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ABSTRACT: In this paper, we consider two four-dimensional Horndeski-type gravity the-
ories with scalar fields that give rise to solutions with momentum dissipation in the dual
boundary theories. Firstly, we study Einstein-Maxwell theory with a Horndeski axion
term and two additional free axions which are responsible for momentum dissipation. We
construct static electrically charged AdS planar black hole solutions in this theory and
calculate analytically the holographic DC conductivity of the dual field theory. We then
generalize the results to include magnetic charge in the black hole solution. Secondly, we
analyze Einstein-Maxwell theory with two Horndeski axions which are used for momentum
dissipation. We obtain AdS planar black hole solutions in the theory and we calculate
the holographic DC conductivity of the dual field theory. The theory has a critical point
a + vA = 0, beyond which the kinetic terms of the Horndeski axions become ghost-like.
The conductivity as a function of temperature behaves qualitatively like that of a conduc-
tor below the critical point, becoming semiconductor-like at the critical point. Beyond the
critical point, the ghost-like nature of the Horndeski fields is associated with the onset of
unphysical singular or negative conductivities. Some further generalisations of the above
theories are considered also.
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1 Introduction

Gauge/Gravity duality has served as a powerful tool in understanding the phenomena of
strongly coupled systems in condensed matter physics [1-4]. Especially, much attention has
been paid to the holographic description of systems with momentum relaxation. Such sys-
tems with broken translational symmetry are needed in order to give a realistic description
of materials in many condensed matter systems.

Since momentum is conserved in a system with translational symmetry, a constant
electric field can generate a charge current without current dissipation in the presence of
non-zero charge density. Thus, the conductivity of the system would become divergent
at zero frequency. In more realistic condensed matter materials, the momentum is not
conserved due to impurities or a lattice structure, thus leading to a finite DC conductivity.

In the context of holography, there are various ways to achieve momentum dissipa-
tion, such as periodic potentials, lattices and breaking diffeomorphism invariance [5-19].
Among these, the model in [13] is particular simple. It comprises an Einstein-Maxwell
theory together with a set of minimally-coupled massless scalar fields that have linear de-
pendence on the boundary coordinates. These axionic scalars preserve the homogeneity
of the bulk stress tensor, since they have no mass terms or interactions that would break
translational invariance.

In this paper, we shall generalise the models with momentum dissipation that were
constructed in [13] by introducing non-minimal Horndeski type couplings of some of the



scalar fields to gravity. The Horndeski theories were first constructed in the 1970s [20],
and they have received much attention recently through their application to cosmology in
Galileon theories (see, for example, [21]). A characteristic feature of Horndeski theories
is that although terms in their Lagrangians involve more than two derivatives, the field
equations and the energy-momentum tensor involve no higher than second derivatives of
the fields. This is analogous to the situation in Lovelock gravities [22].

Specifically, we shall generalise the model in [13] in two parallel ways. Firstly, in sec-
tion 2, we shall consider a Horndeski extension of an Einstein-Maxwell plus scalar theory
in which two minimally-coupled axions that provide the momentum dissipation are sup-
plemented by a third axion with a non-minimal Horndeski coupling. Although this axion
has a significant effect in terms of modifying the geometrical structure of the black hole
background, we find that the DC conductivity in the boundary theory is essentially unal-
tered, at least if one expresses the result as a function of the black hole horizon radius. In
section 3, we shall consider instead an Einstein-Maxwell theory with Horndeski couplings
to the two axions that provide the momentum dissipation. Here, we find that the effects
of the non-minimal Horndeski couplings are much more substantial, and in fact as the
strength of the non-minimal term is increased to a critical value, the qualitative behaviour
of the conductivities as a function of temperature changes. Below the critical coupling the
high-temperature behaviour is similar to that of a metal, whilst at the critical coupling the
behaviour becomes more like that of a semiconductor. We summarize our results in section
4. In appendix, we extend the theories and solutions that we studied in the main text to
arbitrary spacetime dimensions.

2 Momentum dissipation with Horndeski term

2.1 Electrical black hole

In this section, we consider AdS planar black holes of Horndeski theory in four dimensions.
The solutions have been constructed in [23, 24], and the thermodynamics have been studied
in [25, 26]. In these solutions, the Horndeski axion x depends on the radial coordinate. In
order to achieve momentum dissipation, we include two additional free axions ¢; as in [13]:
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where k, a, 7 are coupling constants, G,, = R, — %ng, is the Einstein tensor, and
F = dA is the electromagnetic field strength. The equations of motion with respect to
the metric g"”, the Maxwell potential A,, the Horndeski scalar x and the axions ¢; are
given by
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One of the remarkable properties of a Horndeski theory is that each field has no higher than
second-derivative terms in the equations of motion, even though the Lagrangian involves
larger numbers of derivatives (up to four derivatives, in our case). Although terms quadratic
in second-derivatives are present, linearised perturbations around a background will involve
at most second-order linear differential equations, and thus can be ghost free.

We are interested in static planar black hole solutions in this paper. In this section,
we shall take the Horndeski axion y to depend only on the radial coordinate, whilst the
two additional axions ¢; span the planar directions:

ds* = —h(r)dt* + d—TQ + r2datds’
f(r) 7
x=x(r), A=a(r)dt,  ¢1=2Ar1,  ¢2= A2, (2.3)

where A is a constant. The Maxwell equation can be used to express the electrostatic

potential in terms of the metric functions, as
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where ¢ is an integration constant, parameterising the electric charge, and a prime denotes
a derivative with respect to . The equation of motion for the Horndeski scalar x can then

be written as

< i(y(rfh’ + fh) — ar2h) x’)l =0. (2.5)

Following [23, 24], we focus on the special class of solutions obtained by taking
vf(rh' +h) — ar’h =0. (2.6)

With this, we can solve the Einstein equations and obtain the black hole solution
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where the parameters are such that

a =3¢, A = —3¢° <1 + ﬁ’}’> . (2.8)
2K
The solution has non-trivial integration constants p, ¢ and A, together with a pure gauge
parameter ag. The Hawking temperature can be calculated by standard methods, and is
given by
69°r4 (B + 4k) — w(g* + 2X°r7)
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where rg is the radius of event horizon, which is the largest root of h(r) = 0.

T =

(2.9)

2.2 DC conductivity

There are many ways to compute the holographic conductivities. For the DC conductivity,
a simple method makes use of the “membrane paradigm” [18, 27-32]. The key point is
to construct a radially conserved current, which allows one to read off the holographic
boundary properties in terms of the black hole horizon data. Here, we shall follow the
procedure described in [29].

We consider perturbations around the black hole solutions, of the form
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The equation of motion for the vector field 0,(,/gF"™) = 0 implies that we can define a
radially-conserved current
J = RkygF"™. (2.11)

Explicitly, this current is given by
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Regularity on the horizon requires that

E
a, = ———= +O(1). (2.14)
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'Note that the perturbation 1, is non-dynamical, and could in fact be removed by a coordinate trans-
formation. We choose to keep it here in order to make the presentation parallel with the one we shall give
below when a magnetic field is turned on, since in that case one cannot remove the analogous perturbations
by means of a coordinate transformation.



The last equation in (2.13) shows that near horizon,
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With these, we can evaluate the current on the horizon, finding
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and hence the conductivity is given by
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Interestingly, even though the theory we are considering here, and its black hole so-
lutions, are much more complicated than the Einstein-Maxwell theory with linear axions
that was studied in [13], the Horndeski scalar x does not explicitly contribute to the con-
ductivity when o is expressed in terms of g, and hence the result (2.17) is the same as
n [13]. Of course, the Horndeski term modifies the relation between the temperature and
r0, and so in the o(7T") expression the Horndeski term has non-trivial effects. However at
large T' (corresponding to large 7, with T' ~ 3¢®r¢/(47)), the o(T) dependence approaches
that obtained in [13].

2.3 Dyonic black hole

We can obtain a more general class of dyonic black hole solutions, by extending the ansatz
for the vector potential in (2.3) to include a magnetic term:

B
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We find the dyonic black hole solution is given by

b1 = Az, P2 = Azg.
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It is interesting to note that this dyonic solution is rather simply related to the previous
purely electric solution by means of a replacement in which the quadratic powers of ¢



in (2.7) are sent to ¢> + B2, while the linear powers of ¢ are left unchanged, in the sense
that one makes the formal replacements

q9—q, ¢F—=¢+B%, ¢ —qld+BY). (2.20)

The Hawking temperature for the dyonic black hole is given by
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We are now in a position to calculate the DC conductivity in the dyonic black hole
background. In this case, we turn on perturbations in both the spatial boundary direc-

tions ¢,
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Following similar methods to those we used in the previous subsection, we construct a
radially-conserved 2-component current

Ji = K JgF™ . (2.23)

The regularity conditions on the horizon are
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The currents can be evaluated on the horizon, and we define the conductivity matrix by
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Explicitly, the conductivity matrix elements are given by

23 (B2 + ¢ + N2r3)

011 = 022 = B4 —|—B2 (q2 +2)\2T(2)) +)\4'I"6 )
Bq (B* + ¢* +2X*r§
712 = —021 = 53 (2 2 2.2 d 14 (2.26)
Bt + B2 (¢ 4+ 2X%1) + Arg
The Hall angle is defined (for small angles) by
B B2 2 2)\2 2
6, — 012 _ Ba(B® + 4" +2\r5) (2.27)

o1 A2 (B2+q2+ A2

As in the purely electrically-charged black holes, the inclusion of the Horndeski scalar x
does not modify these transport quantities when they are expressed in terms of the rg
variable. In particular the Hall angle goes to zero at high temperature, as 0y ~ 1/72.



3 Momentum dissipation using Horndeski axions

3.1 Dyonic black hole

In this section, we consider a system in which the axionic scalars that provide the mo-
mentum dissipation are themselves taken to have Horndeski couplings rather than minimal
couplings to gravity. The Lagrangian describing the theory is given by

2
1 2 1 v v

We shall assume that « is positive, and so for v = 0 we recover the Einstein-Maxwell theory
with two free axions, proposed in [13]. The equations of motion are
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It is clear that these equations admit a pure AdS vacuum solution where R, = A g, and
the electromagnetic and scalar fields vanish. In this vacuum, the effective kinetic term for
the Horndeski axions y; becomes

1
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This will be of the standard sign, signifying ghost-freedom, if (o + vA) > 0. In this paper
we shall consider only solutions for which A is negative. Stability requires that (a + vA)
should be non-negative, but novel features can arise at the critical point where (a + yA)
vanishes. (An analogous situation can also arise in Einstein-Gauss-Bonnet theories, see,
e.g., [33].) Thus + lies in the range

—oo<’y§(_aT). (3.4)

Typically, the cosmological constant is viewed as a fixed parameter that is part of the
specification of a theory, but it can alternatively arise as an integration constant for an

n-form field strength in n dimensions. Thus here we may replace the cosmological constant

term in (3.1) by a term

1 2
Liy = 5 oo (3.5)



The equation of motion for F(4 can be solved by taking F},,,; = \/ﬂewpg, where A is
an arbitrary non-positive constant that acquires an interpretation as the cosmological con-
stant. In this new theory, one may treat the “cosmological constant” as a thermodynamic
variable, which has an interpretation as a pressure (see, for example, [34, 35]). Changing
the cosmological constant, i.e. the pressure, can lead to a phase transition from a stable
to an unstable regime as the sign of (o + yA) turns negative. The critical point where
(o + yA) vanishes gives, as we shall see, some interesting features in the boundary theory.

We now construct dyonic AdS planar black holes where the two Horndeski axions are
linear functions of the spatial boundary coordinates x;, i.e.,

ds* = —h(r)dt* + dr” + r’dz'da’
f(r) ’
B
A = a(r)dt + 5(x1dx2 — xodxy) Xi = Az;. (3.6)

The equations of motion for the axions are trivially satisfied. The Maxwell equation im-
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where ¢ is an integration constant. With this, the Einstein equations give
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These equations can be easily solved, leading to the black hole solutions
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where erfi(z) is the imaginary error function, defined by erfi(z) = 27 ~1/2 Iy ¢’ dz. The
asymptotic forms of the metric functions near infinity are given by
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which shows that the solution is asymptotic to dS or AdS for A > 0 or A < 0 respectively.
Since we are interested in the transport properties of the dual boundary theory, we shall
focus on the AdS case, and so we shall assume A < 0 in the rest of this section. The
Hawking temperature is given by

(—4/<;Ar§ — k(¢® + B?) — 2a)\2r(2)) ( A2 >
ex

T =
167r/<;7"8

3.11
4/<;r8 ( )

Although the linearised equations of motion for the Horndeski terms are of two deriva-
tives, it is still necessary to check the sign of the kinetic terms for possible ghost-like
behaviour. The kinetic terms for the perturbative axions J§y; are given by

2
1
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In order to avoid ghosts, the P%° component of P*¥, which is given by
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should be non-negative, both on and outside the horizon. The asymptotic form of P% near
infinity is given by

A) A% (902 + 12ayA + 572A? 1
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The positivity of P% therefore implies, as a necessary condition, that a+yA > 0 (assuming,
as we are, that A < 0). In the case of equality, a+~vA = 0, the leading term of P vanishes
and the asymptotic form of P% becomes simpler, with

242
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which is still greater than zero. It can then be checked from (3.13) that P is indeed
always positive in the region from the horizon to infinity when « and « are both positive.

3.2 DC conductivity and Hall angle

Now, we turn to the calculation of the DC conductivity of this system. We follow a similar
procedure to the one described in the previous section. Here we shall omit the details of
the calculation, and just present the final results. We begin with the simpler case where
B =0, for which we find the conductivity is given by

4/4,3(]27‘8
A2 (4krg(a 4+ yA) + 207\ + vRg?)

o=kKk+ (3.16)
When v = 0, this result reduces to (2.17). This demonstrates that the couplings of the
axions for dissipative momenta plays a crucial role in shaping the conductivity. Although
o contains the same “charge-conjugation symmetric” term , as one would expect, it has



a very different “dissipative” term associated with A that has a richer structure. At large
T, however, it has the same qualitative behaviour as that of the Einstein-Maxwell case in
the high-temperature limit for generic parameters
K2¢2 K22 N2 1
Kt 55— ~E+ s — -
N2ré(a+yA) 167202 (a +~vA) T
On the other hand, at the critical point o + yA = 0, the temperature dependence is

g ~

(3.17)

characteristically different. The denominator of the dissipative term in (3.16) has three
contributions, with the leading-order power of ¢ being proportional to (o + yA). When
a+~A is positive, the conductivity rises from a positive in initial value at zero temperature,
rises to a peak, and then decreases to a constant value at high temperature.? Especially,
when v = 0, the conductivity decreases monotonically from its initial value as the temper-
ature increases, behaving much like a normal conductor. If on the other hand o+ yA = 0,
the conductivity monotonically increases with temperature, approaching a constant in the
high-temperature limit. This behaviour is closer to that of a semiconductor [36, 37]. We
illustrate the various behaviours in figure 1, where the parameters are fixed such that
k=a=gq=1and A =1/2. In the left-hand diagram we fix also A = —3 and display the
plots of o versus T for four representative values of v. The top curve corresponds to the
critical case (o + yA) = 0, while the lower curves correspond cases with (o +~vA) > 0. In
the right-hand diagram we instead fix v = 1/3 and display plots for various values of A,
again with the critical case (a4 yA) = 0 being the curve at the top, with the lower curves
having (a«++A) > 0. The critical case can be thought of as representing a phase transition
where the high-temperature behaviour of the material changes from that of a metal (o falls
to a small constant k as T increases) to a semiconductor (o rises to a limiting value as T
increases) in the critical case. From the bulk point of view, the transition can be viewed
as being induced when the pressure (~ (—A)) becomes sufficiently large.

It is interesting to note that in the left-hand diagram in figure 1, all the conductivity
curves originate from the same value when 7' = (0. The reason for this can be seen from
the expressions for the temperature and the conductivity, namely

A2
e5 (AkArd + 2a72r2 + kg2
yA L Ly 20 “) (3.18)
167 KTy
4 3,.,2,.2
o= K+ "4 To (3.19)
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The temperature becomes zero when the factor in parentheses in (3.18) vanishes, and
then (3.19) implies that the corresponding zero-temperature conductivity is given by

K2q2
0) = —, 3.20
o0) =5+ o (320)
with rg being given by
)\2 20— 4K202A
e i i na (3.21)

4k(—A)

2This phenomenon was observed in [19], where massive gravity was used to achieve momentum dissipa-
tion.
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Figure 1. Plots of the conductivity o versus temperature, for various parameter choices. In each
diagram we have set Kk = @« = ¢ = 1 and A = 1/2. In the left-hand diagram we fix A = —3 and
take various choices for the parameter v. The top line has the critical value v = 1/3, for which
(a+~vA) = 0. In the right-hand diagram we instead fix v = 1/3 and take various choices for the
parameter A. Again, the top line corresponds to the critical value. In both diagrams, the lower
lines all correspond to (a + yA) > 0, and they approach k (which we have set equal to 1 for the
purposes of these plots) at large T.

Thus at fixed A, with &, a, ¢ and A also fixed as in left-hand diagram, the zero-temperature
conductivity is independent of . By contrast, if 7 is fixed instead of A, as in the right-hand
diagram, the zero-temperature conductivity does depend on A.

We have not included plots for values of the parameters for which « + «A is negative.
Here, the dissipative part of the conductivity can be negative, and for a range of temper-
atures the full expression for the conductivity can be negative or divergent. This suggests
an unphysical instability, and is in fact consistent with our previous observation that the
Horndeski axions acquire ghost-like kinetic terms when a + vA is negative.

It follows from figure 1 that the conductivity is always great than 1, and approaches
1 as temperature goes to infinity except at the critical point (a + A = 0). This can be
easily seen also from (3.16) and (3.19) when setting x = 1. Therefore, the conductivity of
this model satisfies the bound proposed in [38, 39]. (It was pointed out that this bound
could be violated by introducing higher derivative couplings [40].)

The case when B # 0 is considerably more complicated, and we shall not present the
general expression for the conductivity matrix here. However, in the high temperature
limit we find that it takes the form for oo + A > 0

K22 (q2 _ BQ)

* 16m2X2 (o + yA) T2’

k?A%¢B
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and the Hall angle is given by
0y ~ kA%qB +A3qB (2042/\4 + 2072 A + A (—BQ/@2 + 2 NA — /12q2)) (3.23)
8m2A2 (v + yA)T? 2567\ (v + yA)2 T T
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At the critical point a + YA = 0, the conductivity and Hall angle at high temperature

become
VERNA (VAN — 262(¢% + B?)) 1
O =92 ™ Y BaA 42 (k4q% — v2K2AAA) + +4A8A2 <T2> ’
10— —a ~ 4Br3q (k*(¢* + B?) — v*X1A) <1>
4Bk 4+ 4B? (k%q? — y2k2MA) + A8 A2 T2 )’
S Y I TR R
VA (—2B2K2 + y2NA — 2K2¢2) T2 )" ’

In particular, the Hall angle approaches a constant at large T. At T" = 0, on the other
hand, which occurs when the factor in parentheses in the numerator in (3.11) vanishes, the
conductivity and Hall angle become

om)\Qrg (an + kqg® + a)\2r§)
B*k2 + B2k (kg? + 2002r3) + o2 X4}
Brk?q (BQK + rkg® + 204)\21"(2))
B*k? 4+ B2k (kq? + 2aX\*1d) + o2 X4
kqB (B%k + Kg* + 2a2?r})

0(0) = , 3.25
1(0) ar?rd (B%k + kg% + aX?r}) (3:25)

011 = 022 =

where

ar? 4+ /a2A1 — 452N (B2 + ¢?)
= . 3.26
"o —4kA (3:26)

It is of interesting to note that at 7' = 0, both ¢’s and 0 are independent of . This

implies that in the zero temperature limit the DC conductivities and Hall angle are the
same as those in the Einstein-Maxwell case (2.26), (2.27), if the results are expressed in
terms of the horizon radius r¢ and we set a — k.

4 Conclusions

In this paper, we studied two four-dimensional gravity theories involving scalar fields with
non-minimal Horndeski-type couplings to gravity. We first considered Einstein-Maxwell
gravity with one non-minimally coupled Horndeski axion and two minimally coupled ax-
ions. The two minimally coupled axions have linear dependence on the spatial boundary
coordinates, and they generate momentum dissipation in the standard way. We constructed
a charged AdS planar black hole in the theory, and calculated the holographic DC con-
ductivity in the dual field theory. Interestingly, although the Horndeski scalar in these
solutions plays a role in determining the geometry of the black hole background, it does
not contribute directly to the conductivity. To be precise, if written in terms of the horizon
radius g the conductivity is the same as that in Maxwell-Einstein gravity.

In the second model, we used two Horndeski axions, non-minimally coupled to Einstein-
Maxwell gravity, to drive the momentum dissipation. We obtained a static AdS black hole
solution in the theory. We analyzed the kinetic terms of the axion perturbations, and

- 12 —



showed that the theory has a critical point at a + yA = 0. When a + yA < 0, the
kinetic terms of the axion perturbations become negative, implying that the excitations
become ghost-like. We then obtained the conductivity in the dual boundary theory, and
found that the conductivity has two terms, a “charge-conjugation symmetric” term and
“dissipative” term as usual. However, the dissipative term has richer features than in
a standard minimally-coupled theory. At the critical point o + yA = 0, the conductivity
increases monotonically as a function of temperature, which is typical of the behaviour in a
semiconductor. When a++yA > 0, on the other hand, the conductivity rises to a maximum
then falls, finally approaching a constant. In the special case v = 0, corresponding to
turning off the Horndeski modification of the usual minimal coupling of the axions, the
conductivity decreases monotonically with temperature, and the behavior is more like a
normal conductor. We chose a set of parameters in the paper and plotted the conductivity
versus temperature curves for various values of «, in figure 1. We showed that from the
critical point v = —a/A to the special case v = 0, the behavior of the conductivity as
a function of temperature changes from that reminiscent of a semiconductor to that of a
normal conductor.

Momentum dissipation is the key for obtaining finite holographic DC conductivity.
While free axions provide one of the simplest models for such a mechanism, the resulting
DC conductivity generally tends to have a fairly simple structure whose qualitative features
are independent of the parameters. Our work demonstrated that using non-minimally
coupled axions in the momentum-dissipation mechanism can lead to a much richer pattern
of holographic DC conductivities.
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A Higher dimensional case

In this section, we generalise the theory in section 2 to include N p-form fields in arbitrary

dimension,
1 A AN |
L= K<R —20 - PP Z; 2—]0!(;;?)) ) — 5(ag" =1G") dux dyx, (A.1)

where x, a and v are coupling constants, G, = Ry, — %Rg,w is the Einstein tensor, FF = dA
is the electromagnetic field strength and F? = d. A’ is one of the form fields which span all
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spacial dimension with Np = n — 2. The equations of motion are given by
i\ 2
“(Guu + Ag;w - 2F3y + F2guu) + Z |: P) 47(‘7:1> g;w:|

1 1 1 /1
—5¢ ((%)@X - 29W(8x)2) - 27<28MX8VXR —20,X Oux Ry’

1
_8,0)(80)( R,upyg - (vuva)(vl/VpX) + (V#VZ/X)DX + iGHV(GX)Q

1 1
" [ STV, V%) + 5 (OX) — pxdox RD 0,

Vi((ag™ —1G*")WVyx) =0,  V,F"" =0, V,F" 7" 1=0 (A.2)

We consider static planar black hole ansatz

ds* = —h(r)dr® + ar +r?da'dz’
f(r)

x =x(r), A=a(r)dt, .Fi:)\dwﬁ/\'--/\dx;. (A.3)

where A is a constant. The Maxwell’s equation can be used to express the electrical
potential in terms of metric functions

a —qﬁ 2=n (A.4)

where ¢ is an integration constant. And the equation of motion for scalar can be written as

<r"4\/Z(fy((n = 2)rfh + (n—2)(n - 3)fh) — 2ar2h> x’)/ =0, (A.5)

We focus on a special class of solution, as what we did in section 2, by letting
v((n—2)rfh + (n —2)(n — 3) fh) — 2ar*h = 0. (A.6)

Under these setup, we can obtain the black hole solution

q N Kq°

(083 BT~ D AT
NrX2q
g2(n —2)(n —1)(n +2p — 3)(By + 4r)rn2p=3~
B 5 B /{(q2 +N)\2r2n72p74) L
B vg* (% = 3n +2) r2n=t \/f’
g*(n — 2)%(n — 1)2(By + 4r)?rin—8 L
(kg% — g% (n? = 3n+2) (By + 4k)r2n—4 + N/i/\27"2”—2p_4)2 ’
2Kq>

h = g2r2 _ H

T + (n —3)(n —2)(By + 4k )r2n—"

a = ag —

+

f=
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K2q* 2N kA2

TP =30 — 22— )(By + 420 (n—2)(n — 2p — 1)(By + dr)r 2
NZi2\4

"2 = 22(n = 1)(n — dp — (5 + An)2r
IN 212 .2

- KA , (A7)

P (n—22(n— D)+ 2p— 8)(Fy + dm)Er2HS
with parameters under constraint
1 1
o= §(n—1)(n—2)g27, A:—g(n—l)(n—2)g (1—1—57) (A.8)

B Einstein-Maxwell-Dilaton theory with Horndeski axions

In section 3, we studied the theory of Einstein-Maxwell gravity with two non-minimally cou-
pled Horndeski axions. Here, we give a generalisation in which we include also a dilatonic
scalar field with an exponential coupling to the Maxwell field, and exponential potential
terms. The Lagrangian is given by

2
1 1
L=k [R —2AeM¢ oVt (a¢) 51¢F2] > 5 (@g" =1G") 9uxi Oyxi - (B1)
i
where dg, 01,02, Vy, k,7, and « are constants. The second potential term, with coefficient
Vb, is required for the case where a magnetic field is included. The equations of motion are
given by

1 1
H(G“y + (A650¢ + V(J€62¢)g,uu _ #¢8y¢ + = (ad)) G — 5661¢F3,, + 8661¢F29#V>
1 2
- Z MX’L OuXi — §guu(aXi)

- Z < ;LXz quR 28sz 8(uXi R[/)p - pXiachi R#pya
1
_(Vuvai)(vuvai) + (VuvuXi)DXi + §G,u1/(aXi)2

1 1
“ 9w { - §(vvaXi)(vpvaXi) + §(DXi)2 — OpXiOo Xi Rpg}) =0,
Vi(lagh —4G"™)V,xi) =0,  E4 =V, (eMF") =0,

1
Cg — 2A80€%0% — 2Vde%2% — Z5165“1)}?2 =0. (B.2)

We consider the static planar black hole in four dimensions
ds* = —h(r)dr® + ar + r’dz'da’
f(r) ’
B
Xi = Az, A=ua(r)dt+ g(xldmg — xodzy), ¢ = plogr, (B.3)
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where A, 8 and B are constants. The Maxwell equation implies

a = qﬁr_Q_élﬁ. (B.4)

We find that there are two inequivalent classes of solutions, where the parameters (dg, 91, d2)

are given by

2 J5; 5 4
lass 1: = —— == ===
Class 50 ﬂ s 51 9 52 9 B s
2 2 6
Class 2 : 50:—3, (51:—5, (52:_B (B5)
In both classes we have
152 2
h=Uf, U =r3P cam? |
For class 1 we find
_ax? a)? 3 1 yA?
= w2 | ———  Fi | = - R2 _
f=en [ﬁ(ﬂ2—4) 1<2+8ﬁ ’ 4f<;r2>
B oiip (103 5 AN
2 Eil=+252
ooyt Bl T e
1 11 A2
_§q2 7“_2_%52 Fi (2 - gﬁQa _ZHT2> - /“”_1_‘1152] ) (B'ﬁ)
with parameters
242 22
T S B.7)
26(4 = B?) 4(4 - B?)
Ei is the exponential integral, defined by
Ei(z, z) /oo tFe Mt dt =T(1—2)2* ' =Y (z2)" (B.8)
HWZ,T) = e = —z2)x _ L S — .
1 nzon!(n—f—l—z)
The Hawking temperature for the class 1 solutions is given by
1221 g 82
e4rrd réﬁ (432/04632 — (52 — 4) Kkq® + 804/\27“02 +2)
T = (B.9)

167 (8% — 4) krd

The positivity of temperature require 52 > 4. In the large ro limit, the temperature

approaches
2
BQT((]/B _3)
For the class 2 solutions we find
2 2 2
fo e [l g (3 1
k(B2 —4) 2 8 4kr?
B? VA S P 1
e el G R Catee) BT LSS
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with parameters

2 212 2 4 2 B2 2 4
1R(B2 — 1) 112 )

The Hawking temperature for the class 2 solutions is given by
221 (19 — B2 2 2,4 _ B2 2_ 4y

2(8% — 4)(12 — B?) krrf)

It can be seen from the series expansion for the exponential integral function given in (B.8)
that in the case of the class 2 solutions, the non-integer powers of 7~! that arise, for generic
values of 3, in the large-r expansion of the metric function f can be removed altogether if
the constant u is chosen to be given by

1 12
A2 5tg8 2B2k2(582 — 4 22 2

_ o lg
W= F(2 8/6)< Ak Y2 A2 (52 —12) (Br—16)k |-
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