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ABSTRACT

Purpose: The objective of this study is to assess the complexity of human visual search activity during
mammaographic screening using fractal analysis and to investigate its relationship with case and reader

characteristics.

Methods: The study was performed for the task of mammaographic screening with simultaneous viewing
of four coordinated breast views as typically done in clinical practice. Eye-tracking data and diagnostic
decisions collected for 100 mammographic cases (25 normal, 25 benign, 50 malignant) and 10 readers
(three board certified radiologists and seven radiology residents), formed the corpus data for this study.
The fractal dimension of the readers’ visual scanning patterns was computed with the Minkowski—
Bouligand box-counting method and used as a measure of gaze complexity. Individual factor and group-
based interaction ANOVA analysis was performed to study the association between fractal dimension,
case pathology, breast density, and reader experience level. The consistency of the observed trends

depending on gaze data representation was also examined.

Results: Case pathology, breast density, reader experience level, and individual reader differences are all

independent predictors of the visual scanning pattern complexity when screening for breast cancer. No

higher order effects were found to be significant.

Conclusions: Fractal characterization of visual search behavior during mammographic screening is

dependent on case properties and image reader characteristics.

Page 2 of 34



55

60

65

70

75

1 INTRODUCTION

Breast cancer is the most frequently diagnosed form of cancer and the second leading cause of
cancer-related deaths among women worldwide®. The mortality rate for this disease is largely dependent
on early diagnosis through mammographic screening. With early detection, while the disease is localized,
patients have a 98.5% relative survival rate versus 25% when the cancer is metastasized, a point at which
the disease becomes incurable?,

Previous studies showed the diagnostic interpretation of mammograms is susceptible to different
types of human error resulting in missed diagnosis®’. The topic of medical diagnostic error has received a
lot of attention in recent years®°, To this end, the medical research community has focused on the
perceptual and cognitive processes related to decision making to better understand the causes of error. In
radiology, misdiagnosis can be attributed to visual search and interpretation errors 12,

For over half a century, a large number of studies have focused on the radiologists’ visual scan
pattern during medical image reading. Findings from these studies indicate prevalence of errors in two
general categories: (1) how radiologists find what they are looking for (visual search); and (2) how
radiologists interpret what they are looking at (image interpretation)!*1°. A large body of eye-tracking
research has also focused on gaining a better understanding of the relationship between visual search and
diagnostic decision. These studies focus on analyzing radiologists’ eye movements recorded during the
diagnostic process?®-2,

In an early eye-tracking study of scanning strategies in mammography**, Krupinski compared the
eye-position data of six radiologists with variable experience levels (three experienced mammaographers
and three Radiology residents) to examine the influence of experience on scanning strategies. Krupinski
found statistically significant differences between experienced and inexperienced image readers when
comparing dwell time?*, This study reported that less experienced image readers spend more time

performing image search, creating a larger spatial coverage of the image (based on eye-position data)
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when compared with more experienced image readers'*. Kundel et al. investigated the concept of a
global perceptual process during mammographic image reading®®. They reported evidence of a global
perceptual process in saccadic movements during the initial viewing of an image, and its importance in
the identification of breast abnormalities?. They also found that more experienced radiologists develop a
global perceptual process as a search strategy than their less experienced counterparts?.

A more recent research study conducted by Voisin et al. showed the efficacy of eye-tracking in
predicting diagnostic performance®. Voisin et al. conducted laboratory studies and applied machine
learning techniques to predict error during the diagnostic characterization of mammographic lesions by
combining features from radiologists’ gaze behavior with textural image characteristics®. In a related
study on breast cancer detection, Tourassi et al. investigated the relationship between radiologists’ gaze,
diagnostic decision, and image content of mammograms during mammographic screening®. Their results
suggest that machine learning can be utilized to combine image content with the image reader’s gaze
characteristics to develop user-dependent models for predicting medical error in breast cancer lesion
detection and characterization®.

In an earlier study of eye-movements, Engbert and Kliegl*! investigated the function of
microsaccades during visual fixation on stationary targets. Using a standard deviation analysis, the
authors showed that microsaccades are triggered dynamically. This triggering mechanism allows for
prediction of individual microsaccade rate using fractal dimension of trajectories. A more recent study by
Stephen and Anastas®? examined fractal fluctuations in speed during visual search. They analyzed the
fractality of angular changes in gaze and reported finding fractal fluctuations during visual search. They
also reported correlations between cognitive performance (measured as reaction time during visual
search) and fractality of gaze.

Although a number of investigators have examined radiologists’ visual scanning patterns for
screening mammograms, the discovered patterns are typically summarized with respect to features such

as total time examining a case, time to initially hit true lesions, total dwell time, number of hits, etc. While
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informative, these features fail to capture the gaze path trajectory and therefore they cannot fully capture

the complexity of the visual search process. In addition, earlier studies were based on single view

Table 1. Specifications of the 100 mammographic cases used in the study.

. . Total No. of
Ground Truth |Patient Age Breast Density |Mass Subtlety Abnormalities |Cases
Range: 36 — 68 |Range:1-4

Normal (562+10.6) |Median:2)  |VA N/A 25
Benian Range: 34 - 82 |Range:1-3 Range: 3—-5 Range: 1-3 25

g (56.9 = 13.4) (Median: 2) (Median: 5) (Median: 1)

. Range: 37 —83 |Range:1-4 Range: 1 -5 Range: 1-3
Malignant g4 3% 124y |(Median:2)  |(Median:5)  |(Median:1)  |°°

mammaograms, which is not consistent with clinical practice. Mammographic screening entails
simultaneous viewing of 4 coordinated breast views. The purpose of our study is to address the limitations
of the earlier investigations and attempt to characterize the complexity of the radiologists’ visual search
activity when viewing 4-view mammographic cases as a function of three factors: (i) breast parenchyma
density, (ii) case pathology, and (iii) radiologists’ experience level. Our study however, focused on mass
detection, which is known to be associated with higher detection error than microcalcifications® 4 & 3,

In a previous study®, we presented results on the efficacy of fractal analysis as a measure of visual
search complexity based on a default viewing configuration for each reader on all mammographic cases
as a proof of concept. Our work here represents a more rigorous analysis of this approach. We examined
the fractal signature of visual search patterns for all valid display configurations to eliminate the
possibility of reporting trends resulting from systematic bias. In addition, this work presents deeper
analysis to evaluate the reader-specific robustness of the observed trends based on each image reader’s
dominate viewing configuration on a per case basis.

The contributions of this paper include: (i) fractal analysis of scanpath to assess of complexity of

visual search, and (ii) generation and comparison of differences between visual search complexity profile
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of individual readers. To the best of our knowledge, there are no previous studies, which report the
application of fractal dimension as a metric for assessing complexity of scanpath during visual search in

mammaography as highlighted in this paper.

2 MATERIALS AND METHODS

2.A. Image Database

To perform this study, 100 screen-film mammograms were selected from a corpus of
mammographic cases digitized with a high resolution LUMISY'S scanner (50um per pixel, 12 bit) from
the University of South Florida’s Digital Database for Screening Mammography (DDSM)*. Each DDSM
case contains 4 images, the craniocaudal (CC) and mediolateral oblique (MLO) views of both the left and
the right breasts, associated ground truth established via biopsy, additional imaging, or 2-year follow-up,
radiologist’s assessment using the BI-RADS™ lexicon®, and patient age.

The selected set included clinically actionable cases covering a broad range of mass margin and
shape characteristics. The cases were selected at random. The mass cases were selected with restriction
criteria based on mass annotation size. Specifically, we selected DDSM mass cases for which the
bounding box of the provided mass annotations was less than 512 x 512 pixels. This effectively translates
into masses less than 15mm in radius. Please note that the DDSM mass annotations tend to be generous
without tracing the actual mass outline. Therefore, the 512 x 512 pixel size is an extreme upper limit of
the masses included in our experiments. Fifty cases included biopsy-proven malignant masses, 25 cases

included biopsy-proven benign masses, and the remaining 25 cases were normal as determined during a
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Table 2. Summary of characteristics of study participants

Reader Type Experience Level No. of Participants
Radiologist > 9 yrs of practice 3
\Advanced Resident [> 2 mammo rotations 4
New Resident 1 — 2 mammo rotations |3

2-year cancer-free follow-up patient evaluation. Mammograms with masses deemed as “benign-without-
callback” were excluded. The overwhelming majority of the mass cases (72 out of 75) did not include any
microcalcifications. Mass conspicuity was assessed according to the subtlety rating provided in the
DDSM truth files. These ratings ranged from 1 (suggesting a subtle lesion) to 5 (suggesting an obvious
lesion). A complete list of the DDSM cases used in this study is provided in the Appendix. Table 1
provides details on the selected cases, including information on the patient’s age and breast parenchymal
density. The parenchymal density is also provided in the DDSM truth files and it ranged between 1 (fatty)

to 4 (dense), according to the BI-RADS™ lexicon®®.

2.B. Data Collection Protocol

Ten readers of variable experience levels from an academic institution were recruited to conduct
blind review of the selected mammograms. Each reader was asked to report the location of any suspicious
mass and provide a corresponding BI-RADS rating as typically done in clinical practice. Of the ten
readers, three were experienced MQSA-certified radiologists each with at least nine years of dedicated
mammaographic experience, four radiology residents with at least three mammography rotations, and three
radiology residents with 1 or 2 mammography rotations (see Table 2). Institutional review board
approval was obtained prior to the study. Human subject recruitment and data collection was done
according to a protocol approved by the Oak Ridge Site-Wide Internal Review Board. All participants

signed an informed consent form.
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@ (b)
Figure. 1. Reader outfitted with eye-tracking apparatus reviewing 4-view mammographic case. (a) Dual Display
showing default arrangement. (b) Dual display showing LMLO and LCC views on left and right displays
respectively.

A customized graphical user interface (GUI) was developed in-house for study participants to view
each mammographic case and record their findings. Two medical grade monitors were used (dual-head
5MP mammo-grade Totoku LCD monitors calibrated to the DICOM display standard). The four
mammographic views (LCC, RCC, LMLO, RMLO) were initially displayed at low resolution (two views
per monitor) to fit the screen. To assess breast symmetry, the users could select the MLO views to be
displayed on the left monitor and the CC views to be displayed on the right monitor (Fig. 1a). The readers
were also able to select and view a single breast at full spatial resolution with the MLO view displayed on
the left monitor and the CC view displayed on the right monitor (e.g., Fig. 1b). Table 3 enumerates all
possible “hanging protocols” implemented in the GUI. Please note that based on the allowable protocols
RMLO could never appear on the right monitor while LCC could never appear on the left monitor. In
addition, the GUI provided the functionality of zooming in/out, panning, and magnifying glass for
detailed reading of each mammographic view. During the reading sessions, each reader was outfitted with
an H6 head-mounted eye-tracker, with a 60 Hz sampling rate, and eye-head integration from Applied
Science Laboratories (ASL, Bedford, Massachusetts, USA). The eye-tracker recorded each reader’s eye
position data to within 0.5° of accuracy.

Readers were instructed to take as much time as needed to view each case until they were satisfied

with the viewing phase. Readers were also informed about the presence of both normal and abnormal
Page 8 of 34
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Table 3. Enumeration of dual display viewing arrangements and corresponding images on each monitor

Dual Display Viewing Arrangements Left Monitor Right Monitor
1: Same mammographic view (CC) RCC LCC

2: Same mammographic view (MLO) RMLO LMLO

3: Same breast viewing (Right) RMLO RCC

4: Same breast viewing (Left) LMLO LCC

5: Four-view (default) RMLO & LMLO RCC & LCC

cases but no information was provided to them regarding the expected prevalence. Once the reader was
prepared to give a diagnostic assessment of the case, the eye-tracking recording process was halted
pending complete reporting of case specific findings, and the reader was ready to proceed with viewing
the next case. The reader’s reporting task was to mark and rate any suspicious findings. Each mark was
classified and rated for likelihood of malignancy on a BI-RADS-based scale, which consists of five levels
(2, 3, 4A, 4B, 4C, and 5) of increasing probability of malignancy. Cases with no markings were assigned
a BI-RADS rating of 1. After completion of case reporting, the reader was instructed to proceed with the
next case. Prior to the every reading session, each reader was carefully calibrated using the 9-point
calibration protocol provided by ASL and trained on five training cases selected from the DDSM
database. The set of training cases were different from the 100 test cases used in the study.

The cases were presented in a randomized order. A different randomization scheme was used for
each reader. Readers were also permitted to complete the study in multiple sessions based on preference
and scheduling conflicts. For example, of the ten readers, two completed case readings for the study in
one day (over two sessions), four completed case readings for the study in two days (over at most three

sessions), and one reader completed case readings in three days (over 4 sessions).

2.C. Data Processing
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As described in the previous section, gaze data for each reader and each case were collected from
four mammographic views spread across two monitors. Raw gaze data was preprocessed using the
EyeNAL analysis program from Applied Science Laboratory, which converts raw gaze data to a time-
ordered sequence of fixations fi, f2,...,. fn., along with other measures associated with fixation (such as
fixation duration and inter-fixation degree). These fixations represent a grouping of at least three
temporally sequenced raw gaze-position points within 0.5° of visual angle of each other, and a minimum
threshold of 100ms total gaze time.

The scanpath, derived by connecting time-ordered fixations or gaze points while viewing each
case, resulted in a dense gaze scanpath. To measure the complexity of this graph we used the scalar
quantity fractal dimension (D). Fractal geometry is superior to Euclidian geometry for describing
complex, rough, irregular and often branching objects, which occur naturally®. The non-integer, fractal
dimension, which measures the fractality of an object is the fundamental metric used in fractal geometry.
Fractal dimension (D) has been used in various areas of science, predominantly Biology, to characterize
the complexity of shapes in animal and plant morphology®” ®, Fractal analysis has also been applied in
studying complexity in search behavior patterns in marine predators®, honey bees*, and other animals*.

The gaze scanpath can be treated as a fractal pattern. Its fractal dimension is a hon-integer D with
the range: (n — 1 < D < n) where n=2 is the pattern dimensionality. Using the Minkowski—Bouligand
box-counting method*?, we estimated D for each gaze scanpath graph derived from each case examined
by each reader. Suppose N (&) is the number of boxes of length € required to cover the gaze scanpath G,

we define Dy, for the two-dimensional graph as:

1. logN(e)
Dbox (G) T 181_13(1) log(l/g) (1)

2.D. Image Representation and Visual Search
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The first step in preprocessing was to combine data from the ASL eye-tracking apparatus, user
device interactions including mouse interactions, and alternating between views into a single unified time
and coordinate space. During user interaction, the coordinates of the eye-tracker was captured in physical
units (e.g. inches), while user interactions were recorded in computer display coordinates (pixels). The
resulting heterogeneous coordinates were first translated into a unified coordinate to perform eye tracking
analyses on multiple displays. To achieve this, we translated both coordinates into image pixel
coordinates. Since the display software stored time-synchronized information about user interactions,
including zooming in and out, and switching view, we mapped data from eye tracking apparatus to the
underlying image pixel coordinate. Through this process, eye gaze data captured during experiments,
locations of user interactions such as mouse clicks and drags as image readers provided BI-RADS ratings,
were translated into a unified image pixel coordinate space and time.

During the reading session, readers typically jump from one of the five possible dual display
viewing arrangements (see Table 3) to another resulting in a unique non-homogeneous two-dimensional
image coordinate space of eye position data for each display view arrangement. To perform fractal
analysis of gaze patterns, raw eye position data from each of the unigue coordinate spaces was combined
to create a single two-dimensional coordinate space, representing eye-position data for each individual
case. Table 4 enumerates six possible configurations for data representation (i.e., configurations C;, i=1,
2,...,6) for aggregating gaze data into a single coordinate space based on the allowable hanging protocols.
The default data representation is the one that corresponds on the default hanging protocol applied at the
beginning of each case as illustrated in Figure 1a (i.e. configuration C¢ from Table 4,

RMLO|LMLOJRCCILCC).
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Table 4. Possible configurations for a combined two-dimensional data representation.

Left Monitor Right Monitor
Left Image Right Image Left Image Right Image
C: | Right (RMLO) | Right (RCC) Left (LMLO) | Left (LCC)
C, | Right (RMLO) | Right (RCC) Left (LCC) Left (LMLO)
Cs | Right (RCC) Right (RMLO) | Left (LMLO) | Left (LCC)
Cs | Left (LMLO) | Right (RMLO) | Right (RCC) | Left (LCC)
Cs | Right (RMLO) | Left (LMLO) | Left(LCC) Right (RCC)
Cs | Right (RMLO) | Left (LMLO) | Right (RCC) | Left (LCC)

We converted raw eye position data for the duration of each case in two steps. First, we mapped
gaze position onto a mammographic image-dependent pixel coordinate space to handle zoom, image
translation, and other artifacts from eye tracking. Subsequently, each mammographic image, along with
respective eye position data were mapped onto a unified pixel coordinate space through a simple

translation and scaling (see EQ 2.).

x
y|=
1

where A represents a scaling factor, 6 represents an angle of rotation (set to zero for our purposes), and

Asinf AcosH
0

Acosf@ —Asin@ dxl
]H o

dy; and d,,; represent translation parameters for the it" mammographic image.

Initial analysis was performed on the data representation corresponding to the default image
arrangement (see configuration Cs in Table 4). Further, we investigated the effects, if any, of using
alternative configurations for data representation (see C; — Cs in Table 4) on the computed fractal

dimension and if any discovered effects alter our initial findings.

2.E. Observer Performance Measurement

In this study, we compare performance of radiologists of varied experience levels in the

abnormality detection task with the various images. First, we mapped the diagnostic decision for each
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case to a linear scale based on the BI-RADS rating provided. We designated cases without markings (i.e.
no scores were given) as 0; BI-RADS ratings {2 and 3} 1 and 2 respectively; and BI-RADS ratings {4A,
4B, 4C, and 5} as 3,4,5, and 6 respectively. Using this linear rating scale, the receiver operating
characteristic curve (ROC) analysis was performed using a web-based analysis tool*® and report the area
under the ROC curve (AUC) for each image reader.

In addition, to determine mass detection accuracy, we compared the BI-RADs ratings provided by
each reader with the ground truth. We grouped benign and malignant cases under a single class label:
mass present (M), and normal cases under a second class label: mass absent / normal (N). We report the

average diagnostic accuracy using this two-class grouping (mass-present vs. mass-absent) for each image

reader.
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Figure 2. Gaze data collected for a single reader synthesized in the 6 possible configurations for data

representation.
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Table 5. Mass detection performance (mass-present vs. mass-absent) for new residents (NR), advanced resident
(AR), and expert (E) radiologists.

NR1 | NR2 | NR3 | AR1 | AR2 | AR3 | AR4 | El1 E2 E3

True Positive | 59 71 62 49 a7 49 38 75 72 72

True Negative | 12 3 5 18 14 17 17 5 10 9

False Positive 13 22 20 7 11 8 8 20 15 16

False Negative 16 4 13 26 28 26 37 0 3 3
Sensitivity 079 09 083 065 063 065 051 1.00 096 0.96
Specificity 048 012 020 0.72 056 068 0.68 020 040 0.36
Accuracy 071 074 067 067 061 066 055 080 082 081
AUCROC 077 077 074 076 071 068 071 087 084 0.88

3 RESULTS

3.A. Radiologists’ Diagnostic Performance

We grouped each of the 10 participating readers into one of three experience levels: new trainee
resident (NR), advanced trainee resident (AR), and expert radiologist (E) as illustrated in Table 2. We
mapped the diagnostic decision for each case to one of the three case pathologies (normal, benign,
malignant) based on the BI-RADS rating provided. We designated cases without markings (i.e. no scores
were given) as normal (N); we grouped BI-RADS ratings {2 and 3} as benign (B); and we grouped BI-
RADS ratings {4A, 4B, 4C, and 5} as malignant (M). We formed three breast parenchyma density
groupings by combining heterogeneous and dense cases in the same density grouping (due to the small
sample size of density 4).

Each reader was asked to report the location of any suspicious mass and provide a corresponding
BI-RADS rating as typically done in clinical practice. The diagnosis was deemed correct if the BI-RADS

rating matched the ground-truth pathology of the case (as outlined in the previous paragraph), and the
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location of the markings provided were within the DDSM provided mass annotation (where applicable).
In cases where more than one lesion was present, the case was deemed correctly diagnosed if the correct
location and rating was provided for at least one of the lesions.

To determine mass detection accuracy, we compared the BI-RADs ratings provided by each reader
with the ground truth. We grouped benign and malignant cases under a single class label: mass present
(M), and normal cases under a second class label: mass absent / normal (N). We report the average
diagnostic performance using this two-class grouping (mass-present vs. mass-absent) for each individual
radiologist in Table 5. From Table 5, we deduce the average accuracy by experience level: 70.7%+3.5%
(new residents), 62.25%+5.5% (advanced residents) and 81%z1.0% (experts). The accuracy of the expert
radiologists was significantly higher than that of the advanced residents, t(5) = 5.7, p = 0.002, and the new
residents, t(4) = 4.9, p = 0.008. No significant difference accuracy was observed between new residents
and advanced residents, t(5) = 2.29, p = 0.07. Readers appeared to execute the clinical task by operating
with very different decision criteria in terms of emphasizing sensitivity vs. specificity.

To compare abnormality detection performance, we applied the linear rating scale described in
Section 2.E., to compute the area under the ROC curve (AUC) for each image reader. A summary of the
results is provided in Table 5. The average group level AUC followed the same trend as observed in the
mass detection accuracy scores. The average AUC for experienced radiologist group (0.863+0.021), was
higher, t(4) = 6.61, p = 0.003, than the new resident group (0.76+0.017), and higher, t(5) = 6.73, p =
0.001, than the advanced resident group (0.715+0.033). No significant difference was observed between

the two resident groups, t(5) = 2.11, p = 0.09.
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Figure 3. Averaged complexity of visual search across case and reader properties: (a) case pathology (normal,
benign, and malignant); (b) breast density (fatty, fibroglandular, and heterogeneous/dense); and (c) image reader
experience level: new Radiology residents (NR); advanced Radiology residents (AR), and expert radiologists

(E).

3.B. Fractal Dimension of Radiologists’ Gaze Scanpath

The fractal dimension of the readers’ gaze scanpath ranged between 1.08 and 1.51. In Figure 3, we

present the average fractal dimension across all cases grouped by case specific properties: case pathology

(normal, benign, and malignant)), breast density (fatty, fibroglandular, and heterogeneous/dense), and

readers’ experience level (new Radiology resident, advanced Radiology resident, and expert radiologist).

Effect of Case Pathology on Complexity of Visual Search. The average complexity of gaze for normal

cases (1.350 + 0.005) was significantly higher, t(498) = 3.37, p < 0.01, than the average complexity for
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mass-present cases, which contain a benign mass (1.330 £ 0.005), and similarly higher, t(748) = 5.05, p <
.01) than the average complexity for mass-present cases, which contain a malignant mass (1.331 + 0.003).
However, there was no significant difference, t1(748) = 1.17, p = 0.98), in the average complexity of gaze
between malignant and benign cases.

Effect of Mammographic Density on Complexity of Visual Search. In Figure 3b, we observe that the
complexity of gaze increases monotonically with mammographic density. The average complexity of
gaze (1.315 £ 0.006) for low-density mammographic cases is significantly lower, t(718) = 5.67, p <
0.001), compared with the average complexity (1.340 + 0.003) for medium-density mammaographic cases.
The average complexity of gaze for low-density images was also significantly lower , t(528) = 7.37, p <<
0.001), compared with the average complexity (1.353 = 0.004) for high-density (heterogeneous/dense)
cases. The average complexity of gaze for medium-density mammographic cases was also significantly
lower, t(528) = 5.67, p = 0.02, than the gaze complexity for high-density mammographic cases.

Effect of Readers’ Experience Level on Complexity of Visual Search. Figure 3c illustrates the averaged
complexity of gaze for image readers grouped by experience level. We observe that the average
complexity of gaze for experienced radiologists (1.360 £ 0.004) is significantly higher, t(598) = 4.29, p <
0.001, than the average complexity for new Radiology residents (1.330 + 0.004), and significantly higher,
t(698) = 7.54, p << 0.001, than the average complexity for advanced Radiology residents (1.320 + 0.003).
The average gaze complexity of advanced Radiology residents was significantly lower, t(528) = 7.37, p =

0.01, than that of new Radiology residents.
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Table 6. Multi-factor ANOVA test results for possible configurations for data representation.

Configuration

Source Ci Cz Cs Ca Cs Cs

p>F p>F p>F p>F p>F p>F

Pathology <<0.001 <<0.001 <<0.001 <<0.001 <<0.001 <<0.001

Density <<0.001 <<0.001 <<0.001 <<0.001 <<0.001 <<0.001

Experience <<0.001 <<0.001 <<0.001 <<0.001 <<0.001 <<0.001

Individual <<0.001 <<0.001 <<0.001 <<0.001 <<0.001 <<0.001
Pathology — Density 0.92 0.93 0.91 0.86 0.92 0.88
Pathology — Experience 0.31 0.32 0.21 0.24 0.29 0.32
Pathology — Individual 0.16 0.1 0.14 0.11 0.07 0.11
Density — Experience 0.62 0.83 0.72 0.78 0.8 0.85
Density — Individual 0.06 0.11 0.11 0.06 0.1 0.03
Pathology — Density — Experience 0.58 0.91 0.87 0.88 0.91 0.48
Pathology — Density — Individual 0.53 0.85 0.77 0.8 0.85 0.32

3.C. Analysis of Variations in Visual Search Complexity

The gaze scanpaths generated during mammographic screening varied in complexity with the

340  characteristics of each case (pathology and density) and with individual radiologists (as observed in
Figure 3). Therefore, we performed ANOVA on the fractal dimensions for each case to determine if there
is a dependency with case pathology, breast density, or reader experience level. To analyze the interaction
between gaze complexity, case pathology, case density, and reader experience level, we applied a four-
factor fixed-effects ANOVA with three levels for case pathology (hormal, benign, and malignant), three

345 levels for breast parenchyma density (fatty, fibroglandular, and heterogeneous/dense), and three
experience levels (new trainee, advanced trainee, and expert), across 10 individual readers. In Table 6, we
report ANOVA test results using fractal dimensions estimated for the six image configurations illustrated
in Table 4. ANOVA showed that all four factors are independent predictors of a radiologists’ visual

search complexity. The overall results were consistent across all six configurations for data

Page 19 of 34



350

355

360

365

Table 7 Pairwise comparisons on groups of case pathology, breast density, and reader experience level

Pair 1 Pair 2 p-value
Pathology — Normal Pathology — Benign 0.01
Pathology — Normal Pathology — Malignant 0.001
Pathology — Benign Pathology — Malignant 0.98
Density — Fatty Density — Fibroglandular 0.005
Density — Fatty Density — Heterogeneous/Dense | 0.003
Density — Fibroglandular Density — Heterogeneous/Dense | 0.004
Experience — New Trainee Experience — Advanced Trainee | 0.01
Experience — New Trainee Experience — Expert << 0.001
Experience — Advanced Trainee | Experience — Expert << 0.001

representation, with the exception of one higher order effect (Density — Individual on configuration Cs),
which was found to be significant (F(14,910) = 2.02, p = 0.03).

Overall, ANOVA results show that the pathology and density of a mammographic case both have
a significant effect, F(2, 910) = 18.77, p < 0.001 and F(2, 910) = 33.57, p << 0.001 respectively, on visual
search complexity as calculated using fractal dimension. The ANOVA tests also show that individual
factors (individual differences and level of experience) both have a significant effect, F(7, 910) = 47.82, p
<0.001, and F(2, 910) = 43.16, p << 0.001 respectively, on fractal dimension. These findings indicate
that the trends observed in Figure 3 (and highlighted in section 3.B.) are significant.

Since ANOVA results did not depend on the configuration used for data representation, we used a
case-dependent data representation to compute visual search complexity for each case. This approach
computed the visual search complexity from raw gaze data based on the predominant display arrangement
used by the reader for each case. We applied five-factor fixed-effects ANOVA on the case-dependent
visual search complexity by including readers’ diagnostic interpretation as the fifth factor along with
pathology, density, experience, and individual differences (as described in section 3.B). The results of
ANOVA tests were consistent with our previous findings. However, this analysis showed that the reader’s

diagnostic decision is an independent predictor of visual search complexity F(2,923) = 6.62, p < 0.01.
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Table 8. Pairwise comparisons of individual readers (new resident (NR), advanced resident (AR), and expert (E)).

NR1 NR2 NR3 AR1 AR2 AR3 AR4 El E2
NR2 <le-3
NR3 0.99 < le-3
AR1 < le-3 0.77 0.01
AR2 0.57 < le-3 0.99 0.27
AR3 < le-3 0.32 <le-3 0.001 <1e-3
AR4 0.89 <le-3 1.0 0.077 1.0 < le-3

El 0.005 0.3 0.12 1.0 0.75 <le-3 0.39

E2 0.9 <1le-3 0.34 <1e3 0.02 <le-3 0.097 <1e3

E3 0.002 <1e3 <1e3 <1e3 <le3 <le3 <le3 <1e3 0.22

Post-ANOVA t-tests with Bonferroni p-value adjustment were also performed and reported in

Table 7. The complexity of the readers’ visual search was significantly different between normal cases
and mass-present cases. However, the malignancy status of a mass did not affect the complexity of the
readers’ visual search. Further, visual search complexity was found to be significantly different between
mammaograms of fatty breasts and mammograms of fibroglandular and heterogeneous/dense breasts.
However, there was no significant difference in visual search complexity between mammograms of
fibroglandular breasts and heterogeneous/dense breasts. We also observed that visual search complexity
was significantly different between all three experience groups: new Radiology residents, advanced
Radiology residents and expert radiologists.

Finally, a paired-sample t-tests was conducted to compare the pairwise differences in complexity of
gaze scanpaths among the 10 readers (Table 8). Several significant pairwise differences were found
suggesting that there is substantial inter-reader variability, often among readers of similar experience

level.
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4  DISCUSSION

This study investigated the efficacy of visual gaze complexity for characterizing the search behavior
of radiologists when viewing mammograms for breast cancer screening. For this study fractal dimension
385  was used as the metric for quantifying the complexity of the visual search patterns. Using a relatively
large number of cases, comprised of varied pathology and breast parenchyma density, and image readers
with varied levels of experience and expertise, the findings presented in this study suggest the following
trends:
(1) The characteristics of a mammographic case (pathology and breast parenchyma density) are
390 independent factors in predicting complexity of visual search behavior.

(2) The characteristics of the image reader (individual differences and level of experience) are
independent factors in predicting complexity of visual search behavior.

(3) The pathology and breast parenchyma density of a mammographic case, experience level of the
image reader, and the resulting diagnostic decision are combined predictors of visual search

395 complexity during mammaographic screening.

(4) Visual search complexity is significantly different between normal and mass-present cases.

(5) The visual search complexity increases monotonically with increasing breast parenchyma density.
Effectively, low-density mammographic images correspond to lower visual search complexity,
while medium-density images correspond to a higher visual search complexity, and high-density

400 images correspond to the highest visual search complexity. This finding is consistent with results
obtained by Al Mousa et al.**, who reported significant increases in visual search parameters
when comparing low- and high-density mammograms.

(6) On average, the visual search complexity of Radiology residents (both the new and the advance
trainee groups) are significantly lower than the average complexity of experienced radiologists.

405 (7) There are notable differences in visual search complexity between individual radiologists.
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This study is novel in its replication of the dual monitor viewing and decision tasks that are
characteristic of screening mammaography in practice. It presents a single quantity, fractal dimension,
capturing the complexity of visual search behavior during the mammographic screening process. This
metric can be further investigated as a feature to develop more accurate models for predicting
individualized radiologist error risks for a specific case in review. These findings also present future
research opportunities in personalized decision support and training support technology in Radiology.

Despite the replication of dual monitor viewing and decision tasks, which are characteristic of
screening mammography in practice, there are notable limitations with this study. While fractal
dimension successfully characterizes spatial complexity of visual search, it does not incorporate any
temporal information which, intuitively, contain information relevant to readers’ visual search behavior
and diagnostic performance as noted in*-*6, We are currently working on developing novel strategies to
capture such information. In addition, our study focused specifically on the detection of mammographic
masses. It is important to investigate the same issue for other mammographic lesions as well. Lastly, our
study utilized a popular but fairly old dataset of digitized mammograms.

By leveraging a publicly available dataset that has been extensively used by the research community,
other researchers will be able to reproduce our experimental design and perform comparative studies with
of new visual search analysis algorithms based on the same list of DDSM cases we used. Still, a separate
study is needed to confirm how our findings would translate in digital mammography. A prior study
suggested significant differences in visual scan behavior between screen-film and digital mammograms®Z.
However, that earlier study was based on two-view mammograms (single breast viewing) without any
ability for zooming. Furthermore, the differences observed in that study involved traditional metrics such
as time to first hit and total dwell time. Our study implemented a clinically realistic viewing scenario and
a more spatially comprehensive metric of visual search. Furthermore, by providing the full list of the

publicly available cases we used we enable other researchers to perform comparative studies.
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Figure 4. lllustration showing scanpaths with low (left) and high (right) fractal dimension for new Radiology
residents (NR), advanced Radiology residents (AR), and expert radiologists (ER).
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APPENDIX C

The following table gives the time spent on each view, breast, and case averaged over all cases for each
image reader. In addition, the table shows the average time each reader spent per case on the default

configuration (i.e. the default 4-view configuration C6 from Table 4, RMLO|LMLO|RCCILCC).

Average viewing time (s)

Reader Cégﬂ(iﬂl' Meggl?(;igal ~ | Right Breast Left Breast Default Case
NR1 487+23 6.02+24 4.02+27 36420 3.58+3.0 22.08+9.3
NR2 0.00+£0.0 0.00+0.0 18.07x0 9.08+0.0 2457+ 14.2 24.84 +15.0
NR3 7.51+6.3 7.36£4.0 11.20+9.6 10.14+9.0 16.63+6.8 34.89+14.9
AR1 0.00+0.0 0.00£0.0 2157 +16.3 20.38£15.9 2095+11.4 38.19+27.2
AR2 3.96+4.2 331124 3.80+2.38 3.73+19 12.22+6.5 22.38+10.3
AR3 353117 350+22 33619 363121 6.88+3.8 1767+78
AR4 24.66+8.0 21.03+8.8 21.06+10.1 10.32+35 273152 49.65+ 14.7

El 399+22 4.21+27 440+238 436+29 541+3.6 17.46+11.4
E2 5.16+3.6 449+238 373122 437+3.0 14.49 +8.2 2942 +13.4
E3 7.47+6.6 799+6.4 71075 6.12+6.5 13.08 +9.7 41.10+26.5
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APPENDIX D

The following table gives the reference number of DDSM cases of malignant pathology used in our study.

Malignant

volume case number breast density abnormalities  mass shape mass margin
cancer 01 case0001 fibroglandular 1 IRR SPIC

cancer 01 case0003 fibroglandular 1 IRR SPIC

cancer 01 case0004 heterogeneous 1 IRR SPIC

cancer 01 case0006 fibroglandular 2 IRR, ARCH SPIC, N/A
cancer 01 case0014 fatty 1 IRR ML

cancer 01 case0016 fatty 1 IRR SPIC

cancer 01 case0017 dense 1 LOB IDEF
cancer 01 case3010 fatty 2 IRR, IRR IDEF, IDEF
cancer 01 case3012 heterogeneous 1 IRR SPIC

cancer 01 case3018 fatty 1 LOB IDEF
cancer 01 case3022 fatty 1 IRR SPIC

cancer 01 case3033 heterogeneous 1 IRR IDEF
cancer 01 case3057 heterogeneous 1 IRR SPIC, MLOB
cancer 01 case3073 heterogeneous 1 IRR IDEF
cancer 02 case0018 fibroglandular 1 LOB MLOB
cancer 02 case0027 fatty 1 LOB MLOB
cancer 02 case0032 heterogeneous 1 ARCH IDEF
cancer 02 case0034 fibroglandular 1 IRR SPIC

cancer 02 case0035 fibroglandular 1 ov MLOB
cancer 02 case0038 fibroglandular 2 oV, FLB CIRC, CLST
cancer 02 case0040 fatty 1 LOB SPIC

cancer 02 case0041 fibroglandular 1 IRR SPIC

cancer 02 case0042 fatty 1 IRR SPIC

cancer 02 case0043 fibroglandular 1 IRR MLOB
cancer 02 case0059 fibroglandular 1 IRR SPIC
cancer 02 case0070 heterogeneous 1 ARCH IDEF
cancer 02 case0073 fatty 1 ARCH SPIC
cancer 02 case0082 fatty 1 LOB CIRC
cancer 02 case0089 fibroglandular 1 IRR SPIC
cancer 01 case3023 heterogeneous 1 ARCH SPIC
cancer 05 case0031 fatty 1 IRR MLOB
cancer 05 case0085 fatty 1 IRR SPIC
cancer 05 case0128 fibroglandular 1 ov MLOB
cancer 05 case0140 fatty 1 ov MLOB
cancer 05 case0142 dense 1 IRR SPIC
cancer 05 case0143 fatty 1 RND SPIC
cancer 05 case0146 fibroglandular 3 ov, ov, ov CIRC, CIRC, CIRC
cancer 05 case0148 heterogeneous 1 LOB, IDEF
cancer 05 case0149 fibroglandular 1 ov OB

cancer 05 case0155 fatty 1 LOB SPIC
cancer 05 case0156 fatty 1 IRR SPIC
cancer 05 case0157 fatty 3 ov, oV, ov MLOB, MLOB, MLOB
cancer 05 case0158 fibroglandular 1 IRR SPIC
cancer 05 case0160 fatty 1 LOB MLOB
cancer 05 case0161 fibroglandular 1 LOB MLOB
cancer 05 case0164 fatty 1 ov CIRC
cancer 05 case0165 fibroglandular 1 RND SPIC
cancer 05 case0168 fibroglandular 1 oV OB

cancer 05 case0170 fibroglandular 1 ov SPIC
cancer 05 case0175 heterogeneous 1 RND SPIC

IRR: Irregular,SPIC: spiculated, ARCH: architectural distortion, MLOB: microlobulated, LOB: Lobulated, IDEF: ill-defined, OV: oval,
OVU: ovulated, FLB: fine linear branching, CIRC: circumscribed, CLST: clustered, RND: round, OB: obscured, AMPH: amorphous.
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575 APPENDIXE

The following table gives the reference number of the DDSM cases of benign pathology used in our

study.
Benign
volume case number breast density total L mass shape mass margin
abnormalities
benign 01 case0217 fibroglandular 1 RND CIRC
benign 01 case0240 fibroglandular 1 oV CIRC
benign 01 case0243 heterogeneous 1 ov MLOB
benign 01 case0245 fibroglandular 1 ov CIRC
benign 01 case0248 fibroglandular 3 RND, RND, LOB  CIRC, CIRC, MLOB
benign 01 case0249 fatty 2 LOB, LOB CIRC, CIRC
benign 01 case3093 heterogeneous 1 ARCH SPIC
benign 01 case3098 heterogeneous 1 IRR IDEF
benign 01 case3099 fibroglandular 1 IRR IDEF
benign 01 case3100 fibroglandular 1 RND MLOB
benign 01 case3113 heterogeneous 1 RND CIRC
benign 01 case3118 heterogeneous 1 RND CIRC
benign 01 case3128 heterogeneous 1 IRR SPIC
benign 01 case3132 heterogeneous 1 ovu CIRC
benign 01 case3140 fibroglandular 1 RND CIRC
benign 04 case0251 fibroglandular 1 IRR IDEF
benign 04 case0252 fibroglandular 1 ov CIRC
benign 04 case0253 fatty 1 ov CIRC
benign 04 case0273 fibroglandular 1 RND CIRC
benign 04 case0274 fibroglandular 1 ov CIRC
benign 04 case0282 heterogeneous 1 ov CIRC
benign 04 case0283 fibroglandular 1 ARCH SPIC
benign 04 case0303 fatty 1 LOB CIRC
benign 04 case0304 fibroglandular 3 LOB, AMPH, OV  CIRC, CLST, OB
benign 04 case0306 heterogeneous 2 LOB, LOB OB, CIRC

IRR: Irregular,SPIC: spiculated, ARCH: architectural distortion, MLOB: microlobulated, LOB: Lobulated, IDEF: ill-
defined, OV: oval, OVU: ovulated, FLB: fine linear branching, CIRC: circumscribed, CLST: clustered, RND: round,
OB: obscured, AMPH: amorphous.
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APPENDIX F

The following table gives the reference number of the DDSM cases of normal pathology used in our

study.
Normal
volume case number breast density
normal 09 case3601 fibroglandular
normal 09 case3602 fibroglandular
normal 09 case3603 fatty
normal 09 case3604 fibroglandular
normal 09 case3606 dense
normal 09 case3607 fibroglandular
normal 09 case3608 fibroglandular
normal 09 case3609 fibroglandular
normal 09 case3611 heterogeneous
normal 09 case3612 heterogeneous
normal 09 case3613 heterogeneous
normal 09 case3615 fibroglandular
normal 09 case3618 fatty
normal 09 case3619 heterogeneous
normal 09 case3621 fibroglandular
normal 10 case3660 fibroglandular
normal 10 case3661 fibroglandular
normal 10 case3662 dense
normal 10 case3663 fibroglandular
normal 10 case3664 fibroglandular
normal 10 case3665 heterogeneous
normal 10 case3666 fibroglandular
normal 10 case3667 fibroglandular
normal 10 case3668 fatty
normal 10 case3670 fibroglandular
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