NNNNNNNN

LLNL-TR-738243

| A Note on Compiling Fortran

L. E. Bushy

September 8, 2017

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

A Note on Compiling Fortran
L.E. Busby Livermore National Lab

1. TheKeylded

Fortran modulestend to serialize compilation of largeorran projects, by introducing
dependencies among the source files. IfAilgepends on fil&, (A usesa module defined by),
you must finish compilin@ before you can begin compilify

Some Fortran compilers (Intéort, GNU gfortran and IBM xIf, at least) offer an option to

“ verify syntax’, with the side effect of also producingyasssociated Fortran module files. As it
happens, this option usually runs much faster than the object code generation and optimization
phases. & some projects on some machines, it can be advantageous to compdepasses:

The first pass generates the module files, quickly; the second pass produces the object files, in
parallel. W\ achieve a 38x speedup in the case study belo

2. ACase Study

Miranda’ is a radiation drodynamics code underd#opment at LLNL. The primary language
is Fortran 2003, with about 45,000 SLOC spread across 4@0rce files. In part to simplify

dependeng analysis, we follav a grict rule that each drtran file defines exactly one module,
with a simple patterrabc. f - xxx_abc. nod, wherexxxis a constant prefix.

Miranda is still on the small side, as multi-physics simulation code&gen so, it would already
be daunting to reduce inter-file dependencies by analysis of the depegagsic(Fig. 1)}

1]
oon)

o725 | as
/‘n\ /.\Q\\.u wnu-"

/ ”\, @@,m N

k
// "/_.

n t(\\\ |1||\\
'Xv.\\w ‘n'lc_‘ul

1&

Fig. 1 — Dependency Graph for Miranda Modules

Our build system finds the dependencies automatjthiink goodnessub a full compilation has
to satisfy them all, in the order theccur Fig. 2 shows he this works out in the case of a
standard one-pass compil@ime is on the horizontal axis; each bar shows the beginning and

1. J. VandeVondele independently experimented with the same idea in 2011, as peshaps ha
others. Seéttps://gcc.gnu.org/bugzilla/show_bug.cgi?id=47495, comments 9, 12.

2. https:/iwci.linl.gov/simulation/computer-codes/miranda

3. The node in red happens to be the single file thast#ie longest to compile — about 60 secoridizy would
you restructure that file to reduce itsild time? How would you restructure (grsubset of) files in the system to
simplify the dependenagraph, and he long would that take?

L. Bushy 1 31Aug2017

ending time of the compilation of one file.

120

100

80

T

60

nﬂ”’ﬂsﬂv N

40

e
20 ‘?’
— B
=

0 | 1 B
0 30 60 90 120 150 180 210 240 270 300 330 360
Time, seconds

Fig. 2 — One Pass Compilation

Running a parallel makon a mde with 36 cores, notice that there are long stretches where only
one process is running. The build completes in a little under 330 secandk @op bar.)

Now compare Fig. 3, run on the same machine with the saale 4 command, but using the
two-pass compilation procedure.

120

100

5
=
80 f%’
il
=

60

40

20

0 30 60 90 120 150 180 210 240 270 300 330 360
Time, seconds

Fig. 3 — Two Pass Compilation

The first pass (not shown alep but included in the total time) constructs just modules, then the
second pass constructs the object files, butwith greatly impreed parallelism. Thewo-pass
build completes werall in slightly less than 90 seconds, abou3adter than the first run.

Finally, Fig. 4 zooms in on the first\ieseconds of the two-pass build, sfing details of pass
4
one:.

4. We haveexperimented with interleaving, or not, passes one awnd fiheinterleaved version is usually slightly
quicker which | find non-intuitve. It may be case-specific.

L. Bushy 2 31Aug2017

120

100

80

60

40

20

R ————

0
3 35 4 45 5 556 65 7 75 8 85 9 95 101051111512125131351414515

Fig. 4 — Pass One of the Wo Pass Run

Note that pass one of adwpass build is still limited by the same dependegmaph as the
original one pass compile. dtjust 30 times fastererall, more or less.

No code changes are required; you can choose 1-pass or 2-pass compiles at build time, which
must be the case for us, since not alitfan compilers can presently support this approdtte

two pass compile ses quite a lot of time immediatelybut it also makes it much easier to
restructure the code to nake job @en faster: Split a big file into tavparts using ay plausible
rationale. Een if your nev part_1depends upon mepart_2 you can nw do most of the werk

in parallel after pass one completes.

3. ASmall Example

An example will hopefully madthe process more accessiblehree short Fortran files arevgn
below, followed by a g§mak@ makefile that carries out two-pass compilation &a.f90 and
bb.fo9Q The Fortran code is entirely prosaic, but the makefile hasadénteresting details.

I f ile "prog.fo0"
program foo
use xx_aa
call sub_aa()
end

I f ile "aa.fo0"
module xx_aa
contains
subroutine sub_aa
use xx_bb
integer :: a
call sub_bb(a)
print *, 'ais:’, a
end subroutine
end module

L. Bushy 3 31Aug2017

I f ile "bb.f90"
module xx_bb
integer, parameter :: b1=3
contains
subroutine sub_bb(b)
integer, intent(out) :: b
b = bl
end subroutine
end module

file "makefile”
prefix = xx_

Run as “make compiler=gnu”, or intel, or ibm.
gnu.fc = gfortran

gnu.passl = -fsyntax-only -c

gnu.pass2 = -J./tmpmod -O2 -c

intel.fc = ifort
intel.passl = -syntax-only -c
intel.pass2 = -module ./tmpmod -O2 -c

ibm.fc = xIf
ibm.passl = -gnoobject -c
ibm.pass2 = -gmoddir=./tmpmod -0O2 -c

passl = $($(compiler).fc) $($(compiler).passl)
pass2 = $($(compiler).fc) $($(compiler).pass2)

prog: prog.o aa.o bb.o; $($(compiler).fc) -0 $@ $°
prog.o : prog.fo0 aa.o bb.o; $($(compiler).fc) -c $<

$(prefix)%.mod : %.f90
mkdir -p ./tmpmod
$(passl) $< && { test -f $@ || touch $@; In -fs $< tmpmod/S_3$@; }

%.0 : $(prefix)%.mod
$(pass?2) ‘readlink tmpmod/S_$<*

.PHONY: clean
clean: ;rm -rf tmpmod *.mod *.0 prog

Dependencies usually are computed automatically.
xx_aa.mod : xx_bb.mod

In the makefile the passlvariable addsfsyntax-only etc., which causes the compiler to generate
only the.modfile. Thepass2variable addsJ./tmpmodetc., which causes the compiler to place
the second cgpof the .modfile into a temporary subdirectoryn{pmod, to avoid over-writing

the first cop, thereby preserving the timestamp from pass one.

The first pass creates the work directonpmodP the .modfile itself, and in addition, a symbolic
link that points to the original source fil&@hetest -f || toub sequence allows for the case where
the source file contains no modules. In that casentbéfile is zero-length, and exists only to

5. There are manother ways to create a temporary work directofycourse.

L. Bushy 4 31Aug2017

carry a timestamp.

The symbolic link is used by the second pass to find its source file. This complication is a
requirement of breaking the compile intootseparate steps: &Vae efectively declaring that

(first) the module file depends on the source file, then (second) the object file depends on the
module file. The ordering is correct, but theodfile doesnt contain the location of the original
sourcé, so he build system separately carries that information fress1to pass2

4. Conclusion

This problem is simple, reallynd it has a simple solutione havea ple of big jobs that all
depend on a pool of small, easy tilh modules. Make the modules first, and the big pile
becomes embarassingly paralldls dovious, and the only reason it may seem odd is because our
thinking is stuck on théfact” that Fortran compilers must n@kodules and objects togethdt
doesnt haveto be that \ay, and for some situations, it is much better to do them one at a time.
Intel, IBM, and Gnu fortran he, apparently by accident, ggn us — larely — the tools needed

to do a tvo pass liild. Themakerecipe is a little clumsybut not unduly so. In practice, it seems
quite robust; the examplevgn is very similar to our production build system.

In the second pass, we use a command line optidinfpmodetc.) to place the second gopf a
given module ‘out-of-the-way’. However, the same option may cause the compiler to also look
first in tmpmodfor generated modules, which raises the possibility of a data Ydedravenot

yet observed this issue, if it is real. Also, Hfgyntax-only etc. option in the first pass does not
guarantee that generated modules will be identical to those created by the secoAdgiassve
have rot observed anissues, yet.

To benefit from this approach, you need a Fortran code with a fair amount efiépendency
among its files.You need a machine that has more than a éeres &ailable for parallel
compiles. Andyou need to build the code frequently enough so that you cavefdsd that
happens. Ifyou find yourself in that situation, | hope these ideas can be helpiwbuld be
hapry and grateful to recee information about other compilers, corrections, questions or
comments about this noteusby1l@linl.gov

6. Three elements would be useful toemently implement a ter pass compile:
1. Anoption to generate just thenodfiles;
2. Anoption to (gven .modfiles) generate just the object files;

3. A means to store (in pass one) the full path to the original source file .imakéles, then receer it for
the second passass two (object) depends on pass one (module) vie still need to access the original
source to build the object.

Compiler writers: Please takote.

L. Bushy 5 31Aug2017

