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ABSTRACT
With ever-increasing complexity of software systems, the number
of reported security issues increases as well. Among them, memory
corruption attacks are a prevalent vector used against today’s soft-
ware stacks. These attacks are repeatedly leveraged to compromise
common application software, such as web browsers or document
viewers. However, previous work to mitigate memory corruption
attacks either suffer from high overhead or can be bypassed by a
knowledgeable attacker.

In this work, we introduce HA2lloc, a hardware-assisted allocator
that is capable of leveraging an extended memory management
unit to detect memory errors in the heap. We also perform some
preliminary testing using HA2lloc in a simulation environment and
find that the approach is capable of detecting and preventing common
memory vulnerabilities.
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1 INTRODUCTION
As the complexity of modern software increases, the possibility of
encountering vulnerabilities that affect platform security increases.
These vulnerabilities are estimated to cost the industry billions of
dollars every year [1]. For this reason, companies such as Google,
Microsoft, and Mozilla have implemented bug bounty programs,
where white hat hackers are rewarded for finding security issues
with their products [2–4]. Likewise, competitions such as Pwn2Own
reward white hat hackers for their ability to compromise systems.
Most of the vulnerabilities reported as part of bug bounty programs
and used in competitions like Pwn2Own are memory-related. These
vulnerabilities are the result of unsafe usage of languages that allow
manual memory management.

Memory errors are prevalent in programs that are written in lan-
guages that allow direct access and management of memory. Mem-
ory errors can be generalized in two categories: temporal and spatial
[5]. Temporal memory errors occur when the program attempts to
utilize an allocation that has already been freed, whereas a spatial
error occurs when memory is dereferenced outside valid bounds.
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At times, memory errors will result in accessing a portion of mem-
ory which has not been mapped to the application, resulting in an
illegal memory access and a runtime exception being thrown to the
application. However, under a sophisticated attacker [6], a memory
error can result in security implications for the system such as the
possibility to perform code reuse attacks [7] or leak sensitive data
[8].

Previous work in academia and industry have used compiler in-
strumentation or software-based runtime analysis to detect memory
errors. However, compiler-based approaches suffer from two issues:
the precondition that source code for the application is available,
and that the instrumentation is as good as the pointer analysis the
compiler performs. Also, software-based runtime analysis intro-
duces large performance penalties and may require a training phase.
In this work, we propose a new type of memory allocator which
combines both software and hardware elements to provide protec-
tion against memory errors while remaining transparent to software
running on a platform. We call our memory allocator HA2lloc, the
hardware-assisted allocator. HA2lloc utilizes the facilities of the
runtime environment and operating system in combination with an
extension to the memory management unit to detect both temporal
and spatial memory errors as they occur without the need for com-
piler instrumentation. We demonstrate the low overhead provided
by HA2lloc and how it can be integrated and used to augment other
compiler and software-based approaches.

At its heart, HA2lloc employs a modified Memory Management
Unit (MMU) in combination with a new memory allocator to detect
temporal and spatial memory errors1. Our approach utilizes bounds
data obtained by the allocator and forwards it to the operating system
in order to populate a new set of structures in the MMU. When the
MMU handles a memory access that is found in violation with the
stored mappings, it triggers a fault which can be handled by the
Operating System and the runtime environment.

The main contributions of this paper are:
• The introduction of a new memory protection scheme,

HA2lloc, that provides hardware-assisted support to de-
tect memory errors which utilizes metadata obtained from
the runtime environment to perform the necessary checks
on memory accesses while remaining transparent to the
application.

• A study and demonstration of the applicability of the ap-
proach as a defense against common attacks, such as virtual
function table hijacking, use after free, and counterfeit ob-
ject oriented programming (COOP).

The rest of this paper is structured as follows. Section 2 provides
background information on buffer overflows and their effects. It then
introduces previous approaches at protecting systems from these
type of vulnerabilities. Section 3 provides a high-level overview of
1At this time, we have only emulated the MMU subsystem as to investigate the feasibility
of the approach.
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our proposed approach with section 4 describing our implementation.
Section 5 provides in-depth testing and evaluation of our platform,
including performance metrics and a discussion of its limitations.
We then draw conclusions and present future work in Section 6.

2 BACKGROUND
Memory errors continue to be a trend, as the ten years of data
collected from the Common Vulnerabilities and Exposures (CVE)
database reflect [9]. Figure 1 reflects this data, showing only memory
errors with a rating of high to critical. Software exploitation based
on stack buffer overflows has dwindled over the years, with use
after free vulnerabilities gaining traction and heap buffer overflow
vulnerabilities maintaining steady momentum. We notice that some
of the most powerful attacks are heap based, as we see an increasing
trend in spatial and temporal heap-based vulnerabilities.

2.1 Example Vulnerability
Consider the sample code shown in Listing 1. Here, we demonstrate
both temporal and spatial memory errors. There is a potential use
after free vulnerability, as any of the objects stored in the c array may
actually get deallocated before their member functions are called,
resulting in the temporal memory error. There is also a potential
spatial memory error by calling the load_buffer() function with a
parameter that is larger in size than the buffer contained in the object.
This results in a heap buffer overflow.

Listing 1: A small, vulnerable interpreter
1 #include <cstring>

2
3 class base {

4 public:
5 virtual void function() { ; }

6 virtual void load_buffer(const char* buffer)

7 = 0;

8 };

9
10 class derived : public base {

11 char buffer[128];

12 public:
13 void function() { buffer[0] = '\0'; }

14 void load_buffer(const char* buffer) {

15 strcpy(this->buffer, buffer);

16 }

17 };

18
19 int main(int argc, char* argv[]) {

20 base* c[] = {nullptr, nullptr};

21 char* p = argv[2];

22 char m;

23
24 while(*p) {

25 switch(m = *p++) {

26 case 'n':

27 case 'N':

28 if(!c[m == 'N'])

29 c[m == 'N'] = new derived;

30 break;
31 case 'l':

32 case 'L':

33 c[m == 'L']->load_buffer(argv[1]);

34 break;
35 case 'f':

36 case 'F':

37 c[m == 'F']->function();

38 break;
39 case 'd':

40 case 'D':

41 delete c[m == 'D'];

42 break;
43 }

44 }

45 return 0;

46 }

An attacker can then utilize these vulnerabilities in order to cor-
rupt memory in the heap. If allocation headers are kept near the
allocations, then the buffer overflow vulnerability can be leveraged
to inject a corrupted header. Furthermore, by careful manipulation
of the allocations in the heap, a new vtable pointer can be injected
to gain arbitrary control flow through a COOP-style attack [10].

Spatial memory errors can also result in the disclosure of sensitive
information such as the base address of critical data structures or
code pointers, thereby allowing the attacker to bypass randomization
schemes that attempt to hide the locations of code and data segments
such as ASLR [11]. As seen in the example, spatial memory errors
can be exploited to overwrite these critical data structures or code
pointers, allowing for information flow attacks or control flow at-
tacks. An attacker is able to utilize temporal memory errors as a
way to redirect control flow by injecting control flow data, such as a
vtable pointer, into the reallocated memory region the stale object
used to occupy.

2.2 Previous Work
Baggy Bounds Checking [12] introduces bounds checking for arrays
in a granular fashion. Instead of keeping exact bounds for each array,
it pads the allocation into bounds that are powers of two. This is
done to reduce the overhead of the metadata by storing the exponent
of the allocation only. On a 32 bit system, only 5 bits are needed
to save the data and at storage time, one full byte is used. C library
functions that deal with arrays, such as strcpy() and memcpy(),
are provided with wrappers that check the bounds of the arrays
before executing them. However, the mechanism is unable to prevent
access errors when the buffer is located within an object such as a
struct. Baggy Bounds Checking is a compiler based solution and
thus requires binaries to be instrumented at compile time: source
code is required. Unfortunately, no tools have been released to the
general market. Looseness on the stored metadata also results in
some checks being inaccurate. Performance wise, a 60% overhead
is reported on a modified SPEC2000 suite and a 15% overhead in
some Olden benchmarks.

AddressSanitizer [13] provides a method to instrument bounds
check for software written in C and C++. It is implemented as a
compiler pass and a runtime library. A portion of memory is dedi-
cated as shadow memory, where metadata about arrays are stored.
The memory is mapped into intervals of N bytes, and the mapping
into the shadow area computed as Addr >> Scale+O f f set where
Scale is given by N. If the transformation is applied to the shadow
memory area, the resulting address will point to a portion of mem-
ory which is not mapped into the process’s virtual address space,
thus generating an access violation. AddressSanitizer provides a
runtime library to aid with dynamic allocations, providing new ver-
sions of the malloc() family of functions and free(). The new
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Figure 1: Trends in memory errors collected from the CVE database [9]. We show trends in memory errors in the last ten years that
have resulted in a software vulnerability. Observable is how stack exploits have dwindled in favor of heap-based exploits.

allocator functions provide redzones around the returned region.
These redzones are flagged as unaddressable and are used to store
data from the allocator. The new implementation of free() poisons
these redzones and puts them into a quarantine mode. Redzones
are also added to buffers stored in stack frames. AddressSanitizer,
however, presents a few false negatives and false positives, such as
unaligned accesses that are partially out of bounds, accesses that
fall too far away from the object bounds that may land in a different
valid location, and load widening.

Sarbinowski et al propose VTPin in [14] as a way to counter
some use after free exploits that result from temporal memory errors.
VTPin provides a small library that intercepts calls to the allocator.
Specifically, when a deallocation takes place, the VTPin takes control
of the allocation and infers whether the deallocation corresponds to a
C++ object. If it is, VTPin performs an in-place reallocation, leaving
sufficient area to store a new set of virtual function table pointers.
These point to an implementation controlled virtual function table.
The in-place reallocation ensures that the virtual table pointer area
is never reutilized, thus an attacker is unable to overwrite the virtual
table pointer area by means of conventional heap spraying attacks
such as Heap Feng Shui [6].

Watchdog [15] and WatchdogLite [16] propose a mechanism to
store and check bounds data of a pointer or array with some hardware
acceleration by using the SIMD extensions of x86 and x86_64 pro-
cessors. This provides protection against spatial memory errors. Intel
MPX [17] provides functionality similar to that of WatchdogLite,
with the distinction that a dedicated set of registers, instructions
and hardware exceptions were added to the processor. Intel MPX is
available on 6th generation and newer processors. Being ISA-based,
these approaches require compiler instrumentation for them to be of
use.

Woodruff et al introduce Capability Hardware Enhanced RISC
Instructions (CHERI) as a method to add capabilities to memory
accesses in [18]. Capabilities are defined as the right to perform an
action or set of actions to a given object. Furthermore, capabilities
can be transferred between objects. In CHERI’s case, the capabilities
define the right of an instruction to make a memory access. For the
purposes of implementation, CHERI is built as a coprocessor in

a MIPS64 compatible core. Much like the previously mentioned
approaches, compiler support is necessary to issue the necessary
coprocessor instructions in a program. For this purpose, the authors
utilize the LLVM compiler infrastructure in order to instrument
source code.

2.3 Limitations of Previous Work
Compiler-based approaches such as AddressSanitizer [13], Baggy
Bounds Checking [12], Watchdog [15], WatchdogLite [16], and In-
tel’s MPX [17] inherently suffer from the outset as source code is
required in order to instrument applications. Furthermore, the instru-
mentation is only as good as the correctness and completeness of the
pointer analysis the compiler can perform. Unfortunately, pointer
analysis has proven to be undecidable for the general case [19], and
different algorithms suffer from either runtime or spatial consider-
ations [20]. As such, compilers will perform a safe overestimation
which can lead to incorrect instrumentation.

Herein lies the main issue with current compiler-based metadata
approaches. Because we can not determine whether two symbols
alias to the same value, we are unable to properly propagate metadata
on this symbol for the general case. As such, there are instances
where the information needed to perform the check is not available or
inaccurate. Since compilers err on the side of safety, any performed
check with incomplete or inaccurate metadata will pass, allowing
temporal and spatial memory errors to occur.

Other approaches attempt to address either spatial or temporal
memory errors. For example, although VTPin [14] ensures that the
portions of an object that correspond to a virtual function table
pointer can not be overwritten by subsequent allocations, it is un-
able to protect these areas against corruption that happens due to
conventional heap buffer overflows. We were able to demonstrate
this by crafting our own implementation of VTPin and constructing
a vulnerable program that allocates two objects in the heap. We then
free one of the objects and utilize a heap buffer overflow vulnerabil-
ity in the other object to write into the reallocation made by VTPin.
This results in the virtual function table pointer kept by VTPin being
corrupted, resulting in arbitrary code execution from an attacker’s
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perspective. We should note that this attack is still possible even if
the object is not deallocated.

3 PROPOSED APPROACH
Although compiled languages such as C and C++ often lose infor-
mation on arrays when the final binary is built, such information
may be reconstructed at runtime. For example, when a program dy-
namically allocates memory, the allocator has knowledge of both the
allocation size and the address at which the allocation was made. We
leverage this runtime information to gather the necessary metadata
to enforce our buffer overflow protection and our temporal memory
safety scheme.

3.1 Dynamic Memory Allocations
Modern computing systems implement process isolation by provid-
ing each process with its own virtual address space. In an AMD64-
based system, each process is given a potential 48bit address space.
However, no application is given a full address space when executing,
as systems do not contain enough physical memory to support this.
As such, applications are given the ability to dynamically request
memory from the system. Enter the malloc() family of functions
from the C library, and the new operator from the C++ language.
With this, an application is able to expand its memory footprint by
adding memory to the heap.

An allocator manages the heap memory for a process. The alloca-
tor is provided by the runtime environment, namely the C library in
combination with the operating system, and it is completely trans-
parent to the program. When a process deallocates memory using
the free() function or the delete keyword, the allocator flags that
portion of memory as unused, and can potentially cache it for future
allocations. If there is not enough unused memory in the heap to
satisfy a request, then the allocator proceeds to request more memory
from the operating system utilizing the system call interface.

Internally, an allocator utilizes a series of data structures to keep
a record of which allocations made by the application are currently
active and which ones are freed. This data structure is called an
allocation header. The way the allocator manages the allocation
headers and the information they contain are specific to the allocator
implementation itself. For example, some allocators, such as dlmal-
loc and derivatives [21], choose to keep allocation headers in front
of the allocated space. This has the benefit of the allocator quickly
being able to access information about the allocation by offsetting
from a pointer to the allocated space. Unfortunately, a heap buffer
overflow can easily corrupt adjacent allocation headers. Other allo-
cators, such as OpenBSD’s allocator, keep the allocation headers
in a separate portion of memory [22]. This portion of memory is
randomly mapped to the application and kept in a different mem-
ory area from the allocation itself. Although this secures allocation
headers from being corrupted, the mechanism requires a search to
be performed looking for the allocation header that matches the
allocation itself. However, there are still common elements found
in allocation headers. The size of of every allocation the application
makes, the area of memory occupied by the allocation, and whether
the allocated area has been freed or not is kept.

3.2 Design Constraints
With HA2lloc, we wish to provide a drop-in mechanism that is
compatible with existing applications without needing to rewrite or
recompile them. For this purpose, we constrain our design to meet
the following points:

• Transparency: The system must be completely transparent
to applications. An application which exhibits legal behav-
ior must not be affected in operation by the buffer overflow
protection mechanism, nor should the application be able
to infer it is running under the mechanism.

• Portability: Existing applications must work under the sys-
tem without any type of modification to their source code
and/or binaries. Applications are not to be modified at load
time either.

• Integration: The mechanism must be easily integrated in an
existing operating system and runtime environment with
minor modifications. As long as the underlying hardware
platform supports the mechanism, it should work without
triggering any false-positives.

Given these constraints, compiler modifications are not allowed,
as these will reflect a change in the binaries that get deployed on the
system, violating the Portability requirement. Only modifications to
the runtime, the operating system and underlying hardware platform
are allowed. As such, we assume that an application will utilize
the resources provided by the runtime environment and operating
system, and conform to standard architectural and ABI conventions
with special function registers.

In order to design HA2lloc we observe the following:

(1) The internal data structures in the allocator have knowledge
of the place where the allocated memory resides at and their
sizes.

(2) The allocator must communicate with the operating system
to request more memory when needed.

We utilize these observations in the next subsection to introduce the
concepts behind HA2lloc.

3.3 Introduction to HA2lloc
We show a high level overview of HA2lloc in Figure 2. At its heart,
HA2lloc provides a security aware allocator which separates alloca-
tion headers from the actual allocations in the heap. In doing so, we
obtain two benefits. First, allocation headers can not be corrupted by
conventional heap overflows. This aids with the integrity of the allo-
cator. Secondly, it allows us to flag pages that have been specifically
added to a process for the purposes of dynamic allocations.

When an application requests memory from the system using
the malloc() family of functions, HA2lloc’s allocator handles the
request. Besides performing a request to the operating system to
allocate new pages to the application, HA2lloc also forwards alloca-
tion metadata to the operating system itself. The allocation metadata
consists of the size of the allocation and a possible base address in a
page. The operating system records the allocation metadata on the
page table entries used by the memory management unit as well as
flag the associated pages as heap pages.

Furthermore, we randomize the base address of allocations within
the process’s virtual address space. In doing so, we introduce an extra
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Figure 2: Overview of HA2lloc: HA2lloc provides the facilities required by an application to perform dynamic memory allocations
whilst forwarding allocation metadata to the operating system. The operating system itself stores this information in the page table
for the application. An extended MMU is then capable of utilizing the information to check memory accesses performed by the
application.

layer of unpredictability to the allocator. That is, for two independent
runs of the same program, two very different heap address maps
are generated. This further allows us to mitigate heap-spraying style
attacks, such as heap feng shui [6].

Since HA2lloc only provides the means to perform allocations,
application software can go on to utilize other facilities provided
by the system libraries. The system libraries can utilize HA2lloc’s
facilities to perform any dynamic allocations.

Any access the application performs to heap-mapped pages can
then be verified by the MMU. The validation step remains trans-
parent to the application, as it is performed directly by the MMU
subsystem. Since the page table contains bounds information, the
MMU can utilize this information to check accesses to heap mapped
pages. If the access occurs within the recorded bounds, it is allowed.
Otherwise, a fault is triggered and a signal is sent to the operating
system.

We also need to be able to handle temporal memory errors. In
order to do so, we must be able to handle any deallocations made
by an application. When the process relinquishes an allocation by
either calling the free() function, the realloc() function, or the
delete keyword in C++, HA2lloc signals the operating system,
forwarding information on the ongoing deallocation. The operating
system in turn eliminates the allocation entry from the page table.
If no more allocations reside in that particular table, the operating
system unmaps the page from the process. The unmapped virtual
address space is never reused.

When the process attempts a memory access to a deallocated
area in the heap, one of two things will happen: either the page
is unmapped triggering an illegal memory access, or the MMU
is unable to find the bounds of the accessed address in the page
table, triggering a similar fault. The operating system then is able to
handle the fault accordingly, by either terminating the application or
throwing a signal to the application.

4 IMPLEMENTATION DETAILS
4.1 The HA2lloc Allocator
Linux-based systems that utilize the GNU C Library use a modified
dlmalloc as the base to manage heap allocations [21]. Allocators
based on dlmalloc have the characteristic that they keep allocation
metadata in front of the allocation that is returned to callers. The

allocation metadata, or allocation header contains information on
the size of the allocation, the next allocation bucket, and some other
flags. Having the allocation header in front of the allocation allows
the allocator functions to quickly obtain data from an allocation.

Although simple in design and fast in execution, a well versed
attacker is able to exploit this allocator behavior to spray the heap
and fool the allocator into thinking regions are allocated when they
are not. Furthermore, heap buffer overflows allow an attacker to
corrupt allocation headers, further enhancing their control over the
application.

4.1.1 Allocating Memory. For this purpose, HA2lloc’s allocator
keeps the allocation metadata separate from the allocations them-
selves. Upon initialization, HA2lloc’s allocator maps a page of
memory where it keeps all allocation headers. Whenever a pro-
gram requests memory through the use of malloc(), calloc(), or
realloc(), HA2lloc requests memory from the operating system
and creates a new allocation header. The allocator header is stored
as part of a hash table. In order to handle collisions in the hash table,
we utilize a red-black tree [23] on each bucket. This allows us to
perform operations on the data structure in Ologn computational
time in contrast to the amortized On computational time that would
result in handling collisions and resizing the hash table. Furthermore,
by performing operations in this fashion in the hash table we can
reduce the number of semaphores used in the allocation data struc-
tures, allowing for better parallelism in multi-threaded applications.
Once the allocation is made and the header is constructed HA2lloc
returns a pointer to the allocation to the user.

Of importance to HA2lloc is how pages are mapped to the ap-
plication. Ideally, we would like to randomize the addresses of the
pages mapped to the application whilst still ensuring that large al-
locations remain continuous in memory. Preliminary testing shows
that Linux’s sys_mmap does not attempt to randomize the addresses
of the pages returned. The first mapped page has a relative random
address. However, subsequent calls to mmap() will return pages at a
fixed offset from the first page. This is detrimental to the security of
our allocator, as all allocations would be in a predictable memory
address. For this purpose, we introduce a new system call in the
Linux kernel which performs a function similar to that of sys_mmap
but it returns pages in a randomized fashion. We forward information
about the desired allocation size to the kernel using this mechanism.
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This information is used by the HA2lloc’s hardware subsystem to
transparently perform bounds check in heap accesses (see Section
4.2).

4.1.2 Deallocating Memory. When an application deallocates
memory, HA2lloc removes the allocation header from the hash table,
modifying the red-black tree if necessary. The removed allocation
headers are added to a linked list to be reused by new allocations.
The pages corresponding to these allocations are unmapped from
the program. We ensure that these pages are never mapped to the
program again by keeping a list of pages unmapped by the applica-
tion within the virtual address map kept by the kernel in the process
control block. In doing so, temporal memory errors result in an
illegal memory access, triggering a segmentation fault.

4.2 HA2lloc’s Hardware Subsystem
HA2lloc’s Hardware Subsystem has yet to be implemented and
tested. At its base, we extend the MMU to add one extra bit to flag
heap allocated pages. Since heap pages are allocated using a new
system call, no extra overhead is incurred in this flagging mechanism.
We keep bounds information at the page level by associating a 32bit
word to a heap page table entry. We illustrate the encoding in Figure
3.

page

offset0
size0

offset1
size1

records

Figure 3: Bounds encoding mechanism used in HA2lloc. A 32bit
word is associated with every heap page table entry. This word
contains bounds information used by the MMU to perform
checks on heap accesses.

In order to record information on buffer sizes and offsets into the
pages, we first analyze a few architectural constraints an allocator
must follow. Type information is generally lost when compiling C
code. Furthermore, the malloc() family of functions do not receive
type information regarding the allocation that is being made. As such,
these functions must assume a worse case scenario alignment for the
datatype that is being allocated, both in terms of performance and
ISA limitations. In C++, the new keyword could potentially use type
information and specialize the allocation to better suit the datatype,
but to the best of our knowledge, no C++ allocator performs this
optimization.

For HA2lloc, we assume a worst case alignment of 16B, given that
this is the alignment required for common instruction set extensions
such as Intel AVX [24]. As such, in a 4096B page, we can start at
256 different offsets. Consequently, we divide the 32bit word into
8bit subsections. We then group the subsections in pairs, with the
lower byte denoting in which 16B block the allocation into the page
starts, or the offset into the page, and the upper byte the number of

16B blocks covered by the allocation, or the size of the allocation.
This means that we can potentially have up to two allocations per
page. For two small allocations, we are then able to leave unused
space between them, which can serve as a red zone to catch overruns.
Multi-page allocations are handled in a similar fashion. Since the size
field can cover the entire page, we can let the size field encompass
the entire page, indicating that it covers a buffer.

When a memory access occurs to a heap-flagged page, the MMU
utilizes the offset and size information recorded on the associated
word to the page table entry and checks whether the access is within
bounds specified for the allocations in the page. If it is, then virtual
to physical address translation occurs as normal and the memory
access is allowed. On the other hand, if the check fails, it is deemed
to be caused by an illegal access. The MMU triggers a fault at this
point, which must be handled by the operating system.

5 PRELIMINARY EVALUATION
A preliminary evaluation of our prototype implementation shows
that for large allocations, HA2lloc is faster than the dlmalloc imple-
mentation used in glibc. This is because glibc will scan through
a circular list of freed allocations before mapping new heap pages
to the application. For smaller allocations, glibc will expand the
heap using the sbrk system call and perform the smaller allocations
in that area. Since glibc can expand the heap multiple pages at a
time using the sbrk system call, it can cache pages to be used by
subsequent allocations and avoid expensive context switches.

Method Temporal Spatial
Baggy Bounds Checking [12] no yes†

AddressSanitizer [13] no yes†

VTPin [14] yes no
Watchdog [15] no yes†

WatchdogLite [16] no yes†

Intel MPX [17] no yes†

CHERI [18] no yes†

Our approach yes yes‡

†
Requires instrumentation.

‡
In our current prototyping phase, bounds check is performed in a simu-

lated environment and not implemented in a hardware MMU.
Table 1: Comparison between approaches

Table 1 offers a comparison between our protection mechanism
and previous work. When running our sample vulnerable application
on Section 2 we found HA2lloc to be capable of detecting and
preventing both the temporal and spatial memory errors. We also
found that the vulnerabilities in the program were readily exploitable
when testing against glibc’s dlmalloc. We also found that our
reimplementation of VTPin was able to prevent the temporal memory
error as long as the spatial memory error vulnerability was not
triggered.



HA2lloc: Hardware-Assisted Secure Allocator HASP ’17, June 25, 2017, Toronto, ON, Canada

6 CONCLUSIONS AND FUTURE WORK
In this work, we present HA2lloc, a secure memory allocator that
utilizes an extended memory management unit to detect both tempo-
ral and spatial memory errors in the heap. We present the concepts
behind HA2lloc as well as preliminary testing of its implementation.
We also compare HA2lloc to previously proposed mechanisms in
terms of coverage and deployability.

Future work for HA2lloc includes the implementation of the mem-
ory management unit subsystem in order to test the effectiveness
of the spatial memory error detection as well as any incurred over-
head from these checks. Furthermore, we wish to be able to test
reported vulnerabilities against HA2lloc to further validate its useful-
ness. Lastly, we plan to extend HA2lloc to also include stack-based
buffers, as to provide a complete temporal and spatial memory error
detection solution.
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Abstract. Kernel exploits are commonly used for privilege escalation
to take full control over a system, e.g., by means of code-reuse attacks.
For this reason modern kernels are hardened with kernel Address Space
Layout Randomization (KASLR), which randomizes the start address of
the kernel code section at boot time. Hence, the attacker first has to by-
pass the randomization, to conduct the attack using an adjusted payload
in a second step. Recently, researchers demonstrated that attackers can
exploit unprivileged instructions to collect timing information through
side channels in the paging subsystem of the processor. This can be ex-
ploited to reveal the randomization secret, even in the absence of any
information-disclosure vulnerabilities in the software.
In this paper we present LAZARUS, a novel technique to harden KASLR
against paging-based side-channel attacks. In particular, our scheme al-
lows for fine-grained protection of the virtual memory mappings that
implement the randomization. We demonstrate the effectiveness of our
approach by hardening a recent Linux kernel with LAZARUS, mitigat-
ing all of the previously presented side-channel attacks on KASLR. Our
extensive evaluation shows that LAZARUS incurs only 0.943% overhead
for standard benchmarks, and therefore, is highly practical.

Keywords: KASLR, Code-Reuse Attacks, Randomization, Side Channels

1 Introduction

For more than three decades memory-corruption vulnerabilities have challenged
computer security. This class of vulnerabilities enables the attacker to overwrite
memory in a way that was not intended by the developer, resulting in a mali-
cious control or data flow. In the recent past, kernel vulnerabilities became more
prevalent in exploits due to advances in hardening user-mode applications. For
example, browsers and other popular targets are isolated by executing them in a
sandboxed environment. Consequently, the attacker needs to execute a privilege-
escalation attack in addition to the initial exploit to take full control over the



system [4, 17, 18, 19]. Operating system kernels are a natural target for at-
tackers because the kernel is comprised of a large and complex code base, and
exposes a rich set of functionality, even to low privileged processes. Molinyawe et
al. [20] summarized the techniques used in the Pwn2Own exploiting contest, and
concluded that a kernel exploit is required for most privilege-escalation attacks.

In the past, kernels were hardened using different mitigation techniques to
minimize the risk of memory-corruption vulnerabilities. For instance, enforcing
the address space to be writable or executable (W⊕X), but never both, prevents
the attacker from injecting new code. Additionally, enabling new CPU features
like Supervisor Mode Access Prevention (SMAP) and Supervisor Mode Execu-
tion Protection (SMEP) prevents certain classes of user-mode-aided attacks. To
mitigate code-reuse attacks, modern kernels are further fortified with kernel Ad-
dress Space Layout Randomization (KASLR) [2]. KASLR randomizes the base
address of the code section of the kernel at boot time, which forces attackers to
customize their exploit for each targeted kernel. Specifically, the attack needs to
disclose the randomization secret first, before launching a code-reuse attack.

In general, there are two ways to bypass randomization: (1) brute-force
attacks, and (2) information-disclosure attacks. While KASLR aims to make
brute-force attacks infeasible, attackers can still leverage information-disclosure
attacks, e.g., to leak the randomization secret. The attacker can achieve this by
exploiting a memory-corruption vulnerability, or through side channels. Recent
research demonstrated that side-channel attacks are more powerful, since they
do not require any kernel vulnerabilities [6, 8, 10, 13, 23]. These attacks exploit
properties of the underlying micro architecture to infer the randomization secret
of KASLR. In particular, modern processors share resources such as caches be-
tween user mode and kernel mode, and hence, leak timing information between
privileged and unprivileged execution. The general idea of these attacks is to
probe different kernel addresses and measure the execution time of the probe.
Since the timing signature for valid and invalid kernel addresses is different,
the attacker can compute the randomization secret by comparing the extracted
signal against a reference signal.

The majority of side-channel attacks against KASLR is based on paging [8,
10, 13, 23]. Here, the attacker exploits the timing difference between an aborted
memory access to an unmapped kernel address and an aborted memory access to
a mapped kernel address. As we eloberate in the related work Section 7 the focus
of the existing work is on attacks, and only include theoretical discussions on
possible defenses. For instance, Gruss et al. [8] briefly discuss an idea similar to
our implemented defense by suggesting to completely un-map the kernel address
space when executing the user mode as it is done in iOS on ARM [16]. However,
as stated by the authors [8] they did not implement or evaluate the security
of their approach but only provided a simulation of this technique to provide
a rough estimation of the expected run-time overhead which is around 5% for
system call intensive applications.

Goal and Contributions The goal of this paper is to prevent kernel-space ran-
domization approaches from leaking side-channel information through the pag-



ing subsystem of the processor. To this end, we propose LAZARUS, as a novel
real-world defense against paging-based side-channel attacks on KASLR. Our
software-only defense is based on the observation that all of the presented at-
tacks have a common source of leakage: information about randomized kernel
addresses is stored in the paging caches of the processor while execution continues
in user mode. More specifically, the processor keeps paging entries for recently
used addresses in the cache, regardless of their associated privilege level. This re-
sults in a timing side channel, because accesses for cached entries are faster than
cache misses. Our defense separates paging entries according to their privilege
level in caches, and provides a mechanism for the kernel to achieve this efficiently
in software. LAZARUS only separates those parts of the address space which
might reveal the randomization secret while leaving entries for non-randomized
memory shared. Our benchmarks show that this significantly reduces the per-
formance overhead. We provide a prototype implementation of our side-channel
defense, and conduct an extensive evaluation of the security and performance
of our prototype for a recent kernel under the popular Debian Linux and Arch
Linux distributions.

To summarize, our contributions are as follows:

– Novel side-channel defense. We present the design of LAZARUS, a soft-
ware-only protection scheme to thwart side-channel attacks against KASLR
based on paging.

– Protoype Implementation. We provide a fully working and practical pro-
totype implementation of our defense for a recent Linux kernel version 4.8.

– Extensive Evaluation. We extensively evaluate our prototype against all
previously presented side-channel attacks and demonstrate that the random-
ization secret can no longer be disclosed. We re-implemented all previously
proposed attacks on KASLR for the Linux kernel. We additionally present
an extensive performance evaluation and demonstrate high practicality with
an average overhead of only 0.943% for common benchmarks.

2 Background

In this section, we first explain the details of modern processor architectures nec-
essary to understand the remainder of this paper. We then explain the different
attacks on KASLR presented by related work.

2.1 Virtual Memory

Virtual memory is a key building block to separate privileged system memory
from unprivileged user memory, and to isolate processes from each other. Virtual
memory is implemented by enforcing an indirection between the address space
of the processor and the physical memory, i.e., every memory access initiated by
the processor is mediated by a piece of hardware called the Memory Management
Unit (MMU). The MMU translates the virtual address to a physical address, and
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Fig. 1. When virtual memory is active, all memory accesses of the processor are me-
diated by the MMU 1 : it loads the associated page-table entry 2 into the TLB
from memory, checks the required privilege level 3 , and translates the virtual mem-
ory address into the corresponding physical memory address if and only if the current
privilege level of the processor matches the required privilege level 4 .

enforces access control based on permissions defined for the requested address.
The translation information as well as the access permissions are stored in a
hierarchical data structure, which is maintained by the kernel, called the page
table. The kernel isolates processes from each other by maintaining separate page
tables for each process, and hence, different permissions. In contrast to processes,
the kernel is not isolated using a separate page table but by setting the supervisor
bit in page-table entries that translate kernel memory. In fact, each process page
table contains entries that map the kernel (typically in the top part of the virtual
address space). This increases the performance of context switches between the
kernel and user applications because replacing the active page table forces the
MMU to evict entries from its internal cache, called Translation Lookaside Buffer
(TLB). The TLB caches the most recent or prominent page table entries, which is
a sensible strategy since software usually exhibits (spatial or temporal) locality.
Hence, all subsequent virtual-memory accesses, which are translated using a
cached page-table entry, will be handled much faster.

Figure 1 shows the major components of virtual memory and their interac-
tion. In the following we describe the MMU and the TLB in detail and explain
their role in paging-based side-channel attacks.

The Central Processing Unit (CPU) contains one or more execution units
(cores), which decode, schedule, and eventually execute individual machine in-
structions, also called operations. If an operation requires a memory access, e.g.,



load and store operations, and the virtual memory subsystem of the processor
is enabled, this access is mediated by the MMU (Step 1 ). If the page-table en-
try for the requested virtual address is not cached in the TLB, the MMU loads
the entry into the TLB by traversing the page tables (often called a page walk)
which reside in physical memory (Step 2 ). The MMU then loads the respective
page-table entry into the TLBs (Step 3 ). It then uses the TLB entries to look
up the physical address and the required privilege level associated with a virtual
address (Step 4 ).

2.2 Paging-based Side-channel Attacks on KASLR

All modern operating systems leverage kernel-space randomization by means of
kernel code randomization (KASLR) [2, 11, 14]. However, kernel-space random-
ization has been shown to be vulnerable to a variety of side-channel attacks.
These attacks leverage micro-architectural implementation details of the un-
derlying hardware. More specifically, modern processors share virtual memory
resources between privileged and unprivileged execution modes through caches,
which was shown to be exploitable by an user space adversary.

In the following we briefly describe recent paging-based side-channel attacks
that aim to disclose the KASLR randomization secret. All these attacks exploit
the fact that the TLB is shared between user applications and the kernel (cf.,
Figure 1). As a consequence, the TLB will contain page-table entries of the kernel
after switching the execution from kernel to a user mode application. Henceforth,
the attacker uses special instructions (depending on the concrete side-channel
attack implementation) to access kernel addresses. Since the attacker executes
the attack with user privileges, the access will be aborted. However, the time
difference between access attempt and abort depends on whether the guessed
address is cached in the TLB or not. Further, the attacker can also measure the
difference in timing between existing (requiring a page walk) and non-existing
mappings (immediate abort). The resulting timing differences can be exploited
by the attacker as a side channel to disclose the randomization secret as shown
recently [8, 10, 13, 23].

Page Fault Handler (PFH) Hund, et al. [10] published the first side-channel at-
tack to defeat KASLR. They trigger a page fault in the kernel from a user process
by accessing an address in kernel space. Although this unprivileged access is cor-
rectly denied by the page fault handler, the TLBs are queried during processing
of the memory request. They show that the timing difference between exceptions
for unmapped and mapped pages can be exploited to disclose the random offset.

Prefetch Instruction Furthermore, even individual instructions may leak tim-
ing information and can be exploited [8]. More specifically, the execution of
the prefetch instruction of recent Intel processors exhibits a timing difference,
which depends directly on the state of the TLBs. As in the case of the other
side-channel attacks, this is used to access privileged addresses by the attacker.



Since this access originates from an unprivileged instruction it will fail, and ac-
cording to the documentation the processor will not raise an exception. Hence,
its execution time differs for cached kernel addresses. This yields another side
channel that leaks the randomization secret.

Intel’s TSX Transactional memory extensions introduced by Intel encapsulate
a series of memory accesses to provide enhanced safety guarantees, such as roll-
backs. While potentially interesting for the implementation of concurrent soft-
ware without the need for lock-based synchronization, erroneous accesses within
a transaction are not reported to the operating system. More specifically, if the
MMU detects an access violation, the exception is masked and the transaction is
rolled back silently. However, an adversary can measure the timing difference be-
tween two failing transactions to identify privileged addresses, which are cached
in the TLBs. This enables the attacker to significantly improve over the original
page fault timing side-channel attack [13, 23]. The reason is that the page fault
handler of the OS is never invoked, significantly reducing the noise in the timing
signal.

3 LAZARUS

In this section, we give an overview of the idea and architecture of LAZARUS,
elaborate on the main challenges, and explain in detail how we tackle these
challenges.

3.1 Adversary Model and Assumptions

We derive our adversary model from the related offensive work [6, 8, 10, 13, 23].

– Writable ⊕ Executable Memory. The kernel enforces Writable ⊕ Exe-
cutable Memory (W⊕X) which prevents code-injection attacks in the kernel
space. Further, the kernel utilizes modern CPU features like SMAP and
SMEP [12] to prevent user-mode aided code-injection and code-reuse at-
tacks.

– Kernel Address Space Layout Randomization (KASLR). The base
address of the kernel is randomized at boot time [2, 14].

– Absence of Software-based Information-disclosure Vulnerability.
The kernel does not contain any vulnerabilities that can be exploited to
disclose the randomization secret.

– Malicious Kernel Extension. The attacker cannot load malicious ker-
nel extensions to gain control over the kernel, i.e., only trusted (or signed)
extensions can be loaded.

– Memory-corruption Vulnerability. This is a standard assumption for
many real-world kernel exploits. The kernel, or a kernel extension contains a
memory-corruption vulnerability. The attacker has full control over a user-
mode process from which it can exploit this vulnerability. The vulnerability
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enables the attacker to overwrite a code pointer of the kernel to hijack the
control-flow of the kernel. However, the attacker cannot use this vulnerability
to disclose any addresses.

While modern kernels suffer from software-based information-disclosure vul-
nerabilities, information-disclosure attacks based on side channels pose a more
severe threat because they can be exploited to disclose information in the absence
of software vulnerabilities. We address the problem of side channels, and treat
software-based information-disclosure vulnerabilities as an orthogonal problem.

3.2 Overview

Usually, kernel and user mode share the same virtual address space. While legit-
imate accesses to kernel addresses require higher privilege, these addresses still
occupy some parts of the virtual memory space that is visible to user processes.
The idea behind our side-channel defense is to strictly and efficiently separate
randomized kernel memory from virtual memory in user space.

Our idea is depicted in Figure 2. Kernel execution and user space execution
usually share a common set of architectural resources, such as the execution
unit (Core), and the MMU. The attacker leverages these shared resources in the
following way: in step 1 , the attacker sets up the user process and memory
setting that will leak the randomization secret. The user process then initiates
a virtual memory access to a kernel address.

Next, the processor invokes the MMU to check the required privilege level
in step 2 . Since a user space process does not possess the required privileges
to access kernel memory, any such access will ultimately be denied. However, to
deny access the MMU has to look up the required privileges in the page tables.
These are structured hierarchically with multiple levels, and separate caches on
every level. Hence, even denied accesses constitute a timing side-channel that
directly depends on the last cached level.



We address 3 the root of this side channel: we separate the page tables for
kernel and user space. This effectively prevents side-channel information from
kernel addresses to be leaked to user space, because the MMU uses a different
page table hierarchy. Thus, while the processor is in user mode, the MMU will
not be able to refer to any information about kernel virtual addresses, as shown
in step 4 .

3.3 Challenges for Fine-grained Address Space Isolation

To enable LAZARUS to separate and isolate both execution domains a number
of challenges have to be tackled: first, we must provide a mechanism for switching
between kernel and user execution at any point in time without compromising
the randomized kernel memory (C1). More specifically, while kernel and user
space no longer share the randomized parts of privileged virtual memory, the
system still has to be able to execute code pages in both execution modes.
For this reason, we have to enable switching between kernel and user space.
This is challenging, because such a transition can happen either through explicit
invocation, such as a system call or an exception, or through hardware events,
such as interrupts. As we will show our defense handles both cases securely and
efficiently.

Second, we have to prevent the switching mechanism from leaking any side-
channel information (C2). Unmapping kernel pages is also challenging with re-
spect to side-channel information, i.e., unmapped memory pages still exhibit a
timing difference compared to mapped pages. Hence, LAZARUS has to prevent
information leakage through probing of unmapped pages.

Third, our approach has to minimize the overhead for running applications
to offer a practical defense mechanism (C3). Implementing strict separation
of address spaces efficiently is involved, since we only separate those parts of
the address space that are privileged and randomized. We have to modify only
those parts of the page table hierarchy which define translations for randomized
addresses.

In the following we explain how our defense meets these challenges.

C1: Kernel-User Transitioning Processor resources are time-shared between pro-
cesses and the operating system. Thus, the kernel eventually takes control over
these resources, either through explicit invocation, or based on a signaling event.
Examples for explicit kernel invocations are system calls and exceptions. These
are synchronous events, meaning that the user process generating the event is
suspended and waiting for the kernel code handling the event to finish.

On the one hand, after transitioning from user to kernel mode, the event
handler code is no longer mapped in virtual memory because it is located in the
kernel. Hence, we have to provide a mechanism to restore this mapping when
entering kernel execution from user space.

On the other hand, when the system call or exception handler finishes and
returns execution to the user space process, we have to erase those mappings
again. Otherwise, paging entries might be shared between privilege levels. Since



all system calls enter the kernel through a well-defined hardware interface, we
can activate and deactivate the corresponding entries by modifying this central
entry point.

Transitions between kernel and user space execution can also happen through
interrupts. A simple example for this type of event is the timer interrupt, which is
programmed by the kernel to trigger periodically in fixed intervals. In contrast
to system calls or exceptions, interrupts are asynchronously occurring events,
which may suspend current kernel or user space execution at any point in time.

Hence, interrupt routines have to store the current process context before
handling a pending interrupt. However, interrupts can also occur while the pro-
cessor executes kernel code. Therefore, we have to distinguish between interrupts
during user or kernel execution to only restore and erase the kernel entries upon
transitions to and from user space respectively. For this we facilitate the stored
state of the interrupted execution context that is saved by the interrupt handler
to distinguish privileged from un-privileged contexts.

This enables LAZARUS to still utilize the paging caches for interrupts oc-
curing during kernel execution.

C2: Protecting the Switching Mechanism The code performing the address space
switching has to be mapped during user execution. Otherwise, implementing a
switching mechanism in the kernel would not be possible, because the processor
could never access the corresponding code pages. For this reason, it is necessary
to prevent these mapped code pages from leaking any side-channel information.
There are two possibilities for achieving this.

First, we can map the switching code with a different offset than the rest of
the kernel code section. In this case an adversary would be able to disclose the
offset of the switching code, while the actual randomization secret would remain
protected.

Second, we can eliminate the timing channel by inserting dummy mappings
into the unmapped region. This causes the surrounding addresses to exhibit an
identical timing signature compared to the switching code.

Since an adversary would still be able to utilize the switching code to conduct
a code-reuse attack in the first case, LAZARUS inserts dummy mappings into
the user space page table hierarchy.

C3: Minimizing Performance Penalties Once paging is enabled on a processor,
all memory accesses are mediated through the virtual memory subsystem. This
means that a page walk is required for every memory access. Since traversing
the page table results in high performance penalties, the MMU caches the most
prominent address translations in the Translation Lookaside Buffers (TLBs).

LAZARUS removes kernel addresses from the page table hierarchy upon
user space execution. Hence, the respective TLB entries need to be invalidated.
As a result, subsequent accesses to kernel memory will be slower, once kernel
execution is resumed.

To minimize these perfomance penalties, we have to reduce the amount of
invalidated TLB entries to a minimum but still enforce a clear separation between



kernel and user space addresses. In particular, we only remove those virtual
mappings, which fall into the location of a randomized kernel area, such as the
kernel code segment.

4 Prototype Implementation

We implemented LAZARUS as a prototype for the Linux kernel, version 4.8 for
the 64 bit variant of the x86 architecture. However, the techniques we used are
generic and can be applied to all architectures employing multi-level page tables.
Our patch consists of around 300 changes to seven files, where most of the code
results from initialization. Hence, LAZARUS should be easily portable to other
architectures. Next, we will explain our implementation details. It consists of the
initialization setup, switching mechanism, and how we minimize performance
impact.

4.1 Initialization

We first setup a second set of page tables, which can be used when execution
switches to user space. These page tables must not include the randomized por-
tions of the address space that belong to the kernel. However, switching between
privileged and unprivileged execution requires some code in the kernel to be
mapped upon transitions from user space. We explicitly create dedicated entry
points mapped in the user page tables, which point to the required switching
routines.

Fixed Mappings Additionally, there are kernel addresses, which are mapped to
fixed locations in the top address space ranges. These fixmap entries essentially
represent an address-based interface: even if the physical address is determined at
boot time, their virtual address is fixed at compile time. Some of these addresses
are mapped readable to user space, and we have to explicitly add these entries
as well.

We setup this second set of page tables only once at boot time, before the
first user process is started. Every process then switches to this set of page tables
during user execution.

Dummy Mappings As explained in Section 3, one way of protecting the code
pages of the switching mechanism is to insert dummy mappings into the user
space page table hierarchy. In particular, we create mappings for randomly picked
virtual kernel addresses to span the entire code section. We distribute these
mappings in 2M intervals to cover all third-level page table entries, which are
used to map the code section. Hence, the entire address range which potentially
contains the randomized kernel code section will be mapped during user space
execution using our randomly created dummy entries.



4.2 System Calls

There is a single entry point in the Linux kernel for system calls, which is called
the system call handler. We add an assembly routine to execute immediately
after execution enters the system call handler. It switches from the predefined
user page tables to the kernel page tables and continues to dispatch the requested
system call. We added a second assembly routine shortly before the return of
the system call handler to remove the kernel page tables from the page table
hierarchy of the process and insert our predefined user page tables.

However, contrary to its single entry, there are multiple exit points for the
system call handler. For instance, there is a dedicated error path, and fast and
slow paths for regular execution. We instrument all of these exit points to ensure
that the kernel page tables are not used during user execution.

4.3 Interrupts

Just like the system call handler, we need to modify the interrupt handler to
restore the kernel page tables. However, unlike system calls, interrupts can oc-
cur when the processor is in privileged execution mode as well. Thus, to handle
interrupts, we need to distinguish both cases. Basically we could look up the
current privilege level easily by querying a register. However, this approach pro-
vides information about the current execution context, whereas to distinguish
the two cases we require the privilege level of the interrupted context.

Fortunately, the processor saves some hardware context information, such
as the instruction pointer, stack pointer, and the code segment register before
invoking the interrupt handler routine. This means that we can utilize the stored
privilege level associated with the previous code segment selector to test the
privilege level of the interrupted execution context. We then only restore the
kernel page tables if it was a user context.

We still have to handle one exceptional case however: the non-maskable inter-
rupt (NMI). Because NMIs are never maskable, they are handled by a dedicated
interrupt handler. Hence, we modify this dedicated NMI handler in the kernel
to include our mechanism as well.

4.4 Fine-grained Page Table Switching

As a software-only defense technique, one of the main goals of LAZARUS is
to offer practical performance. While separating the entire page table hierarchy
between kernel and user mode is tempting, this approach is impractical.

In particular, switching the entire page table hierarchy invalidates all of the
cached TLB entries. This means, that the caches are reset every time and can
never be utilized after a context switch. For this reason, we only replace those
parts of the page table hierarchy, which define virtual memory mappings for ran-
domized addresses. In the case of KASLR, this corresponds to the code section
of the kernel. More specifically, the kernel code section is managed by the last
of the 512 level 4 entries.



Thus, we replace only this entry during a context switch between privileged
and unprivileged execution. As a result, the caches can still be shared between
different privilege levels for non-randomized addresses. As we will discuss in
Section 5, this does not impact our security guarantees in any way.

5 Evaluation

In this section we evaluate our prototypical implementation for the Linux ker-
nel. First, we show that LAZARUS successfully prevents all of the previously
published side-channel attacks. Second, we demonstrate that our defense only
incurs negligible performance impact for standard computational workloads.

5.1 Security

Our main goal is to prevent the leakage of the randomization secret in the kernel
to an unprivileged process through paging-based side-channel attacks. For this,
we separate the page tables for privileged parts of the address space from the
unprivileged parts. We ensure that this separation is enforced for randomized
addresses to achieve practical performance.

Because all paging-based exploits rely on the timing difference between cached
and uncached entries for privileged virtual addresses, we first conduct a series
of timing experiments to measure the remaining side channel in the presence of
LAZARUS.

In a second step, we execute all previously presented side-channel attacks on
a system hardened with LAZARUS to verify the effectiveness of our approach.

Effect of LAZARUS on the timing side-channel To estimate the remaining
timing side-channel information we measure the timing difference for privileged
virtual addresses. We access each page in the kernel code section at least once
and measure the timing using the rdtscp instruction. By probing the privileged
address space in this way, we collect a timing series of execution cycles for each
kernel code page. The results are shown in Figure 3. 3

The timing side channel is clearly visible for the vanilla KASLR implemen-
tation: the start of the actual code section mapping is located around the first
visible jump from 160 cycles up to 180 cycles. Given a reference timing for a
corresponding kernel image, the attacker can easily calculate the random offset
by subtracting the address of the peak from the address in the reference timing.

In contrast to this, the timing of LAZARUS shows a straight line, with a
maximum cycle distance of two cycles. In particular, there is no correlation
between any addresses and peaks in the timing signal of the hardened kernel.
This indicates that our defense approach indeed closes the paging-induced timing
3 For brevity, we display the addresses on the x-axis as offsets to the start of the

code section (i.e., 0xffffffff80000000). We further corrected the addresses by their
random offset, so that both data series can be shown on top of each other.
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Fig. 3. Timing side-channel measurements.

channel successfully. We note, that the average number of cycles depicted for
LAZARUS are also in line with the timings for cached page table entries reported
by related work [8, 13]. To further evaluate the security of our approach, we
additionally test it against all previous side-channel attacks.

Real-world side-channel attacks We implemented and ran all of the previous
side-channel attacks against a system hardened with LAZARUS, to experimen-
tally assess the effectiveness of our approach against real-world attacks.

Page-fault handler The first real-world side-channel attack against KASLR was
published by Hund et al. [10]. They noted that the execution time of the page
fault handler in the OS kernel depends on the state of the paging caches. More
specifically, they access kernel addresses from user space which results in a page
fault. While this would usually terminate the process causing the access viola-
tion, the POSIX standard allows for processes to handle such events via signals.
By installing a signal handler for the segmentation violation (SIGSEGV), the user
process can recover from the fault and measure the timing difference from the
initial memory access to the delivery of the signal back to user space. In this way,
the entire virtual kernel code section can be scanned and each address associ-
ated with its corresponding timing measurement, allowing a user space process
to reconstruct the start address of the kernel code section. We implemented
and successfully tested the attack against a vanilla Linux kernel with KASLR.
In particular, we found that page fault handler exhibits a timing difference of
around 30 cycles for mapped and unmapped pages, with an average time of
around 2200 cycles. While this represents a rather small difference compared to
the other attacks, this is due to the high amount of noise that is caused by the
execution path of the page fault handler code in the kernel. 4 When we applied
LAZARUS to the kernel the attack no longer succeeded.
4 This was also noted in the original exploit [10].



Prefetch Recently, the prefetch instruction featured on many Intel x86 proces-
sors was shown to enable side-channel attacks against KASLR [8]. It is intended
to provide a benign way of instrumenting the caches: the programmer (or the
compiler) can use the instruction to provide a hint to the processor to cache a
given virtual address.

Although there is no guarantee that this hint will influence the caches in
any way, the instruction can be used with arbitrary addresses in principle. This
means that a user mode program can prefetch a kernel virtual address, and
execution of the instruction will fail siltently, i.e., the page fault handler in the
kernel will not be executed, and no exception will be raised.

However, the MMU still has to perform a privilege check on the provided
virtual address, hence the execution time of the prefetch instruction depends
directly on the state of the TLBs.

We implemented the prefetch attack against KASLR for Linux, and succes-
fully executed it against a vanilla system to disclose the random offset. Executing
the attack against a system hardened with LAZARUS we found the attack to
be unsuccessful.

TSX Rafal Wojtczuk originally proposed an attack to bypass KASLR using the
Transactional Synchronization Extension (TSX) present in Intel x86 CPUs [23],
and the attack gained popularity in the academic community through a paper
by Jang et al. [13]. TSX provides a hardware mechanism that aims to simplify
the implementation of multi-threaded applications through lock elision. Initially
released in Haswell processors, TSX-enabled processors are capable of dynami-
cally determining to serialize threads through lock-protected critical sections if
necessary. The processor may abort a TSX transaction if an atomic view from
the software’s perspective is not guaranteed, e.g., due to conflicting accesses
between two logical processors on one core.

TSX will suppress any faults that must be exposed to software if they occur
within a transactional region. Memory accesses that cause a page walk may abort
a transaction, and according to the specification will not be made architecturally
visible through the behavior of structures such as TLBs [12]. The timing charac-
teristics of the abort, however, can be exploited to reveal the current state of the
TLBs. By causing a page walk inside a transactional block, timing information
on the aborted transaction discloses the position of kernel pages that are mapped
into a process: first, the attacker initiates a memory access to kernel pages inside
a transactional block, which causes (1) a page walk, and (2) a segmentation fault.
Since TSX masks the segmentation fault in hardware, the kernel is never made
aware of the event and the CPU executes the abort handler provided by the
attacker-controlled application that initiated the malicious transaction. Second,
the attacker records timing information about the abort-handler execution. A
transaction abort takes about 175 cycles if the probed page is mapped, whereas
it aborts in about 200 cycles or more if unmapped [23]. By probing all possible
locations for the start of the kernel code section, this side channel exposes the
KASLR offset to the unprivileged attacker in user space.



Probing pages in this way under LAZARUS reveals no information, since we
unmap all kernel code pages from the process, rendering the timing side channel
useless as any probes to kernel addresses show as unmapped. Only the switching
code and the surrounding dummy entries are mapped. However, these show
identical timing information, and hence, are indistinguishable for an adversary.

5.2 Performance

We evaluated LAZARUS on a machine with an Intel Core i7-6820HQ CPU
clocked at 2.70GHz and 16GB of memory. The machine runs a current release
of Arch Linux with kernel version 4.8.14. For our testing, we enabled KASLR
in the Linux kernel that Arch Linux ships. We also compiled a secondary kernel
with the same configuration and LAZARUS applied.

We first examine the performance overhead with respect to the industry
standard SPEC2006 benchmark [9]. We ran both the integer and floating point
benchmarks in our test platform under the stock kernel with KASLR enabled.
We collected these results and performed the test again under the LAZARUS
kernel. Our results are shown in Figure 4.

The observed performance overhead can be attributed to measurement inac-
curacies. Our computed worst case overhead is of 0.943%. We should note that
SPEC2006 is meant to test computational workloads and performs little in terms
of context switching.

To better gauge the effects of LAZARUS on the system, we ran the system
benchmarks provided by LMBench3 [22]. LMBench3 improves on the context
switching benchmarks by eliminating some of the issues present in previous ver-
sions of the benchmark, albeit it still suffers issues with multiprocessor machines.
For this reason, we disabled SMP during our testing. Our results are presented
in Figure 5.

We can see how a system call intensive application is affected the most under
LAZARUS. This is to be expected, as the page tables belonging to the kernel
must be remapped upon entering kernel execution. In general, we show a 47%
performance overhead when running these benchmarks. We would like to re-
mind the reader, however, that these benchmarks are meant to stress test the
performance of the operating system when handling interrupts and do not reflect
normal system operation.

In order to get a more realistic estimate of LAZARUS, we ran the Phoronix
Test Suite [15], which is widely used to compare the performance of operating
systems. The Phoronix benchmarking suite features a large number of tests which
cover different aspects of a system, and are grouped according to the targeted
subsystem of the machine. Specifically, we ran the system and disk benchmarks
to test application performance. Our results are shown in Figure 6. We show
an average performance overhead of 2.1% on this benchmark, which is in line
with our results provided by the SPEC and LMBench benchmarks. The worst
performers were benchmarks that are bound to read operations. We speculate
that this is due to the amount of context switches that happen while the read
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operation is taking place, as a buffer in kernel memory needs to be copied into
a buffer from user space or remapped there.

Lastly, we ran the pgbench benchmark on a test PostgreSQL database and
measured a performance overhead of 2.386%.

6 Discussion

6.1 Applying LAZARUS to different KASLR implementations

Relocation of kernel code is an example of how randomization approaches can
be used as a defense building block which is implemented by practically all
real-world operating systems [2, 11, 14]. While a kernel employing control-flow
integrity (CFI) [1, 3, 21] does not gain security benefit from randomizing the
code section, it might still randomize the memory layout of other kernel mem-
ory regions: for instance, it can be applied to the module section, to hide the
start address of the code of dynamically loadable kernel modules. Further, ran-
domization was recently proposed as a means to protect the page tables against
malicious modification through data-only attacks [5].

Since all of the publicly available attacks focus on disclosing the random offset
of the kernel code section, we implemented our proof of concept for KASLR as
well. Nonetheless, we note that LAZARUS is not limited to hardening kernel code
randomization, but can be applied to other randomization implementations as
well. In contrast to the case of protecting KASLR, our defense does not require
any special treatment for hiding the low-level switching code if applied to other
memory regions.

6.2 Other side-channel attacks on KASLR

As explained in Section 2, almost all previously presented side-channel attacks on
KASLR exploit the paging subsystem. LAZARUS isolates kernel virtual memory
from user processes by separating their page tables. However, Evtyushkin et
al. [6] recently presented the branch target buffer (BTB) side-channel attack,
which does not exploit the paging subsystem for virtual kernel addresses.

In particular, they demonstrated how to exploit collisions between branch
targets for user and kernel addresses. The attack works by constructing a mali-
cious chain of branch targets in user space, to fill up the BTB, and then executing
a previously chosen kernel code path. This evicts branch targets previously ex-
ecuted in kernel mode from the BTB, thus their subsequent execution will take
longer.

While the BTB attack was shown to bypass KASLR on Linux, it differs from
the paging-based side channels by making a series of assumptions: 1) the BTB
has a limited capacity of 10 bits, hence it requires KASLR implementations to
deploy a low amount of entropy in order to succeed. 2) it requires the attacker to
craft a chain of branch targets, which cause kernel addresses to be evicted from
the BTB. For this an adversary needs to reverse engineer the hashing algorithm



used to index the BTB. These hashing algorithms are different for every micro
architecture, which limits the potential set of targets. 3) the result of the attack
can be ambiguous, because any change in the execution path directly effects the
BTB contents.

There are multiple ways of mitigating the BTB side-channel attack against
KASLR. A straightforward approach is to increase the amount of entropy for
KASLR, as noted by Evtyushkin et al. [6]. A more general approach would be to
introduce a separation between privileged an unprivileged addresses in the BTB.
This could be achieved by offering a dedicated flush operation, however this re-
quires changes to the hardware. Alternatively, this flush operation can emulated
in software, if the hashing algorithm used for indexing the BTB has been reverse
engineered. We implemented this approach against the BTB attack by calling a
function which performs a series of jump instructions along with our page tables
switching routine and were unable to recover the correct randomization offset
through the BTB attack in our tests.

7 Related Work
In this section we discuss software and hardware mitigations against side-channel
attacks that were proposed, and compare them to our approach.

7.1 Hardware Mitigations
Privilege Level Isolation in the Caches Eliminating the paging side channel is
also possible by modifying the underlying hardware cache implementation. This
was first noted by Hund et al. [10]. However, modern architectures organize
caches to be optimized for performance. Additionally, changes to the hardware
are very costly, and it takes many years to widely deploy these new systems.
Hence, it is unlikely that such a change will be implemented, and even if it is,
existing production systems will remain vulnerable for a long time. Our software-
only mitigation can be deployed instantly by patching the kernel.

Disabling Detailed Timing for Unprivileged Users All previously presented pag-
ing side-channel attacks rely on detailed timing functionality, which is provided
to unprivileged users by default. For this reason, Hund et al. [10] suggested to
disable the rdtsc instruction for user mode processes. While this can be done
from software, it effectively changes the ABI of the machine. Since modern plat-
forms offer support for a large body of legacy software, implementing such a
change would introduce problems for many real-world user applications. As we
demonstrate in our extensive evaluation, LAZARUS is transparent to user-level
programs and does not disrupt the usual workflow of legacy software.

7.2 Software Mitigations
Separating Address Spaces Unmapping the kernel page tables during user-land
execution is a natural way of separating their respective address spaces, as sug-
gested in [8, 13]. However, Jang et al. [13] considered the approach impractical,



due to the expected performance degradation. Gruss et al. [8] estimated the
performance impact of reloading the entire page table hierarchy up to 5%, by
reloading the top level of the page table hierarchy (via the CR3 register) during
a context switch, but did not provide any implementation or detailed evaluation
of their estimated approach. Reloading the top level of the page tables results
in a higher performance overhead, because it requires the processor to flush all
of the cached entries. Address space separation has been implemented by Apple
for their iOS platform [16]. Because the ARM platform supports multiple sets
of page table hierarchies, the implementation is straightforward on mobile de-
vices. For the first time we provide an improved and highly practical method of
implementing address space separation on the x86 platform.

Increasing KASLR Entropy Some of the presented side-channel attacks benefit
from the fact that the KASLR implementation in the Linux kernel suffers from a
relatively low entropy [6, 10]. Thus, increasing the amount of entropy represent a
way of mitigating those attacks in practice. While this approach was suggested by
Hund et al. [10] and Evtyushkin et al. [6], it does not eliminate the side channel.
Additionally, the mitigating effect is limited to attacks which exploit low entropy
randomization. In contrast, LAZARUS mitigates all previously presented paging
side-channel attacks.

Modifying the Page Fault Handler Hund et al. [10] exploited the timing difference
through invoking the page fault handler. They suggested to enforce its execution
time to an equal timing for all kernel addresses through software. However, this
approach is ineffective against attacks which do not invoke the kernel [8, 13].
Our mitigation reorganizes the cache layout in software to successfully stop the
attacks, that exploit hardware features to leak side channel information, even
for attacks that do not rely on the execution time of any software.

KAISER Concurrently to our work Gruss et al. implemented strong address-
space separation [7]. Their performance numbers are in line with our own mea-
surements, confirming that separating the address spaces of kernel and userland
constitutes a practical defense against paging-based side-channel attacks. In con-
trast to LAZARUS, their approach does not make use of dummy mappings to
hide the switching code, but separates it from the rest of the kernel code section
(as outlined in 3.3.C2).

8 Conclusion

Randomization has become a vital part of the security architecture of modern
operating systems. Side-channel attacks threaten to bypass randomization-based
defenses deployed in the kernel by disclosing the randomization secret from un-
privileged user processes. Since these attacks exploit micro-architectural imple-
mentation details of the underlying hardware, closing this side channel through
a software-only mitigation efficiently is challenging. However, all of these attacks



rely on the fact that kernel and user virtual memory reside in a shared address
space. With LAZARUS, we present a defense to mitigate previously presented
side-channel attacks purely in software. Our approach shows that side-channel
information exposed through shared hardware resources can be hidden by sepa-
rating the page table entries for randomized privileged addresses from entries for
unprivileged addresses in software. LAZARUS is a necessary and highly practical
extension to harden kernel-space randomization against side-channel attacks.
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Abstract—Remote attestation is an important security service
that allows a trusted party (verifier) to verify the integrity of a
software running on a remote and potentially compromised de-
vice (prover). The security of existing remote attestation schemes
relies on the assumption that attacks are software-only and that
the prover’s code cannot be modified at runtime. However, in
practice, these schemes can be bypassed in a stronger and more
realistic adversary model that is hereby capable of controlling
and modifying code memory to attest benign code but execute
malicious code instead – leaving the underlying system vulnerable
to Time of Check Time of Use (TOCTOU) attacks.

In this work, we first demonstrate TOCTOU attacks on
recently proposed attestation schemes by exploiting physical
access to prover’s memory. Then we present the design and
proof-of-concept implementation of ATRIUM, a runtime remote
attestation system that securely attests both the code’s binary and
its execution behavior under memory attacks. ATRIUM provides
resilience against both software- and hardware-based TOCTOU
attacks, while incurring minimal area and performance overhead.

Index Terms—Attestation, runtime, memory attacks

I. INTRODUCTION

Recent high-profile attacks on embedded systems, such as

Mirai and Stuxnet, have become crucially alarming and of

increased significance as systems are becoming more intercon-

nected and collaborative. Remote attestation plays an important

role as a security service for detecting malware on a remote

device. It is implemented as a challenge-response protocol that

allows a trusted verifier to obtain an authentic report about

the (software) state of a potentially untrusted remote device

called prover. Conventional attestation schemes are static in

nature, i.e., the prover sends an authenticated report to the

verifier by issuing a digital signature or cryptographic MAC

(Message Authentication Code) over the verifier’s challenge

and the measurement (typically hash) of the binary code to

be attested [22]. However, static attestation only ensures the

integrity of binaries but not of their execution. In particular, it

cannot detect the prevalent state-of-the-art runtime attacks that

do not modify the program binary but subvert the intended

control flow of the targeted application program during its

execution. Current runtime attacks take advantage of code-

reuse techniques, such as return-oriented programming that

dynamically generate malicious code by chaining together code

snippets (called gadgets) of benign code without requiring

to inject any malicious code/instructions [24]. Consequently,

the hash value computed over the binaries remain unchanged

and the attestation protocol succeeds, although the prover has

been compromised. These sophisticated exploitation techniques

have been shown effective on many processor architectures,

such as Intel x86 [23], SPARC [4], ARM [16], and Atmel

AVR [10]. In fact, large-scale investigations of embedded

systems security have shown various vulnerabilities, including

memory corruption (such as buffer overflow) that can be

exploited for runtime attacks.

Hence, effective attestation should enable reporting the

prover’s dynamic behavior – more concretely, its current

execution details – to the verifier. To attest the dynamic

program behavior researchers have proposed enhancements

and/or extensions to static binary attestation (e.g., [11], [3]).

The most recent, C-FLAT [3], reports the prover’s dynamic

state (execution paths) and provides fine-grained control-flow

measurements to the verifier. Note that, unlike control-flow

integrity (CFI) enforcement, control-flow attestation provides

detailed information about the executed path that might be of

crucial interest to a remote verifier. This information helps

in detecting data-oriented non-control attacks [5] that can

bypass CFI by corrupting data variables to execute a valid

but unintended control-flow path, for instance, redirecting the

control flow to a high-privileged recovery routine (see also [13]).

However, C-FLAT requires program code instrumentation and

incurs high performance overhead, particularly on the prover.

On the other hand, all existing attestation schemes (including

C-FLAT) rule out physical attacks in their adversary model.

This assumption is not always realistic, since the adversary may

at some point have physical access to the prover. In this case,

it is possible to execute (extraordinarily effective and cheap)

non-invasive attacks on the program code memory through

physical access. In particular, the adversary physically controls

and modifies the memory such that benign code is attested but

malicious code is executed instead.



Goals and Contributions. In this paper, we first demon-

strate that – using external interfacing with prover’s program

code memory bank – an adversary can bypass all existing at-

testation schemes and deliver sound attestation reports, without

even having to extract the prover’s secret keys (cf. § III).

To overcome the limitations of current attestation schemes,

we introduce a holistic approach to attestation ATRIUM, a

resilient runtime attestation scheme that is capable of detecting

both physical memory attacks and software attacks including

runtime attacks by attesting the executed instructions and their

control flow at runtime. Our main contributions are listed as

follows.

• We demonstrate memory bank attacks on state-of-the-

art attestation schemes for embedded devices such as

SMART [9] and C-FLAT [3]. We exploit physical access

to code memory to bypass attestation and deliver sound

attestation reports without having to extract the prover’s

secret keys.

• We present ATRIUM– an attestation scheme which:

(1) detects memory bank attacks by attesting instructions

as they are fetched from (off-chip) memory for execution;

(2) prevents software attacks on the attestation process it-

self by separating the attestation engine from the processor

(i.e., no instructions are sent to the processor to perform

attestation). Instead, attestation is performed by a separate

hardware engine in parallel. (3) detects runtime attacks

by tracking and reporting both executed instructions and

control-flow events during execution.

• We present a proof-of-concept implementation and perfor-

mance analysis which demonstrate the effectiveness and

feasibility of ATRIUM, and its applicability to low-end

embedded devices.

II. BACKGROUND

Control-Flow Graph (CFG). The execution flow of a

program can be abstracted into a control-flow graph (CFG) by

leveraging the aid of static and dynamic code analysis. The

nodes in CFG represents basic blocks of a program, while

edges represent control-flow transitions from one block to

another by means of a branch instruction. A valid path in CFG

is composed of several nodes connected by edges.

Runtime Attacks. An outline of the different classes of

runtime attacks is illustrated in Figure 1. The system dedicates

separate memories for data and code. The former is marked

as readable and writable (rw), while the latter is marked as

readable and executable (rx). This ensures that code cannot

be executed from data memory, and code memory cannot be

overwritten by means of software. Along this CFG, we can

outline three major classes of runtime attacks: � non-control-

data attacks that indirectly affect the control flow of a program,

� corruption of loop variables, and � code-pointer overwrite

attacks. By corrupting control-flow information stored in the

stack or heap and overwriting code-pointers (return addresses

and function pointers) as in � an attacker can redirect the

control flow of a program such that execution has a malicious

and unauthorized effect. In attacks based on code-injection,
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Figure 1: Different attack classes

the attacker places a malicious executable payload in program

memory and redirects control flow to execute it. Alternatively,

state-of-the-art runtime attacks leverage code-reuse techniques,

such as Return-oriented Programming (ROP) [23]. These

attacks exploit a memory corruption vulnerabilities (e.g., buffer

overflows) in the program and stitch together a malicious

sequence of machine code instructions from benign gadgets
of code already residing in the memory of the vulnerable

program. Non-control-data attacks [5] do not compromise the

control flow of a program, but cause unexpected malicious

control flow by corrupting critical data variables such as an

authentication variable. This results in executing a privileged

(unintended) but permissible control-flow path that exists in

the CFG. Attack � affects the number of times a program loop

executes by corrupting a loop variable such as a counter. This

can have severe consequences depending on the context, e.g.,

a syringe pump dispenses more liquid than requested (see [3]).

Code injection attacks can be prevented by either marking

memory as writable or executable. This mechanism is known

as Data Execution Prevention (DEP) [12]. Countermeasures

against code reuse attacks include: Control-Flow Integrity
(CFI) [2], fine-grained code randomization [19], and Code-

Pointer Integrity (CPI) [18].

Besides software-based runtime attacks, a stronger adversary

as shown in Figure 1, can modify program code in memory

through physical access without mounting sophisticated inva-

sive physical attacks, but by simply replacing the benign code

memory with malicious code memory at runtime. We elaborate

on these memory bank attacks next in § III and propose an

attestation scheme that can mitigate them in § V.

III. TOCTOU ATTACKS ON ATTESTATION SCHEMES

Next we describe memory bank attacks that we aim to

mitigate in this work, and we show how they bypass recently

proposed attestation schemes: SMART [9] C-FLAT [3] and

LO-FAT [7]. These attacks assume a stronger adversary that

can physically manipulate the code memory without the need

for sophisticated invasive physical attacks and can consequently

bypass attestation schemes that strictly consider software-only

adversary. The attack is illustrated in Figure 2: At Prv’s side



the attestation scheme (i.e., the attestation code and secret

key) is stored on-chip while the benign code resides in an

external memory. The adversary can interleave instruction

fetches to malicious code in-between those fetches needed

to attest the benign code of the original program. This can

be done by replacing the original memory interface with an

interface to a memory controller. This allows the adversary to

direct instruction fetches to either benign code when attestation

is running, or malicious code otherwise. The same interleaving

attack can be achieved by inserting malicious instructions in-

between hooks to the attestation. As long as the malicious

instructions do not interfere with attesting benign code, e.g.,

intended control flow, the attestation can be bypassed. In the

following, we describe how we implement the attacks to bypass

SMART and C-FLAT.

Figure 2: Memory bank attack on attestation schemes

A. SMART

SMART [9] is a static attestation scheme that establishes

a root of trust in low-end embedded systems with minimal

hardware components. It targets microprocessors that are able to

execute code from an external memory, whereas the attestation

code and key reside in an internal ROM and are protected by

access control policies of a memory protection unit (MPU).

When an attestation request is received, the atomic attestation

code in ROM computes a HMAC of a region of code memory,

provided in the attestation request. Then the attested code

executes atomically.

Detecting Attestation Execution. By eavesdropping in the

communication channel between the verifier and the prover for

an attestation request, we determine when the attestation engine

is about to run in order to launch a TOCTOU attack. Although

this is permissible by the adversary model in SMART, we

choose not to tackle the detection problem this way. Instead,

we examine a side-channel that is inherent to the SMART

design, by placing a monitor on the address bus between the

processor and memory to capture which addresses are being

accessed. Using the access patterns, we are able to discern

whether a CPU is executing from external memory or from the

internal ROM. Since SMART is prototyped on the open-source

MSP4301, it utilizes a von Neumann architecture, where data

and instructions are accessed over the same address space but

are structured such that they reside in different sections of

memory. Hence, we can extract and filter out data accesses,

1http://opencores.org/project,openmsp430

leaving behind accesses to code memory. In doing so, we

observe the time-frame that it takes the internal ROM to set

up the attestation environment, followed by the linear scan of

code addresses, then the subsequent execution of external code.

On processors with modified Harvard architecture, a temporary

halt in accesses to code memory would be recognized, as the

ROM code starts executing. We then observe a linear scan

over an address range, as code is being read and hashed by

the attestation code. A break is then noticed as the ROM

code cleans up memory, followed by the continued access to

program memory for execution. Utilizing this, we perform one

of the following attacks to mount a TOCTOU attack.

Blind Execution of Malicious Software. Since code mem-

ory remains external to the SoC, we splice the address bus,

add a new memory chip containing malicious code and utilize

the monitor to detect when the attestation code runs. When

attesting, we bank to the memory with the intended code. When

executing, we bank to the malicious code memory, allowing

SMART to report valid attestation results while malicious code

is actually executed by CPU during periods of no attestation.

Leakage of Secrets via Data Memory Banking. As the

attestation code runs, temporary values are saved in memory,

assuming SMART implementation utilizes off-chip memory

to store temporary values. We use the monitor to detect when

the attestation code runs. As data memory is accessed to store

temporary values, we bank memories to allow for the leakage

of values. We perform this by physically tampering with the

address lines between the processor and the memory. As the

monitor detects when SMART is about to perform its cleanup

routines, we bank to a different portion of memory, leaving the

ROM code to erase the wrong portion of memory. By reading

the SMART secrets from memory, we are able to reconstruct

the attestation secret and fake a valid response.

B. C-FLAT

C-FLAT [3] is a runtime attestation scheme that aims to

measure and report the control-flow behavior of an executing

code. It instruments all branch instructions such that they are

intercepted by a runtime tracer (RTT). The RTT recovers the

source and destination addresses of the branch as well as its

type, which are then passed to the measurement engine (ME).

The ME is responsible for computing a hash over the reported

branches and these hash measurements are secured by running

in a TrustZone secure world. In this way, a runtime control-flow

attestation report is generated and verified against previously

computed control-flow traces stored in a trusted verifier party.

C-FLAT is susceptible to two TOCTOU attacks assuming

that the attacker has physical access to the code memory : 1)

replacing instructions within a basic block with malicious ones;

and 2) refactoring the control-flow graph (CFG) of an arbitrary

program to match a benign CFG protected by C-FLAT. Both

attacks exploit the fact that C-FLAT attests only control flow

when exiting a basic block but not the executed instructions

themselves. Hence, intermediate instructions within the basic

block can be arbitrarily replaced by malicious executable code

by a stronger adversary with physical access to the code



memory, as long as the control flow of the code remains

unchanged and the expected attestation report is not violated.

These attacks are also applicable to the hardware-assisted

control-flow attestation scheme LO-FAT [7] since it also only

attests control flow.

We chose to implement a TOCTOU attack against one of the

case studies presented in [3], namely the syringe pump program

responsible for dispensing intravenous (IV) fluids. Our attack

goal is to dispense liquid in incorrect volumes at unexpected

times, thereby, disrupting the correct flow of IV fluids. We

only demonstrate the second attack variant, however, the first

variant of the attack is also easily feasible by replacing the

original instructions within the basic block with malicious ones.

This allows the original RTT hooks into the ME to compute

a valid attestation report as it is based upon the source and

destination addresses of a branch and its type.

In place of the original program that manages liquid

dispensing and withdrawal, we implement a malicious program

that chooses a random value to dispense by modifying the

set-quantity function and additionally creates compound

dispense and withdraw triggers for the move-syringe
function. We embed this code in the original program, which

creates new edges in the CFG of the syringe pump program.

Our new edges would violate C-FLAT’s attestation report for

the benign syringe pump program.

To avoid triggering C-FLAT, we refactor the CFG of our

attacker syringe pump program using the REpsych tool2 to

construct the desired CFG. The REpsych tool is an IDA plugin

that translates a source image into a functioning program whose

CFG is the image. We used the original syringe pump’s CFG as

a source image, and our modified syringe pump program as the

target. This allowed us to generate a program with alternative

functionality, but equivalent CFG to the original syringe pump

program. We then recompute the attestation report using

C-FLAT’s tools3. The attacker program’s attestation report

matched the original syringe pump program’s attestation report

after CFG refactoring. Thus, we were able to accurately execute

the attacker program without violating C-FLAT’s protection.

IV. ATRIUM

We present ATRIUM a runtime attestation scheme targeting

bare-metal embedded systems software. ATRIUM comprises

a remote embedded system, called in this context the prover

Prv, and a trusted verifier Vrf . The Prv is deployed in-field

such that the adversary has physical access to its memory.

Typically, both Vrf and Prv have access to the binary code

of the program P to be attested on Prv. Note that, in practice,

it may not be feasible to apply runtime attestation to the entire

program code due to obvious efficiency reasons, but it can be

applied to pre-defined security-critical code regions.

A. Adversary Model and Assumptions

In addition to the standard capabilities of the adversary in

typical remote attestation schemes, which assume software-

2https://github.com/xoreaxeaxeax/REpsych
3https://github.com/control-flow-attestation/c-flat

only attacks, our adversary can also perform runtime attacks

(§ II). Furthermore, we assume a stronger adversary that has

physical access to the Prv’s memory and can manipulate the

program code at runtime and, therefore, is able to mount a

TOCTOU attack (§ III). However, the adversary cannot modify

memory reserved and used by ATRIUM itself – this memory is

hardware-protected and not mapped to the software-accessible

address space. Data-oriented programming attacks [13] that

do not affect the control flow as well as invasive physical

attacks on the SoC that aim at extracting secret keys are out

of scope. This assumption is reasonable, since an adversary is

more likely to mount a simple physical attack on the memory

as we demonstrated in § III, rather than expensive sophisticated

invasive attacks on the chip that can destruct it eventually.

B. Runtime Attestation: High-Level Scheme

Inspired by C-FLAT [3] (described in § III-B) and the

hardware-assisted scheme LO-FAT [7], ATRIUM performs

attestation of an executing program code at runtime. However,

unlike both schemes, it measures both the executed instructions

(to detect the more advanced TOCTOU attacks described

in § III) and control flow (to detect runtime attacks).

Similar to C-FLAT, our attestation mechanism relies on Vrf
performing one-time offline pre-processing to generate the CFG

of program P (including expected loop execution information)

by means of static and dynamic analysis. Vrf computes

cryptographic hash measurements over the instructions and

addresses of basic blocks along legal CFG paths and stores

them in a reference database. Vrf initiates the attestation by

sending Prv benign input inb, the code region to be attested

in P , and a nonce to ensure freshness of the attestation report.

Prv executes P on the benign inputs inb and potentially

malicious inputs inm that are not controlled by Vrf and may

lead to the corruption of the program’s control flow by means

of runtime attacks (§ II). ATRIUM is triggered during the

execution of the code region of interest and computes a set of

hash measurements over the executed paths. When execution

of the code region is complete, Prv generates and sends to

Vrf the final attestation report consisting of the concatenated

set of hash values H0‖...‖Hn and the number of iterations of

the hash values which correspond to executed loop paths, and

a signature over H0‖...‖Hn and the nonce based on Prv’s

secret key sk . To ensure authenticity of the report, sk is stored

in memory accessible only by ATRIUM. Upon receiving the

report, Vrf verifies its signature using Prv’s public key pk
and checks whether the H0‖...‖Hn values match the reference

hash values under input inb. If they match, Vrf concludes

that Prv’s execution of the attested code region was correct

in terms of executed instructions and their control flow. For

better understanding, we demonstrate next by an example how

the hash values are computed during attestation.

Example. A CFG of an example pseudo-code is shown

in Figure 3. Each numbered node in the CFG represents the

corresponding numbered basic block of sequential instructions

in the pseudo-code and the address of the first instruction of

that basic block. For example, N5 corresponds to the first 3



Figure 3: Example pseudo-code and its segmented CFG

instructions outlined in the pseudo-code, constituting a single

basic block, and the address of the first instruction. The CFG

shown in Figure 3 has 2 main paths: P0, in bold, consisting

of nodes N1-N2-N5-N6-N4 and P1, in dashed, consisting of

nodes N1-N3-N7-N4. In order to avoid combinatorial explosion

of legal hash values that would occur due to multiple loop

iterations, the program CFG is split into segments such that

hash values for loop paths are computed separately, rather than

computing a single hash value over the complete executed path

of the attested region. In Figure 3, due to the loop in N5-N6,

P0 is sectioned into 3 segments: S0, S1 and S2. S0 comprises

all nodes till loop entry at N5, where S1 is initialized. S1
ends at the loop exit node N6, and S2 is initialized at N4 and

beyond until again another loop is encountered and so on.

When path P0 is executed and attested, ATRIUM accumu-

lates nodes (address of the first instruction and the individual

instructions in each node) along each segment and computes a

hash value for each segment: a hash value H0 = H(N1||N2)
over the nodes in S0 of P0, followed by H1 = H(N5||N6)
over the nodes in S1, and H2 = H(N4) over the nodes in S2,

resulting in the set of hash values H0||H1||H2 representing

the executed path P0. P1, on the other hand, has no loops.

Therefore, when executed the whole path is measured by

a single hash value H3 = H(N1||N3||N7||N4). This CFG

segmentation in hash computation allows our scheme to tackle

loops and nested loops efficiently, while also allowing fine-

grained attestation of their execution. It requires that ATRIUM

can detect and interpret loops accurately at runtime. Unlike

C-FLAT, we aim to realize this without instrumentation, hence

avoiding the associated performance overheads. We present next

the architecture of ATRIUM and how it interfaces directly with

the processor hardware to capture at runtime every executed

instruction and accurately interpret control flow and infer loop

entry and exit points without instrumentation.

V. ATRIUM: DESIGN AND IMPLEMENTATION

ATRIUM is a hardware-based scheme for runtime attestation

that tightly integrates with a processor, as shown in Figure 4.

This allows it to extract the executed instructions and their

memory addresses from the execute stage of the pipeline

at runtime while the program P (that needs to be attested)

executes on input values inb and inm. ATRIUM outputs a set

of hash values H0‖...‖Hn computed over the executed path

Figure 4: Architecture of ATRIUM

which get included in the attestation report. We present next

the components of ATRIUM and their implementation details.

A. Instruction Filter

Upon code execution, the instruction filter extracts the current

program counter (PC) and the executed instruction per clock

cycle and checks whether the current instruction is a branch or

jump, since such instructions reflect control-flow transitions.

Implementation. We implemented the instruction filter such

that it tightly extends the execute stage of the processor from

which it extracts the PC and instruction per clock cycle. If the

current instruction is a control-flow instruction, its PC and the

address it jumps to are stored as source–target pair, (Src, Tgt)-
pair. To determine whether the branch was taken and whether

control jumped forwards or backwards in memory, the PC of

the next executed instruction is compared to the stored target

address. Instruction filter outputs the following signals: (1)

branch instructions, their type, and (Src, Tgt)-pairs and (2)

basic block addresses and executed instructions.

B. Loop Encoder

As explained in § IV-B, ATRIUM handles loops and their

hash computations differently. Hence, at runtime the loop

encoder detects loops and identifies their entry and exit points

and their depth, in case of nested loops. It checks whether

the behavior of a captured branch can be inferred as returning

to a loop’s entry point, hence indicating a new loop iteration.

The loop encoder instructs the hash controller to finalize the

ongoing hash computation and initialize a new one with the

entry address of a loop iteration. Furthermore, the loop encoder

also detects if a branch represents a system call since system

functions have to be handled specially in ATRIUM.

Implementation. To detect loops at runtime without rely-

ing on code instrumentation, we utilize a feature of RISC

architectures that implement a link-register, such as PowerPC,

ARM, SPARC, and RISC-V. We adopt a heuristic used in [7]

to distinguish between backward branches that indicate loop

entry, and branches for subroutine calls where the call target

resides earlier in memory. Subroutine calls use instructions

that update the link-register with the return address, hence, we

consider any non-linking backwards branch as a loop entry
node. Consequently, the basic block after the branch instruction

is considered a loop exit node. This is based on observations



of the RISC-V compiler assembly and its calling convention:

any subroutine call with multiple call sites must be linking
and updates the link-register. Subroutines with a single call

site can be compiled as a linking branch or inlined using the

RISC-V compiler. A system call is identified by comparing its

target against a predefined list of addresses of such functions

and issuing a unique identifier for that function F_ID. The

loop encoder stores the addresses of entry and exit nodes of

each loop in a content-addressable memory (CAM) to ensure

single-cycle constant-access search time. At runtime, every

(Src, Tgt) is used to index the CAM to detect if a loop is

re-entered or exits and to extract its loop_ID and depth (in

case of nested loops). An iterations counter for each loop is

maintained and updated at runtime. We detect loop exit when

execution proceeds past the currently active loop exit node,

either due to sequential execution or a non-linking jump, such

as a break. The F_ID, loop_ID and loop_status signals are

forwarded then to the hash controller.

C. Hash Engine and Hash Controller

The hash engine computes a hash value of each executed

path within a segment (§ IV-B). The hash controller regulates

the operation of the hash engine, i.e., finalizes or initiates a

hash computation based on the control signals received from

the loop encoder. In case the computed hash corresponds to

a loop path, the hash controller sends this hash to the hash

lookup and sets the search boundaries of the hash lookup to

that particular current loop (necessary in case of nested loops).

Otherwise, the hash value is simply stored in hash memory.

Implementation. We selected Blake2 4 for hash computa-

tions and used the open-source hardware implementation of

Blake2b, which takes as an input a message block of size 1Kbit

and has a configurable digest size. We configured its digest size

to 88 bits to reduce memory requirements for hash lookup and

hash memory. The hash controller buffers incoming instructions

from the loop encoder, aligns them in 1Kbit message blocks

and feeds them to the hash engine. The hash engine requires

28 cycles to process a block, thus the hash controller issues a

stall signal to the processor in case its buffer is full and the

hash engine cannot digest a new message block. Therefore,

system calls are handled differently because we observe that

they often involve short loops that are executed arbitrarily

many times, e.g., string utility functions. Hashing such a short

loop path every time it executes, especially for a large number

of iterations, would require the hash controller to stall the

processor frequently and delibitate performance. Hence, the

executed instructions along a loop path are concatenated and

stored in plaintext in a dedicated CAM and sent to the hash

engine only once when it is first encountered. When the same

path is executed again, it is compared with the previously

recorded paths in the CAM, and a corresponding counter is

incremented when a match is found, without sending it to

the hash engine again. The counters are concatenated with

the corresponding hash values in the final attestation report.

4https://blake2.net/

Upon finalizing a hash computation, the hash controller checks,

whether the resulting hash is computed over a path within a

loop or not. If it is computed over a path loop, it forwards the

resulting hash value from the hash engine synchronized with

its corresponding loop_ID to the hash lookup.

D. Hash Lookup

The hash lookup is dedicated to storing and tracking hash

values during loop iterations efficiently. Once a hash value is

ready, the hash controller forwards it to the hash lookup, which

searches within the current loop’s list of hash values for a

match. If not found, then the hash value is appended to the list.

The hash lookup also maintains a counter per loop path which

is incremented when its corresponding hash is encountered.

Implementation. To avoid multiple memory accesses due to

sequential search of a particular hash value, we implement the

hash lookup as a set of CAMs, whose number can be configured

based on the system’s requirements. A CAM is dedicated for

every active loop, so the number of CAMs is determined by the

maximum number of nested loops that ATRIUM is configured

to track concurrently. Each CAM has a configurable capacity

of (n,m) bits, where n is the maximum number of entries and

m is number of bits per entry and a counter to maintain the

occupied number of entries. When a loop is detected, the hash

controller sends the hash lookup to reserve a CAM for it and

reset its counter to zero. The CAM holds the computed hash

values of a currently executing loop temporarily till the loop

exits. Each time a path in the pertinent loop is executed, its

computed hash value is looked up in the associated CAM. If a

match is not found, i.e., this path has not been executed before,

then its hash value is appended to the CAM. When a new

loop is detected and all CAMs are occupied, a CAM that was

reserved for a loop that already exit (and will not be executed

again) is freed and re-used. If a path does not belong to a loop,

then its hash value is used to update the hash memory directly.

E. Hash Memory

All computed hash values are stored in a dedicated memory.

After the execution of the code region to be attested completes,

these hash values are assembled and a digital signature is

computed over them. The hash values H0‖...‖Hn and their

signature are then transmitted to Vrf .

Implementation. An on-chip hash memory is dedicated to

store all computed hash values during a single attestation run

of the pertinent code region. The sequence of the storage of the

hash values in memory indicates the order of the first occurrence

of their corresponding code segments during execution. It is

necessary to maintain this order and report H0‖...‖Hn in the

same sequence to Vrf for correctly verifying execution. In our

FPGA prototyping of ATRIUM (cf. § VI), we configure the

hash memory as on-chip block RAM (BRAM) of configurable

capacity with each entry occupying 88 bits for hash digest and

8 bits for its counter. The capacity is configured according

to our attestation requirements, i.e., the maximum number

of CFG segments an attested code region would consist of.

Alternatively, for constrained embedded systems, we can reduce



the memory requirements by streaming the hash values (or

every batch of them) as soon as they get generated to the Vrf .

VI. EVALUATION & SECURITY CONSIDERATIONS

A. Performance & Area Evaluation

We implemented ATRIUM in Verilog, interfaced it with the

open-source RISC-V Pulpino core 5, and simulated and synthe-

sized it. Performance and functionality were evaluated using

a suite of microprocessor benchmarks including Dhrystone,

mt-matmul, rsort, spvm and towers.

Functionality. We extended the Pulpino RTL with ATRIUM

and performed cycle-accurate simulation on ModelSim while

executing the aforementioned benchmarks. We confirm correct

functionality of ATRIUM by comparing simulation results

with reference execution profiles of the benchmarks, which we

extracted by running the benchmarks on standalone Pulpino

without ATRIUM and analyzing the execution trace.

Area and Memory. Area utilization depends on the config-

urations of the hash lookup and hash memory of ATRIUM. For

our evaluation, we configured the hash lookup with 8 CAMs,

each CAM with n = 8 entries and each entry being m = 88
bits. This allows ATRIUM to track up to 8 active nested loops

at once with a maximum of 8 different 88− bit path hashes

per loop. On synthesizing ATRIUM using Xilinx Vivado on

a Zedboard (Virtex-7 XC7Z020 FPGA), we show the overall

area utilization to be 15% of slice registers and 20% of slice

LUTs of this FPGA, while only one 18Kbit BRAM is required

for the hash memory.

Performance. Implementation results indicate that ATRIUM

can operate at a maximum clock frequency of 70 MHz on

a Zedboard (Virtex-7 xc7z020 FPGA) and is, hence, on par

with the Pulpino’s maximum clock frequency of 50 MHz on

the same board. Performance experiments show an overhead

of 1.97% for Dhrystone, 12.23% for mt-matmul, 22.69% for

rsort, 6.06% for spvm and 1.7% for towers. Since ATRIUM

components run on par with Pulpino, performance loss is caused

by the hash function, as the processor stalls occur only when the

currently executed path has ended and needs to be hashed while

the hash engine is still processing the previously executed path

and is not ready for input. This overhead is incurred for loops

with paths whose number of executed instructions are less than

the required number of cycles for the hash engine to finalize

its computation (28 cycles for the chosen hash function). To

mitigate this overhead, the hash engine should be clocked at a

higher frequency than the processor if possible.

B. Security Considerations.

We assume that the used cryptographic primitives are secure.

Upon receiving an attestation request, Prv generates and sends

the list of computed hash values H0‖...‖Hn along with a digital

signature computed over it and a nonce provided by Vrf and

signed by Prv’s secret key sk. The signature guarantees the

authenticity of the attestation report while the nonce ensures

its freshness. By verifying the signature, checking the value of

5https://github.com/pulp-platform/pulpino

the nonce, and comparing the received hashes to their expected

values stored in Vrf ’s database, Vrf gains assurance of the

correct execution (both instruction and their control flow) of

the current program on Prv. We consider three classes of

attacks that can be mounted on ATRIUM.

Malware and Network Attacks. ATRIUM detects mali-

cious software modification introduced by the adversary, as

every executed instruction is included in the hash computation.

To evade detection, finding a second image that maps to same

hash value is required. However, that is infeasible since the

hash engine is second pre-image resistant. Forging the signature

or replaying an old signature is also not feasible, due to security

of signature scheme and to the nonce being long enough.

Runtime Attacks. Since basic block addresses are included

in hash computations along with the executed instructions, the

hash values computed in ATRIUM reflect the control flow of

the executed path. Being tightly integrated with the processor,

ATRIUM is guaranteed to track and record every control-flow

event executed. An attacker who knows the program code

P or CFG(P ) can try to bypass ATRIUM by searching for

a second pre-image of the corresponding hash. However, by

using cryptographically-secure hash function, finding collisions

is computationally infeasible.

Physical Attacks. An adversary with physical access to Prv
can try to manipulate the program code in Prv’s memory at

runtime, i.e, between time of attestation and time of execution.

However, in ATRIUM attestation is performed during execution.

Therefore, it is guaranteed that every instruction that is

executed on Prv will be included in the hash generation, and

consequently any manipulation will be detected by Vrf , as

the generated hash values would not match Vrf ’s expectations.

This defends against TOCTOU attacks that can occur when

attestation is followed by execution, as was the case for both

SMART [9] and C-FLAT [3]. Finally, fault injection attacks

which target the SoC clock and cause unintended behavior

would also be detected by Vrf , as long as the attacks affect

the instructions executed or their control flow. Note that,

expensive invasive/semi-invasive physical attacks on the SoC

are considered out of scope in this work.

VII. RELATED WORK

Attestation Schemes. Existing static attestation schemes

such as software-based [14], [20], hardware-based [21], [17],

and hybrid [15], [9] attestation schemes are vulnerable to

runtime attacks. Control-flow attestation (C-FLAT) aims at

enhancing the security of static attestation schemes by addi-

tionally hashing the code’s execution control flow. This enables

the detection of code-reuse and non-control data attacks that

divert the execution flow. However, due to frequent hash calcu-

lations and context switching (on TrustZone), C-FLAT incurs

high performance overhead. LO-FAT [7] leverages hardware

assistance to track and measure control flow, thus, overcoming

the limitations of C-FLAT and enabling efficient attestation

of uninstrumented code. LO-FAT, however, incurs significant

area overhead due to its on-chip memory requirements (up to

49 36Kbit Block RAMs are used sparsely to store counters of



loops’ paths). Finally, in a stronger adversary model with

physical access to the prover’s device, these schemes are

vulnerable to Time of Check Time of Use (TOCTOU) attacks.

ATRIUM mitigates this by providing both static and control-

flow attestation in a stronger (and more realistic) adversary

model efficiently.

Authenticated Memory Modules. Authenticated Memory

Modules (such as Intel Authenticated Flash [1]) aim at

resisting physical attacks on external memory by preserving

the memory’s integrity. However, they are insecure under an

adversary model with physical access. Moreover, they do

not authenticate the control flow of the execution. On the

contrary, ATRIUM provides an additional defense against

software runtime attacks by coupling the attestation of both

the instructions and their control flow with their execution to

eliminate any room for TOCTOU attacks.

Memory Authentication. Such schemes [8], [6] aim at

resisting physical attacks on external memory. However, they

incur high performance overhead by authenticating memory

blocks before execution and are susceptible to runtime attacks.

ATRIUM detects both runtime attacks and physical attacks on

code memory while incurring minimal overhead.

Hardware Security Architectures. Finally, hardware se-

curity architectures (such as Intel SGX) provide memory

authentication as well as static attestation. However, such

architectures are not designed to target low-end embedded

devices. Furthermore, they only provide static attestation and

therefore cannot meet the goals that we target. Nevertheless,

they provide security features complementary to our work.

VIII. CONCLUSION

Due to the ubiquity of interconnected embedded systems,

software running on these devices have become vulnerable

to remote software attacks. Previous attestation schemes have

been proposed to detect these attacks while always ruling

out physical attacks. In this paper, we showed that physical

attacks on the system’s code memory are indeed feasible. We

presented a hardware-based efficient scheme ATRIUM that

allows precise attestation of both executed instructions as well

as their control flow. ATRIUM is the first attestation scheme to

provide security guarantees against a stronger adversary with

physical access to code memory, and does not require any code

instrumentation (compliant to legacy software) or instruction

set extension. Our proof-of-concept implementation is highly

efficient with reasonable performance impact on the attested

software at an expense of minimal area overhead and memory.
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