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Impact of Advanced Memory 
Architectures on ASC Codes
 Analyze the feasibility of next-generation memory system architectures 

to increase performance of ASC applications in partnership with industry 
and academia. SNL is performing architectural analysis and supplying 
application and system software expertise. 

 Analysis of this system will be focused on quantifying improvements in the 
memory system performance or power compared to conventional 
memory systems. Architectural simulation experiments will also be used 
to explore the memory system design space (including bandwidth, 
capacity, and topology); determine the overall impact on the applications, 
system software, and system balance; and determine the impact of 
performing some computation, synchronization, or data movement 
operations in the memory system.

 This milestone will focus on the performance of key ASC application 
kernels and algorithms and will use a variety of tools available at the 
time, which may include the SST simulator, hardware emulation 
prototypes such as FPGAs, or hardware evaluation testbeds. Next 
generation memory architectures include Micron’s Hybrid Memory Cube, 
and possibly other memory architectures such as multi-level memory and 
other conceptual designs from the DOE FastForward R&D projects.
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Project overview

 Basic multi-level memory (MLM) system
 “Fast” or “Near” Hybrid Memory Cube (HMC) & High 

Bandwidth Memory (HBM) (stacked DRAM)

 “Slow” or “Far” DDR DRAM (traditional DRAM)

 Explore design space for near memory
 Bandwidth, latency, topology, etc.

 Explore management techniques for MLM
 Automatic vs Manual

 Hardware vs Software
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Managing MLM
 Apps differ a lot

 How to maximize 
performance across 
apps while:
 Minimizing effort

 Minimizing overhead
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Outline

 Methodology

 Design space exploration

 Software / manually managed MLM (malloc() based)

 Hardware / automatic managed MLM

 Cost/Overheads

 Overall recommendations and conclusions
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METHODOLOGY
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Simulation

 Primarily used simulation with SST
 Real hardware not available

 Quick overview of SST for our purposes
 A simulation is comprised of various architectural component models

 processor, network, cache, etc.

 Ariel: Processor model, uses Intel’s PIN library to pass memory 
instructions from a natively-running binary to core models

 MemHierarchy: Collection of models for caches, memories, etc.

 Merlin: Network model for NoC

8

Application

Ariel Pintool

Mem

L3Ariel CPU

C

C

…

L1/L2

L1/L2

Mem

L3

NoC



Applications

 Selected applications from the APEX suite
 Potential impact on vendor offerings and procurements

 Variety of algorithms, memory behavior

 HPCG, MiniPIC, SNAP, PENNANT

 Push the bounds of simulation with SST
 Larger data footprints (1-8GB)

 Longer running

 Complex codes with external dependencies (e.g., Trilinos)
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At these scales, simulating a full app takes weeks to 
months (or more!)



Applications

 HPCG
 Simple preconditioner + CG solve / unstructured mesh

 PENNANT
 Unstructured mesh hydro dynamics (LANL)

 MiniPIC
 Simple particle-in-cell + Trilinos solve

 SNAP
 Particle transport (LANL)

 Others
 MiniFE, Lulesh, CoMD, MiniAero, LAMMPS
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Simulating applications at scale

 Sampled 1-2 iterations of each application 
 From beginning, middle, and end

 For MiniPIC, also needed to break an iteration into three parts

 Fully simulated first part, simulated portions of second & third

 For HPCG, PENNANT, and MiniPIC: little difference between 
begin/middle/end

 But MiniPIC’s iteration parts do differ

11



Simulation improvements

 Improved scalability
 Memory/cache components from clocked to event-driven

 Streamlined and reorganized SST code to eliminate unnecessary compute

 Compressed generated files

 Unbacked memory system

 Performance enhancements
 Fine-grain address striping across memories

 Eliminate NIC bottleneck

 Better control over throughput at memory controller

 Capability enhancements
 Address translation within multiple memory pools

 Expanded Ariel API
 Provides application hooks for interacting with simulation

 Fortran support for the Ariel API
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SST Validation

 Validated Texas Tech’s Goblin HMC simulator against our 
HMC testbed
 In collaboration with Prof. Hyesoon Kim @ Georgia Tech

 Resulted in bug fixes in the simulator’s vault controller

 Validated a Sandybridge model against real hardware
 Demonstration that SST could accurately model real hardware

 STREAM benchmark

 Required performance enhancements to the simulated memory 
system

 Will also compare trends against early KNL hardware
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DESIGN SPACE EXPLORATION
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Architectures

 Lightweight – 72 cores
 Mesh

 Tile: 2 cores + private L1s, 
shared L2

 Less powerful cores

15

 Heavyweight – 8 cores
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HMC Potential: Heavyweight Arch

 Max: 8X 
 MiniPIC: Field weighting possibly bandwidth-bound
 SNAP: Moderately bandwidth-bound
 HPCG & PENNANT: very bandwidth-bound
 Trends do not change with data set size (1-8GB)
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HMC Potential: Lightweight Arch

 Similar trend to heavyweight arch
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Performance: Heavy vs. Lightweight
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 Overall performance much better on lightweight architecture
 When even HMC itself does not help a lot (MiniPIC, SNAP)

 Increased thread count, more memory bandwidth



Validation: KNL HW vs. Lightweight

 Similar trends

 Some differences in absolute numbers
 Slightly more threads in simulation (72 vs. 64)

 Simulated smaller data set, snapshots vs. full application

 PENNANT does a lot better in model – looking into why

 Early KNL hardware  still a moving target
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Latency and bandwidth

 Heavyweight architecture

 Increased latency
 Extra 10 (~15%) & 50ns (~75%)

 Doubled HMC bandwidth  likely with next generation
 Also increased network bandwidth and memory controller throughput
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Discussion

 Lightweight outperforms heavyweight in general

 HPCG and PENNANT are sensitive to latency and bandwidth
 Don’t want higher bandwidth at the cost of higher latency

 Some indication that MiniPIC could benefit from HMC
 1.1X improvement in particle fill on KNL testbed

 Variable improvement for weight_Efield

 Sometimes 1.7X, sometimes 1X

 Needs more analysis to determine what is happening

– If verified, algorithmic changes could help MiniPIC always achieve 1.7X
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Outline

 Methodology

 Design space exploration

 Software / manually managed MLM

 Hardware / automatic managed MLM

 Cost/Overheads

 Overall recommendations and conclusions
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SOFTWARE / MANUAL 
MANAGEMENT
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Software approaches

Software 
management

OS / Runtime

Static

Greedily 
insert pages 

into HMC

Greedily 
insert mallocs

into HMC

Dynamic

(future work)

Programmer

Static

Direct "best" 
mallocs to 

HMC

Dynamic

Migrate to put 
current "best" 

to HMC
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Tradeoff

 OS managed
 Easier for programmer

 Able to capture allocations not under programmer control

 Library, pre-program start, etc.

 Page-table complexity; potentially expensive re-mapping

 No program knowledge  worse performance?

 Could use programmer hints or runtime profiling but more work

 Programmer managed
 More work for programmer, pervasive (?) changes

 Not able to handle all allocations

 Possible conflicts between application and library allocations

 What if libraries decide to manage allocation for internal structures too?

 Knowledge of program behavior  better performance?
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Analysis tool: MemSieve

 Captures an application’s memory accesses and correlates to 
the application’s memory allocations
 Filters out cache hits

 Without simulating full memory hierarchy  2.5X + faster

 Key measurement: malloc density
 # accesses / size

 Hypothesis: dense mallocs should be put in fast memory
 Assuming similar latencies between fast & slow memory
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MemSieve: How it works

 Collect application location (backtrace) for each malloc

 Processor model passes malloc information to memory model

 Memory model records memory accesses (cache misses) for 
each malloc

 Limitations
 Does not model coherence or timing effects 

 Not as accurate for applications with a lot of read-write sharing
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Malloc analysis

Pennant HPCG Snap * MiniPIC

Malloc count 8B 23M 1B 438K

Malloc size 32.1 TB 7.43 GB 30GB 7.9GB

Distinct traces 248 612 323 39043

Accessed traces 140 146 90 10794

App traces 220 583 188 38999

Accessed app traces 129 132 58 10781

Size of accessed 
traces as % total

89.7% 99.987% 89.6% 84%
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*Iterations from beginning & middle only

 Many mallocs but few distinct malloc call traces

 Reasons mallocs are not accessed
 Same address malloc’d repeatedly  cache-resident

 Malloc was not accessed in profiled section of application



Ideal malloc behavior

 Good: A few, small, very dense mallocs

 Bad: Many, equally dense mallocs; densest are big
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Malloc density
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What are dense mallocs?

 PENNANT
 Hydro arrays

 A few of the Mesh arrays

 HPCG
 CG vectors

 Coarse grid: lower levels denser than higher

 But not a strict rule. E.g.,  Axf vector for all is ranked very high

 SNAP
 “Solvar“ working arrays, leakage arrays, flux moment arrays

 MiniPIC
 ParticleTypeList

 boundary_face_map, owned_boundary_edge_map, owned_face_map
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Malloc analysis: Heavy vs Light

 Similar, especially at larger N

 Some difference if only looking at top 10-20
 Especially PENNANT

 For experiments shown next, generally put ~40-50 mallocs in HMC
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Case Study: MemSieve vs. KNL

 Question: Do MemSieve results extend to real hardware?

 Simulated MiniFE in MemSieve
 4/5 top mallocs are vectors

 Matrix is ranked 6

 Other top mallocs are associated with #pragma omp statements

 Harder to capture

 Ran MiniFE on KNL testbed
 Manually placed vectors in HBM
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SST MLM API

 Developed API for managing MLM in simulation
 Ariel page allocation keeps track of separate memory pools 

 Ariel intercepts every malloc / free and can allocate them on 
simulated pages in a specified “default” or other pool

 Allocate into a particular pool – direct malloc replacement

 ariel_mlm_malloc(size, pool)

 ariel_mlm_free(addr)

 Flag that next malloc(s) should go into fast memory – useful for 
getting to mallocs that are inside libraries or otherwise not accessible

 ariel_malloc_flag(ID, count, pool)

 Can provide simulation with a list of IDs of interest, rest are ignored
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Manual allocation: PENNANT

 Large performance jump from 25% to 50% HMC

 Dynamic migration necessary
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Manual allocation: HPCG

 Again, large jump from 25% to 50% HMC

 Page-based & static perform similarly

 Dynamic not better
 But granularity of migration is large
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Manual allocation: SNAP

 Greedy-page performs the best
 Two large mallocs in SNAP, each 42% of total

 Medium/low density

 Once they don’t fit, HMC size / malloc strategy doesn’t matter

 Suggested code change
 Break up large mallocs to improve HMC utilization
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Manual allocation

Greedy - page Greedy - malloc Static Dynamic

SNAP 68% / 47% / 34% 52% / 52% / 38% 49% / 52% / 36% 44% / 44% / 40%

HPCG 92% / 49% / 26% 75% / 29% / 5% 93% / 47% / 23% 93% / 49% / 23%

PENNANT 62% / 34% / 20% 55% / 30% / 15% 67% / 33% / 20% 87% / 47% / 38%
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Percent of memory accesses that go to HMC

 High fraction of accesses go to fast memory

 But still not at peak performance
 Experimental effect

 All HMC was simulated with all four memories as HMC

 MLM was simulated with 2/4 memories as HMC

 More parallelism with four, better traffic spread on ring



Topology comparison

 Similar trend
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Conclusions

 Best path forward is likely to be OS-managed with 
programmer hints
 ”Greedy” performs fairly well

 Programmer knowledge helps significantly in some cases

 Better performance will likely require algorithmic changes
 SNAP has a bin-packing problem with two very large mallocs

 HPCG may benefit from finer-grained migration

 Similar trends between architectures
 Unlikely to need to re-identify mallocs as architectures change
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Potential for Processing-in-Memory

 MemSieve also useful for identifying candidates for PIM

 Want allocations that tend to be HMC-resident
 Allocations that move between caches & HMC increase PIM overhead

 Require flushes / coherence intervention

 Allocations that are likely to be in DDR are not candidates for PIM

 Require migration

 Suggestion
 #pragma omp loops figure frequently in malloc ranking

 Higher priority in Lightweight vs Heavyweight arch

 Small loops with no child calls
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HARDWARE / AUTOMATIC 
MANAGEMENT
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Hardware management

 Hardware management of MLM at the page level
 Cache pages in HMC, page still resides in DDR

 Focus was hardware caching
 But, also possible to do caching via OS

 Usually, less information (hits, misses, etc.)
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HMC is not “just another cache”

 Traditional caches provide higher bandwidth AND lower 
latency as you move closer to the CPU
 HMC gives higher bandwidth but similar or higher latency

 Granularity
 Caches operate on block granularity (64B)  better locality

 HMC operates on page granularity  less locality?

 Due to size – complex to go smaller

 Low cost for adding things to traditional cache
 Due to granularity & access path

 HMC: Large pages, uses more bandwidth, “out-of-the-way”

 Low penalty for removing things from cache (usually)
 Similar for HMC
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Automatic Page-Level Swapping

 Addition policies

 Replacement policies

45

Directory 
Controller

DDR
Fast 

Memory

MLM Unit

Mapping 
Table

DMA

Policy 
Dispatcher

Addition Policies Replacement Policies

• addT: Simple Threshold
• addMFU: Most Frequenly Used
• addRAND: 1:8192 chance
• addMRPU: More Recent Previous Use
• addMFRPU: More Frequent + More 

Recent Previous Use
• addSC: Deprioritize streams
• addSCF: as addSC + More Frequent

• FIFO: First-in, First-out
• LRU: Least Recently Used
• LFU: Least Frequently Used
• LFU8: LFU w/ 8-bit counter
• BiLRU: BiModal LRU
• SCLRU: Deprioritize streams



Methodology

 SST 
 Heavyweight architecture 

 Apps
 Initial: Lulesh, MiniFE, rsbench, 

miniaero

 Large runs: Pennant, Snap, HPCG
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Performance vs. Policy
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Larger data sets

 Looked at highest performing 
addition policies
 Variants of most-frequently used

 Baseline: random

 LRU replacement
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Fine Tuning
1. Thresholds

2. Page size

3. Throttling
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Outline

 Methodology

 Design space exploration

 Software / manually managed MLM

 Hardware / automatic managed MLM

 Cost/Overheads

 Overall recommendations and conclusions
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COST, PERFORMANCE, AND 
OVERHEADS
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Cost & Performance: Automatic

 40-380% performance 
improvement

 Ultimate FoM: Cost

 Will Cost Kill it?

 Recommendations for HW
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Cost & Performance: Manual

 12.5%  no cost benefit

 Higher fraction of fast 
needed compared to 
automatic
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Overhead: Automatic
 Automatic management 

requires SRAM tables to 
track active pages

 For large fast memories 
and 4K pages, cost of 
SRAM is considerable

 Makes large fast 
memories questionable 
for lower-performing 
applications

 Manual alloc may be 
better if lots of fast

 >4KB pages may be 
better
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Effort: Manual

 MemSieve helps identify dense mallocs
 Still requires manual effort to match backtrace locations to application

 Sometimes involves looking through assembly
 Process took 1-2 days per application
 Can we do better?

 Hard to know if we’ve really gotten “best” mallocs
 Know from smaller tests that MemSieve’s miss rates are accurate

 Difficult to mark all mallocs manually
 Some within libraries

 std::vector::push_back()
 #pragma omp

 Fortran local arrays – no standard for allocating in fast memory

 Enabling MLM in libraries will require some OS intervention
 How to share between application and libraries?

 Multiphysics applications

 What if OS wants to use it too?
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RECOMMENDATIONS AND 
CONCLUSIONS
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Conclusions

 Manual management is feasible
 Bandwidth-bound codes requires dynamic migration

 Developed a tool, MemSieve, to analyze memory behavior and assist 
with manual placement

 Automatic management is comparable to manual
 What you put in is more important than what you take out

 Will require vendor support (caching policies, extra hardware 
structures)

 Some applications will require algorithmic changes to take 
advantage of HBM/HMC
 MiniPIC, SNAP

57



Recommendations

 Bandwidth cannot come at the cost of latency

 Cost-performance analysis recommends 12.5% HBM/DDR
 But, as cost drops, rapid rise in recommended ratio

 More for manual management  harder, needs more “slack”

 MLM management
 Assuming vendor support – hardware caching at page level

 Most frequently used policy with possible stream deprioritization

 No burden on programmer

 Good performance

 Assuming no vendor support

 Manual allocation in OS with programmer hints

– Not directly evaluated here

– Highest potential performance with lowest programmer effort

 Dynamic migration capability
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Future directions

 Power analysis

 Hardware and software overheads
 Hardware area/latency for caching

 “Real” Applications

 Future memory technologies
 >2 levels

 Automatic management in software

 With programmer hints
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Milestone criteria

 Analyze the feasibility of next-generation memory system 
architectures to increase performance of ASC applications
 Analyzed performance of four APEX/ASC apps on MLM architectures

 Evaluated the performance and overhead/cost of managing MLM 
automatically versus manually

 Quantify improvements in the memory system performance 
or power compared to conventional memory systems
 Measured performance of applications on two architectures 

compared to traditional DDR-only memory systems

 Explore the memory system design space 
 Analyzed the effect of increased latency, increased bandwidth, and 

different capacities and topologies (light vs heavyweight) on 
performance

 Evaluated various hardware caching schemes 60



Milestone criteria, cont.

 Determine the overall impact on the applications, system 
software, and system balance
 Explored automatic and manual management of MLM

 Determined feasible performance in light of tradeoffs in overhead and 
programmer effort

 Determine the impact of performing some computation, 
synchronization, or data movement operations in the 
memory system
 Analyzed memory usage to determine which constructs might benefit 

from PIM
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Page-Level Analysis

 Intra-page accesses
 Post-cache

 Streaming common

 Thread access patterns
 Most 4K pages only 

accessed by one thread
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MiniPIC

 Split time step into three parts
 Charge weight & solve

 Efield weight – profile 30%

 Move – profile 2%

 8GB
 27.4M particles

 2GB
 5M particles

 APEX “small”
 100M particles
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HPCG

 HPCG 3 with “-DCONTIGUOUS_ARRAYS”
 Only looking at ‘main’ CG loop

 Profile 1-2 iterations (2 in MemSieve, 1 otherwise)

 8G
 272 x 272 x136

 Matches APEX “small”

 4G
 192 x 192 x 136

 1G
 112 x 112 x 112
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SNAP

 Nested loop: timestep  outer  inner
 Profiling one inner iteration

 8G
 nx =128; ny = 16; nz = 20

 1G
 nx=32; ny=12; nz=16

 APEX “small”
 nx = 160; ny = 16; nz = 24;
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PENNANT

 Profiling two iterations

 8G
 leblancbigx6

 1G
 leblancbigx2

 APEX
 “small” :  leblancbig (leblancx1)

 “medium”: leblancx4
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Heavyweight Architecture

 Eight cores

 Ring topology

 Four memory controllers

 Distributed shared L3

 Each core has a private L1 & L2
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Lightweight Architecture

 72 cores – less powerful than 
heavyweight
 Lower clock, fewer requests per 

cycle

 Mesh topology

 Each core has private L1 

 Each pair of cores has a shared L2

 Eight HMC memory controllers

 Six DDR memory controllers
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Performance of manual allocation

 Greedy doesn’t do 
too badly

 Dynamic necessary 
for PENNANT
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HMC Validation

 After fix, trends match
 Still some differences in the absolute numbers
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