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ABSTRACT 

 

Purpose: The objective of this study is to assess the complexity of human visual search activity during 

mammographic screening using fractal analysis and to investigate its relationship with case and reader 

characteristics. 35 

 

Methods: The study was performed for the task of mammographic screening with simultaneous viewing 

of four coordinated breast views as typically done in clinical practice. Eye-tracking data and diagnostic 

decisions collected for 100 mammographic cases (25 normal, 25 benign, 50 malignant) and 10 readers 

(three board certified radiologists and seven radiology residents), formed the corpus data for this study. 40 

The fractal dimension of the readers’ visual scanning patterns was computed with the Minkowski–

Bouligand box-counting method and used as a measure of gaze complexity. Individual factor and group-

based interaction ANOVA analysis was performed to study the association between fractal dimension, 

case pathology, breast density, and reader experience level. The consistency of the observed trends 

depending on gaze data representation was also examined.  45 

 

Results:  Case pathology, breast density, reader experience level, and individual reader differences are all 

independent predictors of the visual scanning pattern complexity when screening for breast cancer. No 

higher order effects were found to be significant. 

 50 

Conclusions:  Fractal characterization of visual search behavior during mammographic screening is 

dependent on case properties and image reader characteristics.   
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1 INTRODUCTION 55 

 

Breast cancer is the most frequently diagnosed form of cancer and the second leading cause of 

cancer-related deaths among women worldwide1. The mortality rate for this disease is largely dependent 

on early diagnosis through mammographic screening.  With early detection, while the disease is localized, 

patients have a 98.5% relative survival rate versus 25% when the cancer is metastasized, a point at which 60 

the disease becomes incurable2. 

Previous studies showed the diagnostic interpretation of mammograms is susceptible to different 

types of human error resulting in missed diagnosis3-7. The topic of medical diagnostic error has received a 

lot of attention in recent years8-10. To this end, the medical research community has focused on the 

perceptual and cognitive processes related to decision making to better understand the causes of error. In 65 

radiology, misdiagnosis can be attributed to visual search and interpretation errors11, 12.  

For over half a century, a large number of studies have focused on the radiologists’ visual scan 

pattern during medical image reading. Findings from these studies indicate prevalence of errors in two 

general categories: (1) how radiologists find what they are looking for (visual search); and (2) how 

radiologists interpret what they are looking at (image interpretation)13-19. A large body of eye-tracking 70 

research has also focused on gaining a better understanding of the relationship between visual search and 

diagnostic decision. These studies focus on analyzing radiologists’ eye movements recorded during the 

diagnostic process20-28. 

In an early eye-tracking study of scanning strategies in mammography14, Krupinski compared the 

eye-position data of six radiologists with variable experience levels (three experienced mammographers 75 

and three Radiology residents) to examine the influence of experience on scanning strategies. Krupinski 

found statistically significant differences between experienced and inexperienced image readers when 

comparing dwell time14. This study reported that less experienced image readers spend more time 

performing image search, creating a larger spatial coverage of the image (based on eye-position data) 
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when compared with more experienced image readers14.  Kundel et al. investigated the concept of a 80 

global perceptual process during mammographic image reading29. They reported evidence of a global 

perceptual process in saccadic movements during the initial viewing of an image, and its importance in 

the identification of breast abnormalities29. They also found that more experienced radiologists develop a 

global perceptual process as a search strategy than their less experienced counterparts29.  

A more recent research study conducted by Voisin et al. showed the efficacy of eye-tracking in 85 

predicting diagnostic performance30. Voisin et al. conducted laboratory studies and applied machine 

learning techniques to predict error during the diagnostic characterization of mammographic lesions by 

combining features from radiologists’ gaze behavior with textural image characteristics30. In a related 

study on breast cancer detection, Tourassi et al. investigated the relationship between radiologists’ gaze, 

diagnostic decision, and image content of mammograms during mammographic screening9. Their results 90 

suggest that machine learning can be utilized to combine image content with the image reader’s gaze 

characteristics to develop user-dependent models for predicting medical error in breast cancer lesion 

detection and characterization9.  

In an earlier study of eye-movements, Engbert and Kliegl31 investigated the function of 

microsaccades during visual fixation on stationary targets. Using a standard deviation analysis, the 95 

authors showed that microsaccades are triggered dynamically. This triggering mechanism allows for 

prediction of individual microsaccade rate using fractal dimension of trajectories. A more recent study by 

Stephen and Anastas32 examined fractal fluctuations in speed during visual search. They analyzed the 

fractality of angular changes in gaze and reported finding fractal fluctuations during visual search. They 

also reported correlations between cognitive performance (measured as reaction time during visual 100 

search) and fractality of gaze. 

Although a number of investigators have examined radiologists’ visual scanning patterns for 

screening mammograms, the discovered patterns are typically summarized with respect to features such 

as total time examining a case, time to initially hit true lesions, total dwell time, number of hits, etc. While 
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informative, these features fail to capture the gaze path trajectory and therefore they cannot fully capture 105 

the complexity of the visual search process. In addition, earlier studies were based on single view 

mammograms, which is not consistent with clinical practice. Mammographic screening entails 

simultaneous viewing of 4 coordinated breast views. The purpose of our study is to address the limitations 

of the earlier investigations and attempt to characterize the complexity of the radiologists’ visual search 

activity when viewing 4-view mammographic cases as a function of three factors: (i) breast parenchyma 110 

density, (ii) case pathology, and (iii) radiologists’ experience level. Our study however, focused on mass 

detection, which is known to be associated with higher detection error than microcalcifications3, 4, 6, 13. 

In a previous study33, we presented results on the efficacy of fractal analysis as a measure of visual 

search complexity based on a default viewing configuration for each reader on all mammographic cases 

as a proof of concept. Our work here represents a more rigorous analysis of this approach. We examined 115 

the fractal signature of visual search patterns for all valid display configurations to eliminate the 

possibility of reporting trends resulting from systematic bias. In addition, this work presents deeper 

analysis to evaluate the reader-specific robustness of the observed trends based on each image reader’s 

dominate viewing configuration on a per case basis.  

The contributions of this paper include: (i) fractal analysis of scanpath to assess of complexity of 120 

visual search, and (ii) generation and comparison of differences between visual search complexity profile 

Ground Truth Patient Age Breast Density Mass Subtlety 
Total  

Abnormalities 

No. of 

Cases 

Normal 
Range: 36 – 68 

(56.2 ± 10.6) 

Range: 1 – 4 

(Median: 2) 
N/A N/A 25 

Benign 
Range: 34 – 82 

(56.9 ± 13.4) 

Range: 1 – 3 

(Median: 2) 

Range: 3 – 5 

(Median: 5) 

Range: 1 – 3 

(Median: 1) 
25 

Malignant 
Range: 37 – 83 

(64.3 ± 12.4) 

Range: 1 – 4 

(Median: 2) 

Range: 1 – 5 

(Median: 5) 

Range: 1 – 3 

(Median: 1) 
50 

 

Table 1. Specifications of the 100 mammographic cases used in the study. 
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of individual readers. To the best of our knowledge, there are no previous studies, which report the 

application of fractal dimension as a metric for assessing complexity of scanpath during visual search in 

mammography as highlighted in this paper.  

 125 

2 MATERIALS AND METHODS 

 

2.A. Image Database 

 

To perform this study, 100 screen-film mammograms were selected from a corpus of 130 

mammographic cases digitized with a high resolution LUMISYS scanner (50µm per pixel, 12 bit) from 

the University of South Florida’s Digital Database for Screening Mammography (DDSM)34. Each DDSM 

case contains 4 images, the craniocaudal (CC) and mediolateral oblique (MLO) views of both the left and 

the right breasts, associated ground truth established via biopsy, additional imaging, or 2-year follow-up, 

radiologist’s assessment using the BI-RADS™ lexicon35, and patient age. 135 

The selected set included clinically actionable cases covering a broad range of mass margin and 

shape characteristics. The cases were selected at random. The mass cases were selected with restriction 

criteria based on mass annotation size. Specifically, we selected DDSM mass cases for which the 

bounding box of the provided mass annotations was less than 512 x 512 pixels. This effectively translates 

into masses less than 15mm in radius. Please note that the DDSM mass annotations tend to be generous 140 

without tracing the actual mass outline. Therefore, the 512 x 512 pixel size is an extreme upper limit of 

the masses included in our experiments.  Fifty cases included biopsy-proven malignant masses, 25 cases 

included biopsy-proven benign masses, and the remaining 25 cases were normal as determined during a 
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2-year cancer-free follow-up patient evaluation.  Mammograms with masses deemed as “benign-without-

callback” were excluded. The overwhelming majority of the mass cases (72 out of 75) did not include any 145 

microcalcifications. Mass conspicuity was assessed according to the subtlety rating provided in the 

DDSM truth files. These ratings ranged from 1 (suggesting a subtle lesion) to 5 (suggesting an obvious 

lesion). A complete list of the DDSM cases used in this study is provided in the Appendix. Table 1 

provides details on the selected cases, including information on the patient’s age and breast parenchymal 

density. The parenchymal density is also provided in the DDSM truth files and it ranged between 1 (fatty) 150 

to 4 (dense), according to the BI-RADS™ lexicon35. 

 

2.B. Data Collection Protocol 

 

Ten readers of variable experience levels from an academic institution were recruited to conduct 155 

blind review of the selected mammograms. Each reader was asked to report the location of any suspicious 

mass and provide a corresponding BI-RADS rating as typically done in clinical practice. Of the ten 

readers, three were experienced MQSA-certified radiologists each with at least nine years of dedicated 

mammographic experience, four radiology residents with at least three mammography rotations, and three 

radiology residents with 1 or 2 mammography rotations (see Table 2).  Institutional review board 160 

approval was obtained prior to the study. Human subject recruitment and data collection was done 

according to a protocol approved by the Oak Ridge Site-Wide Internal Review Board. All participants 

signed an informed consent form. 

Reader Type Experience Level No. of Participants 

Radiologist ≥ 9 yrs of practice 3 

Advanced Resident > 2 mammo rotations 4 

New Resident 1 – 2 mammo rotations 3 

 

Table 2. Summary of characteristics of study participants 
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A customized graphical user interface (GUI) was developed in-house for study participants to view 

each mammographic case and record their findings. Two medical grade monitors were used (dual-head 165 

5MP mammo-grade Totoku LCD monitors calibrated to the DICOM display standard). The four 

mammographic views (LCC, RCC, LMLO, RMLO) were initially displayed at low resolution (two views 

per monitor) to fit the screen. To assess breast symmetry, the users could select the MLO views to be 

displayed on the left monitor and the CC views to be displayed on the right monitor (Fig. 1a). The readers 

were also able to select and view a single breast at full spatial resolution with the MLO view displayed on 170 

the left monitor and the CC view displayed on the right monitor (e.g., Fig. 1b). Table 3 enumerates all 

possible “hanging protocols” implemented in the GUI. Please note that based on the allowable protocols 

RMLO could never appear on the right monitor while LCC could never appear on the left monitor. In 

addition, the GUI provided the functionality of zooming in/out, panning, and magnifying glass for 

detailed reading of each mammographic view. During the reading sessions, each reader was outfitted with 175 

an H6 head-mounted eye-tracker, with a 60 Hz sampling rate, and eye-head integration from Applied 

Science Laboratories (ASL, Bedford, Massachusetts, USA). The eye-tracker recorded each reader’s eye 

position data to within 0.5º of accuracy.  

Readers were instructed to take as much time as needed to view each case until they were satisfied 

with the viewing phase. Readers were also informed about the presence of both normal and abnormal 180 

  
(a) (b) 

Figure. 1. Reader outfitted with eye-tracking apparatus reviewing 4-view mammographic case. (a) Dual Display 

showing default arrangement. (b) Dual display showing LMLO and LCC views on left and right displays 

respectively. 
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cases but no information was provided to them regarding the expected prevalence. Once the reader was 

prepared to give a diagnostic assessment of the case, the eye-tracking recording process was halted 

pending complete reporting of case specific findings, and the reader was ready to proceed with viewing 

the next case. The reader’s reporting task was to mark and rate any suspicious findings. Each mark was 

classified and rated for likelihood of malignancy on a BI-RADS-based scale, which consists of five levels 185 

(2, 3, 4A, 4B, 4C, and 5) of increasing probability of malignancy. Cases with no markings were assigned 

a BI-RADS rating of 1. After completion of case reporting, the reader was instructed to proceed with the 

next case. Prior to the every reading session, each reader was carefully calibrated using the 9-point 

calibration protocol provided by ASL and trained on five training cases selected from the DDSM 

database. The set of training cases were different from the 100 test cases used in the study.  190 

The cases were presented in a randomized order. A different randomization scheme was used for 

each reader. Readers were also permitted to complete the study in multiple sessions based on preference 

and scheduling conflicts. For example, of the ten readers, two completed case readings for the study in 

one day (over two sessions), four completed case readings for the study in two days (over at most three 

sessions), and one reader completed case readings in three days (over 4 sessions). 195 

 

2.C. Data Processing 

 

Dual Display Viewing Arrangements Left Monitor  Right Monitor  

1: Same mammographic view (CC) RCC LCC 

2: Same mammographic view (MLO) RMLO LMLO 

3: Same breast viewing  (Right)  RMLO RCC 

4: Same breast viewing (Left) LMLO LCC 

5: Four-view (default) RMLO & LMLO RCC & LCC 

 

Table 3. Enumeration of dual display viewing arrangements and corresponding images on each monitor 
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As described in the previous section, gaze data for each reader and each case were collected from 

four mammographic views spread across two monitors. Raw gaze data was preprocessed using the 200 

EyeNAL analysis program from Applied Science Laboratory, which converts raw gaze data to a time-

ordered sequence of fixations f1, f2,…,. fn., along with other measures associated with fixation (such as 

fixation duration and inter-fixation degree). These fixations represent a grouping of at least three 

temporally sequenced raw gaze-position points within 0.5° of visual angle of each other, and a minimum 

threshold of 100ms total gaze time.  205 

The scanpath, derived by connecting time-ordered fixations or gaze points while viewing each 

case, resulted in a dense gaze scanpath. To measure the complexity of this graph we used the scalar 

quantity fractal dimension (𝑫). Fractal geometry is superior to Euclidian geometry for describing 

complex, rough, irregular and often branching objects, which occur naturally36. The non-integer, fractal 

dimension, which measures the fractality of an object is the fundamental metric used in fractal geometry. 210 

Fractal dimension (D) has been used in various areas of science, predominantly Biology, to characterize 

the complexity of shapes in animal and plant morphology37, 38. Fractal analysis has also been applied in 

studying complexity in search behavior patterns in marine predators39, honey bees40, and other animals41.  

The gaze scanpath can be treated as a fractal pattern. Its fractal dimension is a non-integer 𝑫 with 

the range: (𝑛 − 1 < 𝐷 ≤ 𝑛) where n=2 is the pattern dimensionality. Using the Minkowski–Bouligand 215 

box-counting method42, we estimated 𝑫 for each gaze scanpath graph derived from each case examined 

by each reader. Suppose 𝑵(𝜺) is the number of boxes of length ε required to cover the gaze scanpath 𝑮, 

we define 𝑫𝒃𝒐𝒙 for the two-dimensional graph as: 

𝐷𝑏𝑜𝑥(𝐺) ≔ lim
𝜀→0

log 𝑁(𝜀)

log(1
𝜀⁄ )

 (1) 

  

 

2.D. Image Representation and Visual Search 220 
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The first step in preprocessing was to combine data from the ASL eye-tracking apparatus, user 

device interactions including mouse interactions, and alternating between views into a single unified time 

and coordinate space. During user interaction, the coordinates of the eye-tracker was captured in physical 

units (e.g. inches), while user interactions were recorded in computer display coordinates (pixels). The 225 

resulting heterogeneous coordinates were first translated into a unified coordinate to perform eye tracking 

analyses on multiple displays. To achieve this, we translated both coordinates into image pixel 

coordinates. Since the display software stored time-synchronized information about user interactions, 

including zooming in and out, and switching view, we mapped data from eye tracking apparatus to the 

underlying image pixel coordinate. Through this process, eye gaze data captured during experiments, 230 

locations of user interactions such as mouse clicks and drags as image readers provided BI-RADS ratings, 

were translated into a unified image pixel coordinate space and time. 

During the reading session, readers typically jump from one of the five possible dual display 

viewing arrangements (see Table 3) to another resulting in a unique non-homogeneous two-dimensional 

image coordinate space of eye position data for each display view arrangement. To perform fractal 235 

analysis of gaze patterns, raw eye position data from each of the unique coordinate spaces was combined 

to create a single two-dimensional coordinate space, representing eye-position data for each individual 

case. Table 4 enumerates six possible configurations for data representation (i.e., configurations Ci, i=1, 

2,…,6) for aggregating gaze data into a single coordinate space based on the allowable hanging protocols. 

The default data representation is the one that corresponds on the default hanging protocol applied at the 240 

beginning of each case as illustrated in Figure 1a (i.e. configuration C6 from Table 4, 

RMLO|LMLO|RCC|LCC).  
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We converted raw eye position data for the duration of each case in two steps. First, we mapped 

gaze position onto a mammographic image-dependent pixel coordinate space to handle zoom, image 

translation, and other artifacts from eye tracking. Subsequently, each mammographic image, along with 245 

respective eye position data were mapped onto a unified pixel coordinate space through a simple 

translation and scaling (see EQ 2.). 

[
𝑥́
𝑦́
1

] = [
𝐴 cos 𝜃 −𝐴 sin 𝜃 𝑑𝑥𝑖

𝐴 sin 𝜃 𝐴 cos 𝜃 𝑑𝑦𝑖

0 0 1

] [
𝑥
𝑦
1

] (2) 

  

where 𝐴 represents a scaling factor, 𝜃 represents an angle of rotation (set to zero for our purposes), and 

𝑑𝑥𝑖 and 𝑑𝑦𝑖 represent translation parameters for the 𝑖𝑡ℎ  mammographic image.  

Initial analysis was performed on the data representation corresponding to the default image 250 

arrangement (see configuration C6 in Table 4). Further, we investigated the effects, if any, of using 

alternative configurations for data representation (see C1 – C5 in Table 4) on the computed fractal 

dimension and if any discovered effects alter our initial findings.  

 

2.E. Observer Performance Measurement 255 

 

In this study, we compare performance of radiologists of varied experience levels in the 

abnormality detection task with the various images.  First, we mapped the diagnostic decision for each 

 

 Left Monitor Right Monitor 

 Left Image Right Image Left Image Right Image 

C1 Right (RMLO) Right (RCC) Left (LMLO) Left (LCC) 

C2 Right (RMLO) Right (RCC) Left (LCC) Left (LMLO) 

C3 Right (RCC) Right (RMLO) Left (LMLO) Left (LCC) 

C4 Left (LMLO) Right (RMLO) Right (RCC) Left (LCC) 

C5 Right (RMLO) Left (LMLO) Left (LCC) Right (RCC) 

C6 Right (RMLO) Left (LMLO) Right (RCC) Left (LCC) 

 

Table 4. Possible configurations for a combined two-dimensional data representation. 
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case to a linear scale based on the BI-RADS rating provided. We designated cases without markings (i.e. 

no scores were given) as 0; BI-RADS ratings {2 and 3} 1 and 2 respectively; and BI-RADS ratings {4A, 260 

4B, 4C, and 5} as 3,4,5, and 6 respectively. Using this linear rating scale, the receiver operating 

characteristic curve (ROC) analysis was performed using a web-based analysis tool43 and report the area 

under the ROC curve (AUC) for each image reader. 

In addition, to determine mass detection accuracy, we compared the BI-RADs ratings provided by 

each reader with the ground truth. We grouped benign and malignant cases under a single class label: 265 

mass present (M), and normal cases under a second class label: mass absent / normal (N). We report the 

average diagnostic accuracy using this two-class grouping (mass-present vs. mass-absent) for each image 

reader.   
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 270 

 

Figure 2. Gaze data collected for a single reader synthesized in the 6 possible configurations for data 

representation. 
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3 RESULTS 

 

3.A. Radiologists’ Diagnostic Performance 

 

We grouped each of the 10 participating readers into one of three experience levels: new trainee 275 

resident (NR), advanced trainee resident (AR), and expert radiologist (E) as illustrated in Table 2. We 

mapped the diagnostic decision for each case to one of the three case pathologies (normal, benign, 

malignant) based on the BI-RADS rating provided. We designated cases without markings (i.e. no scores 

were given) as normal (N); we grouped BI-RADS ratings {2 and 3} as benign (B); and we grouped BI-

RADS ratings {4A, 4B, 4C, and 5} as malignant (M). We formed three breast parenchyma density 280 

groupings by combining heterogeneous and dense cases in the same density grouping (due to the small 

sample size of density 4).  

Each reader was asked to report the location of any suspicious mass and provide a corresponding 

BI-RADS rating as typically done in clinical practice. The diagnosis was deemed correct if the BI-RADS 

rating matched the ground-truth pathology of the case (as outlined in the previous paragraph), and the 285 

 NR1 NR2 NR3 AR1 AR2 AR3 AR4 E1 E2 E3 

True Positive 59 71 62 49 47 49 38 75 72 72 

True Negative 12 3 5 18 14 17 17 5 10 9 

False Positive 13 22 20 7 11 8 8 20 15 16 

False Negative 16 4 13 26 28 26 37 0 3 3 

Sensitivity 0.79 0.95 0.83 0.65 0.63 0.65 0.51 1.00 0.96 0.96 

Specificity 0.48 0.12 0.20 0.72 0.56 0.68 0.68 0.20 0.40 0.36 

Accuracy 0.71 0.74 0.67 0.67 0.61 0.66 0.55 0.80 0.82 0.81 

AUC ROC 0.77 0.77 0.74 0.76 0.71 0.68 0.71 0.87 0.84 0.88 

 

Table 5. Mass detection performance (mass-present vs. mass-absent) for new residents (NR), advanced resident 

(AR), and expert (E) radiologists. 
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location of the markings provided were within the DDSM provided mass annotation (where applicable). 

In cases where more than one lesion was present, the case was deemed correctly diagnosed if the correct 

location and rating was provided for at least one of the lesions. 

To determine mass detection accuracy, we compared the BI-RADs ratings provided by each reader 

with the ground truth. We grouped benign and malignant cases under a single class label: mass present 290 

(M), and normal cases under a second class label: mass absent / normal (N). We report the average 

diagnostic performance using this two-class grouping (mass-present vs. mass-absent) for each individual 

radiologist in Table 5. From Table 5, we deduce the average accuracy by experience level: 70.7%±3.5% 

(new residents), 62.25%±5.5% (advanced residents) and 81%±1.0% (experts). The accuracy of the expert 

radiologists was significantly higher than that of the advanced residents, t(5) = 5.7, p = 0.002, and the new 295 

residents, t(4) = 4.9, p = 0.008. No significant difference accuracy was observed between new residents 

and advanced residents, t(5) = 2.29, p = 0.07. Readers appeared to execute the clinical task by operating 

with very different decision criteria in terms of emphasizing sensitivity vs. specificity.  

To compare abnormality detection performance, we applied the linear rating scale described in 

Section 2.E., to compute the area under the ROC curve (AUC) for each image reader. A summary of the 300 

results is provided in Table 5. The average group level AUC followed the same trend as observed in the 

mass detection accuracy scores. The average AUC for experienced radiologist group (0.863±0.021), was 

higher, t(4) = 6.61, p = 0.003, than the new resident group (0.76±0.017), and higher, t(5) = 6.73, p = 

0.001, than the advanced resident group (0.715±0.033). No significant difference was observed between 

the two resident groups, t(5) = 2.11, p = 0.09. 305 
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3.B. Fractal Dimension of Radiologists’ Gaze Scanpath 

 310 

The fractal dimension of the readers’ gaze scanpath ranged between 1.08 and 1.51. In Figure 3, we 

present the average fractal dimension across all cases grouped by case specific properties: case pathology 

(normal, benign, and malignant)), breast density (fatty, fibroglandular, and heterogeneous/dense), and 

readers’ experience level (new Radiology resident, advanced Radiology resident, and expert radiologist).  

Effect of Case Pathology on Complexity of Visual Search. The average complexity of gaze for normal 315 

cases (1.350 ± 0.005) was significantly higher, t(498) = 3.37, p < 0.01, than the average complexity for 

 

Figure 3. Averaged complexity of visual search across case and reader properties: (a) case pathology (normal, 

benign, and malignant); (b) breast density (fatty, fibroglandular, and heterogeneous/dense); and (c) image reader 

experience level: new Radiology residents (NR); advanced Radiology residents (AR), and expert radiologists 

(E). 
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mass-present cases, which contain a benign mass (1.330 ± 0.005), and similarly higher, t(748) = 5.05, p < 

.01) than the average complexity for mass-present cases, which contain a malignant mass (1.331 ± 0.003). 

However, there was no significant difference, t(748) = 1.17, p = 0.98), in the average complexity of gaze 

between malignant and benign cases. 320 

Effect of Mammographic Density on Complexity of Visual Search. In Figure 3b, we observe that the 

complexity of gaze increases monotonically with mammographic density. The average complexity of 

gaze (1.315 ± 0.006) for low-density mammographic cases is significantly lower, t(718) = 5.67, p < 

0.001), compared with the average complexity (1.340 ± 0.003) for medium-density mammographic cases. 

The average complexity of gaze for low-density images was also significantly lower , t(528) = 7.37, p << 325 

0.001), compared with the average complexity (1.353 ± 0.004) for high-density (heterogeneous/dense) 

cases. The average complexity of gaze for medium-density mammographic cases was also significantly 

lower, t(528) = 5.67, p = 0.02, than the gaze complexity for high-density mammographic cases.  

Effect of Readers’ Experience Level on Complexity of Visual Search. Figure 3c illustrates the averaged 

complexity of gaze for image readers grouped by experience level. We observe that the average 330 

complexity of gaze for experienced radiologists (1.360 ± 0.004) is significantly higher, t(598) = 4.29, p < 

0.001, than the average complexity for new Radiology residents (1.330 ± 0.004), and significantly higher, 

t(698) = 7.54, p << 0.001, than the average complexity for advanced Radiology residents (1.320 ± 0.003). 

The average gaze complexity of advanced Radiology residents was significantly lower, t(528) = 7.37, p = 

0.01, than that of new Radiology residents. 335 
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3.C. Analysis of Variations in Visual Search Complexity  

 

The gaze scanpaths generated during mammographic screening varied in complexity with the 

characteristics of each case (pathology and density) and with individual radiologists (as observed in 340 

Figure 3). Therefore, we performed ANOVA on the fractal dimensions for each case to determine if there 

is a dependency with case pathology, breast density, or reader experience level. To analyze the interaction 

between gaze complexity, case pathology, case density, and reader experience level, we applied a four-

factor fixed-effects ANOVA with three levels for case pathology (normal, benign, and malignant), three 

levels for breast parenchyma density (fatty, fibroglandular, and heterogeneous/dense), and three 345 

experience levels (new trainee, advanced trainee, and expert), across 10 individual readers. In Table 6, we 

report ANOVA test results using fractal dimensions estimated for the six image configurations illustrated 

in Table 4. ANOVA showed that all four factors are independent predictors of a radiologists’ visual 

search complexity. The overall results were consistent across all six configurations for data 

Source 

Configuration 

C1 C2 C3 C4 C5 C6 

 p > F p > F p > F p > F p > F p > F 

Pathology << 0.001 << 0.001 << 0.001 << 0.001 << 0.001 << 0.001 

Density << 0.001 << 0.001 << 0.001 << 0.001 << 0.001 << 0.001 

Experience << 0.001 << 0.001 << 0.001 << 0.001 << 0.001 << 0.001 

Individual << 0.001 << 0.001 << 0.001 << 0.001 << 0.001 << 0.001 

Pathology – Density 0.92 0.93 0.91 0.86 0.92 0.88 

Pathology – Experience 0.31 0.32 0.21 0.24 0.29 0.32 

Pathology – Individual 0.16 0.1 0.14 0.11 0.07 0.11 

Density – Experience 0.62 0.83 0.72 0.78 0.8 0.85 

Density – Individual 0.06 0.11 0.11 0.06 0.1 0.03 

Pathology – Density – Experience 0.58 0.91 0.87 0.88 0.91 0.48 

Pathology – Density – Individual 0.53 0.85 0.77 0.8 0.85 0.32 

 

Table 6. Multi-factor ANOVA test results for possible configurations for data representation. 
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representation, with the exception of one higher order effect (Density – Individual on configuration C6), 350 

which was found to be significant (F(14,910) = 2.02, p = 0.03). 

Overall, ANOVA results show that the pathology and density of a mammographic case both have 

a significant effect, F(2, 910) = 18.77, p < 0.001 and F(2, 910) = 33.57, p << 0.001 respectively, on visual 

search complexity as calculated using fractal dimension. The ANOVA tests also show that individual 

factors (individual differences and level of experience) both have a significant effect, F(7, 910) = 47.82, p 355 

< 0.001, and F(2, 910) = 43.16, p << 0.001 respectively, on fractal dimension. These findings indicate 

that the trends observed in Figure 3 (and highlighted in section 3.B.) are significant. 

Since ANOVA results did not depend on the configuration used for data representation, we used a 

case-dependent data representation to compute visual search complexity for each case. This approach 

computed the visual search complexity from raw gaze data based on the predominant display arrangement 360 

used by the reader for each case. We applied five-factor fixed-effects ANOVA on the case-dependent 

visual search complexity by including readers’ diagnostic interpretation as the fifth factor along with 

pathology, density, experience, and individual differences (as described in section 3.B). The results of 

ANOVA tests were consistent with our previous findings. However, this analysis showed that the reader’s 

diagnostic decision is an independent predictor of visual search complexity F(2,923) = 6.62, p < 0.01.  365 

Pair 1 Pair 2 p–value 

Pathology – Normal Pathology – Benign 0.01 

Pathology – Normal Pathology – Malignant 0.001 

Pathology – Benign Pathology – Malignant 0.98 

Density – Fatty Density – Fibroglandular 0.005 

Density – Fatty  Density – Heterogeneous/Dense 0.003 

Density – Fibroglandular Density – Heterogeneous/Dense 0.004 

Experience – New Trainee Experience – Advanced Trainee 0.01 

Experience – New Trainee Experience – Expert << 0.001 

Experience – Advanced Trainee Experience – Expert << 0.001 

 

Table 7 Pairwise comparisons on groups of case pathology, breast density, and reader experience level 
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Post-ANOVA t-tests with Bonferroni p-value adjustment were also performed and reported in 

Table 7. The complexity of the readers’ visual search was significantly different between normal cases 

and mass-present cases. However, the malignancy status of a mass did not affect the complexity of the 

readers’ visual search. Further, visual search complexity was found to be significantly different between 

mammograms of fatty breasts and mammograms of fibroglandular and heterogeneous/dense breasts. 370 

However, there was no significant difference in visual search complexity between mammograms of 

fibroglandular breasts and heterogeneous/dense breasts. We also observed that visual search complexity 

was significantly different between all three experience groups:  new Radiology residents, advanced 

Radiology residents and expert radiologists.  

Finally, a paired-sample t-tests was conducted to compare the pairwise differences in complexity of 375 

gaze scanpaths among the 10 readers (Table 8). Several significant pairwise differences were found 

suggesting that there is substantial inter-reader variability, often among readers of similar experience 

level. 

 

  380 

 NR1 NR2 NR3 AR1 AR2 AR3 AR4 E1 E2 

NR2 < 1e-3         

NR3 0.99 < 1e-3        

AR1 < 1e-3 0.77 0.01       

AR2 0.57 < 1e-3 0.99 0.27      

AR3 < 1e-3 0.32 < 1e-3 0.001 < 1e-3     

AR4 0.89 < 1e-3 1.0 0.077 1.0 < 1e-3    

E1 0.005 0.3 0.12 1.0 0.75 < 1e-3 0.39   

E2 0.9 < 1e-3 0.34 < 1e-3 0.02 < 1e-3 0.097 < 1e-3  

E3 0.002 < 1e-3 < 1e-3 < 1e-3 < 1e-3 < 1e-3 < 1e-3 < 1e-3 0.22 
 

Table 8. Pairwise comparisons of individual readers (new resident (NR), advanced resident (AR), and expert (E)). 
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4 DISCUSSION 

 

This study investigated the efficacy of visual gaze complexity for characterizing the search behavior 

of radiologists when viewing mammograms for breast cancer screening. For this study fractal dimension 

was used as the metric for quantifying the complexity of the visual search patterns. Using a relatively 385 

large number of cases, comprised of varied pathology and breast parenchyma density, and image readers 

with varied levels of experience and expertise, the findings presented in this study suggest the following 

trends: 

(1) The characteristics of a mammographic case (pathology and breast parenchyma density) are 

independent factors in predicting complexity of visual search behavior. 390 

(2) The characteristics of the image reader (individual differences and level of experience) are 

independent factors in predicting complexity of visual search behavior. 

(3) The pathology and breast parenchyma density of a mammographic case, experience level of the 

image reader, and the resulting diagnostic decision are combined predictors of visual search 

complexity during mammographic screening. 395 

(4) Visual search complexity is significantly different between normal and mass-present cases. 

(5) The visual search complexity increases monotonically with increasing breast parenchyma density. 

Effectively, low-density mammographic images correspond to lower visual search complexity, 

while medium-density images correspond to a higher visual search complexity, and high-density 

images correspond to the highest visual search complexity. This finding is consistent with results 400 

obtained by Al Mousa et al.44, who reported significant increases in visual search parameters 

when comparing low- and high-density mammograms.  

(6) On average, the visual search complexity of Radiology residents (both the new and the advance 

trainee groups) are significantly lower than the average complexity of experienced radiologists.  

(7) There are notable differences in visual search complexity between individual radiologists. 405 
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This study is novel in its replication of the dual monitor viewing and decision tasks that are 

characteristic of screening mammography in practice. It presents a single quantity, fractal dimension, 

capturing the complexity of visual search behavior during the mammographic screening process. This 

metric can be further investigated as a feature to develop more accurate models for predicting 410 

individualized radiologist error risks for a specific case in review. These findings also present future 

research opportunities in personalized decision support and training support technology in Radiology. 

Despite the replication of dual monitor viewing and decision tasks, which are characteristic of 

screening mammography in practice, there are notable limitations with this study. While fractal 

dimension successfully characterizes spatial complexity of visual search, it does not incorporate any 415 

temporal information which, intuitively, contain information relevant to readers’ visual search behavior 

and diagnostic performance as noted in44-46. We are currently working on developing novel strategies to 

capture such information. In addition, our study focused specifically on the detection of mammographic 

masses. It is important to investigate the same issue for other mammographic lesions as well. Lastly, our 

study utilized a popular but fairly old dataset of digitized mammograms.  420 

By leveraging a publicly available dataset that has been extensively used by the research community, 

other researchers will be able to reproduce our experimental design and perform comparative studies with 

of new visual search analysis algorithms based on the same list of DDSM cases we used. Still, a separate 

study is needed to confirm how our findings would translate in digital mammography. A prior study 

suggested significant differences in visual scan behavior between screen-film and digital mammograms11. 425 

However, that earlier study was based on two-view mammograms (single breast viewing) without any 

ability for zooming. Furthermore, the differences observed in that study involved traditional metrics such 

as time to first hit and total dwell time. Our study implemented a clinically realistic viewing scenario and 

a more spatially comprehensive metric of visual search. Furthermore, by providing the full list of the 

publicly available cases we used we enable other researchers to perform comparative studies.  430 
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APPENDIX A 

 

 

565 

 

Figure 4. Illustration showing scanpaths with low (left) and high (right) fractal dimension for new Radiology 

residents (NR), advanced Radiology residents (AR), and expert radiologists (ER). 
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APPENDIX B 

 

 

 

Figure 5. Illustration showing scanpaths with low (left) and high (right) fractal dimension for new Radiology 

residents (NR), advanced Radiology residents (AR), and expert radiologists (ER). 
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APPENDIX C 

  570 

The following table gives the time spent on each view, breast, and case averaged over all cases for each 

image reader. In addition, the table shows the average time each reader spent per case on the default 

configuration (i.e. the default 4-view configuration C6 from Table 4, RMLO|LMLO|RCC|LCC). 

 Average viewing time (s) 

Reader 
Cranial - 

Caudal 

Mediolateral – 

Oblique 
Right Breast Left Breast Default Case 

NR1 4.87 ± 2.3 6.02 ± 2.4 4.02 ± 2.7 3.64 ± 2.0 3.58 ± 3.0 22.08 ± 9.3 

NR2 0.00 ± 0.0 0.00 ± 0.0 18.07 ± 0 9.08 ± 0.0 24.57 ± 14.2 24.84 ± 15.0 

NR3 7.51 ± 6.3 7.36 ± 4.0 11.20 ± 9.6 10.14 ± 9.0 16.63 ± 6.8 34.89 ± 14.9 

AR1 0.00 ± 0.0 0.00 ± 0.0 21.57 ± 16.3 20.38 ± 15.9 20.95 ± 11.4 38.19 ± 27.2 

AR2 3.96 ± 4.2 3.31 ± 2.4 3.80 ± 2.8 3.73 ± 1.9 12.22 ± 6.5 22.38 ± 10.3 

AR3 3.53 ± 1.7 3.50 ± 2.2 3.36 ± 1.9 3.63 ± 2.1 6.88 ± 3.8 17.67 ± 7.8 

AR4 24.66 ± 8.0 21.03 ± 8.8 21.06 ± 10.1 10.32 ± 3.5 2.73 ± 5.2 49.65 ± 14.7 

E1 3.99 ± 2.2 4.21 ± 2.7 4.40 ± 2.8 4.36 ± 2.9 5.41 ± 3.6 17.46 ± 11.4 

E2 5.16 ± 3.6 4.49 ± 2.8 3.73 ± 2.2 4.37 ± 3.0 14.49 ± 8.2 29.42 ± 13.4 

E3 7.47 ± 6.6 7.99 ± 6.4 7.10 ± 7.5 6.12 ± 6.5 13.08 ± 9.7 41.10 ± 26.5 

 



 
 

Page 32 of 34 
 
 

APPENDIX D 

The following table gives the reference number of DDSM cases of malignant pathology used in our study.  

Malignant      

volume case number breast density abnormalities mass shape mass margin 

cancer 01 case0001 fibroglandular 1 IRR SPIC 

cancer 01 case0003 fibroglandular 1 IRR SPIC 

cancer 01 case0004 heterogeneous 1 IRR SPIC 

cancer 01 case0006 fibroglandular 2 IRR, ARCH SPIC, N/A 

cancer 01 case0014 fatty 1 IRR ML 

cancer 01 case0016 fatty 1 IRR SPIC 

cancer 01 case0017 dense 1 LOB IDEF 

cancer 01 case3010 fatty 2 IRR, IRR IDEF, IDEF 

cancer 01 case3012 heterogeneous 1 IRR SPIC 

cancer 01 case3018 fatty 1 LOB IDEF 

cancer 01 case3022 fatty 1 IRR SPIC 

cancer 01 case3033 heterogeneous 1 IRR IDEF 

cancer 01 case3057 heterogeneous 1 IRR SPIC, MLOB 

cancer 01 case3073 heterogeneous 1 IRR IDEF 

cancer 02 case0018 fibroglandular 1 LOB MLOB 

cancer 02 case0027 fatty 1 LOB MLOB 

cancer 02 case0032 heterogeneous 1 ARCH IDEF 

cancer 02 case0034 fibroglandular 1 IRR SPIC 

cancer 02 case0035 fibroglandular 1 OV MLOB 

cancer 02 case0038 fibroglandular 2 OV, FLB CIRC, CLST 

cancer 02 case0040 fatty 1 LOB SPIC 

cancer 02 case0041 fibroglandular 1 IRR SPIC 

cancer 02 case0042 fatty 1 IRR SPIC 

cancer 02 case0043 fibroglandular 1 IRR MLOB 

cancer 02 case0059 fibroglandular 1 IRR SPIC 

cancer 02 case0070 heterogeneous 1 ARCH IDEF 

cancer 02 case0073 fatty 1 ARCH SPIC 

cancer 02 case0082 fatty 1 LOB CIRC 

cancer 02 case0089 fibroglandular 1 IRR SPIC 

cancer 01 case3023 heterogeneous 1 ARCH SPIC 

cancer 05 case0031 fatty 1 IRR MLOB 

cancer 05 case0085 fatty 1 IRR SPIC 

cancer 05 case0128 fibroglandular 1 OV MLOB 

cancer 05 case0140 fatty 1 OV MLOB 

cancer 05 case0142 dense 1 IRR SPIC 

cancer 05 case0143 fatty 1 RND SPIC 

cancer 05 case0146 fibroglandular 3 OV, OV, OV CIRC, CIRC, CIRC 

cancer 05 case0148 heterogeneous 1 LOB, IDEF 

cancer 05 case0149 fibroglandular 1 OV OB 

cancer 05 case0155 fatty 1 LOB SPIC 

cancer 05 case0156 fatty 1 IRR SPIC 

cancer 05 case0157 fatty 3 OV, OV, OV MLOB, MLOB, MLOB 

cancer 05 case0158 fibroglandular 1 IRR SPIC 

cancer 05 case0160 fatty 1 LOB MLOB 

cancer 05 case0161 fibroglandular 1 LOB MLOB 

cancer 05 case0164 fatty 1 OV CIRC 

cancer 05 case0165 fibroglandular 1 RND SPIC 

cancer 05 case0168 fibroglandular 1 OV OB 

cancer 05 case0170 fibroglandular 1 OV SPIC 

cancer 05 case0175 heterogeneous 1 RND SPIC 

IRR: Irregular,SPIC: spiculated, ARCH: architectural distortion, MLOB: microlobulated, LOB: Lobulated, IDEF: ill-defined, OV: oval, 
OVU: ovulated, FLB: fine linear branching, CIRC: circumscribed, CLST: clustered, RND: round, OB: obscured, AMPH: amorphous. 
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APPENDIX E 575 

The following table gives the reference number of the DDSM cases of benign pathology used in our 

study.  

 

 

  580 

Benign      

volume case number breast density 
total 

abnormalities 
mass shape mass margin 

benign 01 case0217 fibroglandular 1 RND CIRC 

benign 01 case0240 fibroglandular 1 OV CIRC 

benign 01 case0243 heterogeneous 1 OV MLOB 

benign 01 case0245 fibroglandular 1 OV CIRC 

benign 01 case0248 fibroglandular 3 RND, RND, LOB CIRC, CIRC, MLOB 

benign 01 case0249 fatty 2 LOB, LOB CIRC, CIRC 

benign 01 case3093 heterogeneous 1 ARCH SPIC 

benign 01 case3098 heterogeneous 1 IRR IDEF 

benign 01 case3099 fibroglandular 1 IRR IDEF 

benign 01 case3100 fibroglandular 1 RND MLOB 

benign 01 case3113 heterogeneous 1 RND CIRC 

benign 01 case3118 heterogeneous 1 RND CIRC 

benign 01 case3128 heterogeneous 1 IRR SPIC 

benign 01 case3132 heterogeneous 1 OVU CIRC 

benign 01 case3140 fibroglandular 1 RND CIRC 

benign 04 case0251 fibroglandular 1 IRR IDEF 

benign 04 case0252 fibroglandular 1 OV CIRC 

benign 04 case0253 fatty 1 OV CIRC 

benign 04 case0273 fibroglandular 1 RND CIRC 

benign 04 case0274 fibroglandular 1 OV CIRC 

benign 04 case0282 heterogeneous 1 OV CIRC 

benign 04 case0283 fibroglandular 1 ARCH SPIC 

benign 04 case0303 fatty 1 LOB CIRC 

benign 04 case0304 fibroglandular 3 LOB, AMPH, OV CIRC, CLST, OB 

benign 04 case0306 heterogeneous 2 LOB, LOB OB, CIRC 

 

IRR: Irregular,SPIC: spiculated, ARCH: architectural distortion, MLOB: microlobulated, LOB: Lobulated, IDEF: ill-
defined, OV: oval, OVU: ovulated, FLB: fine linear branching, CIRC: circumscribed, CLST: clustered, RND: round, 

OB: obscured, AMPH: amorphous. 
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APPENDIX F 

The following table gives the reference number of the DDSM cases of normal pathology used in our 

study.  

Normal   

volume case number breast density 

normal 09 case3601 fibroglandular 

normal 09 case3602 fibroglandular 

normal 09 case3603 fatty 

normal 09 case3604 fibroglandular 

normal 09 case3606 dense 

normal 09 case3607 fibroglandular 

normal 09 case3608 fibroglandular 

normal 09 case3609 fibroglandular 

normal 09 case3611 heterogeneous 

normal 09 case3612 heterogeneous 

normal 09 case3613 heterogeneous 

normal 09 case3615 fibroglandular 

normal 09 case3618 fatty 

normal 09 case3619 heterogeneous 

normal 09 case3621 fibroglandular 

normal 10 case3660 fibroglandular 

normal 10 case3661 fibroglandular 

normal 10 case3662 dense 

normal 10 case3663 fibroglandular 

normal 10 case3664 fibroglandular 

normal 10 case3665 heterogeneous 

normal 10 case3666 fibroglandular 

normal 10 case3667 fibroglandular 

normal 10 case3668 fatty 

normal 10 case3670 fibroglandular 
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