
Photos placed in horizontal position
with even amount of white space

between photos and header

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2016-8726C

Multi Level Memory
L2 Milestone Review

8/17/2016
2016 ASC CSSE L2 Milestone #5676

SAND2016-9026C

Team

 Gwen Voskuilen

 Arun Rodrigues

 Mike Frank

 Si Hammond

2

Impact of Advanced Memory
Architectures on ASC Codes
 Analyze the feasibility of next-generation memory system architectures

to increase performance of ASC applications in partnership with industry
and academia. SNL is performing architectural analysis and supplying
application and system software expertise.

 Analysis of this system will be focused on quantifying improvements in the
memory system performance or power compared to conventional
memory systems. Architectural simulation experiments will also be used
to explore the memory system design space (including bandwidth,
capacity, and topology); determine the overall impact on the applications,
system software, and system balance; and determine the impact of
performing some computation, synchronization, or data movement
operations in the memory system.

 This milestone will focus on the performance of key ASC application
kernels and algorithms and will use a variety of tools available at the
time, which may include the SST simulator, hardware emulation
prototypes such as FPGAs, or hardware evaluation testbeds. Next
generation memory architectures include Micron’s Hybrid Memory Cube,
and possibly other memory architectures such as multi-level memory and
other conceptual designs from the DOE FastForward R&D projects.

3

Project overview

 Basic multi-level memory (MLM) system
 “Fast” or “Near” Hybrid Memory Cube (HMC) & High

Bandwidth Memory (HBM) (stacked DRAM)

 “Slow” or “Far” DDR DRAM (traditional DRAM)

 Explore design space for near memory
 Bandwidth, latency, topology, etc.

 Explore management techniques for MLM
 Automatic vs Manual

 Hardware vs Software

4

MLM
Management

MLM
Management

Manual
Placement

Manual
Placement

Algorithmic
Changes

Algorithmic
Changes

Automatic
Management

Automatic
Management

Managing MLM
 Apps differ a lot

 How to maximize
performance across
apps while:
 Minimizing effort

 Minimizing overhead

5

Regular
Irregular

Few, Well-defined
Regions

Multiple
Regions

Outline

 Methodology

 Design space exploration

 Software / manually managed MLM (malloc() based)

 Hardware / automatic managed MLM

 Cost/Overheads

 Overall recommendations and conclusions
6

METHODOLOGY

7

Simulation

 Primarily used simulation with SST
 Real hardware not available

 Quick overview of SST for our purposes
 A simulation is comprised of various architectural component models

 processor, network, cache, etc.

 Ariel: Processor model, uses Intel’s PIN library to pass memory
instructions from a natively-running binary to core models

 MemHierarchy: Collection of models for caches, memories, etc.

 Merlin: Network model for NoC

8

Application

Ariel Pintool

Mem

L3Ariel CPU

C

C

…

L1/L2

L1/L2

Mem

L3

NoC

Applications

 Selected applications from the APEX suite
 Potential impact on vendor offerings and procurements

 Variety of algorithms, memory behavior

 HPCG, MiniPIC, SNAP, PENNANT

 Push the bounds of simulation with SST
 Larger data footprints (1-8GB)

 Longer running

 Complex codes with external dependencies (e.g., Trilinos)

9

At these scales, simulating a full app takes weeks to
months (or more!)

Applications

 HPCG
 Simple preconditioner + CG solve / unstructured mesh

 PENNANT
 Unstructured mesh hydro dynamics (LANL)

 MiniPIC
 Simple particle-in-cell + Trilinos solve

 SNAP
 Particle transport (LANL)

 Others
 MiniFE, Lulesh, CoMD, MiniAero, LAMMPS

10

Simulating applications at scale

 Sampled 1-2 iterations of each application
 From beginning, middle, and end

 For MiniPIC, also needed to break an iteration into three parts

 Fully simulated first part, simulated portions of second & third

 For HPCG, PENNANT, and MiniPIC: little difference between
begin/middle/end

 But MiniPIC’s iteration parts do differ

11

Simulation improvements

 Improved scalability
 Memory/cache components from clocked to event-driven

 Streamlined and reorganized SST code to eliminate unnecessary compute

 Compressed generated files

 Unbacked memory system

 Performance enhancements
 Fine-grain address striping across memories

 Eliminate NIC bottleneck

 Better control over throughput at memory controller

 Capability enhancements
 Address translation within multiple memory pools

 Expanded Ariel API
 Provides application hooks for interacting with simulation

 Fortran support for the Ariel API

12

SST Validation

 Validated Texas Tech’s Goblin HMC simulator against our
HMC testbed
 In collaboration with Prof. Hyesoon Kim @ Georgia Tech

 Resulted in bug fixes in the simulator’s vault controller

 Validated a Sandybridge model against real hardware
 Demonstration that SST could accurately model real hardware

 STREAM benchmark

 Required performance enhancements to the simulated memory
system

 Will also compare trends against early KNL hardware

13

DESIGN SPACE EXPLORATION

14

Architectures

 Lightweight – 72 cores
 Mesh

 Tile: 2 cores + private L1s,
shared L2

 Less powerful cores

15

 Heavyweight – 8 cores
 Ring

 Core includes private L1/L2

 Shared distributed L3

 More powerful cores

Tile

HMC

DDR

C C

L1 L1

L2

L3Core

Mem

Core

L3

Core

Core

Core
Core

Core

Core

L3

L3

L3

L3

L3

L3

Mem

Mem

Mem

Core

L1

L2

HMC Potential: Heavyweight Arch

 Max: 8X
 MiniPIC: Field weighting possibly bandwidth-bound
 SNAP: Moderately bandwidth-bound
 HPCG & PENNANT: very bandwidth-bound
 Trends do not change with data set size (1-8GB)

16

0

1

2

3

4

5

6

7

MiniPIC
charge

MiniPIC
field

MiniPIC
move

SNAP p0 SNAP p1/2 HPCG PENNANT

S
p
e
e
d
u
p
 o

v
e
r

a
ll

D
R

A
M

Performance with all HMC

HMC Potential: Lightweight Arch

 Similar trend to heavyweight arch

17

0

1

2

3

4

5

6

MiniPIC
charge

MiniPIC
field

MiniPIC
move

SNAP p0 SNAP p1 HPCG PENNANT

S
p
e
e
d
u
p
 o

v
e
r

D
D

R
-o

n
ly

Performance with all HMC

Performance: Heavy vs. Lightweight

18

0
1
2
3
4
5
6
7
8
9

10

MiniPIC
charge

MiniPIC field MiniPIC
move

SNAP p0 SNAP p1/2 HPCG PENNANT

S
p
e
e
d
u
p
 o

ve
r

H
e
a
v
yw

e
ig

h
t

Performance of Lightweight norm. to Heavyweight
All HMC

 Overall performance much better on lightweight architecture
 When even HMC itself does not help a lot (MiniPIC, SNAP)

 Increased thread count, more memory bandwidth

Validation: KNL HW vs. Lightweight

 Similar trends

 Some differences in absolute numbers
 Slightly more threads in simulation (72 vs. 64)

 Simulated smaller data set, snapshots vs. full application

 PENNANT does a lot better in model – looking into why

 Early KNL hardware still a moving target

19

0

1

2

3

4

5

6

MiniPIC
charge

MiniPIC field MiniPIC
move

SNAP p0 SNAP p1/2 HPCG PENNANT

S
p
e
e
d
u
p
 o

v
e
r

D
D

R
 o

n
ly

Simulated vs. Actual Performance

Model KNL

Latency and bandwidth

 Heavyweight architecture

 Increased latency
 Extra 10 (~15%) & 50ns (~75%)

 Doubled HMC bandwidth likely with next generation
 Also increased network bandwidth and memory controller throughput

20

0

0.2

0.4

0.6

0.8

1

1.2

1.4

MiniPIC
charge

MiniPIC
field

MiniPIC
move

SNAP p0 SNAP
p1/2

HPCG PENNANT

S
p
e
e
d
u
p
 o

ve
r

b
a
se

lin
e

H
M

C Lat + 50ns

Lat + 10ns

2X B/W

Discussion

 Lightweight outperforms heavyweight in general

 HPCG and PENNANT are sensitive to latency and bandwidth
 Don’t want higher bandwidth at the cost of higher latency

 Some indication that MiniPIC could benefit from HMC
 1.1X improvement in particle fill on KNL testbed

 Variable improvement for weight_Efield

 Sometimes 1.7X, sometimes 1X

 Needs more analysis to determine what is happening

– If verified, algorithmic changes could help MiniPIC always achieve 1.7X

21

Outline

 Methodology

 Design space exploration

 Software / manually managed MLM

 Hardware / automatic managed MLM

 Cost/Overheads

 Overall recommendations and conclusions
22

SOFTWARE / MANUAL
MANAGEMENT

23

Software approaches

Software
management

OS / Runtime

Static

Greedily
insert pages

into HMC

Greedily
insert mallocs

into HMC

Dynamic

(future work)

Programmer

Static

Direct "best"
mallocs to

HMC

Dynamic

Migrate to put
current "best"

to HMC

24Increased performance?

Tradeoff

 OS managed
 Easier for programmer

 Able to capture allocations not under programmer control

 Library, pre-program start, etc.

 Page-table complexity; potentially expensive re-mapping

 No program knowledge worse performance?

 Could use programmer hints or runtime profiling but more work

 Programmer managed
 More work for programmer, pervasive (?) changes

 Not able to handle all allocations

 Possible conflicts between application and library allocations

 What if libraries decide to manage allocation for internal structures too?

 Knowledge of program behavior better performance?

25

Analysis tool: MemSieve

 Captures an application’s memory accesses and correlates to
the application’s memory allocations
 Filters out cache hits

 Without simulating full memory hierarchy 2.5X + faster

 Key measurement: malloc density
 # accesses / size

 Hypothesis: dense mallocs should be put in fast memory
 Assuming similar latencies between fast & slow memory

26

MemSieve: How it works

 Collect application location (backtrace) for each malloc

 Processor model passes malloc information to memory model

 Memory model records memory accesses (cache misses) for
each malloc

 Limitations
 Does not model coherence or timing effects

 Not as accurate for applications with a lot of read-write sharing

27

Application

Ariel Pintool

Ariel CPU

C

C

…

MemSieve

Malloc analysis

Pennant HPCG Snap * MiniPIC

Malloc count 8B 23M 1B 438K

Malloc size 32.1 TB 7.43 GB 30GB 7.9GB

Distinct traces 248 612 323 39043

Accessed traces 140 146 90 10794

App traces 220 583 188 38999

Accessed app traces 129 132 58 10781

Size of accessed
traces as % total

89.7% 99.987% 89.6% 84%

28

*Iterations from beginning & middle only

 Many mallocs but few distinct malloc call traces

 Reasons mallocs are not accessed
 Same address malloc’d repeatedly cache-resident

 Malloc was not accessed in profiled section of application

Ideal malloc behavior

 Good: A few, small, very dense mallocs

 Bad: Many, equally dense mallocs; densest are big

29

D
e
n
si

ty

Mallocs

Big density variation:
less work to manage

%
 a

cc
e
ss

e
s
 (

cu
m

u
la

tiv
e
)

S
iz

e
Mallocs

%
 a

cc
e
ss

e
s
 (

cu
m

u
la

tiv
e
)

Lots of accesses in a
very small region

More dense Less dense

Malloc density

30

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0

0.5

1

1.5

2

2.5

3

3.5

4

%
 o

f
to

ta
l

a
c

c
e

s
s
e

s

D
e

n
s
it

y
 (

a
c

c
e

s
s
e

s
/b

y
te

)

Malloc call sites, from most to least dense

Density

Accesses

0%

20%

40%

60%

80%

100%

0

0.25

0.5

0.75

1

1.25

1.5

1.75

%
o

f
to

ta
l
a

c
c

e
s
s
e

s

D
e

n
s
it

y
 (

a
c

c
e

s
s
e

s
/b

y
te

)

Malloc call sites, from most to least dense

Density

Accesses

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0

8

16

24

32

%
 o

f
to

ta
l

a
c

c
e

s
s
e

s

C
u

m
u

la
ti

v
e

 s
iz

e
 (

T
B

)

Malloc call sites, from most to least dense

Size (TB)

Accesses

0%

20%

40%

60%

80%

100%

0

1

2

3

4

5

6

7

8

%
 o

f
to

ta
l

a
c

c
e

s
s
e

s

C
u

m
u

la
ti

v
e

 s
iz

e
 (

G
B

)

Malloc call sites, from most to least dense

Size (MB)

Accesses

HPCGPENNANT

What are dense mallocs?

 PENNANT
 Hydro arrays

 A few of the Mesh arrays

 HPCG
 CG vectors

 Coarse grid: lower levels denser than higher

 But not a strict rule. E.g., Axf vector for all is ranked very high

 SNAP
 “Solvar“ working arrays, leakage arrays, flux moment arrays

 MiniPIC
 ParticleTypeList

 boundary_face_map, owned_boundary_edge_map, owned_face_map

31

Malloc analysis: Heavy vs Light

 Similar, especially at larger N

 Some difference if only looking at top 10-20
 Especially PENNANT

 For experiments shown next, generally put ~40-50 mallocs in HMC

32

0%

20%

40%

60%

80%

100%

1 11 21 31 41 51 61 71 81

%
 s

im
ila

ri
ty

Number of mallocs

HPCG

Heavyweight vs Lightweight: % of top N malloc call sites that are the same

0%

20%

40%

60%

80%

100%

1 11 21 31 41 51 61 71

%
 s

im
ila

ri
ty

Number of mallocs

PENNANT

Case Study: MemSieve vs. KNL

 Question: Do MemSieve results extend to real hardware?

 Simulated MiniFE in MemSieve
 4/5 top mallocs are vectors

 Matrix is ranked 6

 Other top mallocs are associated with #pragma omp statements

 Harder to capture

 Ran MiniFE on KNL testbed
 Manually placed vectors in HBM

33

0

1

2

3

4

5

DDR4
only

HBM only Vectors
in HBM

P
e
rf

o
rm

a
n
c
e
 n

o
rm

a
liz

e
d

to
 D

D
R

4

MiniFE on KNL testbed

1.5X

SST MLM API

 Developed API for managing MLM in simulation
 Ariel page allocation keeps track of separate memory pools

 Ariel intercepts every malloc / free and can allocate them on
simulated pages in a specified “default” or other pool

 Allocate into a particular pool – direct malloc replacement

 ariel_mlm_malloc(size, pool)

 ariel_mlm_free(addr)

 Flag that next malloc(s) should go into fast memory – useful for
getting to mallocs that are inside libraries or otherwise not accessible

 ariel_malloc_flag(ID, count, pool)

 Can provide simulation with a list of IDs of interest, rest are ignored

34

Manual allocation: PENNANT

 Large performance jump from 25% to 50% HMC

 Dynamic migration necessary

35

0

1

2

3

4

5

6

7

Greedy - page Greedy - malloc Static Dynamic

S
p

e
e

d
u

p
 o

ve
r

D
D

R
 o

n
ly

PENNANT

12.50% 25% 50% 100%

Manual allocation: HPCG

 Again, large jump from 25% to 50% HMC

 Page-based & static perform similarly

 Dynamic not better
 But granularity of migration is large

36

0

1

2

3

4

5

6

Greedy - page Greedy - malloc Static Dynamic

S
p

e
e

d
u

p
 o

ve
r

D
D

R
 o

n
ly

HPCG

12.50% 25% 50% 100%

MiniFE w/ Vectors

Manual allocation: SNAP

 Greedy-page performs the best
 Two large mallocs in SNAP, each 42% of total

 Medium/low density

 Once they don’t fit, HMC size / malloc strategy doesn’t matter

 Suggested code change
 Break up large mallocs to improve HMC utilization

37

0

0.5

1

1.5

2

Greedy - page Greedy - malloc Static Dynamic

S
p

e
e

d
u

p
 o

ve
r

D
D

R
 o

n
ly

SNAP

12.50% 25% 50% 100%

Manual allocation

Greedy - page Greedy - malloc Static Dynamic

SNAP 68% / 47% / 34% 52% / 52% / 38% 49% / 52% / 36% 44% / 44% / 40%

HPCG 92% / 49% / 26% 75% / 29% / 5% 93% / 47% / 23% 93% / 49% / 23%

PENNANT 62% / 34% / 20% 55% / 30% / 15% 67% / 33% / 20% 87% / 47% / 38%

38

Percent of memory accesses that go to HMC

 High fraction of accesses go to fast memory

 But still not at peak performance
 Experimental effect

 All HMC was simulated with all four memories as HMC

 MLM was simulated with 2/4 memories as HMC

 More parallelism with four, better traffic spread on ring

Topology comparison

 Similar trend

39

0

1

2

3

4

5

6

Greedy -
page

Greedy -
malloc

Static DynamicS
p

e
e

d
u

p
 o

ve
r

D
D

R
 o

n
ly

PENNANT

12.50% 25% 50% 100%

0

1

2

3

4

5

6

7

Greedy -
page

Greedy -
malloc

Static DynamicS
p

e
e

d
u

p
 o

ve
r

D
D

R
 o

n
ly

PENNANT

12.50% 25% 50% 100%

Heavyweight Lightweight

Conclusions

 Best path forward is likely to be OS-managed with
programmer hints
 ”Greedy” performs fairly well

 Programmer knowledge helps significantly in some cases

 Better performance will likely require algorithmic changes
 SNAP has a bin-packing problem with two very large mallocs

 HPCG may benefit from finer-grained migration

 Similar trends between architectures
 Unlikely to need to re-identify mallocs as architectures change

40

Potential for Processing-in-Memory

 MemSieve also useful for identifying candidates for PIM

 Want allocations that tend to be HMC-resident
 Allocations that move between caches & HMC increase PIM overhead

 Require flushes / coherence intervention

 Allocations that are likely to be in DDR are not candidates for PIM

 Require migration

 Suggestion
 #pragma omp loops figure frequently in malloc ranking

 Higher priority in Lightweight vs Heavyweight arch

 Small loops with no child calls

41

HARDWARE / AUTOMATIC
MANAGEMENT

42

Hardware management

 Hardware management of MLM at the page level
 Cache pages in HMC, page still resides in DDR

 Focus was hardware caching
 But, also possible to do caching via OS

 Usually, less information (hits, misses, etc.)

43

HMC is not “just another cache”

 Traditional caches provide higher bandwidth AND lower
latency as you move closer to the CPU
 HMC gives higher bandwidth but similar or higher latency

 Granularity
 Caches operate on block granularity (64B) better locality

 HMC operates on page granularity less locality?

 Due to size – complex to go smaller

 Low cost for adding things to traditional cache
 Due to granularity & access path

 HMC: Large pages, uses more bandwidth, “out-of-the-way”

 Low penalty for removing things from cache (usually)
 Similar for HMC

44

Automatic Page-Level Swapping

 Addition policies

 Replacement policies

45

Directory
Controller

DDR
Fast

Memory

MLM Unit

Mapping
Table

DMA

Policy
Dispatcher

Addition Policies Replacement Policies

• addT: Simple Threshold
• addMFU: Most Frequenly Used
• addRAND: 1:8192 chance
• addMRPU: More Recent Previous Use
• addMFRPU: More Frequent + More

Recent Previous Use
• addSC: Deprioritize streams
• addSCF: as addSC + More Frequent

• FIFO: First-in, First-out
• LRU: Least Recently Used
• LFU: Least Frequently Used
• LFU8: LFU w/ 8-bit counter
• BiLRU: BiModal LRU
• SCLRU: Deprioritize streams

Methodology

 SST
 Heavyweight architecture

 Apps
 Initial: Lulesh, MiniFE, rsbench,

miniaero

 Large runs: Pennant, Snap, HPCG

46

Core

L1

Core

L1

L2

Core

L1

Core

L1

Merlin
Router

Directory
Controller

Core

L1

Core

L1

L2

Core

L1

Core

L1

DDR

Ariel Trace Capture

PIN

"Fast"
Memory

MLM Unit

Mapping
Table

DMA

Policy
Dispatcher

Performance vs. Policy

47

0.2

0.4

0.6

0.8

1

1.2

1.4

addMFRPU addMFU addMRPU addRAND addSC addT addSCF

P
e

rf
o

rm
an

ce

Add Policy

Lulesh: MLM Performance vs Policy

BiLRU FIFO

LRU SCLRU

LFU8 LFU

0.2

0.4

0.6

0.8

1

1.2

1.4

addMFRPU addMFU addMRPU addRAND addSC addT addSCF

P
er

fo
rm

an
ce

Add Policy

MiniFE: MLM Performance vs Policy

BiLRU FIFO

LRU SCLRU

LFU8 LFU

Addition policy: big variation

Replacement policy: little variation

“What you put in matters more than what you take out”

Larger data sets

 Looked at highest performing
addition policies
 Variants of most-frequently used

 Baseline: random

 LRU replacement

48

0

1

2

3

4

5

6

7

1024 8192 65536

P
er

f
(1

=
n

o
 f

as
t

m
e

m
)

Pages

Pennant-b Performance: Addition

addMFRPU All Fast
addRand addSCF
addMFU

0

0.5

1

1.5

2

1024 8192 65536

Pe
rf

 (
1=

n
o

 f
as

t
m

em
)

Pages

Snap-p0 Performance: Addition

addMFRPU All Fast

addRand addSCF

AddMFU

0

1

2

3

4

5

6

1024 8192 65536

P
er

f
(1

=
n

o
 f

as
t

m
e

m
)

Pages

HPCG Performance: Addition

addMFRPU Series2

addRAND addSCF

addMFU

Fine Tuning
1. Thresholds

2. Page size

3. Throttling

49

0

0.5

1

1.5

2

0 20 40 60 80

P
e

rf
o

rm
an

ce

Threshold

Pennant Threshold

0

1

2

3

4

5

9 11 13 15

R
el

. P
ef

o
rm

Page Size (2x B)

Pennant Page size Effects

128M

256M

1.46

1.48

1.5

1.52

1.54

1.56

1.58

1.6

9 11 13 15

R
el

. P
ef

o
rm

Page Size (2x B)

snap-p0 Page size Effects

128M

256M

0.5

1.5

2.5

3.5

0 200 400 600 800 1000

P
er

fo
rm

an
ce

Threshold

MLM Performace vs. Threshold (addT/LRU)

CoMD

lammps

lulesh

miniFE

0

0.2

0.4

0.6

0.8

1

CoMD lammps lulesh miniFE
P

er
fo

rm
an

ce

Swap Thro0 ling

Thro; le

No Thro; le

Outline

 Methodology

 Design space exploration

 Software / manually managed MLM

 Hardware / automatic managed MLM

 Cost/Overheads

 Overall recommendations and conclusions
50

COST, PERFORMANCE, AND
OVERHEADS

51

Cost & Performance: Automatic

 40-380% performance
improvement

 Ultimate FoM: Cost

 Will Cost Kill it?

 Recommendations for HW

52

0

1

2

3

4

5

6

1024 8192 65536

Pe
rf

o
rm

an
ce

Performance vs. # Fast Pages

Pennant

snap-p0

snap-p1

Hpcg

0.5
1

1.5
2

2.5
3

3.5
4

4.5

1024 8192 65536

P
er

fo
rm

an
ce

 /
 C

o
st

Performance / Cost vs. # Fast Pages: Fast
x1.3 Cost

Pennant

snap-p0

snap-p1

Hpcg

0.5

1

1.5

2

2.5

1024 8192 65536

P
er

fo
rm

an
ce

 /
 C

o
st

Performance / Cost: Fast 5x Cost

Pennant
snap-p0
snap-p1
Hpcg

Not Worth It

Diminishing
Returns

Huh.

½
¼

1/8

Cost & Performance: Manual

 12.5% no cost benefit

 Higher fraction of fast
needed compared to
automatic

53

0

1

2

3

4

5

6

12.50% 25% 50% 100%

P
e

rf
o

rm
a

n
ce

 /
 C

o
st

Fast memory

Performance / Cost: Fast 1.3X Cost

PENNANT SNAP p0 SNAP p1 HPCG

0

0.2

0.4

0.6

0.8

1

1.2

1.4

12.50% 25% 50% 100%

P
e

rf
o

rm
a

n
ce

 /
 C

o
st

Fast memory

Performance / Cost: Fast 5X Cost

PENNANT SNAP p0

SNAP p1 HPCG

Not Worth It

Diminishing
Returns

0

1

2

3

4

5

6

7

12.50% 25% 50% 100%

P
e

rf
o

rm
a

n
ce

Fast memory

Performance vs Fast memory size

PENNANT SNAP p0

SNAP p1 HPCG

Overhead: Automatic
 Automatic management

requires SRAM tables to
track active pages

 For large fast memories
and 4K pages, cost of
SRAM is considerable

 Makes large fast
memories questionable
for lower-performing
applications

 Manual alloc may be
better if lots of fast

 >4KB pages may be
better

54

0

0.5

1

1.5

2

2.5

0% 20% 40% 60% 80% 100%

R
el

. C
o

st

% Fast Memory

Memory System Cost

Main Memory SRAM Tabels

Total 100% Fast

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1024 4096 16384 65536

Pe
rf

o
rm

an
ce

 /
 C

o
st

Performance / Cost: Fast x1.3 , SRAM x150

Pennant

snap-p0

snap-p1

Hpcg

Effort: Manual

 MemSieve helps identify dense mallocs
 Still requires manual effort to match backtrace locations to application

 Sometimes involves looking through assembly
 Process took 1-2 days per application
 Can we do better?

 Hard to know if we’ve really gotten “best” mallocs
 Know from smaller tests that MemSieve’s miss rates are accurate

 Difficult to mark all mallocs manually
 Some within libraries

 std::vector::push_back()
 #pragma omp

 Fortran local arrays – no standard for allocating in fast memory

 Enabling MLM in libraries will require some OS intervention
 How to share between application and libraries?

 Multiphysics applications

 What if OS wants to use it too?

55

RECOMMENDATIONS AND
CONCLUSIONS

56

Conclusions

 Manual management is feasible
 Bandwidth-bound codes requires dynamic migration

 Developed a tool, MemSieve, to analyze memory behavior and assist
with manual placement

 Automatic management is comparable to manual
 What you put in is more important than what you take out

 Will require vendor support (caching policies, extra hardware
structures)

 Some applications will require algorithmic changes to take
advantage of HBM/HMC
 MiniPIC, SNAP

57

Recommendations

 Bandwidth cannot come at the cost of latency

 Cost-performance analysis recommends 12.5% HBM/DDR
 But, as cost drops, rapid rise in recommended ratio

 More for manual management harder, needs more “slack”

 MLM management
 Assuming vendor support – hardware caching at page level

 Most frequently used policy with possible stream deprioritization

 No burden on programmer

 Good performance

 Assuming no vendor support

 Manual allocation in OS with programmer hints

– Not directly evaluated here

– Highest potential performance with lowest programmer effort

 Dynamic migration capability
58

Future directions

 Power analysis

 Hardware and software overheads
 Hardware area/latency for caching

 “Real” Applications

 Future memory technologies
 >2 levels

 Automatic management in software

 With programmer hints

59

Milestone criteria

 Analyze the feasibility of next-generation memory system
architectures to increase performance of ASC applications
 Analyzed performance of four APEX/ASC apps on MLM architectures

 Evaluated the performance and overhead/cost of managing MLM
automatically versus manually

 Quantify improvements in the memory system performance
or power compared to conventional memory systems
 Measured performance of applications on two architectures

compared to traditional DDR-only memory systems

 Explore the memory system design space
 Analyzed the effect of increased latency, increased bandwidth, and

different capacities and topologies (light vs heavyweight) on
performance

 Evaluated various hardware caching schemes 60

Milestone criteria, cont.

 Determine the overall impact on the applications, system
software, and system balance
 Explored automatic and manual management of MLM

 Determined feasible performance in light of tradeoffs in overhead and
programmer effort

 Determine the impact of performing some computation,
synchronization, or data movement operations in the
memory system
 Analyzed memory usage to determine which constructs might benefit

from PIM

61

Photos placed in horizontal position
with even amount of white space

between photos and header

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2016-8726C

Backup slides

Page-Level Analysis

 Intra-page accesses
 Post-cache

 Streaming common

 Thread access patterns
 Most 4K pages only

accessed by one thread

64

(a)

(b)

(c)

MiniPIC

 Split time step into three parts
 Charge weight & solve

 Efield weight – profile 30%

 Move – profile 2%

 8GB
 27.4M particles

 2GB
 5M particles

 APEX “small”
 100M particles

65

HPCG

 HPCG 3 with “-DCONTIGUOUS_ARRAYS”
 Only looking at ‘main’ CG loop

 Profile 1-2 iterations (2 in MemSieve, 1 otherwise)

 8G
 272 x 272 x136

 Matches APEX “small”

 4G
 192 x 192 x 136

 1G
 112 x 112 x 112

66

SNAP

 Nested loop: timestep outer inner
 Profiling one inner iteration

 8G
 nx =128; ny = 16; nz = 20

 1G
 nx=32; ny=12; nz=16

 APEX “small”
 nx = 160; ny = 16; nz = 24;

67

PENNANT

 Profiling two iterations

 8G
 leblancbigx6

 1G
 leblancbigx2

 APEX
 “small” : leblancbig (leblancx1)

 “medium”: leblancx4

68

Heavyweight Architecture

 Eight cores

 Ring topology

 Four memory controllers

 Distributed shared L3

 Each core has a private L1 & L2

69

L3Core

Mem

Core

L3

Core

Core

Core

Core

Core

Core

L3

L3

L3

L3

L3

L3

Mem

Mem

Mem

Lightweight Architecture

 72 cores – less powerful than
heavyweight
 Lower clock, fewer requests per

cycle

 Mesh topology

 Each core has private L1

 Each pair of cores has a shared L2

 Eight HMC memory controllers

 Six DDR memory controllers

70

HMC

DDR

Tile: Two cores with private
L1s and a shared L2

Performance of manual allocation

 Greedy doesn’t do
too badly

 Dynamic necessary
for PENNANT

71

1

2

3

4

5

6

7

Greedy -
page

Greedy -
malloc

Static Dynamic

S
p

e
e

d
u

p
 o

ve
r

D
D

R
 o

n
ly

PENNANT

12.50% 25% 50% 100%

1

2

3

4

5

Greedy -
page

Greedy -
malloc

Static Dynamic

S
p

e
e

d
u

p
 o

ve
r

D
D

R
 o

n
ly

HPCG

12.50% 25% 50% 100%

1

1.2

1.4

1.6

1.8

Greedy -
page

Greedy -
malloc

Static Dynamic

S
p

e
e

d
u

p
 o

ve
r

D
D

R
 o

n
ly

SNAP

12.50% 25% 50% 100%

HMC Validation

 After fix, trends match
 Still some differences in the absolute numbers

72

0

0.2

0.4

0.6

0.8

1

1.2

All quads Own quad Own vault Own bank Same quad Same vault Same bank

B
a
n
d
w

id
th

 n
o
rm

a
liz

e
d
 t

o
 "

O
w

n
 q

u
a
d
"

Access Pattern

HMC hardware GoblinHMC - original GoblinHMC - bug fix

