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Abstract: In this letter, we present a nanophotonic device consisting of plasmonic nano-patch array with integrated 

metal-organic framework (MOF) for enhanced infrared absorption gas sensing. By designing a gold nanopatch 

array (Au-NPA) on a sapphire substrate, we are able to achieve enhanced optical field that spatially overlaps with 

the MOF layer, which can adsorb carbon dioxide (CO2) with high capacity. Experimental results show that this 

hybrid plasmonic-MOF device can effectively increase the infrared absorption path of on-chip gas sensors by more 

than 1,100-fold. The demonstration of infrared absorption spectroscopy of CO2 using the hybrid plasmonic-MOF 

device proves a promising strategy for future on-chip gas sensing with ultra-compact size.  

Introduction 

Metal-organic frameworks (MOFs), a new class of nanoporous materials, have attracted intensive research 

interests due to their large surface area and wide structure tunability. MOFs are extended crystalline structures 

consisting of metal ions connected by organic ligands, which can essentially possess an infinite number of possible 

combinations with different physical and chemical properties. Therefore, MOFs have been widely applied in 

chemical separation[1], gas storage[2-5], drug delivery[6], sensing[7-10], and catalysis[11-14] applications. In 

recent years, hybrid plasmonic-MOF nanostructures have been reported to take the advantages of the strong gas 

adsorption capabilities of MOF materials and the optical field enhancement of plasmonics effect. These hybrid 

nanostructures have been applied in different applications, such as catalysis[15-18], imaging[19], surface-enhanced 

Raman scattering (SERS)[20-27] and surface-enhanced infrared absorption (SEIRA)[9]. However, most of these 

reported hybrid plasmonic-MOF nanostructures are based on chemically synthesized metallic or semiconductor 

nanoparticles, which have several drawbacks. First, the optical field enhancement of plasmonic NPs comes from the 

intrinsic plasmonic resonance of free electrons, which has strong optical scattering and relatively low Qualify-

factors (Q-factors) of only about 4~5. Considering a large amount of randomly distributed plasmonic NPs, the 

optical transmission through the thin film is relatively low. Second, the enhanced optical field from intrinsic 

plasmonics effect of NPs are highly localized, mostly confined at the surface or between the NPs. This means that 

the hot spot volume is very limited. Only the analyte molecules within the hot spot can interact with the highly 

localized optical field. For example, in our previous work[9], the volume ratio of the hot spots in the hybrid indium-

tin oxide (ITO) NPs with Cu-BTC (BTC=benzene-1,3,5- tricarboxylate) MOF to enhance gas absorption is only 

0.12% based on our numerical calculation. Therefore, the overall plasmonic field enhancement is only about 2.6 

times from our numerical calculation. Last, the intrinsic plasmonic resonance of chemically synthesized NPs is 
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affected by free electron concentration, composition, size, geometry, and even the coupling between the NPs, which 

is difficult to control. Many experimentally results actually show much broader plasmonic resonances than 

simulation due to the inherent limitations and variation of fabrication process.  

In this paper, we present a nanophotonic device consisting of a periodic plasmonic nano-patch array (NPA)[28] 

with integrated MOF layer to resolve the engineering challenges. Compared with randomly distributed plasmonic 

NPs relying on the intrinsic plasmonics effect[9] or triangular dipole nano-antennas with MOF [29], our design 

offers much higher Q-factors with higher optical transmission efficiency due to the constructive interaction of the 

surface plasmon polaritons (SPPs) at the interface between Au NPA and MOF thin film [30]. The optical field at the 

surface of the plasmonic NPA extends to the entire MOF layer, which can effectively increase the strength of light-

matter interaction. In other words, more analyte molecules can be adsorbed and concentrated inside the MOF film 

and interact with the plasmonic field, which is crucial for enhanced infrared absorption. Moreover, the plasmonic 

resonance can be fine-tuned by the periodicity of the NPA, which can be precisely controlled by top-down 

lithography process. The large and precision tunability of plasmonic resonances offers the possibility to enhance the 

vibrational spectra sensing of various analytes and even for multiplexed sensing with high throughput.  

 
Fig. 1. Schematic of the MOF integrated plasmonic nanopatch array. For geometrical parameters, P is the gold nanopatch period, G is the nano-slit width, H is 

the MOF thickness and T is the gold thickness. Iin and Iout stand for the intensity of the incident and transmitted light. 

The device consists of a gold Au-NPA on a sapphire (nsapphire = 1.721) substrate, which is covered by a thin 

layer of MOF (nMOF = 1.326), zeolitic imidazolate frameworks (ZIFs) or ZIF-8, as shown in Figure 1. Light is 

launched from the MOF side, and the transmitted light is collected from the substrate. When the light is coupled 

into the device normal to the surface, surface plasmon resonances (SPRs) are excited at the Au/MOF interface and 

coupled with the Fabry–Pérot (FP) modes in the MOF layer as well. Since the Au-NPA is symmetric, the device is 

polarization independent. Based on the design, the parameters that can be modified are the periodicity (P) of the Au-

NPA, gap width (G) between Au-NPs, the thickness (H) of the MOF layer and the Au thickness (T). In order to 

achieve high optical field enhancement within the MOF layer, optimization is performed by the DiffractMOD of 
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Rsoft photonic component design suite, which is based on rigorous coupled-wave analysis (RCWA)[31]. Among 

these parameters, the MOF thickness (H) is the most important one. The optical effect of the parameters is well-

studied in the literature for plasmonic nano-antennas[32]. The periodicity (P) of the Au-NPA determines the peak 

wavelength; the gap (G) affects the transmission intensity and also the spectrum width; the Au thickness (T) also 

has an influence on the transmission intensity. In this paper, we focused on the detailed study of the MOF thickness 

(H) as it not only affects the optical field enhancement, but also determines the infrared absorption path.  

 

Fig. 2. (a) Effect of the MOF thickness H in transmission intensity, with fixed P, T and G. The color bar represents the transmission intensity. (b) Simulated 

transmission spectrum for H = 2.7 µm. Electric distribution of z direction for (c) H = 0.5 µm, (d) H = 1.5 µm and (e) H = 2.7 µm. (f) The electric field 

distribution of (f) x direction, and (g) the summation of all directions for H = 2.7 µm. 

A scanning of the MOF thickness (H) is performed by fixing other parameters. The transmission intensity 

results are shown in Figure 2(a). The major peak (indicated by the white arrow) shows a red-shift when the MOF 

thickness (H) increases from 0.4 µm to 3.0 µm. For real applications, the transmission intensity should be high 

enough to obtain good signal-to-noise ratio. Thus, the three peaks in the simulated transmission spectrum for H=2.7 

μm shown in Figure 2 (b) with over 50% transmission efficiency provide excellent measurement condition. In order 

to verify whether the thickness (H) is appropriate, three different values are selected from the three regions 

represented by the white dash lines. The electric field distributions of the three values of thickness at peak at 2.7 µm 

after modifying the period are shown in Figure 2 (c-e). For H = 0.5 µm, it has the highest field intensity, but most of 

the enhanced field is in air instead of in the MOF layer, which is not preferred by gas sensing. For H = 1.5 and 2.7 

µm, most of the field is confined in the MOF layer. If we only consider the plasmonic field, then H = 1.5 µm is 

better than H = 2.7 µm. However, we need to consider the amount of adsorbed gas by MOF in our design. In other 
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words, a thinner MOF layer means less gas molecules are adsorbed. Therefore, the relatively thicker MOF is more 

desirable to allow more gas molecules to interact with the optical field. Finally, after comprehensive consideration 

of the plasmonic effect, MOF’s adsorbing property, transmission intensity and also growth time for the MOF layer, 

the parameters are determined to be P = 2.11 µm, G = 250 nm, H = 2.7 µm, and T = 40 nm. The simulated 

transmission spectrum is shown in Figure 2(e), which has three resonant peaks in the shorter wavelength range and 

one sharp edge at the longer wavelength. Peak A is the desired coupled mode with ~ 60% transmission efficiency 

with a relatively higher Q-factor of 27.44. The electric field distributions at peak A are shown in Figure 2(e) (Ez 

only, corresponding to the plasmonic resonance of the Au NPA), Figure 2(f) (Ex only, corresponding to the F-P 

resonance in the MOF thin film) and Figure 2(g) (total hybridized electric field). The maximum intensity 

enhancement is 7.31. Essentially, the coupled mode extends the highly localized plasmonic field to the entire MOF 

layer, resulting in an increase of the interaction between gas molecules inside the MOF and the optical field. Peak B 

and C are the higher modes of peak A, and the sharp edge D represents the Rayleigh anomaly at the substrate 

side[33].  

Experiments and Results 

 

Fig. 3. (a) SEM image of fabricated Au- NPA. The inset is the optical image of the Au-NPA. (b) The SEM image of Au-NPA after growing MOF. (c) AFM 

image of the ZIF-8 thin film. (d) The refractive index of the MOF thin film. 

The device is fabricated by focused ion beam (FIB) etching followed by monolithic growth of a MOF thin 

film. The selected MOF is the zeolitic imidazolate framework-8 (ZIF-8s), which has been extensively investigated 

due to its excellent thermal stability and selectivity toward CO2[34]. Besides, due to the hydrophobic surface 

property, water molecules can only be adsorbed at the outer surface, while CO2 can diffuse into the inner pores. 
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Besides, the hydrophobic surface makes ZIF-8 even more attractive for chemical sensing in environments where 

water vapors are pervasive[34].  The growth process is described here briefly. Before growing the ZIF-8 film, the 

substrate with Au-NPA is cleaned in piranha solution (H2SO4/H2O2, 70/30 v/v%) at 70 °C for 30 minute. Then it is 

washed thoroughly by deionized water and dried under nitrogen flow. To grow ZIF-8 thin film, the cleaned Au-

NPA sample is immersed in a freshly mixed methanolic solution of 2-methylimidazole and Zn(NO3)2 for 30 min at 

room temperature, followed by washing using methanol and drying under nitrogen flow. To obtain 2.7 μm MOF 

layer, this process is repeated 32 cycles. The scanning electron microscope (SEM) images of the fabricated Au-NPA 

before and after growing MOF are shown in Figure 3(a) and 3(b), respectively. As we can see, the MOF layer fully 

covers the Au-NPA and the MOF forms a relative smooth thin film with surface roughness about 10 nm, which is 

measured by atomic force microscopy (AFM) as shown in Figure 3 (c). The refractive index of the MOF thin film 

coated on a silicon wafer was measured by elliposometry as shown in Figure 3(d). 

    

 

 

Fig.4. (a) Schematic of the experimental setup for gas sensing. Experimentally obtained transmission spectra of CO2 for (b) Au-NPA coated with MOF at 

different CO2 concentrations and (c) the reference. (d) Illustration of data analysis. 
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In order to quantitatively determine the enhancement provided by the hybrid plasmonic-MOF device, a CO2 

sensing measurement was performed by a Fourier transform infrared (FTIR) spectrometer system shown in Figure 

4(a). The gas cell used in the system is home built with 4 mm light path length. One side of the gas cell is sealed by 

a sapphire window and the other side is sealed by the device. Different CO2 concentrations are obtained by mixing 

with nitrogen (N2) using two mass flow controllers. Figure 4(b) shows the transmission spectra of different CO2 

concentration. As a reference, the hybrid plasmonic-MOF device is replaced by bare sapphire window. As a 

comparison, the transmission spectra of the reference without any device are shown in Figure 4(c). The spectra in 

the manuscript have already been excluded from the effect of the plasmonic structure itself. Before taking the 

spectra of with CO2, we measured the spectra of the device purged by Ar as reference. Since Ar molecules have no 

IR absorption around 2.7 μm, the reference spectra only contain the IR spectra of plasmonic structure. Then, the 

measured spectra of the device with CO2 were normalized to the reference spectra. Therefore, the spectra in the 

manuscript only account the IR absorption from CO2. In order to determine the enhancement provided by the 

device, an analysis was performed as illustrated in Figure 4(d). Since the reference does not have any enhancement, 

the absorption is purely due to the CO2 inside the gas cell. According to the Beer-Lambert law, the absorption 

coefficient α of the CO2 inside the gas cell without the hybrid plasmonic-MOF device can be calculated using the 

following equation: 

Iout / Iin = exp (- α • L)                                                                         (1) 

where L is the path length of the gas cell. For the gas cell with the hybrid plasmonic-MOF device, besides the CO2 

absorption in the gas cell, there is extra IR absorption from CO2 molecules adsorbed inside the MOF. Therefore, the 

total IR absorption can be expressed as: 

Iout / Iin = exp (- α • L - α’ • H)
 
                                                                 (2) 

where α’ is the enhanced IR absorption coefficient of the CO2 adsorbed inside MOF layer, which is larger than α. 

Since the IR absorption is only exponentially proportional to the product of absorption coefficient and optical path 

length, Equation (2) can be rewritten as Equation (3): 

Iout / Iin = exp (- α • L - α • L’)                                                               (3) 

In Equation (3), L’ is the equivalent optical path length provided by the plasmonic-MOF device, which has a 

physical length of H. Therefore, the enhancement factor (EF) is defined as EF = L’ / H. The EF includes both the 

plasmonic field enhancement effect and also the gas concentrating effect from the MOF film. The calculated EF as 

a function of CO2 is shown in Figure 5 using the experimental data in Figure 4, with the highest EF over 1,100. 

The nonlinear trend is due to the nonlinear absorption behavior of MOF, which is possibly due the different 

adsorption mechanism at high and low CO2 concentration as we discussed in Reference [4]. At high concentration, 

most of the gas molecules are physically adsorbed inside the MOF pores, which are limited by the available space. 

Page 6 of 9AUTHOR SUBMITTED MANUSCRIPT - NANO-113647.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



7 
 

While at low concentration CO2, chemical bond adsorption becomes dominant [7, 8], which can provide a large 

gas concentration factor.  

 

Fig.5. Enhancement factor of Au-NPA coated with MOF as a function of CO2 concentration. 

In summary, we present a hybrid plasmonic-MOF device by integrating plasmonic NPA with nano-porous 

ZIF-8 MOF thin film. Compared with plasmonic NPs-enhanced MOF film, this new type of rationally designed 

nanophotonic devices provide enhanced optical transmission, higher Q-factors, stronger light-matter interaction, and 

tunable plasmonic resonances to match the vibrational spectra of the analytes. In this work, the hybrid plasmonic 

NPA-MOF thin film device was integrated with a gas cell for CO2 sensing at 2.7 μm wavelength. Based on Beer-

Lambert law, the total enhancement factor was calculated according to the experimental results. The highest EF 

obtained is about 1,100. This device can be applied for on-chip IR gas sensing, which can potentially reduce the 

absorption length of conventional gas cells by several orders of magnitude. 

This technical effort was sponsored by the National Science Foundation under Grant No. 1449383. Xinyuan 

Chong and Yujing Zhang were partially supported by the Graduate Student Fellowship from the National Energy 

Technology Laboratory (NETL). 
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