
LLNL-TR-738530

Who watches the watchers?:
preventing fault in a fault
tolerance library

C. D. Stanavige

September 15, 2017

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

Who​ ​watches​ ​the​ ​watchers?:​ ​preventing​ ​faults​ ​in​ ​a​ ​fault​ ​tolerance​ ​library

Cameron​ ​Stanavige

15​ ​September​ ​2017

Western​ ​Oregon​ ​University,​ ​Monmouth,​ ​OR

LLNL-TR-738530

This​ ​document​ ​was​ ​prepared​ ​as​ ​an​ ​account​ ​of​ ​work​ ​sponsored​ ​by​ ​an​ ​agency​ ​of​ ​the​ ​United
States​ ​government.​ ​Neither​ ​the​ ​United​ ​States​ ​government​ ​nor​ ​Lawrence​ ​Livermore​ ​National
Security,​ ​LLC,​ ​nor​ ​any​ ​of​ ​their​ ​employees​ ​makes​ ​any​ ​warranty,​ ​expressed​ ​or​ ​implied,​ ​or​ ​assumes
any​ ​legal​ ​liability​ ​or​ ​responsibility​ ​for​ ​the​ ​accuracy,​ ​completeness,​ ​or​ ​usefulness​ ​of​ ​any
information,​ ​apparatus,​ ​product,​ ​or​ ​process​ ​disclosed,​ ​or​ ​represents​ ​that​ ​its​ ​use​ ​would​ ​not
infringe​ ​privately​ ​owned​ ​rights.​ ​Reference​ ​herein​ ​to​ ​any​ ​specific​ ​commercial​ ​product,​ ​process,
or​ ​service​ ​by​ ​trade​ ​name,​ ​trademark,​ ​manufacturer,​ ​or​ ​otherwise​ ​does​ ​not​ ​necessarily
constitute​ ​or​ ​imply​ ​its​ ​endorsement,​ ​recommendation,​ ​or​ ​favoring​ ​by​ ​the​ ​United​ ​States
government​ ​or​ ​Lawrence​ ​Livermore​ ​National​ ​Security,​ ​LLC.​ ​The​ ​views​ ​and​ ​opinions​ ​of​ ​authors
expressed​ ​herein​ ​do​ ​not​ ​necessarily​ ​state​ ​or​ ​reflect​ ​those​ ​of​ ​the​ ​United​ ​States​ ​government​ ​or
Lawrence​ ​Livermore​ ​National​ ​Security,​ ​LLC,​ ​and​ ​shall​ ​not​ ​be​ ​used​ ​for​ ​advertising​ ​or​ ​product
endorsement​ ​purposes.

This​ ​work​ ​performed​ ​under​ ​the​ ​auspices​ ​of​ ​the​ ​U.S.​ ​Department​ ​of​ ​Energy​ ​by​ ​Lawrence
Livermore​ ​National​ ​Laboratory​ ​under​ ​Contract​ ​DE-AC52-07NA27344.

Who​ ​watches​ ​the​ ​watchers?:​ ​preventing​ ​faults​ ​in​ ​a​ ​fault​ ​tolerance​ ​library

Cameron​ ​Stanavige

Western​ ​Oregon​ ​University,​ ​Monmouth,​ ​OR

Abstract—​The​ ​Scalable​ ​Checkpoint/Restart​ ​library​ ​(SCR)​ ​was​ ​developed​ ​and​ ​is
used​ ​by​ ​researchers​ ​at​ ​Lawrence​ ​Livermore​ ​National​ ​Laboratory​ ​to​ ​provide​ ​a​ ​fast
and​ ​efficient​ ​method​ ​of​ ​saving​ ​and​ ​recovering​ ​large​ ​applications​ ​during​ ​runtime​ ​on
high-performance​ ​computing​ ​(HPC)​ ​systems.​ ​Though​ ​SCR​ ​protects​ ​other​ ​programs,
up​ ​until​ ​June​ ​2017,​ ​nothing​ ​was​ ​actively​ ​protecting​ ​SCR.​ ​The​ ​goal​ ​of​ ​this​ ​project​ ​was
to​ ​automate​ ​the​ ​building​ ​and​ ​testing​ ​of​ ​this​ ​library​ ​on​ ​the​ ​varying​ ​HPC​ ​architectures
on​ ​which​ ​it​ ​is​ ​used.​ ​Our​ ​methods​ ​centered​ ​around​ ​the​ ​use​ ​of​ ​a​ ​continuous
integration​ ​tool​ ​called​ ​Bamboo​ ​that​ ​allowed​ ​for​ ​automation​ ​agents​ ​to​ ​be​ ​installed
on​ ​the​ ​HPC​ ​systems​ ​themselves.​ ​These​ ​agents​ ​provided​ ​a​ ​way​ ​for​ ​us​ ​to​ ​establish​ ​a
new​ ​and​ ​unique​ ​way​ ​to​ ​automate​ ​and​ ​customize​ ​the​ ​allocation​ ​of​ ​resources​ ​and
running​ ​of​ ​tests​ ​with​ ​CMake’s​ ​unit​ ​testing​ ​framework,​ ​CTest,​ ​as​ ​well​ ​as​ ​integration
testing​ ​scripts​ ​though​ ​an​ ​HPC​ ​package​ ​manager​ ​called​ ​Spack.​ ​These​ ​methods
provided​ ​a​ ​parallel​ ​environment​ ​in​ ​which​ ​to​ ​test​ ​the​ ​more​ ​complex​ ​features​ ​of​ ​SCR.
As​ ​a​ ​result,​ ​SCR​ ​is​ ​now​ ​automatically​ ​built​ ​and​ ​tested​ ​on​ ​several​ ​HPC​ ​architectures
any​ ​time​ ​changes​ ​are​ ​made​ ​by​ ​developers​ ​to​ ​the​ ​library’s​ ​source​ ​code.​ ​The​ ​results​ ​of
these​ ​tests​ ​are​ ​then​ ​communicated​ ​back​ ​to​ ​the​ ​developers​ ​for​ ​immediate​ ​feedback,
allowing​ ​them​ ​to​ ​fix​ ​functionality​ ​of​ ​SCR​ ​that​ ​may​ ​have​ ​broken.​ ​Hours​ ​of​ ​developers’
time​ ​are​ ​now​ ​being​ ​saved​ ​from​ ​the​ ​tedious​ ​process​ ​of​ ​manually​ ​testing​ ​and
debugging,​ ​which​ ​saves​ ​money​ ​and​ ​allows​ ​the​ ​SCR​ ​project​ ​team​ ​to​ ​focus​ ​their
efforts​ ​towards​ ​development.​ ​Thus,​ ​HPC​ ​system​ ​users​ ​can​ ​use​ ​SCR​ ​in​ ​conjunction
with​ ​their​ ​own​ ​applications​ ​to​ ​efficiently​ ​and​ ​effectively​ ​checkpoint​ ​and​ ​restart​ ​as
needed​ ​with​ ​the​ ​assurance​ ​that​ ​SCR​ ​itself​ ​is​ ​functioning​ ​properly.

I.​ ​INTRODUCTION
As​ ​software​ ​written​ ​for​ ​high-performance​ ​computers​ ​has​ ​become​ ​more​ ​and​ ​more

complex,​ ​so​ ​has​ ​the​ ​ability​ ​to​ ​thoroughly​ ​test​ ​them​ ​to​ ​ensure​ ​they​ ​are​ ​working​ ​properly.​ ​This
report​ ​will​ ​reflect​ ​our​ ​experience​ ​with​ ​implementing​ ​automated​ ​testing​ ​and​ ​Bamboo,​ ​a
continuous​ ​integration​ ​tool,​ ​for​ ​one​ ​particular​ ​fault-tolerance​ ​library​ ​on​ ​high-performance
computers—the​ ​Scalable​ ​Checkpoint/Restart​ ​library​ ​(SCR).​ ​The​ ​purpose​ ​of​ ​this​ ​report​ ​is​ ​to
inform​ ​current​ ​and​ ​potential​ ​software​ ​developers​ ​for​ ​high-performance​ ​computers​ ​of​ ​how​ ​we
were​ ​able​ ​to​ ​implement​ ​automated​ ​testing​ ​for​ ​real-world​ ​scenarios​ ​on​ ​our​ ​fault-tolerance
library.

SCR​ ​was​ ​initially​ ​created​ ​in​ ​2007​ ​at​ ​Lawrence​ ​Livermore​ ​National​ ​Laboratory,​ ​but​ ​has
never​ ​had​ ​any​ ​form​ ​of​ ​proper​ ​testing​ ​until​ ​now.​ ​Our​ ​approach​ ​towards​ ​solving​ ​this​ ​problem
using​ ​Bamboo,​ ​and​ ​changes​ ​in​ ​our​ ​build​ ​process,​ ​will​ ​be​ ​the​ ​primary​ ​focus​ ​of​ ​this​ ​report.​ ​A
short​ ​background​ ​on​ ​what​ ​SCR​ ​is​ ​and​ ​how​ ​it​ ​works​ ​will​ ​be​ ​required​ ​in​ ​order​ ​to​ ​gain​ ​a​ ​complete
understanding​ ​of​ ​our​ ​solution.​ ​A​ ​detailed​ ​description​ ​of​ ​the​ ​overall​ ​problem​ ​and​ ​why​ ​our
previous​ ​solutions​ ​for​ ​continuous​ ​integration​ ​and​ ​automated​ ​testing​ ​were​ ​unfeasible​ ​will​ ​also
be​ ​discussed.

II.​ ​BACKGROUND
Applications​ ​running​ ​on​ ​large-scale​ ​supercomputing​ ​systems​ ​have​ ​a​ ​tendency​ ​to​ ​fail

after​ ​a​ ​given​ ​amount​ ​of​ ​time,​ ​for​ ​various​ ​reasons​ ​including​ ​faults​ ​in​ ​code,​ ​compute​ ​nodes
failures,​ ​and​ ​power​ ​loss.​ ​These​ ​failures​ ​can​ ​result​ ​in​ ​a​ ​loss​ ​of​ ​hours,​ ​or​ ​even​ ​days,​ ​of​ ​valuable
computing​ ​time​ ​and​ ​money.​ ​One​ ​way​ ​applications​ ​prepare​ ​for​ ​these​ ​failures​ ​is​ ​by​ ​saving​ ​their
state​ ​to​ ​checkpoint​ ​files.​ ​These​ ​files​ ​are​ ​typically​ ​written​ ​to​ ​reliable​ ​storage,​ ​such​ ​as​ ​a​ ​parallel
file​ ​system.​ ​In​ ​the​ ​event​ ​of​ ​a​ ​failure,​ ​applications​ ​can​ ​then​ ​be​ ​restarted​ ​from​ ​a​ ​previous​ ​state
that​ ​was​ ​saved​ ​on​ ​these​ ​files.​ ​Today,​ ​high-performance​ ​computing​ ​systems​ ​have​ ​grown​ ​vastly
in​ ​scale​ ​and​ ​thus​ ​writing​ ​these​ ​checkpoint​ ​files​ ​to​ ​parallel​ ​file​ ​systems​ ​has​ ​become​ ​more
essential—and​ ​more​ ​expensive.​1

Figure​ ​1.​ ​Node​ ​count​ ​versus​ ​checkpoint​ ​bandwidth

The​ ​Scalable​ ​Checkpoint/Restart​ ​library​ ​(SCR)​ ​was​ ​created​ ​as​ ​a​ ​potential​ ​solution​ ​to​ ​this
problem.​ ​Through​ ​the​ ​use​ ​of​ ​multi-level​ ​checkpointing,​ ​SCR​ ​uses​ ​various​ ​redundancy​ ​schemes
(Fig.​ ​1)​ ​to​ ​reduce​ ​the​ ​overhead​ ​of​ ​writing​ ​checkpoint​ ​files​ ​and​ ​for​ ​quick​ ​and​ ​efficient​ ​recovery​ ​in
the​ ​event​ ​of​ ​a​ ​failure.​ ​SCR​ ​uses​ ​storage​ ​local​ ​to​ ​the​ ​compute​ ​nodes​ ​on​ ​which​ ​the​ ​application​ ​is

running​ ​to​ ​checkpoint​ ​and​ ​restart,​ ​potentially​ ​without​ ​the​ ​use​ ​of​ ​the​ ​parallel​ ​file​ ​system​ ​at​ ​all.
The​ ​more​ ​compute​ ​nodes​ ​that​ ​are​ ​used,​ ​the​ ​better​ ​SCR​ ​outperforms​ ​the​ ​parallel​ ​file​ ​system
(Fig.​ ​1).​1​​ ​Essentially,​ ​SCR​ ​is​ ​a​ ​library​ ​that​ ​protects​ ​applications​ ​running​ ​on​ ​supercomputing
systems​ ​by​ ​allowing​ ​them​ ​to​ ​fail​ ​safely​ ​and​ ​recover​ ​efficiently.​ ​For​ ​a​ ​full​ ​understanding​ ​of​ ​SCR,
Design,​ ​Modeling,​ ​and​ ​Evaluation​ ​of​ ​a​ ​Scalable​ ​Multi-level​ ​Checkpointing​ ​System,​​ ​written​ ​by
scientists​ ​at​ ​Lawrence​ ​Livermore​ ​National​ ​Laboratory,​ ​is​ ​a​ ​useful​ ​and​ ​comprehensive​ ​resource.​1
In​ ​order​ ​to​ ​thoroughly​ ​test​ ​if​ ​SCR​ ​is​ ​functioning​ ​properly,​ ​it​ ​needs​ ​to​ ​be​ ​used​ ​in​ ​conjunction​ ​with
another​ ​application​ ​running​ ​in​ ​parallel​ ​across​ ​multiple​ ​compute​ ​nodes.

III.​ ​PROBLEM
As​ ​previously​ ​mentioned,​ ​SCR​ ​is​ ​a​ ​library​ ​that​ ​protects​ ​applications​ ​in​ ​the​ ​event​ ​of​ ​a

failure—but​ ​before​ ​now,​ ​nothing​ ​has​ ​been​ ​effectively​ ​protecting​ ​SCR.​ ​The​ ​few​ ​testing​ ​scripts
that​ ​did​ ​already​ ​exist​ ​were​ ​not​ ​thorough​ ​and​ ​were​ ​not​ ​runnable​ ​in​ ​a​ ​variety​ ​of​ ​system
environments.​ ​Thus,​ ​they​ ​required​ ​a​ ​user​ ​who​ ​was​ ​already​ ​somewhat​ ​familiar​ ​with​ ​the​ ​SCR
library​ ​to​ ​manually​ ​allocate​ ​resources​ ​on​ ​the​ ​desired​ ​supercomputing​ ​system​ ​and​ ​then​ ​cut,
paste,​ ​and​ ​run​ ​the​ ​desired​ ​testing​ ​commands​ ​and​ ​read​ ​through​ ​the​ ​outputs​ ​in​ ​order​ ​to​ ​discover
the​ ​results.​ ​This​ ​process​ ​was​ ​tedious​ ​and​ ​would​ ​need​ ​to​ ​be​ ​repeated​ ​on​ ​every​ ​system​ ​that​ ​SCR
needed​ ​to​ ​be​ ​tested​ ​on.

Upon​ ​doing​ ​this​ ​testing​ ​process​ ​at​ ​the​ ​beginning​ ​of​ ​the​ ​summer,​ ​we​ ​immediately
discovered​ ​a​ ​critical​ ​bug​ ​in​ ​the​ ​SCR​ ​software.​ ​This​ ​bug​ ​was​ ​at​ ​least​ ​a​ ​month​ ​old,​ ​as​ ​that​ ​was​ ​the
last​ ​time​ ​the​ ​library​ ​had​ ​been​ ​changed.​ ​As​ ​discussed​ ​above,​ ​the​ ​manual​ ​testing​ ​process​ ​is
tedious​ ​and​ ​costly;​ ​consequently,​ ​there​ ​was​ ​nothing​ ​enforcing​ ​regular​ ​testing​ ​or​ ​informing​ ​the
developers​ ​when​ ​things​ ​were​ ​broken.​ ​Solutions​ ​to​ ​these​ ​types​ ​of​ ​problems​ ​already​ ​existed;
however,​ ​none​ ​were​ ​entirely​ ​helpful​ ​when​ ​it​ ​came​ ​to​ ​SCR’s​ ​requirement​ ​of​ ​the​ ​simultaneous
use​ ​of​ ​multiple​ ​compute​ ​nodes.

IV.​ ​SOLUTION
A.​ ​Proposed​ ​approach

Continuous​ ​integration​ ​centers​ ​around​ ​the​ ​practice​ ​in​ ​which​ ​developers​ ​of​ ​a​ ​project​ ​all
use​ ​the​ ​same​ ​shared​ ​collection​ ​of​ ​source​ ​code,​ ​also​ ​known​ ​as​ ​a​ ​repository.​ ​Changes​ ​made​ ​by​ ​a
developer​ ​are​ ​uploaded​ ​to​ ​the​ ​repository​ ​where​ ​the​ ​other​ ​developers​ ​can​ ​access​ ​those
changes.​ ​All​ ​the​ ​while,​ ​at​ ​desired​ ​points​ ​in​ ​time,​ ​or​ ​after​ ​each​ ​change​ ​is​ ​made,​ ​a​ ​server
watching​ ​the​ ​source​ ​code​ ​conducts​ ​an​ ​automated​ ​build​ ​to​ ​verify​ ​nothing​ ​was​ ​broken​ ​by​ ​the
recent​ ​changes​ ​(Fig​ ​2).​2

Figure​ ​2.​ ​Bamboo​ ​continuous​ ​integration​ ​server

Automated​ ​testing​ ​works​ ​well​ ​with​ ​continuous​ ​integration.​ ​After​ ​the​ ​automated​ ​build
succeeds,​ ​previously​ ​written​ ​tests​ ​are​ ​automatically​ ​run​ ​to​ ​ensure​ ​no​ ​other​ ​functionality​ ​in​ ​the
source​ ​code​ ​has​ ​been​ ​broken​ ​by​ ​recent​ ​changes.​ ​If​ ​problems​ ​are​ ​detected,​ ​integration​ ​of​ ​the
changes​ ​are​ ​prevented​ ​and​ ​developers​ ​are​ ​immediately​ ​notified​ ​to​ ​allow​ ​them​ ​to​ ​resolve​ ​the
issues.​ ​These​ ​practices​ ​were​ ​the​ ​desired​ ​approach​ ​towards​ ​solving​ ​our​ ​problem,​ ​but​ ​how​ ​to​ ​use
them​ ​with​ ​the​ ​parallel​ ​requirements​ ​of​ ​SCR​ ​specifically​ ​was​ ​the​ ​real​ ​question​ ​at​ ​hand.

Using​ ​this​ ​approach​ ​was​ ​nothing​ ​new​ ​to​ ​our​ ​development​ ​team.​ ​We​ ​have​ ​several​ ​other
projects​ ​currently​ ​using​ ​continuous​ ​integration​ ​through​ ​a​ ​simple​ ​tool​ ​called​ ​Travis​ ​CI.​ ​Travis​ ​CI​ ​is
a​ ​server​ ​that​ ​continually​ ​watches​ ​the​ ​desired​ ​source​ ​code​ ​repository​ ​for​ ​any​ ​changes.​ ​When​ ​a
change​ ​is​ ​detected,​ ​Travis​ ​CI​ ​will​ ​copy​ ​and​ ​build​ ​the​ ​project​ ​and​ ​then​ ​run​ ​any​ ​commands​ ​or
tests​ ​as​ ​designated​ ​by​ ​a​ ​specific​ ​file​ ​that​ ​exists​ ​in​ ​the​ ​repository.​3​​ ​This​ ​tool​ ​has​ ​been​ ​successful
and​ ​works​ ​well​ ​for​ ​projects​ ​running​ ​serial​ ​tests​ ​on​ ​non-specific​ ​hardware.​ ​However,​ ​Travis​ ​CI
doesn’t​ ​have​ ​the​ ​resources​ ​to​ ​run​ ​parallel​ ​programs​ ​as​ ​it​ ​only​ ​has​ ​its​ ​own​ ​dedicated​ ​server​ ​that
runs​ ​one​ ​thing​ ​at​ ​a​ ​time.​ ​This​ ​is​ ​precisely​ ​why​ ​it​ ​could​ ​not​ ​be​ ​used​ ​for​ ​SCR,​ ​as​ ​our​ ​library
required​ ​testing​ ​in​ ​a​ ​parallel​ ​environment​ ​on​ ​various​ ​hardware-specific​ ​systems.​ ​In​ ​order​ ​to
fully​ ​test​ ​SCR,​ ​we​ ​needed​ ​to​ ​run​ ​a​ ​sample​ ​program​ ​that​ ​was​ ​using​ ​the​ ​SCR​ ​library​ ​to​ ​ensure​ ​SCR
was​ ​functioning​ ​correctly.​ ​We​ ​needed​ ​a​ ​new​ ​tool​ ​to​ ​achieve​ ​the​ ​results​ ​we​ ​desired.

B.​ ​Our​ ​approach

Without​ ​knowing​ ​if​ ​a​ ​new​ ​tool​ ​would​ ​work​ ​for​ ​what​ ​we​ ​needed,​ ​we​ ​decided​ ​to​ ​pursue
another​ ​continuous​ ​integration​ ​application​ ​called​ ​Bamboo,​ ​which​ ​allowed​ ​us​ ​to​ ​do​ ​most​ ​of
what​ ​we​ ​set​ ​out​ ​to​ ​accomplish​ ​this​ ​summer.​ ​The​ ​primary​ ​feature​ ​that​ ​makes​ ​Bamboo​ ​different
than​ ​Travis​ ​CI​ ​is​ ​Bamboo’s​ ​ability​ ​to​ ​have​ ​remote​ ​agents.​ ​These​ ​agents​ ​are​ ​similar​ ​to​ ​the​ ​Travis
CI​ ​server​ ​in​ ​that​ ​they​ ​provide​ ​the​ ​same​ ​service,​ ​but​ ​can​ ​be​ ​installed​ ​remotely​ ​on​ ​the​ ​desired
system​ ​of​ ​choice.​ ​Essentially,​ ​this​ ​allows​ ​Bamboo​ ​to​ ​build​ ​and​ ​run​ ​tests​ ​in​ ​the​ ​same​ ​parallel
environment​ ​and​ ​on​ ​the​ ​same​ ​system​ ​as​ ​though​ ​it​ ​were​ ​a​ ​developer​ ​doing​ ​so​ ​manually.​ ​Our
solution​ ​involved​ ​installing​ ​such​ ​agents—one​ ​on​ ​each​ ​of​ ​the​ ​different​ ​system​ ​architectures​ ​that
we​ ​needed​ ​to​ ​thoroughly​ ​test​ ​SCR.​2

An​ ​essential​ ​side​ ​project​ ​was​ ​the​ ​task​ ​of​ ​switching​ ​the​ ​build​ ​process​ ​and​ ​tools​ ​of​ ​SCR
from​ ​Autotools​ ​to​ ​CMake.​ ​This​ ​switch​ ​allowed​ ​for​ ​easier​ ​creation​ ​and​ ​addition​ ​of​ ​unit​ ​tests​ ​for
SCR​ ​through​ ​CMake’s​ ​unit​ ​testing​ ​framework,​ ​CTest,​ ​which​ ​seamlessly​ ​integrates​ ​with​ ​Bamboo.
In​ ​the​ ​end,​ ​CTest​ ​allowed​ ​for​ ​fairly​ ​easy​ ​implementation​ ​of​ ​automated​ ​testing.​4

C.​ ​The​ ​solution

As​ ​Bamboo’s​ ​workflow​ ​(Fig.​ ​3)​ ​is​ ​designed​ ​to​ ​work​ ​for​ ​a​ ​variety​ ​of​ ​different​ ​projects,​ ​we
had​ ​to​ ​experiment​ ​to​ ​find​ ​the​ ​right​ ​structure​ ​for​ ​SCR​ ​.​2

Figure​ ​3.​ ​Bamboo​ ​workflow

Our​ ​solution​ ​involved​ ​having​ ​two​ ​distinct​ ​plans,​ ​each​ ​with​ ​a​ ​different​ ​approach​ ​to​ ​building​ ​and
testing​ ​SCR.​ ​Both​ ​plans​ ​had​ ​a​ ​single​ ​stage​ ​with​ ​multiple​ ​jobs​ ​and​ ​tasks.​ ​As​ ​the​ ​jobs​ ​inside​ ​a
stage​ ​are​ ​disconnected​ ​and​ ​can​ ​run​ ​in​ ​parallel,​ ​we​ ​created​ ​a​ ​new​ ​job​ ​for​ ​each​ ​system
architecture​ ​on​ ​which​ ​SCR​ ​was​ ​to​ ​be​ ​tested.​ ​A​ ​remote​ ​agent​ ​was​ ​then​ ​created​ ​on​ ​each​ ​of​ ​these
systems​ ​and​ ​assigned​ ​to​ ​their​ ​specific​ ​jobs​ ​inside​ ​each​ ​plan.​ ​Tasks​ ​were​ ​created​ ​under​ ​each​ ​job
to​ ​allow​ ​for​ ​the​ ​actual​ ​building​ ​and​ ​testing​ ​of​ ​SCR​ ​on​ ​each​ ​system,​ ​as​ ​well​ ​as​ ​any​ ​system​ ​specific
customization​ ​that​ ​may​ ​have​ ​been​ ​required.

1.​ ​Plan​ ​1:​ ​CMake​ ​builds

Ensuring​ ​our​ ​CMake​ ​build​ ​works​ ​and​ ​testing​ ​simpler​ ​functionality​ ​with​ ​unit​ ​tests​ ​was​ ​the
primary​ ​focus​ ​of​ ​our​ ​first​ ​plan.​ ​Each​ ​of​ ​this​ ​plan’s​ ​jobs,​ ​running​ ​in​ ​parallel,​ ​first​ ​retrieves​ ​its​ ​own
copy​ ​of​ ​the​ ​SCR​ ​source​ ​code.​ ​It​ ​then​ ​proceeds​ ​to​ ​build​ ​and​ ​install​ ​SCR​ ​using​ ​CMake.​ ​After​ ​a
successful​ ​build,​ ​the​ ​Bamboo​ ​agent​ ​calls​ ​the​ ​CTest​ ​framework​ ​to​ ​run​ ​serial​ ​and​ ​parallel​ ​unit
tests​ ​on​ ​the​ ​compute​ ​nodes​ ​of​ ​the​ ​job’s​ ​assigned​ ​system.​ ​The​ ​results​ ​of​ ​these​ ​tests​ ​are​ ​then
parsed​ ​and​ ​displayed​ ​by​ ​Bamboo​ ​(Fig.​ ​4).​ ​If​ ​all​ ​the​ ​jobs​ ​are​ ​successful,​ ​the​ ​individual​ ​build​ ​of
this​ ​plan​ ​by​ ​the​ ​Bamboo​ ​agent​ ​will​ ​be​ ​marked​ ​as​ ​a​ ​success.

Figure​ ​4.​ ​CTest​ ​results​ ​displayed​ ​in​ ​Bamboo

Should​ ​any​ ​of​ ​the​ ​individual​ ​tasks​ ​fail,​ ​such​ ​as​ ​the​ ​CMake​ ​build,​ ​Bamboo​ ​will​ ​stop​ ​the​ ​process
and​ ​notify​ ​the​ ​developers​ ​of​ ​the​ ​issue.​ ​Bamboo​ ​will​ ​discover​ ​if​ ​any​ ​of​ ​the​ ​unit​ ​tests​ ​failed​ ​during
the​ ​parsing​ ​process.​ ​In​ ​the​ ​event​ ​that​ ​one​ ​did​ ​fail,​ ​the​ ​overall​ ​build​ ​of​ ​this​ ​plan​ ​will​ ​be​ ​displayed
as​ ​failed​ ​and​ ​the​ ​tests​ ​causing​ ​the​ ​failure​ ​will​ ​be​ ​displayed​ ​for​ ​the​ ​developers​ ​to​ ​investigate.​ ​If
an​ ​overall​ ​job​ ​fails​ ​on​ ​one​ ​system​ ​but​ ​succeeds​ ​on​ ​all​ ​others,​ ​the​ ​overall​ ​plan​ ​will​ ​still​ ​be​ ​marked
as​ ​failed.

2.​ ​Plan​ ​2:​ ​Spack​ ​builds

Our​ ​second​ ​plan​ ​primarily​ ​focused​ ​on​ ​an​ ​alternate​ ​build​ ​process​ ​and​ ​more​ ​complex
testing,​ ​such​ ​as​ ​integration​ ​tests.​ ​Although​ ​this​ ​plan​ ​could​ ​be​ ​run​ ​independently,​ ​we​ ​made​ ​it
dependent​ ​on​ ​the​ ​success​ ​of​ ​our​ ​first​ ​plan,​ ​as​ ​a​ ​failed​ ​first​ ​plan​ ​would​ ​mean​ ​SCR​ ​itself​ ​had
issues​ ​and​ ​there​ ​would​ ​be​ ​no​ ​point​ ​continuing​ ​with​ ​more​ ​complex​ ​testing.​ ​This​ ​plan​ ​uses​ ​a
common​ ​package​ ​management​ ​tool​ ​designed​ ​for​ ​supercomputing​ ​called​ ​Spack.​ ​Spack​ ​handles
the​ ​build​ ​and​ ​installation​ ​of​ ​SCR​ ​and​ ​any​ ​other​ ​dependencies​ ​automatically,​ ​but​ ​required​ ​a​ ​bit
more​ ​customization​ ​for​ ​each​ ​supercomputing​ ​system​ ​on​ ​which​ ​SCR​ ​was​ ​to​ ​be​ ​tested.​5

Each​ ​job​ ​in​ ​this​ ​plan​ ​would,​ ​in​ ​parallel,​ ​retrieves​ ​the​ ​source​ ​code​ ​for​ ​Spack​ ​and
subsequently​ ​uses​ ​Spack​ ​to​ ​install​ ​SCR.​ ​System​ ​specific​ ​compilers​ ​then​ ​are​ ​identified​ ​to​ ​allow
Spack​ ​to​ ​correctly​ ​build​ ​the​ ​SCR​ ​tests.​ ​Additional​ ​system​ ​environment​ ​variables​ ​are​ ​set​ ​up​ ​to
allow​ ​for​ ​the​ ​more​ ​complex​ ​integration​ ​testing​ ​scripts​ ​to​ ​be​ ​run.​ ​The​ ​Bamboo​ ​agent​ ​then
submits​ ​jobs​ ​to​ ​the​ ​system’s​ ​compute​ ​nodes​ ​to​ ​run​ ​these​ ​testing​ ​scripts.​ ​Upon​ ​their
completion,​ ​the​ ​agent​ ​parses​ ​the​ ​output​ ​from​ ​the​ ​tests,​ ​marks​ ​the​ ​build​ ​of​ ​the​ ​overall​ ​plan​ ​as​ ​a
success​ ​or​ ​failure​ ​depending​ ​on​ ​the​ ​results​ ​of​ ​the​ ​tests,​ ​and​ ​displays​ ​the​ ​results​ ​for​ ​the
developers.

V.​ ​OUTCOMES
Our​ ​efforts​ ​led​ ​to​ ​many​ ​favorable​ ​outcomes.​ ​The​ ​switch​ ​to​ ​CMake​ ​and​ ​automated

testing​ ​through​ ​Bamboo​ ​using​ ​CTest​ ​has​ ​allowed​ ​for​ ​easy​ ​addition​ ​of​ ​more​ ​tests​ ​as​ ​they​ ​are
written.​ ​Additional​ ​integration​ ​tests​ ​can​ ​easily​ ​be​ ​added​ ​as​ ​well​ ​through​ ​the​ ​automation​ ​of
using​ ​Spack​ ​to​ ​build​ ​and​ ​run​ ​them.​ ​Hours​ ​of​ ​developers​ ​manually​ ​testing,​ ​and​ ​thus​ ​company
dollars,​ ​are​ ​now​ ​being​ ​saved.

Due​ ​to​ ​the​ ​use​ ​of​ ​Bamboo,​ ​developers​ ​and​ ​administrators​ ​now​ ​receive​ ​fast​ ​and​ ​valuable
feedback​ ​on​ ​the​ ​status​ ​of​ ​the​ ​SCR​ ​library​ ​and​ ​how​ ​it​ ​is​ ​functioning​ ​on​ ​a​ ​variety​ ​of
high-performance​ ​computing​ ​systems.​ ​Bamboo​ ​automatically​ ​detects​ ​when​ ​changes​ ​are​ ​made
to​ ​the​ ​SCR​ ​library.​ ​Our​ ​plans​ ​then​ ​automatically​ ​build​ ​SCR​ ​and​ ​run​ ​our​ ​tests.​ ​If​ ​recent​ ​changes
break​ ​anything​ ​in​ ​SCR,​ ​Bamboo​ ​can​ ​prevent​ ​the​ ​changes​ ​from​ ​being​ ​implemented​ ​until​ ​they​ ​are
fixed.​ ​Should​ ​any​ ​of​ ​the​ ​builds​ ​or​ ​tests​ ​fail,​ ​the​ ​developers​ ​are​ ​notified​ ​immediately​ ​through
email,​ ​or​ ​a​ ​variety​ ​of​ ​other​ ​communication​ ​methods,​ ​allowing​ ​them​ ​to​ ​find​ ​and​ ​fix​ ​the​ ​problems
right​ ​away—a​ ​large​ ​improvement​ ​from​ ​waiting​ ​a​ ​month​ ​or​ ​more​ ​before​ ​discovering​ ​issues.

Setting​ ​up​ ​this​ ​testing​ ​environment​ ​has​ ​allowed​ ​us​ ​to​ ​automate​ ​a​ ​number​ ​of​ ​processes,
including​ ​building​ ​SCR,​ ​running​ ​unit​ ​and​ ​integration​ ​tests,​ ​checking​ ​if​ ​recent​ ​changes​ ​caused
problems​ ​with​ ​the​ ​rest​ ​of​ ​the​ ​code,​ ​and​ ​notifying​ ​developers​ ​of​ ​the​ ​results​ ​of​ ​those​ ​checks.​ ​We
have​ ​automated​ ​the​ ​testing​ ​of​ ​SCR​ ​on​ ​multiple​ ​supercomputing​ ​architectures​ ​in​ ​parallel.​ ​With
developers​ ​no​ ​longer​ ​having​ ​to​ ​worry​ ​about​ ​doing​ ​of​ ​these​ ​tasks​ ​manually,​ ​we​ ​are​ ​saving​ ​a​ ​lot
of​ ​time​ ​and​ ​money.

VI.​ ​CONCLUSION

In​ ​the​ ​beginning,​ ​SCR​ ​was​ ​protecting​ ​other​ ​programs​ ​by​ ​allowing​ ​them​ ​to​ ​fail​ ​safely​ ​and
successfully​ ​recover.​ ​However,​ ​nothing​ ​was​ ​protecting​ ​SCR.​ ​Solutions​ ​and​ ​tools​ ​the
development​ ​team​ ​were​ ​using​ ​were​ ​insufficient,​ ​and​ ​so​ ​we​ ​needed​ ​a​ ​new​ ​approach.​ ​Bamboo’s
remote​ ​agents​ ​and​ ​a​ ​switch​ ​to​ ​CMake​ ​enabled​ ​us​ ​to​ ​continually​ ​ensure​ ​that​ ​SCR​ ​is​ ​always
functioning​ ​properly​ ​with​ ​a​ ​real​ ​application​ ​on​ ​the​ ​actual​ ​supercomputing​ ​systems​ ​and
environments​ ​SCR​ ​is​ ​being​ ​used​ ​on.​ ​Now,​ ​through​ ​this​ ​use​ ​of​ ​continuous​ ​integration​ ​and

automated​ ​testing,​ ​the​ ​watcher​ ​is​ ​being​ ​watched,​ ​and​ ​SCR​ ​is​ ​being​ ​protected​ ​at​ ​the​ ​same​ ​level
as​ ​the​ ​programs​ ​it​ ​protects.

ACKNOWLEDGEMENTS
Kathryn​ ​Mohror,​ ​Ph.D.,​ ​Center​ ​for​ ​Applied​ ​Scientific​ ​Computing,​ ​Lawrence​ ​Livermore​ ​Nat.​ ​Lab.,
Livermore,​ ​CA,​ ​USA

Elsa​ ​Gonsiorowski,​ ​Ph.D.,​ ​Livermore​ ​Computing,​ ​Lawrence​ ​Livermore​ ​Nat.​ ​Lab.,​ ​Livermore,​ ​CA,
USA

Adam​ ​Moody,​ ​M.S.,​ ​Livermore​ ​Computing,​ ​Lawrence​ ​Livermore​ ​Nat.​ ​Lab.,​ ​Livermore,​ ​CA,​ ​USA

Gregory​ ​Becker,​ ​Livermore​ ​Computing,​ ​Lawrence​ ​Livermore​ ​Nat.​ ​Lab.,​ ​Livermore,​ ​CA,​ ​USA

David​ ​Beckingsale,​ ​Ph.D.,​ ​Center​ ​for​ ​Applied​ ​Scientific​ ​Computing,​ ​Lawrence​ ​Livermore​ ​Nat.
Lab.,​ ​Livermore,​ ​CA,​ ​USA

REFERENCES

[1]​ ​Adam​ ​Moody,​ ​Greg​ ​Bronevetsky,​ ​Kathryn​ ​Mohror,​ ​Bronis​ ​R.​ ​de​ ​Supinski,​ ​”Design,​ ​Modeling,
and​ ​Evaluation​ ​of​ ​a​ ​Scalable​ ​Multi-level​ ​Checkpointing​ ​System,”​ ​LLNL-CONF-427742,
Supercomputing​ ​2010,​ ​New​ ​Orleans,​ ​LA,​ ​November​ ​2010.

[2]​ ​Bamboo​ ​documentation.​ ​Web​ ​page.​ ​Accessed​ ​7​ ​July​ ​2017.
https://confluence.atlassian.com/bamboo/bamboo-documentation-289276551.html

[3]​ ​Travis​ ​CI​ ​user​ ​documentation.​ ​Web​ ​page.​ ​Accessed​ ​26​ ​June​ ​2017.​ ​​ ​​ ​​https://docs.travis-ci.com

[4]​ ​CMake​ ​reference​ ​documentation.​ ​Web​ ​page.​ ​Accessed​ ​12​ ​July​ ​2017.
https://cmake.org/cmake/help/v3.9/

[5]​ ​Spack​ ​documentation.​ ​Web​ ​page.​ ​Accessed​ ​15​ ​August​ ​2017.
http://spack.readthedocs.io/en/latest/

https://confluence.atlassian.com/bamboo/bamboo-documentation-289276551.html
https://docs.travis-ci.com/
https://cmake.org/cmake/help/v3.9/
http://spack.readthedocs.io/en/latest/

