
Photos placed in horizontal position
with even amount of white space

between photos and header

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2016-8726C

Multi Level Memory
L2 Milestone Review

8/17/2016
2016 ASC CSSE L2 Milestone #5676

SAND2016-9026C

Team

 Gwen Voskuilen

 Arun Rodrigues

 Mike Frank

 Si Hammond

2

Impact of Advanced Memory
Architectures on ASC Codes
 Analyze the feasibility of next-generation memory system architectures

to increase performance of ASC applications in partnership with industry
and academia. SNL is performing architectural analysis and supplying
application and system software expertise.

 Analysis of this system will be focused on quantifying improvements in the
memory system performance or power compared to conventional
memory systems. Architectural simulation experiments will also be used
to explore the memory system design space (including bandwidth,
capacity, and topology); determine the overall impact on the applications,
system software, and system balance; and determine the impact of
performing some computation, synchronization, or data movement
operations in the memory system.

 This milestone will focus on the performance of key ASC application
kernels and algorithms and will use a variety of tools available at the
time, which may include the SST simulator, hardware emulation
prototypes such as FPGAs, or hardware evaluation testbeds. Next
generation memory architectures include Micron’s Hybrid Memory Cube,
and possibly other memory architectures such as multi-level memory and
other conceptual designs from the DOE FastForward R&D projects.

3

Project overview

 Basic multi-level memory (MLM) system
 “Fast” or “Near” Hybrid Memory Cube (HMC) & High

Bandwidth Memory (HBM) (stacked DRAM)

 “Slow” or “Far” DDR DRAM (traditional DRAM)

 Explore design space for near memory
 Bandwidth, latency, topology, etc.

 Explore management techniques for MLM
 Automatic vs Manual

 Hardware vs Software

4

MLM
Management

MLM
Management

Manual
Placement

Manual
Placement

Algorithmic
Changes

Algorithmic
Changes

Automatic
Management

Automatic
Management

Managing MLM
 Apps differ a lot

 How to maximize
performance across
apps while:
 Minimizing effort

 Minimizing overhead

5

Regular
Irregular

Few, Well-defined
Regions

Multiple
Regions

Outline

 Methodology

 Design space exploration

 Software / manually managed MLM (malloc() based)

 Hardware / automatic managed MLM

 Cost/Overheads

 Overall recommendations and conclusions
6

METHODOLOGY

7

Simulation

 Primarily used simulation with SST
 Real hardware not available

 Quick overview of SST for our purposes
 A simulation is comprised of various architectural component models

 processor, network, cache, etc.

 Ariel: Processor model, uses Intel’s PIN library to pass memory
instructions from a natively-running binary to core models

 MemHierarchy: Collection of models for caches, memories, etc.

 Merlin: Network model for NoC

8

Application

Ariel Pintool

Mem

L3Ariel CPU

C

C

…

L1/L2

L1/L2

Mem

L3

NoC

Applications

 Selected applications from the APEX suite
 Potential impact on vendor offerings and procurements

 Variety of algorithms, memory behavior

 HPCG, MiniPIC, SNAP, PENNANT

 Push the bounds of simulation with SST
 Larger data footprints (1-8GB)

 Longer running

 Complex codes with external dependencies (e.g., Trilinos)

9

At these scales, simulating a full app takes weeks to
months (or more!)

Applications

 HPCG
 Simple preconditioner + CG solve / unstructured mesh

 PENNANT
 Unstructured mesh hydro dynamics (LANL)

 MiniPIC
 Simple particle-in-cell + Trilinos solve

 SNAP
 Particle transport (LANL)

 Others
 MiniFE, Lulesh, CoMD, MiniAero, LAMMPS

10

Simulating applications at scale

 Sampled 1-2 iterations of each application
 From beginning, middle, and end

 For MiniPIC, also needed to break an iteration into three parts

 Fully simulated first part, simulated portions of second & third

 For HPCG, PENNANT, and MiniPIC: little difference between
begin/middle/end

 But MiniPIC’s iteration parts do differ

11

Simulation improvements

 Improved scalability
 Memory/cache components from clocked to event-driven

 Streamlined and reorganized SST code to eliminate unnecessary compute

 Compressed generated files

 Unbacked memory system

 Performance enhancements
 Fine-grain address striping across memories

 Eliminate NIC bottleneck

 Better control over throughput at memory controller

 Capability enhancements
 Address translation within multiple memory pools

 Expanded Ariel API
 Provides application hooks for interacting with simulation

 Fortran support for the Ariel API

12

SST Validation

 Validated Texas Tech’s Goblin HMC simulator against our
HMC testbed
 In collaboration with Prof. Hyesoon Kim @ Georgia Tech

 Resulted in bug fixes in the simulator’s vault controller

 Validated a Sandybridge model against real hardware
 Demonstration that SST could accurately model real hardware

 STREAM benchmark

 Required performance enhancements to the simulated memory
system

 Will also compare trends against early KNL hardware

13

DESIGN SPACE EXPLORATION

14

Architectures

 Lightweight – 72 cores
 Mesh

 Tile: 2 cores + private L1s,
shared L2

 Less powerful cores

15

 Heavyweight – 8 cores
 Ring

 Core includes private L1/L2

 Shared distributed L3

 More powerful cores

Tile

HMC

DDR

C C

L1 L1

L2

L3Core

Mem

Core

L3

Core

Core

Core
Core

Core

Core

L3

L3

L3

L3

L3

L3

Mem

Mem

Mem

Core

L1

L2

HMC Potential: Heavyweight Arch

 Max: 8X
 MiniPIC: Field weighting possibly bandwidth-bound
 SNAP: Moderately bandwidth-bound
 HPCG & PENNANT: very bandwidth-bound
 Trends do not change with data set size (1-8GB)

16

0

1

2

3

4

5

6

7

MiniPIC
charge

MiniPIC
field

MiniPIC
move

SNAP p0 SNAP p1/2 HPCG PENNANT

S
p
e
e
d
u
p
 o

v
e
r

a
ll

D
R

A
M

Performance with all HMC

HMC Potential: Lightweight Arch

 Similar trend to heavyweight arch

17

0

1

2

3

4

5

6

MiniPIC
charge

MiniPIC
field

MiniPIC
move

SNAP p0 SNAP p1 HPCG PENNANT

S
p
e
e
d
u
p
 o

v
e
r

D
D

R
-o

n
ly

Performance with all HMC

Performance: Heavy vs. Lightweight

18

0
1
2
3
4
5
6
7
8
9

10

MiniPIC
charge

MiniPIC field MiniPIC
move

SNAP p0 SNAP p1/2 HPCG PENNANT

S
p
e
e
d
u
p
 o

ve
r

H
e
a
v
yw

e
ig

h
t

Performance of Lightweight norm. to Heavyweight
All HMC

 Overall performance much better on lightweight architecture
 When even HMC itself does not help a lot (MiniPIC, SNAP)

 Increased thread count, more memory bandwidth

Validation: KNL HW vs. Lightweight

 Similar trends

 Some differences in absolute numbers
 Slightly more threads in simulation (72 vs. 64)

 Simulated smaller data set, snapshots vs. full application

 PENNANT does a lot better in model – looking into why

 Early KNL hardware  still a moving target

19

0

1

2

3

4

5

6

MiniPIC
charge

MiniPIC field MiniPIC
move

SNAP p0 SNAP p1/2 HPCG PENNANT

S
p
e
e
d
u
p
 o

v
e
r

D
D

R
 o

n
ly

Simulated vs. Actual Performance

Model KNL

Latency and bandwidth

 Heavyweight architecture

 Increased latency
 Extra 10 (~15%) & 50ns (~75%)

 Doubled HMC bandwidth  likely with next generation
 Also increased network bandwidth and memory controller throughput

20

0

0.2

0.4

0.6

0.8

1

1.2

1.4

MiniPIC
charge

MiniPIC
field

MiniPIC
move

SNAP p0 SNAP
p1/2

HPCG PENNANT

S
p
e
e
d
u
p
 o

ve
r

b
a
se

lin
e

H
M

C Lat + 50ns

Lat + 10ns

2X B/W

Discussion

 Lightweight outperforms heavyweight in general

 HPCG and PENNANT are sensitive to latency and bandwidth
 Don’t want higher bandwidth at the cost of higher latency

 Some indication that MiniPIC could benefit from HMC
 1.1X improvement in particle fill on KNL testbed

 Variable improvement for weight_Efield

 Sometimes 1.7X, sometimes 1X

 Needs more analysis to determine what is happening

– If verified, algorithmic changes could help MiniPIC always achieve 1.7X

21

Outline

 Methodology

 Design space exploration

 Software / manually managed MLM

 Hardware / automatic managed MLM

 Cost/Overheads

 Overall recommendations and conclusions
22

SOFTWARE / MANUAL
MANAGEMENT

23

Software approaches

Software
management

OS / Runtime

Static

Greedily
insert pages

into HMC

Greedily
insert mallocs

into HMC

Dynamic

(future work)

Programmer

Static

Direct "best"
mallocs to

HMC

Dynamic

Migrate to put
current "best"

to HMC

24Increased performance?

Tradeoff

 OS managed
 Easier for programmer

 Able to capture allocations not under programmer control

 Library, pre-program start, etc.

 Page-table complexity; potentially expensive re-mapping

 No program knowledge  worse performance?

 Could use programmer hints or runtime profiling but more work

 Programmer managed
 More work for programmer, pervasive (?) changes

 Not able to handle all allocations

 Possible conflicts between application and library allocations

 What if libraries decide to manage allocation for internal structures too?

 Knowledge of program behavior  better performance?

25

Analysis tool: MemSieve

 Captures an application’s memory accesses and correlates to
the application’s memory allocations
 Filters out cache hits

 Without simulating full memory hierarchy  2.5X + faster

 Key measurement: malloc density
 # accesses / size

 Hypothesis: dense mallocs should be put in fast memory
 Assuming similar latencies between fast & slow memory

26

MemSieve: How it works

 Collect application location (backtrace) for each malloc

 Processor model passes malloc information to memory model

 Memory model records memory accesses (cache misses) for
each malloc

 Limitations
 Does not model coherence or timing effects

 Not as accurate for applications with a lot of read-write sharing

27

Application

Ariel Pintool

Ariel CPU

C

C

…

MemSieve

Malloc analysis

Pennant HPCG Snap * MiniPIC

Malloc count 8B 23M 1B 438K

Malloc size 32.1 TB 7.43 GB 30GB 7.9GB

Distinct traces 248 612 323 39043

Accessed traces 140 146 90 10794

App traces 220 583 188 38999

Accessed app traces 129 132 58 10781

Size of accessed
traces as % total

89.7% 99.987% 89.6% 84%

28

*Iterations from beginning & middle only

 Many mallocs but few distinct malloc call traces

 Reasons mallocs are not accessed
 Same address malloc’d repeatedly  cache-resident

 Malloc was not accessed in profiled section of application

Ideal malloc behavior

 Good: A few, small, very dense mallocs

 Bad: Many, equally dense mallocs; densest are big

29

D
e
n
si

ty

Mallocs

Big density variation:
less work to manage

%
 a

cc
e
ss

e
s
 (

cu
m

u
la

tiv
e
)

S
iz

e
Mallocs

%
 a

cc
e
ss

e
s
 (

cu
m

u
la

tiv
e
)

Lots of accesses in a
very small region

More dense Less dense

Malloc density

30

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0

0.5

1

1.5

2

2.5

3

3.5

4

%
 o

f
to

ta
l

a
c

c
e

s
s
e

s

D
e

n
s
it

y
 (

a
c

c
e

s
s
e

s
/b

y
te

)

Malloc call sites, from most to least dense

Density

Accesses

0%

20%

40%

60%

80%

100%

0

0.25

0.5

0.75

1

1.25

1.5

1.75

%
o

f
to

ta
l
a

c
c

e
s
s
e

s

D
e

n
s
it

y
 (

a
c

c
e

s
s
e

s
/b

y
te

)

Malloc call sites, from most to least dense

Density

Accesses

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0

8

16

24

32

%
 o

f
to

ta
l

a
c

c
e

s
s
e

s

C
u

m
u

la
ti

v
e

 s
iz

e
 (

T
B

)

Malloc call sites, from most to least dense

Size (TB)

Accesses

0%

20%

40%

60%

80%

100%

0

1

2

3

4

5

6

7

8

%
 o

f
to

ta
l

a
c

c
e

s
s
e

s

C
u

m
u

la
ti

v
e

 s
iz

e
 (

G
B

)

Malloc call sites, from most to least dense

Size (MB)

Accesses

HPCGPENNANT

What are dense mallocs?

 PENNANT
 Hydro arrays

 A few of the Mesh arrays

 HPCG
 CG vectors

 Coarse grid: lower levels denser than higher

 But not a strict rule. E.g., Axf vector for all is ranked very high

 SNAP
 “Solvar“ working arrays, leakage arrays, flux moment arrays

 MiniPIC
 ParticleTypeList

 boundary_face_map, owned_boundary_edge_map, owned_face_map

31

Malloc analysis: Heavy vs Light

 Similar, especially at larger N

 Some difference if only looking at top 10-20
 Especially PENNANT

 For experiments shown next, generally put ~40-50 mallocs in HMC

32

0%

20%

40%

60%

80%

100%

1 11 21 31 41 51 61 71 81

%
 s

im
ila

ri
ty

Number of mallocs

HPCG

Heavyweight vs Lightweight: % of top N malloc call sites that are the same

0%

20%

40%

60%

80%

100%

1 11 21 31 41 51 61 71

%
 s

im
ila

ri
ty

Number of mallocs

PENNANT

Case Study: MemSieve vs. KNL

 Question: Do MemSieve results extend to real hardware?

 Simulated MiniFE in MemSieve
 4/5 top mallocs are vectors

 Matrix is ranked 6

 Other top mallocs are associated with #pragma omp statements

 Harder to capture

 Ran MiniFE on KNL testbed
 Manually placed vectors in HBM

33

0

1

2

3

4

5

DDR4
only

HBM only Vectors
in HBM

P
e
rf

o
rm

a
n
c
e
 n

o
rm

a
liz

e
d

to
 D

D
R

4

MiniFE on KNL testbed

1.5X

SST MLM API

 Developed API for managing MLM in simulation
 Ariel page allocation keeps track of separate memory pools

 Ariel intercepts every malloc / free and can allocate them on
simulated pages in a specified “default” or other pool

 Allocate into a particular pool – direct malloc replacement

 ariel_mlm_malloc(size, pool)

 ariel_mlm_free(addr)

 Flag that next malloc(s) should go into fast memory – useful for
getting to mallocs that are inside libraries or otherwise not accessible

 ariel_malloc_flag(ID, count, pool)

 Can provide simulation with a list of IDs of interest, rest are ignored

34

Manual allocation: PENNANT

 Large performance jump from 25% to 50% HMC

 Dynamic migration necessary

35

0

1

2

3

4

5

6

7

Greedy - page Greedy - malloc Static Dynamic

S
p

e
e

d
u

p
 o

ve
r

D
D

R
 o

n
ly

PENNANT

12.50% 25% 50% 100%

Manual allocation: HPCG

 Again, large jump from 25% to 50% HMC

 Page-based & static perform similarly

 Dynamic not better
 But granularity of migration is large

36

0

1

2

3

4

5

6

Greedy - page Greedy - malloc Static Dynamic

S
p

e
e

d
u

p
 o

ve
r

D
D

R
 o

n
ly

HPCG

12.50% 25% 50% 100%

MiniFE w/ Vectors

Manual allocation: SNAP

 Greedy-page performs the best
 Two large mallocs in SNAP, each 42% of total

 Medium/low density

 Once they don’t fit, HMC size / malloc strategy doesn’t matter

 Suggested code change
 Break up large mallocs to improve HMC utilization

37

0

0.5

1

1.5

2

Greedy - page Greedy - malloc Static Dynamic

S
p

e
e

d
u

p
 o

ve
r

D
D

R
 o

n
ly

SNAP

12.50% 25% 50% 100%

Manual allocation

Greedy - page Greedy - malloc Static Dynamic

SNAP 68% / 47% / 34% 52% / 52% / 38% 49% / 52% / 36% 44% / 44% / 40%

HPCG 92% / 49% / 26% 75% / 29% / 5% 93% / 47% / 23% 93% / 49% / 23%

PENNANT 62% / 34% / 20% 55% / 30% / 15% 67% / 33% / 20% 87% / 47% / 38%

38

Percent of memory accesses that go to HMC

 High fraction of accesses go to fast memory

 But still not at peak performance
 Experimental effect

 All HMC was simulated with all four memories as HMC

 MLM was simulated with 2/4 memories as HMC

 More parallelism with four, better traffic spread on ring

Topology comparison

 Similar trend

39

0

1

2

3

4

5

6

Greedy -
page

Greedy -
malloc

Static DynamicS
p

e
e

d
u

p
 o

ve
r

D
D

R
 o

n
ly

PENNANT

12.50% 25% 50% 100%

0

1

2

3

4

5

6

7

Greedy -
page

Greedy -
malloc

Static DynamicS
p

e
e

d
u

p
 o

ve
r

D
D

R
 o

n
ly

PENNANT

12.50% 25% 50% 100%

Heavyweight Lightweight

Conclusions

 Best path forward is likely to be OS-managed with
programmer hints
 ”Greedy” performs fairly well

 Programmer knowledge helps significantly in some cases

 Better performance will likely require algorithmic changes
 SNAP has a bin-packing problem with two very large mallocs

 HPCG may benefit from finer-grained migration

 Similar trends between architectures
 Unlikely to need to re-identify mallocs as architectures change

40

Potential for Processing-in-Memory

 MemSieve also useful for identifying candidates for PIM

 Want allocations that tend to be HMC-resident
 Allocations that move between caches & HMC increase PIM overhead

 Require flushes / coherence intervention

 Allocations that are likely to be in DDR are not candidates for PIM

 Require migration

 Suggestion
 #pragma omp loops figure frequently in malloc ranking

 Higher priority in Lightweight vs Heavyweight arch

 Small loops with no child calls

41

HARDWARE / AUTOMATIC
MANAGEMENT

42

Hardware management

 Hardware management of MLM at the page level
 Cache pages in HMC, page still resides in DDR

 Focus was hardware caching
 But, also possible to do caching via OS

 Usually, less information (hits, misses, etc.)

43

HMC is not “just another cache”

 Traditional caches provide higher bandwidth AND lower
latency as you move closer to the CPU
 HMC gives higher bandwidth but similar or higher latency

 Granularity
 Caches operate on block granularity (64B)  better locality

 HMC operates on page granularity  less locality?

 Due to size – complex to go smaller

 Low cost for adding things to traditional cache
 Due to granularity & access path

 HMC: Large pages, uses more bandwidth, “out-of-the-way”

 Low penalty for removing things from cache (usually)
 Similar for HMC

44

Automatic Page-Level Swapping

 Addition policies

 Replacement policies

45

Directory
Controller

DDR
Fast

Memory

MLM Unit

Mapping
Table

DMA

Policy
Dispatcher

Addition Policies Replacement Policies

• addT: Simple Threshold
• addMFU: Most Frequenly Used
• addRAND: 1:8192 chance
• addMRPU: More Recent Previous Use
• addMFRPU: More Frequent + More

Recent Previous Use
• addSC: Deprioritize streams
• addSCF: as addSC + More Frequent

• FIFO: First-in, First-out
• LRU: Least Recently Used
• LFU: Least Frequently Used
• LFU8: LFU w/ 8-bit counter
• BiLRU: BiModal LRU
• SCLRU: Deprioritize streams

Methodology

 SST
 Heavyweight architecture

 Apps
 Initial: Lulesh, MiniFE, rsbench,

miniaero

 Large runs: Pennant, Snap, HPCG

46

Core

L1

Core

L1

L2

Core

L1

Core

L1

Merlin
Router

Directory
Controller

Core

L1

Core

L1

L2

Core

L1

Core

L1

DDR

Ariel Trace Capture

PIN

"Fast"
Memory

MLM Unit

Mapping
Table

DMA

Policy
Dispatcher

Performance vs. Policy

47

0.2

0.4

0.6

0.8

1

1.2

1.4

addMFRPU addMFU addMRPU addRAND addSC addT addSCF

P
e

rf
o

rm
an

ce

Add Policy

Lulesh: MLM Performance vs Policy

BiLRU FIFO

LRU SCLRU

LFU8 LFU

0.2

0.4

0.6

0.8

1

1.2

1.4

addMFRPU addMFU addMRPU addRAND addSC addT addSCF

P
er

fo
rm

an
ce

Add Policy

MiniFE: MLM Performance vs Policy

BiLRU FIFO

LRU SCLRU

LFU8 LFU

Addition policy: big variation

Replacement policy: little variation

“What you put in matters more than what you take out”

Larger data sets

 Looked at highest performing
addition policies
 Variants of most-frequently used

 Baseline: random

 LRU replacement

48

0

1

2

3

4

5

6

7

1024 8192 65536

P
er

f
(1

=
n

o
 f

as
t

m
e

m
)

Pages

Pennant-b Performance: Addition

addMFRPU All Fast
addRand addSCF
addMFU

0

0.5

1

1.5

2

1024 8192 65536

Pe
rf

 (
1=

n
o

 f
as

t
m

em
)

Pages

Snap-p0 Performance: Addition

addMFRPU All Fast

addRand addSCF

AddMFU

0

1

2

3

4

5

6

1024 8192 65536

P
er

f
(1

=
n

o
 f

as
t

m
e

m
)

Pages

HPCG Performance: Addition

addMFRPU Series2

addRAND addSCF

addMFU

Fine Tuning
1. Thresholds

2. Page size

3. Throttling

49

0

0.5

1

1.5

2

0 20 40 60 80

P
e

rf
o

rm
an

ce

Threshold

Pennant Threshold

0

1

2

3

4

5

9 11 13 15

R
el

. P
ef

o
rm

Page Size (2x B)

Pennant Page size Effects

128M

256M

1.46

1.48

1.5

1.52

1.54

1.56

1.58

1.6

9 11 13 15

R
el

. P
ef

o
rm

Page Size (2x B)

snap-p0 Page size Effects

128M

256M

0.5

1.5

2.5

3.5

0 200 400 600 800 1000

P
er

fo
rm

an
ce

Threshold

MLM Performace vs. Threshold (addT/LRU)

CoMD

lammps

lulesh

miniFE

0

0.2

0.4

0.6

0.8

1

CoMD lammps lulesh miniFE
P

er
fo

rm
an

ce

Swap Thro0 ling

Thro; le

No Thro; le

Outline

 Methodology

 Design space exploration

 Software / manually managed MLM

 Hardware / automatic managed MLM

 Cost/Overheads

 Overall recommendations and conclusions
50

COST, PERFORMANCE, AND
OVERHEADS

51

Cost & Performance: Automatic

 40-380% performance
improvement

 Ultimate FoM: Cost

 Will Cost Kill it?

 Recommendations for HW

52

0

1

2

3

4

5

6

1024 8192 65536

Pe
rf

o
rm

an
ce

Performance vs. # Fast Pages

Pennant

snap-p0

snap-p1

Hpcg

0.5
1

1.5
2

2.5
3

3.5
4

4.5

1024 8192 65536

P
er

fo
rm

an
ce

 /
 C

o
st

Performance / Cost vs. # Fast Pages: Fast
x1.3 Cost

Pennant

snap-p0

snap-p1

Hpcg

0.5

1

1.5

2

2.5

1024 8192 65536

P
er

fo
rm

an
ce

 /
 C

o
st

Performance / Cost: Fast 5x Cost

Pennant
snap-p0
snap-p1
Hpcg

Not Worth It

Diminishing
Returns

Huh.

½
¼

1/8

Cost & Performance: Manual

 12.5%  no cost benefit

 Higher fraction of fast
needed compared to
automatic

53

0

1

2

3

4

5

6

12.50% 25% 50% 100%

P
e

rf
o

rm
a

n
ce

 /
 C

o
st

Fast memory

Performance / Cost: Fast 1.3X Cost

PENNANT SNAP p0 SNAP p1 HPCG

0

0.2

0.4

0.6

0.8

1

1.2

1.4

12.50% 25% 50% 100%

P
e

rf
o

rm
a

n
ce

 /
 C

o
st

Fast memory

Performance / Cost: Fast 5X Cost

PENNANT SNAP p0

SNAP p1 HPCG

Not Worth It

Diminishing
Returns

0

1

2

3

4

5

6

7

12.50% 25% 50% 100%

P
e

rf
o

rm
a

n
ce

Fast memory

Performance vs Fast memory size

PENNANT SNAP p0

SNAP p1 HPCG

Overhead: Automatic
 Automatic management

requires SRAM tables to
track active pages

 For large fast memories
and 4K pages, cost of
SRAM is considerable

 Makes large fast
memories questionable
for lower-performing
applications

 Manual alloc may be
better if lots of fast

 >4KB pages may be
better

54

0

0.5

1

1.5

2

2.5

0% 20% 40% 60% 80% 100%

R
el

. C
o

st

% Fast Memory

Memory System Cost

Main Memory SRAM Tabels

Total 100% Fast

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1024 4096 16384 65536

Pe
rf

o
rm

an
ce

 /
 C

o
st

Performance / Cost: Fast x1.3 , SRAM x150

Pennant

snap-p0

snap-p1

Hpcg

Effort: Manual

 MemSieve helps identify dense mallocs
 Still requires manual effort to match backtrace locations to application

 Sometimes involves looking through assembly
 Process took 1-2 days per application
 Can we do better?

 Hard to know if we’ve really gotten “best” mallocs
 Know from smaller tests that MemSieve’s miss rates are accurate

 Difficult to mark all mallocs manually
 Some within libraries

 std::vector::push_back()
 #pragma omp

 Fortran local arrays – no standard for allocating in fast memory

 Enabling MLM in libraries will require some OS intervention
 How to share between application and libraries?

 Multiphysics applications

 What if OS wants to use it too?

55

RECOMMENDATIONS AND
CONCLUSIONS

56

Conclusions

 Manual management is feasible
 Bandwidth-bound codes requires dynamic migration

 Developed a tool, MemSieve, to analyze memory behavior and assist
with manual placement

 Automatic management is comparable to manual
 What you put in is more important than what you take out

 Will require vendor support (caching policies, extra hardware
structures)

 Some applications will require algorithmic changes to take
advantage of HBM/HMC
 MiniPIC, SNAP

57

Recommendations

 Bandwidth cannot come at the cost of latency

 Cost-performance analysis recommends 12.5% HBM/DDR
 But, as cost drops, rapid rise in recommended ratio

 More for manual management  harder, needs more “slack”

 MLM management
 Assuming vendor support – hardware caching at page level

 Most frequently used policy with possible stream deprioritization

 No burden on programmer

 Good performance

 Assuming no vendor support

 Manual allocation in OS with programmer hints

– Not directly evaluated here

– Highest potential performance with lowest programmer effort

 Dynamic migration capability
58

Future directions

 Power analysis

 Hardware and software overheads
 Hardware area/latency for caching

 “Real” Applications

 Future memory technologies
 >2 levels

 Automatic management in software

 With programmer hints

59

Milestone criteria

 Analyze the feasibility of next-generation memory system
architectures to increase performance of ASC applications
 Analyzed performance of four APEX/ASC apps on MLM architectures

 Evaluated the performance and overhead/cost of managing MLM
automatically versus manually

 Quantify improvements in the memory system performance
or power compared to conventional memory systems
 Measured performance of applications on two architectures

compared to traditional DDR-only memory systems

 Explore the memory system design space
 Analyzed the effect of increased latency, increased bandwidth, and

different capacities and topologies (light vs heavyweight) on
performance

 Evaluated various hardware caching schemes 60

Milestone criteria, cont.

 Determine the overall impact on the applications, system
software, and system balance
 Explored automatic and manual management of MLM

 Determined feasible performance in light of tradeoffs in overhead and
programmer effort

 Determine the impact of performing some computation,
synchronization, or data movement operations in the
memory system
 Analyzed memory usage to determine which constructs might benefit

from PIM

61

Photos placed in horizontal position
with even amount of white space

between photos and header

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2016-8726C

Backup slides

Page-Level Analysis

 Intra-page accesses
 Post-cache

 Streaming common

 Thread access patterns
 Most 4K pages only

accessed by one thread

64

(a)

(b)

(c)

MiniPIC

 Split time step into three parts
 Charge weight & solve

 Efield weight – profile 30%

 Move – profile 2%

 8GB
 27.4M particles

 2GB
 5M particles

 APEX “small”
 100M particles

65

HPCG

 HPCG 3 with “-DCONTIGUOUS_ARRAYS”
 Only looking at ‘main’ CG loop

 Profile 1-2 iterations (2 in MemSieve, 1 otherwise)

 8G
 272 x 272 x136

 Matches APEX “small”

 4G
 192 x 192 x 136

 1G
 112 x 112 x 112

66

SNAP

 Nested loop: timestep  outer  inner
 Profiling one inner iteration

 8G
 nx =128; ny = 16; nz = 20

 1G
 nx=32; ny=12; nz=16

 APEX “small”
 nx = 160; ny = 16; nz = 24;

67

PENNANT

 Profiling two iterations

 8G
 leblancbigx6

 1G
 leblancbigx2

 APEX
 “small” : leblancbig (leblancx1)

 “medium”: leblancx4

68

Heavyweight Architecture

 Eight cores

 Ring topology

 Four memory controllers

 Distributed shared L3

 Each core has a private L1 & L2

69

L3Core

Mem

Core

L3

Core

Core

Core

Core

Core

Core

L3

L3

L3

L3

L3

L3

Mem

Mem

Mem

Lightweight Architecture

 72 cores – less powerful than
heavyweight
 Lower clock, fewer requests per

cycle

 Mesh topology

 Each core has private L1

 Each pair of cores has a shared L2

 Eight HMC memory controllers

 Six DDR memory controllers

70

HMC

DDR

Tile: Two cores with private
L1s and a shared L2

Performance of manual allocation

 Greedy doesn’t do
too badly

 Dynamic necessary
for PENNANT

71

1

2

3

4

5

6

7

Greedy -
page

Greedy -
malloc

Static Dynamic

S
p

e
e

d
u

p
 o

ve
r

D
D

R
 o

n
ly

PENNANT

12.50% 25% 50% 100%

1

2

3

4

5

Greedy -
page

Greedy -
malloc

Static Dynamic

S
p

e
e

d
u

p
 o

ve
r

D
D

R
 o

n
ly

HPCG

12.50% 25% 50% 100%

1

1.2

1.4

1.6

1.8

Greedy -
page

Greedy -
malloc

Static Dynamic

S
p

e
e

d
u

p
 o

ve
r

D
D

R
 o

n
ly

SNAP

12.50% 25% 50% 100%

HMC Validation

 After fix, trends match
 Still some differences in the absolute numbers

72

0

0.2

0.4

0.6

0.8

1

1.2

All quads Own quad Own vault Own bank Same quad Same vault Same bank

B
a
n
d
w

id
th

 n
o
rm

a
liz

e
d
 t

o
 "

O
w

n
 q

u
a
d
"

Access Pattern

HMC hardware GoblinHMC - original GoblinHMC - bug fix

