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Recent first-principles molecular dynamics algorithms using localized electronic orbitals have achieved O(N)
complexity and controlled accuracy in simulating systems with finite band gaps. However, accurately deter-
mining the centers of these localized orbitals during simulation setup may require O(N?) operations, which
is computationally infeasible for many biological systems. We present an O(N) approach for approximating
orbital centers in proteins, DNA, and RNA which uses non-localized solutions for a set of fixed-size subprob-
lems to create a set of geometric maps applicable to larger systems. This scalable approach, used as an initial
guess in the O(N) first-principles molecular dynamics code MGmol, facilitates first-principles simulations in
biological systems of sizes which were previously impossible.

I. INTRODUCTION

First-principles molecular dynamics (FPMD) is a com-
putational method for studying matter at an atomistic
scale used in a variety of fields. FPMD typically re-
quires solving the equations of density functional theory
(DFT),? the Kohn-Sham equations, in order to compute
a system’s electronic structure and the forces acting on its
atoms. Although they are general and accurate, FPMD
simulations become computationally infeasible beyond a
few hundred atoms for tens of picoseconds due to the
O(N?) computational complexity of typical DFT solvers.
In response to these limitations, many O(N) complexity
algorithms have been developed.'

One such algorithm is MGmol, a parallel FPMD code
developed at Lawrence Livermore National Laboratory
which uses spherically localized electronic orbitals in or-
der to reduce the computational cost and global com-
munications of DFT calculations.” However, determining
the initial positions of the orbital centers during setup us-
ing MGmol requires computing the electronic structure
using non-localized orbitals, resulting in a O(N?) cost
which is intractable for large biological systems. In order
to make simulations of many realistic protein, DNA, and
RNA systems possible using MGmol, we present a geo-
metric approach to approximate orbital centers in O(N)
time which can be used as an initial guess during setup.

1. METHODS

Proteins, DNA, and RNA all exhibit modular struc-
tures consisting of a linear sequence of residues chosen
from a limited set - the 20 amino acids in proteins,
and the 5 nucleobases in nucleic acids. These sequences
are connected by specific bonds - the peptide bond in
proteins and the phosphodiester bond in nucleic acids.
Our approach to inexpensively compute orbital centers
in these systems is to decompose the input into its con-

stituent residues and bonds, approximate the orbital cen-
ters for these pieces separately, and recombine the results
to yield the orbital centers for the entire system. The
approximation of orbital centers in each isolated part is
done by a set of geometric maps. These maps must pre-
serve the local electronic configuration of the residue or
bond and must be robust to conformational changes, as
the residues are not rigid. Each geometric map is com-
puted from a template consisting of the residue or bond’s
atoms and non-localized orbital centers. As generating
these templates requires the use of non-localized orbitals,
it is an O(N?) task.* However, this computation is only
ever done once, after which the mappings can be applied
to new input systems in linear time. Thus, for systems in
which N is very large, this geometric method replaces an
O(N3) computation with an O(N) computation by using
the results of several one-time computations on subprob-
lems of a small, fixed size. FIG. 1 outlines the approach
and its computational complexity.
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FIG. 1: Geometric method overview
Computations, shown as red arrows, are given with
their respective costs, where n is the number of
electrons in a 3-residue system and N is the number of
electrons in an arbitrarily large input system.
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A. Extracting templates

In order to obtain a template for each residue with the
electronic configuration that would be found in a real-
istic biological system, we calculate maximally-localized
Wannier functions (MLWF)® from which we extract or-
bital centers in systems consisting of 3 residues, where
the middle residue is the portion of interest. In this way,
we avoid possible alterations to the electronic configu-
ration caused by adding terminating charge groups and
removing the bonds that link residues.

Once the MLWF solution is obtained for the 3-residue
system, we extract the atom name, residue name, residue
number, and coordinates of each atom in the middle
residue to be used as a template. We also extract all
orbital centers whose nearest atoms belong to the middle
residue for that residue’s template.

B. Generating and applying maps

FIG. 2: Residue template for alanine
Orbital centers, shown in orange, calculated in O(N3)
time using non-localized orbitals.

Given a template containing the locations of atoms and
orbital centers, we hope to find a local basis that allows us
to define the location of orbital center ¢ in relation to the
locations of nearby atoms. We first determine the loca-
tions and names of the three atoms ay, as, and a3 closest
to ¢, ordered here from closest to farthest. We then take
the primary bond vector b from atom ay to atom as, the
auxilary bond vector @ from atom a; to atom agz, and
the orbital center vector ¢ from atom a; to c¢. We then
calculate the orthogonal matrix A representing a local

orthonormal basis.

i axb b x *XE)
[[b[|[l@ > bl[ |[bx (@ x b)|

We can then define ¢ in this local basis by
éy=A"te= AT

In order to calculate the location in an unknown input
system of an orbital center ¢; which is analogous to ¢
in the template, we locate atoms a;;, a2, and as; in
the input and define vectors b: and a; as before. We
then calculate an orthogonal matrix A; that defines a
local basis in the input analogous to the basis used in
the template

— — —

o bz @2)(6; le(C_l'ZXbl)
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Then ¢&;, which defines the location of the orbital center
in the input, is given by

C; =VlA;Cx (= M

ol [l ]
where the length factor £ allows ¢; to scale with the length
of the bond l_); Thus, for each orbital center ¢;, we have
a mapping from a set of input atoms {a;}¥; within a
given residue to ¢; that is fully defined by ¢ in the local
basis, a length scaling factor, and three atoms names

L le
M; - {aj}é_\le S M,; = {cA,::;|:7(a1,a2,a3)}

A collection of these maps, one for each orbital center,
defines a mapping from the set of input atoms {a; }jvzl
within a given residue to the set of all its orbital centers

{Ci}f;

N K K
R: {aj}j:1 — {citiz R={M;};=,
In order to calculate approximate orbital centers for an
entire input system, we decompose the set of input atoms
into isolated residues and bonds and apply the corre-
sponding map R to each component.

Il. RESULTS

In the following section we study MGmol’s perfor-
mance when using the geometric method described above
to generate an initial guess for the orbital centers.

MGmol computes electronic structure by minimiz-
ing the Kohn-Sham energy functional for a set of non-
orthogonal electronic orbitals {¢;}~; represented on a
uniform finite difference mesh. By formulating each or-
bital as a MLWF confined to a strictly local region of
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TABLE 1
Initial energy using| Initial energy using Final
Peptide atom-centered geometrically-generated |energy
orbitals (Ha) orbitals (Ha) (Ha)

GPG tripeptide 3733.43 -128.56 -153.68
GRG tripeptide 4700.49 -161.97 -192.79
GWG tripeptide 5062.77 -165.93 -199.60
10-residue peptide 18036.42 -479.17 -570.60

fixed radius, the evaluation of the energy functional and
its gradient are done in O(N) operations.? MGmol com-
putes an approximation of the inverse of the Gram matrix
S defined by Si; = [, ¢i(r)¢;(r) in O(N) time by calcu-
lating the interactions only between orbitals with centers
within some fixed cutoff radius.” We now examine the
accuracy and scalability of these approximations in the
context of modular biological systems.

A. Accuracy

When no explicit orbital centers are provided, MG-
mol uses atom-centered orbitals as an initial guess, after
which an iterative steepest descent algorithm is used to
converge to a stable electronic configuration. We com-
pare the initial energy of a system using atom-centered
orbitals and using geometrically-generated orbitals to the
final energy of the system after the solver has converged
to a low energy groundstate. TABLE I shows these re-
sults for a number of peptide systems. We see that the
geometric method provides orbital centers with a much
lower initial energy than the atom-centered orbitals and
relatively close to the final converged energy. This in-
dicates that the geometric approach gives a significantly
better first guess than atom centering, and yields an elec-
tronic structure close to the converged groundstate.

Osei-Kuffuor and Fattebert” demonstrated that MG-
mol achieves an error on forces between atoms which
decays exponentially with both the orbital confinement
region radius and the cutoff radius between orbital cen-
ters used when computing the inverse Gram matrix. We
replicate these results in a peptide chain consisting of
148 atoms, shown in FIG. 3. This confirms MGmol’s
accuracy in biological systems when using geometrically-
generated orbitals as an initial guess.

B. Scaling

We test MGmol’s parallel scaling on a system consist-
ing of a single straight peptide chain in a continuous di-
electric solvent® with Dirichlet boundary conditions. We
begin with 493 atoms, which results in 666 doubly oc-
cupied orbitals in a 314 x 39 x 41 Bohr domain. We
then double the peptide’s length along the x-axis in each
subsequent test. The number of processors is scaled pro-
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FIG. 3: Error on forces
Error shown as a function of the orbital confinement

region radius (left) and as a function of the Gram cutoff
radius (right).

portionally to the problem size so that the number of
mesh points per processor is held constant. 20 iterations
of the DFT solver are run at each MD step to update
the orbitals. Wall clock times per MD step are shown in
FIG. 4.
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FIG. 4: Parallel weak scaling
Wall clock time per MD step on an Intel Xeon EP
X5660 Linux cluster with high-speed interconnect
(InfiniBand QDR QLogic). The number of mesh points
per processor is held constant in each simulation.

C. Dense system simulation

In order to test MGmol’s performance using
geometrically-generated initial orbitals on a dense test
system, we simulate a system consisting of the amyloid
forming peptide GNLVS from the eosinophil major basic
protein® solvated in water. In this test we use periodic
boundary conditions and do not use a dielectric solvent.
FIG. 5 shows the converged electronic structure of the
9.00 x 31.79 x 67.58 Bohr unit cell.
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FIG. 5: Unit cell
Visualization of the electronic groundstate of the unit
cell in the GNLVS system.

We compared MD runs on the unit cell starting from
the electronic structure computed by the O(N) solver
with a geometric initial guess, and by the O(N?) solver,
and saw that the maximum orbital center movement in
the first MD step in the O(NNV) case was 0.2358 Bohr, and
in the O(N?) case was 0.2849 Bohr. This demonstrates
that the groundstate computed by the O(N) solver, given
a geometric initial guess, is comparable in stability to the
O(N3) groundstate at the start of an MD simulation.
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