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Abstract—​The​ ​Scalable​ ​Checkpoint/Restart​ ​library​ ​(SCR)​ ​was​ ​developed​ ​and​ ​is 
used​ ​by​ ​researchers​ ​at​ ​Lawrence​ ​Livermore​ ​National​ ​Laboratory​ ​to​ ​provide​ ​a​ ​fast 
and​ ​efficient​ ​method​ ​of​ ​saving​ ​and​ ​recovering​ ​large​ ​applications​ ​during​ ​runtime​ ​on 
high-performance​ ​computing​ ​(HPC)​ ​systems.​ ​Though​ ​SCR​ ​protects​ ​other​ ​programs, 
up​ ​until​ ​June​ ​2017,​ ​nothing​ ​was​ ​actively​ ​protecting​ ​SCR.​ ​The​ ​goal​ ​of​ ​this​ ​project​ ​was 
to​ ​automate​ ​the​ ​building​ ​and​ ​testing​ ​of​ ​this​ ​library​ ​on​ ​the​ ​varying​ ​HPC​ ​architectures 
on​ ​which​ ​it​ ​is​ ​used.​ ​Our​ ​methods​ ​centered​ ​around​ ​the​ ​use​ ​of​ ​a​ ​continuous 
integration​ ​tool​ ​called​ ​Bamboo​ ​that​ ​allowed​ ​for​ ​automation​ ​agents​ ​to​ ​be​ ​installed 
on​ ​the​ ​HPC​ ​systems​ ​themselves.​ ​These​ ​agents​ ​provided​ ​a​ ​way​ ​for​ ​us​ ​to​ ​establish​ ​a 
new​ ​and​ ​unique​ ​way​ ​to​ ​automate​ ​and​ ​customize​ ​the​ ​allocation​ ​of​ ​resources​ ​and 
running​ ​of​ ​tests​ ​with​ ​CMake’s​ ​unit​ ​testing​ ​framework,​ ​CTest,​ ​as​ ​well​ ​as​ ​integration 
testing​ ​scripts​ ​though​ ​an​ ​HPC​ ​package​ ​manager​ ​called​ ​Spack.​ ​These​ ​methods 
provided​ ​a​ ​parallel​ ​environment​ ​in​ ​which​ ​to​ ​test​ ​the​ ​more​ ​complex​ ​features​ ​of​ ​SCR. 
As​ ​a​ ​result,​ ​SCR​ ​is​ ​now​ ​automatically​ ​built​ ​and​ ​tested​ ​on​ ​several​ ​HPC​ ​architectures 
any​ ​time​ ​changes​ ​are​ ​made​ ​by​ ​developers​ ​to​ ​the​ ​library’s​ ​source​ ​code.​ ​The​ ​results​ ​of 
these​ ​tests​ ​are​ ​then​ ​communicated​ ​back​ ​to​ ​the​ ​developers​ ​for​ ​immediate​ ​feedback, 
allowing​ ​them​ ​to​ ​fix​ ​functionality​ ​of​ ​SCR​ ​that​ ​may​ ​have​ ​broken.​ ​Hours​ ​of​ ​developers’ 
time​ ​are​ ​now​ ​being​ ​saved​ ​from​ ​the​ ​tedious​ ​process​ ​of​ ​manually​ ​testing​ ​and 
debugging,​ ​which​ ​saves​ ​money​ ​and​ ​allows​ ​the​ ​SCR​ ​project​ ​team​ ​to​ ​focus​ ​their 
efforts​ ​towards​ ​development.​ ​Thus,​ ​HPC​ ​system​ ​users​ ​can​ ​use​ ​SCR​ ​in​ ​conjunction 
with​ ​their​ ​own​ ​applications​ ​to​ ​efficiently​ ​and​ ​effectively​ ​checkpoint​ ​and​ ​restart​ ​as 
needed​ ​with​ ​the​ ​assurance​ ​that​ ​SCR​ ​itself​ ​is​ ​functioning​ ​properly.  

 
 
 
  



I.​ ​INTRODUCTION 
As​ ​software​ ​written​ ​for​ ​high-performance​ ​computers​ ​has​ ​become​ ​more​ ​and​ ​more 

complex,​ ​so​ ​has​ ​the​ ​ability​ ​to​ ​thoroughly​ ​test​ ​them​ ​to​ ​ensure​ ​they​ ​are​ ​working​ ​properly.​ ​This 
report​ ​will​ ​reflect​ ​our​ ​experience​ ​with​ ​implementing​ ​automated​ ​testing​ ​and​ ​Bamboo,​ ​a 
continuous​ ​integration​ ​tool,​ ​for​ ​one​ ​particular​ ​fault-tolerance​ ​library​ ​on​ ​high-performance 
computers—the​ ​Scalable​ ​Checkpoint/Restart​ ​library​ ​(SCR).​ ​The​ ​purpose​ ​of​ ​this​ ​report​ ​is​ ​to 
inform​ ​current​ ​and​ ​potential​ ​software​ ​developers​ ​for​ ​high-performance​ ​computers​ ​of​ ​how​ ​we 
were​ ​able​ ​to​ ​implement​ ​automated​ ​testing​ ​for​ ​real-world​ ​scenarios​ ​on​ ​our​ ​fault-tolerance 
library. 

SCR​ ​was​ ​initially​ ​created​ ​in​ ​2007​ ​at​ ​Lawrence​ ​Livermore​ ​National​ ​Laboratory,​ ​but​ ​has 
never​ ​had​ ​any​ ​form​ ​of​ ​proper​ ​testing​ ​until​ ​now.​ ​Our​ ​approach​ ​towards​ ​solving​ ​this​ ​problem 
using​ ​Bamboo,​ ​and​ ​changes​ ​in​ ​our​ ​build​ ​process,​ ​will​ ​be​ ​the​ ​primary​ ​focus​ ​of​ ​this​ ​report.​ ​A 
short​ ​background​ ​on​ ​what​ ​SCR​ ​is​ ​and​ ​how​ ​it​ ​works​ ​will​ ​be​ ​required​ ​in​ ​order​ ​to​ ​gain​ ​a​ ​complete 
understanding​ ​of​ ​our​ ​solution.​ ​A​ ​detailed​ ​description​ ​of​ ​the​ ​overall​ ​problem​ ​and​ ​why​ ​our 
previous​ ​solutions​ ​for​ ​continuous​ ​integration​ ​and​ ​automated​ ​testing​ ​were​ ​unfeasible​ ​will​ ​also 
be​ ​discussed. 
 

II.​ ​BACKGROUND 
Applications​ ​running​ ​on​ ​large-scale​ ​supercomputing​ ​systems​ ​have​ ​a​ ​tendency​ ​to​ ​fail 

after​ ​a​ ​given​ ​amount​ ​of​ ​time,​ ​for​ ​various​ ​reasons​ ​including​ ​faults​ ​in​ ​code,​ ​compute​ ​nodes 
failures,​ ​and​ ​power​ ​loss.​ ​These​ ​failures​ ​can​ ​result​ ​in​ ​a​ ​loss​ ​of​ ​hours,​ ​or​ ​even​ ​days,​ ​of​ ​valuable 
computing​ ​time​ ​and​ ​money.​ ​One​ ​way​ ​applications​ ​prepare​ ​for​ ​these​ ​failures​ ​is​ ​by​ ​saving​ ​their 
state​ ​to​ ​checkpoint​ ​files.​ ​These​ ​files​ ​are​ ​typically​ ​written​ ​to​ ​reliable​ ​storage,​ ​such​ ​as​ ​a​ ​parallel 
file​ ​system.​ ​In​ ​the​ ​event​ ​of​ ​a​ ​failure,​ ​applications​ ​can​ ​then​ ​be​ ​restarted​ ​from​ ​a​ ​previous​ ​state 
that​ ​was​ ​saved​ ​on​ ​these​ ​files.​ ​Today,​ ​high-performance​ ​computing​ ​systems​ ​have​ ​grown​ ​vastly 
in​ ​scale​ ​and​ ​thus​ ​writing​ ​these​ ​checkpoint​ ​files​ ​to​ ​parallel​ ​file​ ​systems​ ​has​ ​become​ ​more 
essential—and​ ​more​ ​expensive.​1 

 

Figure​ ​1.​ ​Node​ ​count​ ​versus​ ​checkpoint​ ​bandwidth  
 

The​ ​Scalable​ ​Checkpoint/Restart​ ​library​ ​(SCR)​ ​was​ ​created​ ​as​ ​a​ ​potential​ ​solution​ ​to​ ​this 
problem.​ ​Through​ ​the​ ​use​ ​of​ ​multi-level​ ​checkpointing,​ ​SCR​ ​uses​ ​various​ ​redundancy​ ​schemes 
(Fig.​ ​1)​ ​to​ ​reduce​ ​the​ ​overhead​ ​of​ ​writing​ ​checkpoint​ ​files​ ​and​ ​for​ ​quick​ ​and​ ​efficient​ ​recovery​ ​in 
the​ ​event​ ​of​ ​a​ ​failure.​ ​SCR​ ​uses​ ​storage​ ​local​ ​to​ ​the​ ​compute​ ​nodes​ ​on​ ​which​ ​the​ ​application​ ​is 



running​ ​to​ ​checkpoint​ ​and​ ​restart,​ ​potentially​ ​without​ ​the​ ​use​ ​of​ ​the​ ​parallel​ ​file​ ​system​ ​at​ ​all. 
The​ ​more​ ​compute​ ​nodes​ ​that​ ​are​ ​used,​ ​the​ ​better​ ​SCR​ ​outperforms​ ​the​ ​parallel​ ​file​ ​system 
(Fig.​ ​1).​1​​ ​Essentially,​ ​SCR​ ​is​ ​a​ ​library​ ​that​ ​protects​ ​applications​ ​running​ ​on​ ​supercomputing 
systems​ ​by​ ​allowing​ ​them​ ​to​ ​fail​ ​safely​ ​and​ ​recover​ ​efficiently.​ ​For​ ​a​ ​full​ ​understanding​ ​of​ ​SCR, 
Design,​ ​Modeling,​ ​and​ ​Evaluation​ ​of​ ​a​ ​Scalable​ ​Multi-level​ ​Checkpointing​ ​System,​​ ​written​ ​by 
scientists​ ​at​ ​Lawrence​ ​Livermore​ ​National​ ​Laboratory,​ ​is​ ​a​ ​useful​ ​and​ ​comprehensive​ ​resource.​1 
In​ ​order​ ​to​ ​thoroughly​ ​test​ ​if​ ​SCR​ ​is​ ​functioning​ ​properly,​ ​it​ ​needs​ ​to​ ​be​ ​used​ ​in​ ​conjunction​ ​with 
another​ ​application​ ​running​ ​in​ ​parallel​ ​across​ ​multiple​ ​compute​ ​nodes. 
 

III.​ ​PROBLEM 
As​ ​previously​ ​mentioned,​ ​SCR​ ​is​ ​a​ ​library​ ​that​ ​protects​ ​applications​ ​in​ ​the​ ​event​ ​of​ ​a 

failure—but​ ​before​ ​now,​ ​nothing​ ​has​ ​been​ ​effectively​ ​protecting​ ​SCR.​ ​The​ ​few​ ​testing​ ​scripts 
that​ ​did​ ​already​ ​exist​ ​were​ ​not​ ​thorough​ ​and​ ​were​ ​not​ ​runnable​ ​in​ ​a​ ​variety​ ​of​ ​system 
environments.​ ​Thus,​ ​they​ ​required​ ​a​ ​user​ ​who​ ​was​ ​already​ ​somewhat​ ​familiar​ ​with​ ​the​ ​SCR 
library​ ​to​ ​manually​ ​allocate​ ​resources​ ​on​ ​the​ ​desired​ ​supercomputing​ ​system​ ​and​ ​then​ ​cut, 
paste,​ ​and​ ​run​ ​the​ ​desired​ ​testing​ ​commands​ ​and​ ​read​ ​through​ ​the​ ​outputs​ ​in​ ​order​ ​to​ ​discover 
the​ ​results.​ ​This​ ​process​ ​was​ ​tedious​ ​and​ ​would​ ​need​ ​to​ ​be​ ​repeated​ ​on​ ​every​ ​system​ ​that​ ​SCR 
needed​ ​to​ ​be​ ​tested​ ​on.  

Upon​ ​doing​ ​this​ ​testing​ ​process​ ​at​ ​the​ ​beginning​ ​of​ ​the​ ​summer,​ ​we​ ​immediately 
discovered​ ​a​ ​critical​ ​bug​ ​in​ ​the​ ​SCR​ ​software.​ ​This​ ​bug​ ​was​ ​at​ ​least​ ​a​ ​month​ ​old,​ ​as​ ​that​ ​was​ ​the 
last​ ​time​ ​the​ ​library​ ​had​ ​been​ ​changed.​ ​As​ ​discussed​ ​above,​ ​the​ ​manual​ ​testing​ ​process​ ​is 
tedious​ ​and​ ​costly;​ ​consequently,​ ​there​ ​was​ ​nothing​ ​enforcing​ ​regular​ ​testing​ ​or​ ​informing​ ​the 
developers​ ​when​ ​things​ ​were​ ​broken.​ ​Solutions​ ​to​ ​these​ ​types​ ​of​ ​problems​ ​already​ ​existed; 
however,​ ​none​ ​were​ ​entirely​ ​helpful​ ​when​ ​it​ ​came​ ​to​ ​SCR’s​ ​requirement​ ​of​ ​the​ ​simultaneous 
use​ ​of​ ​multiple​ ​compute​ ​nodes. 
 

IV.​ ​SOLUTION 
A.​ ​Proposed​ ​approach 

Continuous​ ​integration​ ​centers​ ​around​ ​the​ ​practice​ ​in​ ​which​ ​developers​ ​of​ ​a​ ​project​ ​all 
use​ ​the​ ​same​ ​shared​ ​collection​ ​of​ ​source​ ​code,​ ​also​ ​known​ ​as​ ​a​ ​repository.​ ​Changes​ ​made​ ​by​ ​a 
developer​ ​are​ ​uploaded​ ​to​ ​the​ ​repository​ ​where​ ​the​ ​other​ ​developers​ ​can​ ​access​ ​those 
changes.​ ​All​ ​the​ ​while,​ ​at​ ​desired​ ​points​ ​in​ ​time,​ ​or​ ​after​ ​each​ ​change​ ​is​ ​made,​ ​a​ ​server 
watching​ ​the​ ​source​ ​code​ ​conducts​ ​an​ ​automated​ ​build​ ​to​ ​verify​ ​nothing​ ​was​ ​broken​ ​by​ ​the 
recent​ ​changes​ ​(Fig​ ​2).​2 

Figure​ ​2.​ ​Bamboo​ ​continuous​ ​integration​ ​server 



Automated​ ​testing​ ​works​ ​well​ ​with​ ​continuous​ ​integration.​ ​After​ ​the​ ​automated​ ​build 
succeeds,​ ​previously​ ​written​ ​tests​ ​are​ ​automatically​ ​run​ ​to​ ​ensure​ ​no​ ​other​ ​functionality​ ​in​ ​the 
source​ ​code​ ​has​ ​been​ ​broken​ ​by​ ​recent​ ​changes.​ ​If​ ​problems​ ​are​ ​detected,​ ​integration​ ​of​ ​the 
changes​ ​are​ ​prevented​ ​and​ ​developers​ ​are​ ​immediately​ ​notified​ ​to​ ​allow​ ​them​ ​to​ ​resolve​ ​the 
issues.​ ​These​ ​practices​ ​were​ ​the​ ​desired​ ​approach​ ​towards​ ​solving​ ​our​ ​problem,​ ​but​ ​how​ ​to​ ​use 
them​ ​with​ ​the​ ​parallel​ ​requirements​ ​of​ ​SCR​ ​specifically​ ​was​ ​the​ ​real​ ​question​ ​at​ ​hand.  

Using​ ​this​ ​approach​ ​was​ ​nothing​ ​new​ ​to​ ​our​ ​development​ ​team.​ ​We​ ​have​ ​several​ ​other 
projects​ ​currently​ ​using​ ​continuous​ ​integration​ ​through​ ​a​ ​simple​ ​tool​ ​called​ ​Travis​ ​CI.​ ​Travis​ ​CI​ ​is 
a​ ​server​ ​that​ ​continually​ ​watches​ ​the​ ​desired​ ​source​ ​code​ ​repository​ ​for​ ​any​ ​changes.​ ​When​ ​a 
change​ ​is​ ​detected,​ ​Travis​ ​CI​ ​will​ ​copy​ ​and​ ​build​ ​the​ ​project​ ​and​ ​then​ ​run​ ​any​ ​commands​ ​or 
tests​ ​as​ ​designated​ ​by​ ​a​ ​specific​ ​file​ ​that​ ​exists​ ​in​ ​the​ ​repository.​3​​ ​This​ ​tool​ ​has​ ​been​ ​successful 
and​ ​works​ ​well​ ​for​ ​projects​ ​running​ ​serial​ ​tests​ ​on​ ​non-specific​ ​hardware.​ ​However,​ ​Travis​ ​CI 
doesn’t​ ​have​ ​the​ ​resources​ ​to​ ​run​ ​parallel​ ​programs​ ​as​ ​it​ ​only​ ​has​ ​its​ ​own​ ​dedicated​ ​server​ ​that 
runs​ ​one​ ​thing​ ​at​ ​a​ ​time.​ ​This​ ​is​ ​precisely​ ​why​ ​it​ ​could​ ​not​ ​be​ ​used​ ​for​ ​SCR,​ ​as​ ​our​ ​library 
required​ ​testing​ ​in​ ​a​ ​parallel​ ​environment​ ​on​ ​various​ ​hardware-specific​ ​systems.​ ​In​ ​order​ ​to 
fully​ ​test​ ​SCR,​ ​we​ ​needed​ ​to​ ​run​ ​a​ ​sample​ ​program​ ​that​ ​was​ ​using​ ​the​ ​SCR​ ​library​ ​to​ ​ensure​ ​SCR 
was​ ​functioning​ ​correctly.​ ​We​ ​needed​ ​a​ ​new​ ​tool​ ​to​ ​achieve​ ​the​ ​results​ ​we​ ​desired. 
 
B.​ ​Our​ ​approach 

Without​ ​knowing​ ​if​ ​a​ ​new​ ​tool​ ​would​ ​work​ ​for​ ​what​ ​we​ ​needed,​ ​we​ ​decided​ ​to​ ​pursue 
another​ ​continuous​ ​integration​ ​application​ ​called​ ​Bamboo,​ ​which​ ​allowed​ ​us​ ​to​ ​do​ ​most​ ​of 
what​ ​we​ ​set​ ​out​ ​to​ ​accomplish​ ​this​ ​summer.​ ​The​ ​primary​ ​feature​ ​that​ ​makes​ ​Bamboo​ ​different 
than​ ​Travis​ ​CI​ ​is​ ​Bamboo’s​ ​ability​ ​to​ ​have​ ​remote​ ​agents.​ ​These​ ​agents​ ​are​ ​similar​ ​to​ ​the​ ​Travis 
CI​ ​server​ ​in​ ​that​ ​they​ ​provide​ ​the​ ​same​ ​service,​ ​but​ ​can​ ​be​ ​installed​ ​remotely​ ​on​ ​the​ ​desired 
system​ ​of​ ​choice.​ ​Essentially,​ ​this​ ​allows​ ​Bamboo​ ​to​ ​build​ ​and​ ​run​ ​tests​ ​in​ ​the​ ​same​ ​parallel 
environment​ ​and​ ​on​ ​the​ ​same​ ​system​ ​as​ ​though​ ​it​ ​were​ ​a​ ​developer​ ​doing​ ​so​ ​manually.​ ​Our 
solution​ ​involved​ ​installing​ ​such​ ​agents—one​ ​on​ ​each​ ​of​ ​the​ ​different​ ​system​ ​architectures​ ​that 
we​ ​needed​ ​to​ ​thoroughly​ ​test​ ​SCR.​2 

An​ ​essential​ ​side​ ​project​ ​was​ ​the​ ​task​ ​of​ ​switching​ ​the​ ​build​ ​process​ ​and​ ​tools​ ​of​ ​SCR 
from​ ​Autotools​ ​to​ ​CMake.​ ​This​ ​switch​ ​allowed​ ​for​ ​easier​ ​creation​ ​and​ ​addition​ ​of​ ​unit​ ​tests​ ​for 
SCR​ ​through​ ​CMake’s​ ​unit​ ​testing​ ​framework,​ ​CTest,​ ​which​ ​seamlessly​ ​integrates​ ​with​ ​Bamboo. 
In​ ​the​ ​end,​ ​CTest​ ​allowed​ ​for​ ​fairly​ ​easy​ ​implementation​ ​of​ ​automated​ ​testing.​4 

 
C.​ ​The​ ​solution 

As​ ​Bamboo’s​ ​workflow​ ​(Fig.​ ​3)​ ​is​ ​designed​ ​to​ ​work​ ​for​ ​a​ ​variety​ ​of​ ​different​ ​projects,​ ​we 
had​ ​to​ ​experiment​ ​to​ ​find​ ​the​ ​right​ ​structure​ ​for​ ​SCR​ ​.​2  

 



Figure​ ​3.​ ​Bamboo​ ​workflow 

 
Our​ ​solution​ ​involved​ ​having​ ​two​ ​distinct​ ​plans,​ ​each​ ​with​ ​a​ ​different​ ​approach​ ​to​ ​building​ ​and 
testing​ ​SCR.​ ​Both​ ​plans​ ​had​ ​a​ ​single​ ​stage​ ​with​ ​multiple​ ​jobs​ ​and​ ​tasks.​ ​As​ ​the​ ​jobs​ ​inside​ ​a 
stage​ ​are​ ​disconnected​ ​and​ ​can​ ​run​ ​in​ ​parallel,​ ​we​ ​created​ ​a​ ​new​ ​job​ ​for​ ​each​ ​system 
architecture​ ​on​ ​which​ ​SCR​ ​was​ ​to​ ​be​ ​tested.​ ​A​ ​remote​ ​agent​ ​was​ ​then​ ​created​ ​on​ ​each​ ​of​ ​these 
systems​ ​and​ ​assigned​ ​to​ ​their​ ​specific​ ​jobs​ ​inside​ ​each​ ​plan.​ ​Tasks​ ​were​ ​created​ ​under​ ​each​ ​job 
to​ ​allow​ ​for​ ​the​ ​actual​ ​building​ ​and​ ​testing​ ​of​ ​SCR​ ​on​ ​each​ ​system,​ ​as​ ​well​ ​as​ ​any​ ​system​ ​specific 
customization​ ​that​ ​may​ ​have​ ​been​ ​required. 
 
1.​ ​Plan​ ​1:​ ​CMake​ ​builds 

Ensuring​ ​our​ ​CMake​ ​build​ ​works​ ​and​ ​testing​ ​simpler​ ​functionality​ ​with​ ​unit​ ​tests​ ​was​ ​the 
primary​ ​focus​ ​of​ ​our​ ​first​ ​plan.​ ​Each​ ​of​ ​this​ ​plan’s​ ​jobs,​ ​running​ ​in​ ​parallel,​ ​first​ ​retrieves​ ​its​ ​own 
copy​ ​of​ ​the​ ​SCR​ ​source​ ​code.​ ​It​ ​then​ ​proceeds​ ​to​ ​build​ ​and​ ​install​ ​SCR​ ​using​ ​CMake.​ ​After​ ​a 
successful​ ​build,​ ​the​ ​Bamboo​ ​agent​ ​calls​ ​the​ ​CTest​ ​framework​ ​to​ ​run​ ​serial​ ​and​ ​parallel​ ​unit 
tests​ ​on​ ​the​ ​compute​ ​nodes​ ​of​ ​the​ ​job’s​ ​assigned​ ​system.​ ​The​ ​results​ ​of​ ​these​ ​tests​ ​are​ ​then 
parsed​ ​and​ ​displayed​ ​by​ ​Bamboo​ ​(Fig.​ ​4).​ ​If​ ​all​ ​the​ ​jobs​ ​are​ ​successful,​ ​the​ ​individual​ ​build​ ​of 
this​ ​plan​ ​by​ ​the​ ​Bamboo​ ​agent​ ​will​ ​be​ ​marked​ ​as​ ​a​ ​success. 
 

 
Figure​ ​4.​ ​CTest​ ​results​ ​displayed​ ​in​ ​Bamboo 

 
Should​ ​any​ ​of​ ​the​ ​individual​ ​tasks​ ​fail,​ ​such​ ​as​ ​the​ ​CMake​ ​build,​ ​Bamboo​ ​will​ ​stop​ ​the​ ​process 
and​ ​notify​ ​the​ ​developers​ ​of​ ​the​ ​issue.​ ​Bamboo​ ​will​ ​discover​ ​if​ ​any​ ​of​ ​the​ ​unit​ ​tests​ ​failed​ ​during 
the​ ​parsing​ ​process.​ ​In​ ​the​ ​event​ ​that​ ​one​ ​did​ ​fail,​ ​the​ ​overall​ ​build​ ​of​ ​this​ ​plan​ ​will​ ​be​ ​displayed 
as​ ​failed​ ​and​ ​the​ ​tests​ ​causing​ ​the​ ​failure​ ​will​ ​be​ ​displayed​ ​for​ ​the​ ​developers​ ​to​ ​investigate.​ ​If 
an​ ​overall​ ​job​ ​fails​ ​on​ ​one​ ​system​ ​but​ ​succeeds​ ​on​ ​all​ ​others,​ ​the​ ​overall​ ​plan​ ​will​ ​still​ ​be​ ​marked 
as​ ​failed. 
 
2.​ ​Plan​ ​2:​ ​Spack​ ​builds 



Our​ ​second​ ​plan​ ​primarily​ ​focused​ ​on​ ​an​ ​alternate​ ​build​ ​process​ ​and​ ​more​ ​complex 
testing,​ ​such​ ​as​ ​integration​ ​tests.​ ​Although​ ​this​ ​plan​ ​could​ ​be​ ​run​ ​independently,​ ​we​ ​made​ ​it 
dependent​ ​on​ ​the​ ​success​ ​of​ ​our​ ​first​ ​plan,​ ​as​ ​a​ ​failed​ ​first​ ​plan​ ​would​ ​mean​ ​SCR​ ​itself​ ​had 
issues​ ​and​ ​there​ ​would​ ​be​ ​no​ ​point​ ​continuing​ ​with​ ​more​ ​complex​ ​testing.​ ​This​ ​plan​ ​uses​ ​a 
common​ ​package​ ​management​ ​tool​ ​designed​ ​for​ ​supercomputing​ ​called​ ​Spack.​ ​Spack​ ​handles 
the​ ​build​ ​and​ ​installation​ ​of​ ​SCR​ ​and​ ​any​ ​other​ ​dependencies​ ​automatically,​ ​but​ ​required​ ​a​ ​bit 
more​ ​customization​ ​for​ ​each​ ​supercomputing​ ​system​ ​on​ ​which​ ​SCR​ ​was​ ​to​ ​be​ ​tested.​5 

Each​ ​job​ ​in​ ​this​ ​plan​ ​would,​ ​in​ ​parallel,​ ​retrieves​ ​the​ ​source​ ​code​ ​for​ ​Spack​ ​and 
subsequently​ ​uses​ ​Spack​ ​to​ ​install​ ​SCR.​ ​System​ ​specific​ ​compilers​ ​then​ ​are​ ​identified​ ​to​ ​allow 
Spack​ ​to​ ​correctly​ ​build​ ​the​ ​SCR​ ​tests.​ ​Additional​ ​system​ ​environment​ ​variables​ ​are​ ​set​ ​up​ ​to 
allow​ ​for​ ​the​ ​more​ ​complex​ ​integration​ ​testing​ ​scripts​ ​to​ ​be​ ​run.​ ​The​ ​Bamboo​ ​agent​ ​then 
submits​ ​jobs​ ​to​ ​the​ ​system’s​ ​compute​ ​nodes​ ​to​ ​run​ ​these​ ​testing​ ​scripts.​ ​Upon​ ​their 
completion,​ ​the​ ​agent​ ​parses​ ​the​ ​output​ ​from​ ​the​ ​tests,​ ​marks​ ​the​ ​build​ ​of​ ​the​ ​overall​ ​plan​ ​as​ ​a 
success​ ​or​ ​failure​ ​depending​ ​on​ ​the​ ​results​ ​of​ ​the​ ​tests,​ ​and​ ​displays​ ​the​ ​results​ ​for​ ​the 
developers. 
 

V.​ ​OUTCOMES 
Our​ ​efforts​ ​led​ ​to​ ​many​ ​favorable​ ​outcomes.​ ​The​ ​switch​ ​to​ ​CMake​ ​and​ ​automated 

testing​ ​through​ ​Bamboo​ ​using​ ​CTest​ ​has​ ​allowed​ ​for​ ​easy​ ​addition​ ​of​ ​more​ ​tests​ ​as​ ​they​ ​are 
written.​ ​Additional​ ​integration​ ​tests​ ​can​ ​easily​ ​be​ ​added​ ​as​ ​well​ ​through​ ​the​ ​automation​ ​of 
using​ ​Spack​ ​to​ ​build​ ​and​ ​run​ ​them.​ ​Hours​ ​of​ ​developers​ ​manually​ ​testing,​ ​and​ ​thus​ ​company 
dollars,​ ​are​ ​now​ ​being​ ​saved. 

Due​ ​to​ ​the​ ​use​ ​of​ ​Bamboo,​ ​developers​ ​and​ ​administrators​ ​now​ ​receive​ ​fast​ ​and​ ​valuable 
feedback​ ​on​ ​the​ ​status​ ​of​ ​the​ ​SCR​ ​library​ ​and​ ​how​ ​it​ ​is​ ​functioning​ ​on​ ​a​ ​variety​ ​of 
high-performance​ ​computing​ ​systems.​ ​Bamboo​ ​automatically​ ​detects​ ​when​ ​changes​ ​are​ ​made 
to​ ​the​ ​SCR​ ​library.​ ​Our​ ​plans​ ​then​ ​automatically​ ​build​ ​SCR​ ​and​ ​run​ ​our​ ​tests.​ ​If​ ​recent​ ​changes 
break​ ​anything​ ​in​ ​SCR,​ ​Bamboo​ ​can​ ​prevent​ ​the​ ​changes​ ​from​ ​being​ ​implemented​ ​until​ ​they​ ​are 
fixed.​ ​Should​ ​any​ ​of​ ​the​ ​builds​ ​or​ ​tests​ ​fail,​ ​the​ ​developers​ ​are​ ​notified​ ​immediately​ ​through 
email,​ ​or​ ​a​ ​variety​ ​of​ ​other​ ​communication​ ​methods,​ ​allowing​ ​them​ ​to​ ​find​ ​and​ ​fix​ ​the​ ​problems 
right​ ​away—a​ ​large​ ​improvement​ ​from​ ​waiting​ ​a​ ​month​ ​or​ ​more​ ​before​ ​discovering​ ​issues. 

Setting​ ​up​ ​this​ ​testing​ ​environment​ ​has​ ​allowed​ ​us​ ​to​ ​automate​ ​a​ ​number​ ​of​ ​processes, 
including​ ​building​ ​SCR,​ ​running​ ​unit​ ​and​ ​integration​ ​tests,​ ​checking​ ​if​ ​recent​ ​changes​ ​caused 
problems​ ​with​ ​the​ ​rest​ ​of​ ​the​ ​code,​ ​and​ ​notifying​ ​developers​ ​of​ ​the​ ​results​ ​of​ ​those​ ​checks.​ ​We 
have​ ​automated​ ​the​ ​testing​ ​of​ ​SCR​ ​on​ ​multiple​ ​supercomputing​ ​architectures​ ​in​ ​parallel.​ ​With 
developers​ ​no​ ​longer​ ​having​ ​to​ ​worry​ ​about​ ​doing​ ​of​ ​these​ ​tasks​ ​manually,​ ​we​ ​are​ ​saving​ ​a​ ​lot 
of​ ​time​ ​and​ ​money. 

 
VI.​ ​CONCLUSION 

In​ ​the​ ​beginning,​ ​SCR​ ​was​ ​protecting​ ​other​ ​programs​ ​by​ ​allowing​ ​them​ ​to​ ​fail​ ​safely​ ​and 
successfully​ ​recover.​ ​However,​ ​nothing​ ​was​ ​protecting​ ​SCR.​ ​Solutions​ ​and​ ​tools​ ​the 
development​ ​team​ ​were​ ​using​ ​were​ ​insufficient,​ ​and​ ​so​ ​we​ ​needed​ ​a​ ​new​ ​approach.​ ​Bamboo’s 
remote​ ​agents​ ​and​ ​a​ ​switch​ ​to​ ​CMake​ ​enabled​ ​us​ ​to​ ​continually​ ​ensure​ ​that​ ​SCR​ ​is​ ​always 
functioning​ ​properly​ ​with​ ​a​ ​real​ ​application​ ​on​ ​the​ ​actual​ ​supercomputing​ ​systems​ ​and 
environments​ ​SCR​ ​is​ ​being​ ​used​ ​on.​ ​Now,​ ​through​ ​this​ ​use​ ​of​ ​continuous​ ​integration​ ​and 



automated​ ​testing,​ ​the​ ​watcher​ ​is​ ​being​ ​watched,​ ​and​ ​SCR​ ​is​ ​being​ ​protected​ ​at​ ​the​ ​same​ ​level 
as​ ​the​ ​programs​ ​it​ ​protects. 
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