skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: In-situ curvature monitoring and X-ray diffraction study of InGaAsP/InGaP quantum wells

Journal Article · · Journal of Crystal Growth
 [1];  [2];  [2];  [2];  [2];  [2];  [3]
  1. North Carolina State Univ., Raleigh, NC (United States); National Renewable Energy Lab. (NREL), Golden, CO (United States)
  2. National Renewable Energy Lab. (NREL), Golden, CO (United States)
  3. North Carolina State Univ., Raleigh, NC (United States)

The use of InGaAsP/InGaP quantum well structures is a promising approach for subcells in next generation multi-junction devices due to their tunable bandgap (1.50-1.80 eV) and for being aluminum-free. Despite these potentials, the accumulation of stress during the growth of these structures and high background doping in the quantum well region have previously limited the maximum number of quantum wells and barriers that can be included in the intrinsic region and the sub-bandgap external quantum efficiency to less than 30.0%. In this paper, we report on the use of in-situ curvature monitoring by multi-beam optical stress (MOS) sensor measurements during the growth of this quantum well structure to monitor the stress evolution in these thin films. A series of In0.32Ga0.68AsP/In0.49Ga0.51P quantum wells with various arsine to phosphine ratios have been analyzed by in-situ curvature monitoring and X-ray diffraction (XRD) to obtain nearly strain-free lattice matched structures. Sharp interfaces, as indicated by the XRD fringes, have been achieved by using triethyl-gallium and trimethyl-gallium as gallium precursors in InGaAsP and InGaP, respectively, with constant flows of trimethyl-indium and phosphine through the entire quantum well structure. The effect of the substrate miscut on quantum well growth was compared and analyzed using XRD, photoluminescence and time resolved photoluminescence. As a result, a 100 period quantum well device was successfully grown with minimal stress and approximately flat in-situ curvature.

Research Organization:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Organization:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Renewable Power Office. Solar Energy Technologies Office
Grant/Contract Number:
AC36-08GO28308
OSTI ID:
1393376
Alternate ID(s):
OSTI ID: 1550182
Report Number(s):
NREL/JA-5J00-68858
Journal Information:
Journal of Crystal Growth, Vol. 475, Issue C; ISSN 0022-0248
Publisher:
ElsevierCopyright Statement
Country of Publication:
United States
Language:
English
Citation Metrics:
Cited by: 3 works
Citation information provided by
Web of Science