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Impact of Advanced Memory 
Architectures on ASC Codes
 Analyze the feasibility of next-generation memory system architectures 

to increase performance of ASC applications in partnership with industry 
and academia. SNL is performing architectural analysis and supplying 
application and system software expertise. 

 Analysis of this system will be focused on quantifying improvements in the 
memory system performance or power compared to conventional 
memory systems. Architectural simulation experiments will also be used 
to explore the memory system design space (including bandwidth, 
capacity, and topology); determine the overall impact on the applications, 
system software, and system balance; and determine the impact of 
performing some computation, synchronization, or data movement 
operations in the memory system.

 This milestone will focus on the performance of key ASC application 
kernels and algorithms and will use a variety of tools available at the 
time, which may include the SST simulator, hardware emulation 
prototypes such as FPGAs, or hardware evaluation testbeds. Next 
generation memory architectures include Micron’s Hybrid Memory Cube, 
and possibly other memory architectures such as multi-level memory and 
other conceptual designs from the DOE FastForward R&D projects.
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Project overview

 Basic multi-level memory (MLM) system
 “Fast” or “Near” Hybrid Memory Cube (HMC) & High 

Bandwidth Memory (HBM) (stacked DRAM)

 “Slow” or “Far” DDR DRAM (traditional DRAM)

 Explore design space for near memory
 Bandwidth, latency, topology, etc.

 Explore management techniques for MLM
 Automatic vs Manual

 Hardware vs Software
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Managing MLM
 Apps differ a lot

 How to maximize 
performance across 
apps while:
 Minimizing effort

 Minimizing overhead
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Outline

 Methodology

 Design space exploration

 Software / manually managed MLM (malloc() based)

 Hardware / automatic managed MLM

 Cost/Overheads

 Overall recommendations and conclusions
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METHODOLOGY
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Simulation

 Primarily used simulation with SST
 Real hardware not available

 Quick overview of SST for our purposes
 A simulation is comprised of various architectural component models

 processor, network, cache, etc.

 Ariel: Processor model, uses Intel’s PIN library to pass memory 
instructions from a natively-running binary to core models

 MemHierarchy: Collection of models for caches, memories, etc.

 Merlin: Network model for NoC
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Applications

 Selected applications from the APEX suite
 Potential impact on vendor offerings and procurements

 Variety of algorithms, memory behavior

 HPCG, MiniPIC, SNAP, PENNANT

 Push the bounds of simulation with SST
 Larger data footprints (1-8GB)

 Longer running

 Complex codes with external dependencies (e.g., Trilinos)
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At these scales, simulating a full app takes weeks to 
months (or more!)



Applications

 HPCG
 Simple preconditioner + CG solve / unstructured mesh

 PENNANT
 Unstructured mesh hydro dynamics (LANL)

 MiniPIC
 Simple particle-in-cell + Trilinos solve

 SNAP
 Particle transport (LANL)

 Others
 MiniFE, Lulesh, CoMD, MiniAero, LAMMPS
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Simulating applications at scale

 Sampled 1-2 iterations of each application 
 From beginning, middle, and end

 For MiniPIC, also needed to break an iteration into three parts

 Fully simulated first part, simulated portions of second & third

 For HPCG, PENNANT, and MiniPIC: little difference between 
begin/middle/end

 But MiniPIC’s iteration parts do differ
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Simulation improvements

 Improved scalability
 Memory/cache components from clocked to event-driven

 Streamlined and reorganized SST code to eliminate unnecessary compute

 Compressed generated files

 Unbacked memory system

 Performance enhancements
 Fine-grain address striping across memories

 Eliminate NIC bottleneck

 Better control over throughput at memory controller

 Capability enhancements
 Address translation within multiple memory pools

 Expanded Ariel API
 Provides application hooks for interacting with simulation

 Fortran support for the Ariel API
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SST Validation

 Validated Texas Tech’s Goblin HMC simulator against our 
HMC testbed
 In collaboration with Prof. Hyesoon Kim @ Georgia Tech

 Resulted in bug fixes in the simulator’s vault controller

 Validated a Sandybridge model against real hardware
 Demonstration that SST could accurately model real hardware

 STREAM benchmark

 Required performance enhancements to the simulated memory 
system

 Will also compare trends against early KNL hardware
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DESIGN SPACE EXPLORATION
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Architectures

 Lightweight – 72 cores
 Mesh

 Tile: 2 cores + private L1s, 
shared L2

 Less powerful cores
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 Heavyweight – 8 cores
 Ring

 Core includes private L1/L2

 Shared distributed L3

 More powerful cores
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HMC Potential: Heavyweight Arch

 Max: 8X 
 MiniPIC: Field weighting possibly bandwidth-bound
 SNAP: Moderately bandwidth-bound
 HPCG & PENNANT: very bandwidth-bound
 Trends do not change with data set size (1-8GB)
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HMC Potential: Lightweight Arch

 Similar trend to heavyweight arch
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Performance: Heavy vs. Lightweight
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Validation: KNL HW vs. Lightweight

 Similar trends

 Some differences in absolute numbers
 Slightly more threads in simulation (72 vs. 64)

 Simulated smaller data set, snapshots vs. full application

 PENNANT does a lot better in model – looking into why

 Early KNL hardware  still a moving target

19

0

1

2

3

4

5

6

MiniPIC
charge

MiniPIC field MiniPIC
move

SNAP p0 SNAP p1/2 HPCG PENNANT

S
p
e
e
d
u
p
 o

v
e
r 

D
D

R
 o

n
ly

Simulated vs. Actual Performance

Model KNL



Latency and bandwidth

 Heavyweight architecture

 Increased latency
 Extra 10 (~15%) & 50ns (~75%)

 Doubled HMC bandwidth  likely with next generation
 Also increased network bandwidth and memory controller throughput
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Discussion

 Lightweight outperforms heavyweight in general

 HPCG and PENNANT are sensitive to latency and bandwidth
 Don’t want higher bandwidth at the cost of higher latency

 Some indication that MiniPIC could benefit from HMC
 1.1X improvement in particle fill on KNL testbed

 Variable improvement for weight_Efield

 Sometimes 1.7X, sometimes 1X

 Needs more analysis to determine what is happening

– If verified, algorithmic changes could help MiniPIC always achieve 1.7X
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SOFTWARE / MANUAL 
MANAGEMENT
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Software approaches

Software 
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OS / Runtime
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insert pages 
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Dynamic
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Tradeoff

 OS managed
 Easier for programmer

 Able to capture allocations not under programmer control

 Library, pre-program start, etc.

 Page-table complexity; potentially expensive re-mapping

 No program knowledge  worse performance?

 Could use programmer hints or runtime profiling but more work

 Programmer managed
 More work for programmer, pervasive (?) changes

 Not able to handle all allocations

 Possible conflicts between application and library allocations

 What if libraries decide to manage allocation for internal structures too?

 Knowledge of program behavior  better performance?
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Analysis tool: MemSieve

 Captures an application’s memory accesses and correlates to 
the application’s memory allocations
 Filters out cache hits

 Without simulating full memory hierarchy  2.5X + faster

 Key measurement: malloc density
 # accesses / size

 Hypothesis: dense mallocs should be put in fast memory
 Assuming similar latencies between fast & slow memory

26



MemSieve: How it works

 Collect application location (backtrace) for each malloc

 Processor model passes malloc information to memory model

 Memory model records memory accesses (cache misses) for 
each malloc

 Limitations
 Does not model coherence or timing effects 

 Not as accurate for applications with a lot of read-write sharing
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Malloc analysis

Pennant HPCG Snap * MiniPIC

Malloc count 8B 23M 1B 438K

Malloc size 32.1 TB 7.43 GB 30GB 7.9GB

Distinct traces 248 612 323 39043

Accessed traces 140 146 90 10794

App traces 220 583 188 38999

Accessed app traces 129 132 58 10781

Size of accessed 
traces as % total

89.7% 99.987% 89.6% 84%
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*Iterations from beginning & middle only

 Many mallocs but few distinct malloc call traces

 Reasons mallocs are not accessed
 Same address malloc’d repeatedly  cache-resident

 Malloc was not accessed in profiled section of application



Ideal malloc behavior

 Good: A few, small, very dense mallocs

 Bad: Many, equally dense mallocs; densest are big
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Malloc density

30

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0

0.5

1

1.5

2

2.5

3

3.5

4

%
 o

f 
to

ta
l 

a
c

c
e

s
s
e

s

D
e

n
s
it

y
 (

a
c

c
e

s
s
e

s
/b

y
te

)

Malloc call sites, from most to least dense

Density

Accesses

0%

20%

40%

60%

80%

100%

0

0.25

0.5

0.75

1

1.25

1.5

1.75

%
o

f 
to

ta
l 
a

c
c

e
s
s
e

s

D
e

n
s
it

y
 (

a
c

c
e

s
s
e

s
/b

y
te

)

Malloc call sites, from most to least dense

Density

Accesses

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0

8

16

24

32

%
 o

f 
to

ta
l 

a
c

c
e

s
s
e

s

C
u

m
u

la
ti

v
e

 s
iz

e
 (

T
B

)

Malloc call sites, from most to least dense

Size (TB)

Accesses

0%

20%

40%

60%

80%

100%

0

1

2

3

4

5

6

7

8

%
 o

f 
to

ta
l 

a
c

c
e

s
s
e

s

C
u

m
u

la
ti

v
e

 s
iz

e
 (

G
B

)

Malloc call sites, from most to least dense

Size (MB)

Accesses

HPCGPENNANT



What are dense mallocs?

 PENNANT
 Hydro arrays

 A few of the Mesh arrays

 HPCG
 CG vectors

 Coarse grid: lower levels denser than higher

 But not a strict rule. E.g.,  Axf vector for all is ranked very high

 SNAP
 “Solvar“ working arrays, leakage arrays, flux moment arrays

 MiniPIC
 ParticleTypeList

 boundary_face_map, owned_boundary_edge_map, owned_face_map
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Malloc analysis: Heavy vs Light

 Similar, especially at larger N

 Some difference if only looking at top 10-20
 Especially PENNANT

 For experiments shown next, generally put ~40-50 mallocs in HMC
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Case Study: MemSieve vs. KNL

 Question: Do MemSieve results extend to real hardware?

 Simulated MiniFE in MemSieve
 4/5 top mallocs are vectors

 Matrix is ranked 6

 Other top mallocs are associated with #pragma omp statements

 Harder to capture

 Ran MiniFE on KNL testbed
 Manually placed vectors in HBM
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SST MLM API

 Developed API for managing MLM in simulation
 Ariel page allocation keeps track of separate memory pools 

 Ariel intercepts every malloc / free and can allocate them on 
simulated pages in a specified “default” or other pool

 Allocate into a particular pool – direct malloc replacement

 ariel_mlm_malloc(size, pool)

 ariel_mlm_free(addr)

 Flag that next malloc(s) should go into fast memory – useful for 
getting to mallocs that are inside libraries or otherwise not accessible

 ariel_malloc_flag(ID, count, pool)

 Can provide simulation with a list of IDs of interest, rest are ignored
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Manual allocation: PENNANT

 Large performance jump from 25% to 50% HMC

 Dynamic migration necessary
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Manual allocation: HPCG

 Again, large jump from 25% to 50% HMC

 Page-based & static perform similarly

 Dynamic not better
 But granularity of migration is large
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Manual allocation: SNAP

 Greedy-page performs the best
 Two large mallocs in SNAP, each 42% of total

 Medium/low density

 Once they don’t fit, HMC size / malloc strategy doesn’t matter

 Suggested code change
 Break up large mallocs to improve HMC utilization
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Manual allocation

Greedy - page Greedy - malloc Static Dynamic

SNAP 68% / 47% / 34% 52% / 52% / 38% 49% / 52% / 36% 44% / 44% / 40%

HPCG 92% / 49% / 26% 75% / 29% / 5% 93% / 47% / 23% 93% / 49% / 23%

PENNANT 62% / 34% / 20% 55% / 30% / 15% 67% / 33% / 20% 87% / 47% / 38%
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Percent of memory accesses that go to HMC

 High fraction of accesses go to fast memory

 But still not at peak performance
 Experimental effect

 All HMC was simulated with all four memories as HMC

 MLM was simulated with 2/4 memories as HMC

 More parallelism with four, better traffic spread on ring



Topology comparison

 Similar trend
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Conclusions

 Best path forward is likely to be OS-managed with 
programmer hints
 ”Greedy” performs fairly well

 Programmer knowledge helps significantly in some cases

 Better performance will likely require algorithmic changes
 SNAP has a bin-packing problem with two very large mallocs

 HPCG may benefit from finer-grained migration

 Similar trends between architectures
 Unlikely to need to re-identify mallocs as architectures change
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Potential for Processing-in-Memory

 MemSieve also useful for identifying candidates for PIM

 Want allocations that tend to be HMC-resident
 Allocations that move between caches & HMC increase PIM overhead

 Require flushes / coherence intervention

 Allocations that are likely to be in DDR are not candidates for PIM

 Require migration

 Suggestion
 #pragma omp loops figure frequently in malloc ranking

 Higher priority in Lightweight vs Heavyweight arch

 Small loops with no child calls
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HARDWARE / AUTOMATIC 
MANAGEMENT
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Hardware management

 Hardware management of MLM at the page level
 Cache pages in HMC, page still resides in DDR

 Focus was hardware caching
 But, also possible to do caching via OS

 Usually, less information (hits, misses, etc.)
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HMC is not “just another cache”

 Traditional caches provide higher bandwidth AND lower 
latency as you move closer to the CPU
 HMC gives higher bandwidth but similar or higher latency

 Granularity
 Caches operate on block granularity (64B)  better locality

 HMC operates on page granularity  less locality?

 Due to size – complex to go smaller

 Low cost for adding things to traditional cache
 Due to granularity & access path

 HMC: Large pages, uses more bandwidth, “out-of-the-way”

 Low penalty for removing things from cache (usually)
 Similar for HMC
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Automatic Page-Level Swapping

 Addition policies

 Replacement policies
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Methodology

 SST 
 Heavyweight architecture 

 Apps
 Initial: Lulesh, MiniFE, rsbench, 

miniaero

 Large runs: Pennant, Snap, HPCG
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Performance vs. Policy
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Larger data sets

 Looked at highest performing 
addition policies
 Variants of most-frequently used

 Baseline: random

 LRU replacement
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Fine Tuning
1. Thresholds

2. Page size

3. Throttling
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COST, PERFORMANCE, AND 
OVERHEADS

51



Cost & Performance: Automatic

 40-380% performance 
improvement

 Ultimate FoM: Cost

 Will Cost Kill it?

 Recommendations for HW
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Cost & Performance: Manual

 12.5%  no cost benefit

 Higher fraction of fast 
needed compared to 
automatic

53

0

1

2

3

4

5

6

12.50% 25% 50% 100%

P
e

rf
o

rm
a

n
ce

 /
 C

o
st

Fast memory

Performance / Cost: Fast 1.3X Cost

PENNANT SNAP p0 SNAP p1 HPCG

0

0.2

0.4

0.6

0.8

1

1.2

1.4

12.50% 25% 50% 100%

P
e

rf
o

rm
a

n
ce

 /
 C

o
st

Fast memory

Performance / Cost: Fast 5X Cost

PENNANT SNAP p0

SNAP p1 HPCG

Not Worth It

Diminishing 
Returns

0

1

2

3

4

5

6

7

12.50% 25% 50% 100%

P
e

rf
o

rm
a

n
ce

Fast memory

Performance vs Fast memory size

PENNANT SNAP p0

SNAP p1 HPCG



Overhead: Automatic
 Automatic management 

requires SRAM tables to 
track active pages

 For large fast memories 
and 4K pages, cost of 
SRAM is considerable

 Makes large fast 
memories questionable 
for lower-performing 
applications

 Manual alloc may be 
better if lots of fast

 >4KB pages may be 
better
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Effort: Manual

 MemSieve helps identify dense mallocs
 Still requires manual effort to match backtrace locations to application

 Sometimes involves looking through assembly
 Process took 1-2 days per application
 Can we do better?

 Hard to know if we’ve really gotten “best” mallocs
 Know from smaller tests that MemSieve’s miss rates are accurate

 Difficult to mark all mallocs manually
 Some within libraries

 std::vector::push_back()
 #pragma omp

 Fortran local arrays – no standard for allocating in fast memory

 Enabling MLM in libraries will require some OS intervention
 How to share between application and libraries?

 Multiphysics applications

 What if OS wants to use it too?
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RECOMMENDATIONS AND 
CONCLUSIONS

56



Conclusions

 Manual management is feasible
 Bandwidth-bound codes requires dynamic migration

 Developed a tool, MemSieve, to analyze memory behavior and assist 
with manual placement

 Automatic management is comparable to manual
 What you put in is more important than what you take out

 Will require vendor support (caching policies, extra hardware 
structures)

 Some applications will require algorithmic changes to take 
advantage of HBM/HMC
 MiniPIC, SNAP
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Recommendations

 Bandwidth cannot come at the cost of latency

 Cost-performance analysis recommends 12.5% HBM/DDR
 But, as cost drops, rapid rise in recommended ratio

 More for manual management  harder, needs more “slack”

 MLM management
 Assuming vendor support – hardware caching at page level

 Most frequently used policy with possible stream deprioritization

 No burden on programmer

 Good performance

 Assuming no vendor support

 Manual allocation in OS with programmer hints

– Not directly evaluated here

– Highest potential performance with lowest programmer effort

 Dynamic migration capability
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Future directions

 Power analysis

 Hardware and software overheads
 Hardware area/latency for caching

 “Real” Applications

 Future memory technologies
 >2 levels

 Automatic management in software

 With programmer hints
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Milestone criteria

 Analyze the feasibility of next-generation memory system 
architectures to increase performance of ASC applications
 Analyzed performance of four APEX/ASC apps on MLM architectures

 Evaluated the performance and overhead/cost of managing MLM 
automatically versus manually

 Quantify improvements in the memory system performance 
or power compared to conventional memory systems
 Measured performance of applications on two architectures 

compared to traditional DDR-only memory systems

 Explore the memory system design space 
 Analyzed the effect of increased latency, increased bandwidth, and 

different capacities and topologies (light vs heavyweight) on 
performance

 Evaluated various hardware caching schemes 60



Milestone criteria, cont.

 Determine the overall impact on the applications, system 
software, and system balance
 Explored automatic and manual management of MLM

 Determined feasible performance in light of tradeoffs in overhead and 
programmer effort

 Determine the impact of performing some computation, 
synchronization, or data movement operations in the 
memory system
 Analyzed memory usage to determine which constructs might benefit 

from PIM
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Page-Level Analysis

 Intra-page accesses
 Post-cache

 Streaming common

 Thread access patterns
 Most 4K pages only 

accessed by one thread
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MiniPIC

 Split time step into three parts
 Charge weight & solve

 Efield weight – profile 30%

 Move – profile 2%

 8GB
 27.4M particles

 2GB
 5M particles

 APEX “small”
 100M particles
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HPCG

 HPCG 3 with “-DCONTIGUOUS_ARRAYS”
 Only looking at ‘main’ CG loop

 Profile 1-2 iterations (2 in MemSieve, 1 otherwise)

 8G
 272 x 272 x136

 Matches APEX “small”

 4G
 192 x 192 x 136

 1G
 112 x 112 x 112
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SNAP

 Nested loop: timestep  outer  inner
 Profiling one inner iteration

 8G
 nx =128; ny = 16; nz = 20

 1G
 nx=32; ny=12; nz=16

 APEX “small”
 nx = 160; ny = 16; nz = 24;
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PENNANT

 Profiling two iterations

 8G
 leblancbigx6

 1G
 leblancbigx2

 APEX
 “small” :  leblancbig (leblancx1)

 “medium”: leblancx4
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Heavyweight Architecture

 Eight cores

 Ring topology

 Four memory controllers

 Distributed shared L3

 Each core has a private L1 & L2
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Lightweight Architecture

 72 cores – less powerful than 
heavyweight
 Lower clock, fewer requests per 

cycle

 Mesh topology

 Each core has private L1 

 Each pair of cores has a shared L2

 Eight HMC memory controllers

 Six DDR memory controllers
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Performance of manual allocation

 Greedy doesn’t do 
too badly

 Dynamic necessary 
for PENNANT
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HMC Validation

 After fix, trends match
 Still some differences in the absolute numbers
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