EEEEEEEEE
NNNNNNNN
AAAAAAAAAA

LLNL-TR-738530

Who watches the watchers?:
preventing fault in a fault
tolerance library

C. D. Stanavige

September 15, 2017

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

Who watches the watchers?: preventing faults in a fault tolerance library
Cameron Stanavige
15 September 2017

Western Oregon University, Monmouth, OR

LLNL-TR-738530

This document was prepared as an account of work sponsored by an agency of the United
States government. Neither the United States government nor Lawrence Livermore National
Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes
any legal liability or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product, process,
or service by trade name, trademark, manufacturer, or otherwise does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States
government or Lawrence Livermore National Security, LLC. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence
Livermore National Laboratory under Contract DE-AC52-07NA27344.

Who watches the watchers?: preventing faults in a fault tolerance library
Cameron Stanavige

Western Oregon University, Monmouth, OR

Abstract—The Scalable Checkpoint/Restart library (SCR) was developed and is
used by researchers at Lawrence Livermore National Laboratory to provide a fast
and efficient method of saving and recovering large applications during runtime on
high-performance computing (HPC) systems. Though SCR protects other programs,
up until June 2017, nothing was actively protecting SCR. The goal of this project was
to automate the building and testing of this library on the varying HPC architectures
on which it is used. Our methods centered around the use of a continuous
integration tool called Bamboo that allowed for automation agents to be installed
on the HPC systems themselves. These agents provided a way for us to establish a
new and unique way to automate and customize the allocation of resources and
running of tests with CMake’s unit testing framework, CTest, as well as integration
testing scripts though an HPC package manager called Spack. These methods
provided a parallel environment in which to test the more complex features of SCR.
As a result, SCR is now automatically built and tested on several HPC architectures
any time changes are made by developers to the library’s source code. The results of
these tests are then communicated back to the developers for immediate feedback,
allowing them to fix functionality of SCR that may have broken. Hours of developers’
time are now being saved from the tedious process of manually testing and
debugging, which saves money and allows the SCR project team to focus their
efforts towards development. Thus, HPC system users can use SCR in conjunction
with their own applications to efficiently and effectively checkpoint and restart as
needed with the assurance that SCR itself is functioning properly.

I. INTRODUCTION

As software written for high-performance computers has become more and more
complex, so has the ability to thoroughly test them to ensure they are working properly. This
report will reflect our experience with implementing automated testing and Bamboo, a
continuous integration tool, for one particular fault-tolerance library on high-performance
computers—the Scalable Checkpoint/Restart library (SCR). The purpose of this report is to
inform current and potential software developers for high-performance computers of how we
were able to implement automated testing for real-world scenarios on our fault-tolerance
library.

SCR was initially created in 2007 at Lawrence Livermore National Laboratory, but has
never had any form of proper testing until now. Our approach towards solving this problem
using Bamboo, and changes in our build process, will be the primary focus of this report. A
short background on what SCR is and how it works will be required in order to gain a complete
understanding of our solution. A detailed description of the overall problem and why our
previous solutions for continuous integration and automated testing were unfeasible will also
be discussed.

II. BACKGROUND

Applications running on large-scale supercomputing systems have a tendency to fail
after a given amount of time, for various reasons including faults in code, compute nodes
failures, and power loss. These failures can result in a loss of hours, or even days, of valuable
computing time and money. One way applications prepare for these failures is by saving their
state to checkpoint files. These files are typically written to reliable storage, such as a parallel
file system. In the event of a failure, applications can then be restarted from a previous state
that was saved on these files. Today, high-performance computing systems have grown vastly
in scale and thus writing these checkpoint files to parallel file systems has become more
essential—and more expensive.’

4Local RAM disk 10000
Partner RAM disk

[%€XOR RAM disk

<o-Local SSD

[#4=XOR SSD 1000

[J¥Partner SSD

@ Lustre (10GB/s peak)

4 100

GB/s

10

0.1
4 8 16 32 64 128 256 512 992

Figure 1. Node count versus checkpoint bandwidth

The Scalable Checkpoint/Restart library (SCR) was created as a potential solution to this
problem. Through the use of multi-level checkpointing, SCR uses various redundancy schemes
(Fig. 1) to reduce the overhead of writing checkpoint files and for quick and efficient recovery in
the event of a failure. SCR uses storage local to the compute nodes on which the application is

running to checkpoint and restart, potentially without the use of the parallel file system at all.
The more compute nodes that are used, the better SCR outperforms the parallel file system
(Fig. 1).* Essentially, SCR is a library that protects applications running on supercomputing
systems by allowing them to fail safely and recover efficiently. For a full understanding of SCR,
Design, Modeling, and Evaluation of a Scalable Multi-level Checkpointing System, written by
scientists at Lawrence Livermore National Laboratory, is a useful and comprehensive resource.!
In order to thoroughly test if SCR is functioning properly, it needs to be used in conjunction with
another application running in parallel across multiple compute nodes.

[1l. PROBLEM

As previously mentioned, SCR is a library that protects applications in the event of a
failure—but before now, nothing has been effectively protecting SCR. The few testing scripts
that did already exist were not thorough and were not runnable in a variety of system
environments. Thus, they required a user who was already somewhat familiar with the SCR
library to manually allocate resources on the desired supercomputing system and then cut,
paste, and run the desired testing commands and read through the outputs in order to discover
the results. This process was tedious and would need to be repeated on every system that SCR
needed to be tested on.

Upon doing this testing process at the beginning of the summer, we immediately
discovered a critical bug in the SCR software. This bug was at least a month old, as that was the
last time the library had been changed. As discussed above, the manual testing process is
tedious and costly; consequently, there was nothing enforcing regular testing or informing the
developers when things were broken. Solutions to these types of problems already existed;
however, none were entirely helpful when it came to SCR’s requirement of the simultaneous
use of multiple compute nodes.

IV. SOLUTION

A. Proposed approach

Continuous integration centers around the practice in which developers of a project all
use the same shared collection of source code, also known as a repository. Changes made by a
developer are uploaded to the repository where the other developers can access those
changes. All the while, at desired points in time, or after each change is made, a server
watching the source code conducts an automated build to verify nothing was broken by the
recent changes (Fig 2).

Continuous Integration

Developers Continuous
Integration
Server

N\, Source
\ Repository Web Server
~ ™

P Compile
o) N[| PN
\/ Code commits Triggers build Deploys
Run unit tests application
P
Run integration
= o » lTl
\// Package

Build process

Figure 2. Bamboo continuous integration server

Automated testing works well with continuous integration. After the automated build
succeeds, previously written tests are automatically run to ensure no other functionality in the
source code has been broken by recent changes. If problems are detected, integration of the
changes are prevented and developers are immediately notified to allow them to resolve the
issues. These practices were the desired approach towards solving our problem, but how to use
them with the parallel requirements of SCR specifically was the real question at hand.

Using this approach was nothing new to our development team. We have several other
projects currently using continuous integration through a simple tool called Travis CI. Travis Cl is
a server that continually watches the desired source code repository for any changes. When a
change is detected, Travis Cl will copy and build the project and then run any commands or
tests as designated by a specific file that exists in the repository.® This tool has been successful
and works well for projects running serial tests on non-specific hardware. However, Travis Cl
doesn’t have the resources to run parallel programs as it only has its own dedicated server that
runs one thing at a time. This is precisely why it could not be used for SCR, as our library
required testing in a parallel environment on various hardware-specific systems. In order to
fully test SCR, we needed to run a sample program that was using the SCR library to ensure SCR
was functioning correctly. We needed a new tool to achieve the results we desired.

B. Our approach

Without knowing if a new tool would work for what we needed, we decided to pursue
another continuous integration application called Bamboo, which allowed us to do most of
what we set out to accomplish this summer. The primary feature that makes Bamboo different
than Travis Cl is Bamboo’s ability to have remote agents. These agents are similar to the Travis
Cl server in that they provide the same service, but can be installed remotely on the desired
system of choice. Essentially, this allows Bamboo to build and run tests in the same parallel
environment and on the same system as though it were a developer doing so manually. Our
solution involved installing such agents—one on each of the different system architectures that
we needed to thoroughly test SCR.?

An essential side project was the task of switching the build process and tools of SCR
from Autotools to CMake. This switch allowed for easier creation and addition of unit tests for
SCR through CMake’s unit testing framework, CTest, which seamlessly integrates with Bamboo.
In the end, CTest allowed for fairly easy implementation of automated testing.*

C. The solution
As Bamboo’s workflow (Fig. 3) is designed to work for a variety of different projects, we
had to experiment to find the right structure for SCR .2

Tasks execute sequentially within a Job.
Jobs execute in parallel within a Stage.
Stages execute sequentially within a Plan.

Figure 3. Bamboo workflow

Our solution involved having two distinct plans, each with a different approach to building and
testing SCR. Both plans had a single stage with multiple jobs and tasks. As the jobs inside a
stage are disconnected and can run in parallel, we created a new job for each system
architecture on which SCR was to be tested. A remote agent was then created on each of these
systems and assigned to their specific jobs inside each plan. Tasks were created under each job
to allow for the actual building and testing of SCR on each system, as well as any system specific
customization that may have been required.

1. Plan 1: CMake builds

Ensuring our CMake build works and testing simpler functionality with unit tests was the
primary focus of our first plan. Each of this plan’s jobs, running in parallel, first retrieves its own
copy of the SCR source code. It then proceeds to build and install SCR using CMake. After a
successful build, the Bamboo agent calls the CTest framework to run serial and parallel unit
tests on the compute nodes of the job’s assigned system. The results of these tests are then
parsed and displayed by Bamboo (Fig. 4). If all the jobs are successful, the individual build of
this plan by the Bamboo agent will be marked as a success.

@ flexamples parallel_test_interpose_restart (O 4 secs
© fexamples parallel_test_interpose_start (© 4 secs
@ /lexamples serial_test_api_cleanup (5 <1sec
@ /examples serial_test api_multiple_cleanup (© <1sec

Figure 4. CTest results displayed in Bamboo

Should any of the individual tasks fail, such as the CMake build, Bamboo will stop the process
and notify the developers of the issue. Bamboo will discover if any of the unit tests failed during
the parsing process. In the event that one did fail, the overall build of this plan will be displayed
as failed and the tests causing the failure will be displayed for the developers to investigate. If
an overall job fails on one system but succeeds on all others, the overall plan will still be marked
as failed.

2. Plan 2: Spack builds

Our second plan primarily focused on an alternate build process and more complex
testing, such as integration tests. Although this plan could be run independently, we made it
dependent on the success of our first plan, as a failed first plan would mean SCR itself had
issues and there would be no point continuing with more complex testing. This plan uses a
common package management tool designed for supercomputing called Spack. Spack handles
the build and installation of SCR and any other dependencies automatically, but required a bit
more customization for each supercomputing system on which SCR was to be tested.’

Each job in this plan would, in parallel, retrieves the source code for Spack and
subsequently uses Spack to install SCR. System specific compilers then are identified to allow
Spack to correctly build the SCR tests. Additional system environment variables are set up to
allow for the more complex integration testing scripts to be run. The Bamboo agent then
submits jobs to the system’s compute nodes to run these testing scripts. Upon their
completion, the agent parses the output from the tests, marks the build of the overall plan as a
success or failure depending on the results of the tests, and displays the results for the
developers.

V. OUTCOMES

Our efforts led to many favorable outcomes. The switch to CMake and automated
testing through Bamboo using CTest has allowed for easy addition of more tests as they are
written. Additional integration tests can easily be added as well through the automation of
using Spack to build and run them. Hours of developers manually testing, and thus company
dollars, are now being saved.

Due to the use of Bamboo, developers and administrators now receive fast and valuable
feedback on the status of the SCR library and how it is functioning on a variety of
high-performance computing systems. Bamboo automatically detects when changes are made
to the SCR library. Our plans then automatically build SCR and run our tests. If recent changes
break anything in SCR, Bamboo can prevent the changes from being implemented until they are
fixed. Should any of the builds or tests fail, the developers are notified immediately through
email, or a variety of other communication methods, allowing them to find and fix the problems
right away—a large improvement from waiting a month or more before discovering issues.

Setting up this testing environment has allowed us to automate a number of processes,
including building SCR, running unit and integration tests, checking if recent changes caused
problems with the rest of the code, and notifying developers of the results of those checks. We
have automated the testing of SCR on multiple supercomputing architectures in parallel. With
developers no longer having to worry about doing of these tasks manually, we are saving a lot
of time and money.

VI. CONCLUSION
In the beginning, SCR was protecting other programs by allowing them to fail safely and
successfully recover. However, nothing was protecting SCR. Solutions and tools the
development team were using were insufficient, and so we needed a new approach. Bamboo’s
remote agents and a switch to CMake enabled us to continually ensure that SCR is always
functioning properly with a real application on the actual supercomputing systems and
environments SCR is being used on. Now, through this use of continuous integration and

automated testing, the watcher is being watched, and SCR is being protected at the same level
as the programs it protects.

ACKNOWLEDGEMENTS
Kathryn Mohror, Ph.D., Center for Applied Scientific Computing, Lawrence Livermore Nat. Lab.,
Livermore, CA, USA

Elsa Gonsiorowski, Ph.D., Livermore Computing, Lawrence Livermore Nat. Lab., Livermore, CA,
USA

Adam Moody, M.S., Livermore Computing, Lawrence Livermore Nat. Lab., Livermore, CA, USA
Gregory Becker, Livermore Computing, Lawrence Livermore Nat. Lab., Livermore, CA, USA

David Beckingsale, Ph.D., Center for Applied Scientific Computing, Lawrence Livermore Nat.
Lab., Livermore, CA, USA

REFERENCES
[1] Adam Moody, Greg Bronevetsky, Kathryn Mohror, Bronis R. de Supinski, ”“Design, Modeling,
and Evaluation of a Scalable Multi-level Checkpointing System,” LLNL-CONF-427742,
Supercomputing 2010, New Orleans, LA, November 2010.

[2] Bamboo documentation. Web page. Accessed 7 July 2017.
https://confluence.atlassian.com/bamboo/bamboo-documentation-289276551.html

[3] Travis Cl user documentation. Web page. Accessed 26 June 2017. https://docs.travis-ci.com

[4] CMake reference documentation. Web page. Accessed 12 July 2017.
https://cmake.org/cmake/help/v3.9/

[5] Spack documentation. Web page. Accessed 15 August 2017.
http://spack.readthedocs.io/en/latest/

https://confluence.atlassian.com/bamboo/bamboo-documentation-289276551.html
https://docs.travis-ci.com/
https://cmake.org/cmake/help/v3.9/
http://spack.readthedocs.io/en/latest/

