
LLNL-TR-738243

A Note on Compiling Fortran

L. E. Busby

September 8, 2017

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

A Note on Compiling Fortran
L.E. Busby, Liv ermore National Lab

1. TheKe yIdea1

Fortran modules tend to serialize compilation of large Fortran projects, by introducing
dependencies among the source files. If fileA depends on fileB, (A usesa module defined byB),
you must finish compilingB before you can begin compilingA.

Some Fortran compilers (Intelifort, GNU gfortran and IBM xlf, at least) offer an option to
‘‘ verify syntax’’, with the side effect of also producing any associated Fortran module files. As it
happens, this option usually runs much faster than the object code generation and optimization
phases. For some projects on some machines, it can be advantageous to compile in two passes:
The first pass generates the module files, quickly; the second pass produces the object files, in
parallel. We achieve a 3.8× speedup in the case study below.

2. ACase Study

Miranda2 is a radiation hydrodynamics code under development at LLNL. The primary language
is Fortran 2003, with about 45,000 SLOC spread across 130± source files. In part to simplify
dependency analysis, we follow a strict rule that each Fortran file defines exactly one module,
with a simple pattern:abc.f → xxx_abc.mod, wherexxx is a constant prefix.

Miranda is still on the small side, as multi-physics simulation codes go.Even so, it would already
be daunting to reduce inter-file dependencies by analysis of the dependency graph (Fig. 1).3

f030

f002

f003

f007

f008

f012

f038

f050

f061 f079

f111 f112

f001

f011

f018

f004

f005

f023

f024

f066

f089

f095

f099f100

f101f102

f103f104

f105

f006

f009

f027

f053

f010

f015

f094

f013

f014f016

f017

f036 f021

f091

f118f119f120

f019

f020 f022

f025f026

f098 f107

f028

f029

f031

f032

f033

f034

f035

f037f039

f040

f048

f046

f041

f042

f043 f044

f045

f047

f049

f051

f052

f054

f055

f056

f057f058

f121

f122

f123 f124

f059

f060f062 f063 f064 f065

f067

f068

f069

f070

f071

f072f073

f074

f075

f076

f077

f106

f082

f113

f078

f080

f081

f083

f084

f085

f086

f114

f092

f093f097 f115

f116

f087

f088

f090f096 f108

f109 f110

f117

Fig. 1 — Dependency Graph for Miranda Modules

Our build system finds the dependencies automatically, thank goodness, but a full compilation has
to satisfy them all, in the order they occur. Fig. 2 shows how this works out in the case of a
standard one-pass compile.Time is on the horizontal axis; each bar shows the beginning and

1. J. VandeVondele independently experimented with the same idea in 2011, as perhaps have
others. Seehttps://gcc.gnu.org/bugzilla/show_bug.cgi?id=47495, comments 9, 12.

2. https://wci.llnl.gov/simulation/computer-codes/miranda

3. The node in red happens to be the single file that takes the longest to compile — about 60 seconds.How would
you restructure that file to reduce its build time? How would you restructure (any subset of) files in the system to
simplify the dependency graph, and how long would that take?

L. Busby 1 31Aug2017

ending time of the compilation of one file.

 0

 20

 40

 60

 80

 100

 120

 0 30 60 90 120 150 180 210 240 270 300 330 360

Time, seconds

Fig. 2 — One Pass Compilation

Running a parallel make on a node with 36 cores, notice that there are long stretches where only
one process is running. The build completes in a little under 330 seconds overall (top bar.)

Now compare Fig. 3, run on the same machine with the samemake -j command, but using the
two-pass compilation procedure.

 0

 20

 40

 60

 80

 100

 120

 0 30 60 90 120 150 180 210 240 270 300 330 360

Time, seconds

Fig. 3 — Two Pass Compilation

The first pass (not shown above, but included in the total time) constructs just modules, then the
second pass constructs the object files, but now with greatly improved parallelism. Thetwo-pass
build completes overall in slightly less than 90 seconds, about 3.8× faster than the first run.

Finally, Fig. 4 zooms in on the first few seconds of the two-pass build, showing details of pass
one.4

4. We hav eexperimented with interleaving, or not, passes one and two. Theinterleaved version is usually slightly
quicker, which I find non-intuitive. It may be case-specific.

L. Busby 2 31Aug2017

 0

 20

 40

 60

 80

 100

 120

 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15

Fig. 4 — Pass One of the Two Pass Run

Note that pass one of a two pass build is still limited by the same dependency graph as the
original one pass compile. It’s just 30 times faster overall, more or less.

No code changes are required; you can choose 1-pass or 2-pass compiles at build time, which
must be the case for us, since not all Fortran compilers can presently support this approach.The
two pass compile saves quite a lot of time immediately, but it also makes it much easier to
restructure the code to make the job even faster: Split a big file into two parts using any plausible
rationale. Even if your new part_1depends upon new part_2, you can now do most of the work
in parallel after pass one completes.

3. ASmall Example

An example will hopefully make the process more accessible.Three short Fortran files are given
below, followed by a (gmake) makefile that carries out two-pass compilation foraa.f90 and
bb.f90. The Fortran code is entirely prosaic, but the makefile has several interesting details.

! f ile "prog.f90" ------------------------------------

program foo

use xx_aa

call sub_aa()

end

! f ile "aa.f90" ---------------------------------------

module xx_aa

contains

subroutine sub_aa

use xx_bb

integer :: a

call sub_bb(a)

print *, ’a is:’, a

end subroutine

end module

L. Busby 3 31Aug2017

! f ile "bb.f90" ---------------------------------------

module xx_bb

integer, parameter :: b1=3

contains

subroutine sub_bb(b)

integer, intent(out) :: b

b = b1

end subroutine

end module

f ile "makefile" -----------------------------------

prefix = xx_

Run as ‘‘make compiler=gnu’’, or intel, or ibm.

gnu.fc = gfortran

gnu.pass1 = -fsyntax-only -c

gnu.pass2 = -J./tmpmod -O2 -c

intel.fc = ifort

intel.pass1 = -syntax-only -c

intel.pass2 = -module ./tmpmod -O2 -c

ibm.fc = xlf

ibm.pass1 = -qnoobject -c

ibm.pass2 = -qmoddir=./tmpmod -O2 -c

pass1 = $($(compiler).fc) $($(compiler).pass1)

pass2 = $($(compiler).fc) $($(compiler).pass2)

prog: prog.o aa.o bb.o; $($(compiler).fc) -o $@ $ˆ

prog.o : prog.f90 aa.o bb.o; $($(compiler).fc) -c $<

$(prefix)%.mod : %.f90

mkdir -p ./tmpmod

$(pass1) $< && { test -f $@ || touch $@; ln -fs $< tmpmod/S_$@; }

%.o : $(prefix)%.mod

$(pass2) ‘readlink tmpmod/S_$<‘

.PHONY: clean

clean: ;rm -rf tmpmod *.mod *.o prog

Dependencies usually are computed automatically.

xx_aa.mod : xx_bb.mod

In themakefile, thepass1variable adds-fsyntax-only, etc., which causes the compiler to generate
only the.modfile. Thepass2variable adds-J./tmpmod, etc., which causes the compiler to place
the second copy of the .modfile into a temporary subdirectory (tmpmod), to avoid over-writing
the first copy, thereby preserving the timestamp from pass one.

The first pass creates the work directorytmpmod,5 the .modfile itself, and in addition, a symbolic
link that points to the original source file.The test -f || touch sequence allows for the case where
the source file contains no modules. In that case, the.modfile is zero-length, and exists only to

5. There are many other ways to create a temporary work directory, of course.

L. Busby 4 31Aug2017

carry a timestamp.

The symbolic link is used by the second pass to find its source file. This complication is a
requirement of breaking the compile into two separate steps: We are effectively declaring that
(first) the module file depends on the source file, then (second) the object file depends on the
module file. The ordering is correct, but the.modfile doesn’t contain the location of the original
source6, so the build system separately carries that information frompass1to pass2.

4. Conclusion

This problem is simple, really, and it has a simple solution.We hav ea pile of big jobs that all
depend on a pool of small, easy to build modules. Make the modules first, and the big pile
becomes embarassingly parallel.It’s obvious, and the only reason it may seem odd is because our
thinking is stuck on the ‘‘fact’’ that Fortran compilers must make modules and objects together. It
doesn’t hav eto be that way, and for some situations, it is much better to do them one at a time.
Intel, IBM, and Gnu fortran have, apparently by accident, given us — barely — the tools needed
to do a two pass build. Themakerecipe is a little clumsy, but not unduly so. In practice, it seems
quite robust; the example given is very similar to our production build system.

In the second pass, we use a command line option (-J./tmpmod, etc.) to place the second copy of a
given module ‘‘out-of-the-way’’. However, the same option may cause the compiler to also look
first in tmpmodfor generated modules, which raises the possibility of a data race.We hav enot
yet observed this issue, if it is real. Also, the-fsyntax-only, etc. option in the first pass does not
guarantee that generated modules will be identical to those created by the second pass.Again, we
have not observed any issues, yet.

To benefit from this approach, you need a Fortran code with a fair amount of inter-dependency
among its files. You need a machine that has more than a few cores available for parallel
compiles. Andyou need to build the code frequently enough so that you care how fast that
happens. Ifyou find yourself in that situation, I hope these ideas can be helpful.I would be
happy and grateful to receive information about other compilers, corrections, questions or
comments about this note:busby1@llnl.gov.

6. Three elements would be useful to conveniently implement a two pass compile:

1. Anoption to generate just the.modfiles;

2. Anoption to (given .modfiles) generate just the object files;

3. A means to store (in pass one) the full path to the original source file in the.modfiles, then recover it for
the second pass.Pass two (object) depends on pass one (module), but we still need to access the original
source to build the object.

Compiler writers: Please take note.

L. Busby 5 31Aug2017

