Z=65, N=101
nucleus 166Tb101. Prior to this work, the only information available was on the excited states of 166Tb
were identi�ed following the β− decay of the 166Gd mother nucleus, in which discrete energy gamma-ray
transitions with energies 40, 119, 158, 536, 976 and 1016 keV identi�ed [2].

2. Experimental Details, Analysis and Results

Neutron-rich nuclei in the vicinity 170Dy were produced following the projectile �ssion of a 345 MeV
per nucleon 238U primary beam on a 2 mm thick berylium production target at the Radioactive Isotope
Beam Factory (RIBF) [3], RIKEN, Japan. The typical primary beam current was 10 pnA and the produced
�ssion fragments were transported and separated on an event-by-event basis using the BigRIPS fragment
separator at RIKEN [4, 5]. The transported ions were identi�ed event-by-event through the separator using
the measured magnetic rigidity (Bρ), Time-of-Flight (ToF) and energy loss (∆E) parameters.

The secondary beam fragments were �nally brought to rest in the Wide-range Active Silicon Strip Stopper
Array (WAS3ABI) [6] which was placed at the �nal focus of the BigRIPS separator. This position sensitive
detector allowed direct correlations with individual implanted ions and also with subsequent β-decay events
in the same location of the stopper arising from the same ion [1]. Discrete-energy gamma-ray decays emitted
from the implaned ions (following either isomeric decay or β− decay) were measured using the Euroball
RIKEN Cluster Array (EURICA) consisting of 84 coaxial high-purity germanium (HPGe) detectors, arranged
in an array of 12 x 7 element CLUSTER detector modules, complemented by 18 additional LaBr3(Ce)
detectors for fast-timing measurements [7, 8, 9, 1, 10]. Related studies from the same experiment have been
reported for isomeric and decay spectroscopy of 170Dy and 172Dy [1, 10].

Two magnetic rigidity (Bρ) settings for the BigRIPS separator were used in the current work. The �rst
was centred on the transmission of fully-stripped 170Dy ions and ran for 13.5 hours of primary beam time [1]
with a second setting focused on the transmission of 172Dy [10] which ran for 45 hours of primary beam-time.
Figure 1 shows the particle identi�cation plot for the transmitted ions centred on the transmission of 172Dy
with the 166Tb species clearly identi�ed. Note that both hydrogen-like (Z=Q-1) and fully-stripped (Z=Q)
ions of 166Tb are transmitted in this particular magnetic rigidity setting.

Figure 2 shows the gamma-ray spectrum gated on 166Tb, with the gamma rays measured between 0.2
and 5.0 µs of the implantation of the ions in WAS3ABI. The spectrum shows a discrete transition at energy
119 keV with a additional counts associated with the Tb Kα and Kβ X rays. The time distribution of the
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Fig. 1. Particle identi�cation plot obtained from the BigRIPS setting centred on 172Dy identifying both the hydrogen-

like (blue) and fully-stripped (red) 166Tb ions.

119 keV gamma ray relative to the implantation time is shown in the inset of Figure 2. A single component
exponential decay function �t to this decay curve results in a half-life for the isomeric state of 3.5(4) µs.
We note that the identi�ed gamma-ray transition at 119 keV in the present work was previously noted in
the study of the β− decay of 166Dy by Ichikawa et al., [2]. This previous work interpreted the 119 keV
transition decaying from an excited state at excitation energy 158 keV, with a parallel decay branch with
similar intensity associated with a transiton at 158 keV. The 119 keV transition was also reported as being
in coincidence with a 40 keV gamma ray which fed the proposed ground state of 166Tb. While the 40 keV
transition is not clearly separated in the current work, there are counts to the left of the Kα X-rays identi�ed
in �gure 2 which are consistent with a transition at that energy. There is also a weakly populated peak in the
region 158 keV in �gure 2, which is consistent with the reported low-lying level scheme for 166Tb proposed
by Ichikawa et al., [2].

Assuming the majority of the branching for the direct decay of the observed isomeric state is via the
119 keV line, its multipolarity can be deduced by comparing the intensity of the terbium K X-rays in the
isomer delayed spectrum and the corresponding electromagnetic transition rate for the 119 keV decay. If the
K X-rays arise from the competing internal conversion branch of the 119 keV transition from the isomer,
this suggests an electric dipole multipolarity for the 119 keV gamma ray, since other likely multipolarities
(M1, E2 and M2) all have much higher internal conversion coe�cients and would have correspondingly more
intense X-ray intensities. The theoretical internal conversion coe�cients for the likely multipolarities are
given in Table 1, using the BRICC code [11].

The measured half-life of the isomeric state is also most consistent with an E1 decay for the 119 keV
transition, with the extracted B(E1) transition probability 3.8(4) ×10−8 Wu conistent with other hindered
E1 decays in this deformed region [12].

3. Possible con�gurations for the isomeric state in 166Tb.

The low-lying Nilsson con�gurations in 166Tb can be investgated by looking at the single quasi-proton
and quasi-neutron Nilsson states which have been identi�ed in the neighboring odd-A terbium (for protons)
and N=101 (for neutrons) nuclei. In general, the lowest-lying Nilsson state, which corresponds to the ground
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Fig. 2. The total projection spectrum of gamma-ray energy from 166Tb emitted with time condition window from 200

ns to 5 µs.

Table 1. The calculated internal conversion coe�cients, Weisskopf single-particle half-life estimates and transition

probabilities assuming a half-life of 3.5(4)µs for possible multipolarities of the 119 keV transition in 166Tb. The

internal conversion values were estimated using the BRICC code [11].

Multipoliarity αK (119 keV)) αtot (119 keV)) T 1
2
(1 Wu) B(σλ) (Wu)

E1 0.16 0.19 1.3×10−13s 3.8(4) ×10−8 Wu
E2 0.72 1.39 4.3×10−7s 1.2(1) ×10−1 Wu
M1 1.13 1.34 1.6×10−12 4.5(4) ×10−7 Wu
M2 8.42 11.1 4.3×10−5 1.2(1) ×101 Wu

state in the lighter odd-Z Tb isotopes is associated with the π 3
2

+
[411] obritals. The next lowest-lying excited

states associated with intrinsic single-particle states are then linked to the π 7
2

−
[523] , π 5

2

+
[413] and π 5

2

−
[532]

orbitals respectively [13].
The neutron Nilsson orbitals which are expected to lie closest to the Fermi surface for the prolate de-

formed, axially symmetric N=101 isotones are the 1
2

−
[521], 5

2

−
[512] and 7

2

+
[633] states [13], which make

up the �rst three intrinsic states observed in the N=101 isotone 169Er [14]. The lowest lying expected two-
quasi-particle states in 166Tb would then be expected to arise from the coupling of these combinations of
proton and neutron Nilsson orbitals, with both maximum and minimum K couplings(i.e. K = Ω1 + Ω2 and
K = |Ω1 − Ω2| present).

For 166Tb, the lowest-energy con�gurations, in the absence of residual proton-neutron interactions associ-

ated with the Gallagher-Mozkowski coupling rules, would be expected to arise from the π 3
2

+
[411]⊗ν 1

2

−
[521]

con�gurations, resulting in Kπ = 1− and 2− states, one of which is the most likely candidate for the ground
state. TheKπ = 1− is favoured considering the expected residual interaction associated with the anti-aligned
intrinsic spins between these two orbitals.

From consideration of the neighboring odd-A isotopes, the next most likely proton-neutron 2 quasi-

patrticle coupings would arise from the π 3
2

+
[411] ⊗ ν 5

2

−
[512] con�gurations which forms K = 1− and 4−

states, with the maximally aligned K = 4− favoured by residual interactions; and the π 3
2

+
[411]⊗ ν 7

2

+
[633]

which results in K = 2+ and 5+ states, with the K = 5+ favoured. The observed 119 keV E1 isomeric decay
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could then arise from the ∆K = 1 single-particle transition between the K = 5+ and Kπ = 4− states from

the π 3
2

+
[411]⊗ν 7

2

+
[633] to π 3

2

+
[411]⊗ν 5

2

−
[512] con�gurations, respectively. The reported energy di�erence

of 159 keV between the ν 5
2

−
[512] (Ex=92 keV) and the ν

7
2

+
[633] (Ex= 243 keV) single-particle con�gurations

in the neighboring N=101 isotone 169Er is similar to the observed 119 keV transition in the current work.
The current data does not provide any infomation on the ordering of these possible initial and �nal states,
which could be reversed and would result in the same isomeric decay. In this scenario, the direct decay from
either the Kπ = 5+ or Kπ = 4− con�guration to the proposed negative-parity Kπ = 1− ground state via
a 40 keV M4 or M3 decay, which would result in very long-lived metastable state. This is not consistent
with the observations in the current work and the previous study of Ichikawa et al., [2] which show the
119 keV and 40 keV transitions in coincidence. A more consistent candidate for the observed E1 decay is

between the Kπ = 2+ unfavoured coupling of the π 3
2

+
[411]⊗ ν 7

2

+
[633] con�guration and the unfavoured by

K = 2− coupling of the proposed π 3
2

+
[411]⊗ν 1

2

−
[521] ground state con�guration. This K = 2− state, could

then decay by an unhindered M! to the favoured K = 1− coupling of the same con�guration, which could
correspond to the ground state of 166Tb.

Blocked BCS Nilsson calculations were also performed for 166Tb using neutron and proton pairing
strengths of Gn = 20.00/A · MeV and Gp = 21.00/A · MeV, respectively [13], together with quadrupole
deformation parameters of ε2=0.275 and ε4=0.027. The results of the calculations are presented in Table

2, with the predicted ground state having the expected ν 1
2

−
[521] ⊗ π 3

2

+
[411] con�guration and the next

lowest state being the positive parity Kπ=5+ and 2+, ν 7
2

+
[633] ⊗ π 3

2

+
[411] con�guration. Note that these

calculations do not include any e�ects associated with residual proton-neutron interactions. The calculations
support the possible interpretations described above.

Table 2. The con�grations of the low-lying two-quasiparticle states in 166Tb predicted by the Nilsson blocked BCS -

calculations, using neutron and proton pairing strengths of Gn = 20.00/A · MeV and Gp = 21.00/A · MeV, respec-

tively and quadrupole deformation parameters of ε2=0.275 and ε4=0.027 with axial symmetry [13]. Note that these

calculations do not include any adjustments for residual proton-neutron interactions.

Kπ Nilsson Con�guration Energy, (keV)

2−, 1− π 3
2

+
[411]⊗ ν 1

2

−
[521] 0

3−, 2− π 5
2

+
[413]⊗ ν 1

2

−
[521] 273

4+, 3+ π 5
2

−
[532]⊗ ν 1

2

−
[521] 314

3+, 2+ π 5
2

−
[532]⊗ ν 1

2

−
[521] 355

5+, 2+ π 3
2

+
[411]⊗ ν 7

2

+
[633] 62

6+, 1+ π 5
2

+
[413]⊗ ν 7

2

+
[633] 335

7−, 0− π 7
2

−
[523]⊗ ν 7

2

+
[633] 376

6−, 1− π 5
2

−
[532]⊗ ν 7

2

+
[633] 417

4−, 1− π 3
2

+
[411]⊗ ν 5

2

−
[512] 145

5−, 0− π 5
2

+
[413]⊗ ν 5

2

−
[512] 418

6+, 1− π 7
2

−
[523]⊗ ν 5

2

−
[512] 459

5+, 0+ π 5
2

−
[523]⊗ ν 5

2

−
[512] 501

4. Conclusions

Isomer-delayed spectrsocopy has been performed on the neutron-rich, odd-odd prolate deformed nucleus
166Tb at the RIBF facility, RIKEN following the production of this isotope via high-energy projectile �ssion.
The data show evidence for the direct decay of an 119 keV electric dipole transition from the isomeric state,
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which has a measured half-life of 3.5(4) µs. Possible Nilsson con�gurations for the initial and �nal states
which are linked by the 119 keV transition are proposed, based on comparison with neighboring odd-A nuclei
and BCS-Nilsson calculations. The favoured intepretation for the observed, direct 119 keV E1 transition

depopulating the isomer is that it arises from the decay between the Kπ = 2+, π 3
2

+
[411]⊗ ν 7

2

+
[633] and the

Kπ = 2−, π 3
2

+
[411] ⊗ ν 1

2

−
[521] con�gurations, the latter of which decays by a 40 keV M1 to the predicted

Kπ = 1− π 3
2

+
[411]⊗ ν 1

2

−
[521] ground state con�guration.
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