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Noncommuting observables cannot be simultaneously measured; however, under
local hidden variable models, they must simultaneously hold premeasurement val-
ues, implying the existence of a joint probability distribution. We study the joint
distributions of noncommuting observables on qubits, with possible criteria of pos-
itivity and the Fréchet bounds limiting the joint probabilities, concluding that the
latter may be negative. We use symmetrization, justified heuristically and then more
carefully via the Moyal characteristic function, to find the quantum operator corre-
sponding to the product of noncommuting observables. This is then used to construct
Quasi-Bell inequalities, Bell inequalities containing products of noncommuting
observables, on two qubits. These inequalities place limits on the local hidden vari-
able models that define joint probabilities for noncommuting observables. We find
that the Quasi-Bell inequalities have a quantum to classical violation as high as 3

2
on two qubit, higher than conventional Bell inequalities. The result demonstrates the
theoretical importance of noncommutativity in the nonlocality of quantum mechan-
ics and provides an insightful generalization of Bell inequalities. Published by AIP
Publishing. [http://dx.doi.org/10.1063/1.4983918]

I. INTRODUCTION

Einstein, Podolsky, and Rosen posed a paradox in which they showed quantum mechanics lead-
ing to a superluminal interaction, that is, nonlocality, unless one assumes that it is an incomplete
theory.1 To preserve locality, their result suggested the existence of local hidden variables, inacces-
sible physical quantities shared between quantum systems that were prepared together. Bell showed
with his well-known inequalities that local hidden variable models cannot reproduce all the predic-
tions of quantum mechanics2 demonstrating conclusively that quantum theory is at odds with local
realism.

Clauser, Horne, Shimony, and Holt (CHSH) proposed a different Bell inequality for a bipartite
system of two spin- 1

2 particles3 (i.e., two qubits), most commonly used today to demonstrate quantum
nonlocality theoretically and experimentally.4–9 It shows that a quantum expectation value violates
a bound set by local realism by a factor of

√
2. Further generalizations of the CHSH inequality have

been proposed10–12 and extended to higher Hilbert space dimensions.13,14 But the
√

2 violation for
the CHSH spin- 1

2 case increased only marginally.15,16

In the construction of Bell inequalities, one assumes the independent existence of premeasure-
ment values. However, standard Bell inequalities only consider products of commuting observables,
that is, observables on separate qubits. Although the premeasurement values of noncommuting observ-
ables (on the same qubit) are assumed to simultaneously exist, they are never multiplied together.
The reason for this is that the axioms of quantum mechanics do not clearly determine the Hermitian
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operator corresponding to a product of noncommuting observables. Thus, one runs into ambiguity
when calculating the quantum analogue of the classical expression in the inequality. Some may object
to the existence of such an operator, since quantum theory precludes the simultaneous measurement
of noncommuting observables. This objection fades when we recall that sums of noncommuting
observables clearly have operators, without implying simultaneous measurement, and it is possible
that the same is true of products.

In this work, we explore the inclusion of products of noncommuting observables in Bell inequali-
ties. Such products were examined by Arnault, although in the very different context of non-Hermitian
observables.17 Our goal is a deeper understanding of noncommutativity that yields insights into hid-
den variables, a relationship previously addressed by Fine.18 In quantizing the inequalities, including
the aforementioned products, we apply the symmetrization procedure, where the quantum opera-
tor for the product of noncommuting observables is the average of all possible permutations of the
ordered product. The implication is that the expectation value of the classical product in a hidden
variable model becomes the expectation value of the symmetrized operator product in the quantum
model.

We justify symmetrization heuristically, and also more carefully via Moyal quantization.19 On
application of symmetrization, quantum theory violates our Quasi-Bell inequalities by a factor of 3

2 ,
larger than analogous violations of traditional Bell inequalities. The “quasi” prefix indicates that the
inequalities contain products of noncommuting observables, which has important consequences in
limiting the experimental verification that will be discussed.

We apply the symmetrization in the context of a spin- 1
2 system with bivalent observables, i.e.,

where measurements yield ±1, as in Ref. 20. This is in contrast to the usual context in which sym-
metrization is applied, that of the continuous conjugate variables of position (x) and momentum (p).
Before the main results, we devote a great deal of attention to the joint probabilities of hidden variable
models of noncommuting observables on the same spin- 1

2 system. These set the context for the main
results of the paper.

The remainder of the paper is divided into two main parts. The first part, up to and including
Sec. V, analyzes the local hidden variable models that include joint probabilities, which provide the
context for and build up to the symmetrization procedure. We begin with a review of quantum and
local hidden variable models for commuting observables on two spin- 1

2 particles in Sec. II. We then
shift our discussion to noncommuting observables on one of the particles in Sec. III, where we outline
limits placed by positivity and the Fréchet bounds on the joint probability distribution of two such
observables. This is extended to three noncommuting observables in Sec. IV, since this is the minimum
number needed for our Quasi-Bell inequality. These two sections take positivity and the Fréchet
bounds as far as they will go, showing that they each lead to a trivial independent joint probability
function. This suggests that we accept joint probabilities that are potentially negative, to get a more
meaningful distribution. In this context, we introduce and justify the symmetrization procedure in
Sec. V.

The second and more important part of the paper constructs the Quasi-Bell inequalities and
finds their quantum violations. Section VI reviews the CHSH inequality and introduces a quasi-
Bell inequality with the product of three noncommuting observables. Using the results of Secs. IV
and V, the quantum to classical violation factor is found to be 3

2 . Higher order inequalities with more
observables are constructed in Sec. VII. They are found to not increase the violation any further.
In Sec. VIII, we discuss the relations these inequalities have to conventional Bell inequalities and
hidden variable models on Werner States, and the implied ranges of locality and nonlocality.21–24 We
conclude with a discussion of the validity, conceptual strength, and limitations of the paper’s results in
Sec. IX.

We use the labels spin- 1
2 particle and qubit interchangeably, as the two are essentially equivalent.

Our overall system contains two qubits, one each for Alice and Bob. Commuting observables are
those on separate qubits, and non-commuting observables are those on the same qubit. The Pauli

matrices, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i

i 0

)
, and σ3 =

(
1 0
0 −1

)
, together form a vector of matrices ~σ. We index

multiple noncommuting observables on the same qubit starting at 0 to facilitate generalization of our
Quasi-Bell inequalities in Sec. VII.
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II. COMMUTING OBSERVABLES

We begin by reviewing both the quantum and local (classical) probability distribution func-
tions for two qubits. We highlight the relationship between the two models, and the implied joint
probabilities.

A. Quantum probabilities

Suppose Alice and Bob share a bipartite system of two spin- 1
2 particles. They each choose

the direction along which to measure spin, â, b̂ yielding results a, b ∈ {1,−1}, respectively. Their
choices of measurement direction are independent of one another. Since Alice and Bob have separate
subsystems, quantum measurements on them commute with one another.

Assume Alice and Bob share a bipartite quantum state with density matrix ρwhose Bloch matrix
components are the real vectors ~u,~v and matrix R. That is,

ρ=
1
4

*.
,
I ⊗ I +

∑
i

uiσi ⊗ I +
∑

j

vjI ⊗ σj +
∑

ij

Rijσi ⊗ σj
+/
-

.

The positivity of ρ places certain conditions on ~u,~v , R.25 The quantum joint probability is then given
by

pq(a, b|â, b̂)=Tr
[
ρPa(â) ⊗ Pb(b̂)

]
=

1
4

(
1 + a â · ~u + b b̂ · ~v + ab â†Rb̂

)
, (1)

where Pa(â)≡ 1
2 (I + a â · ~σ) is a projection operator.

Individual subsystem probabilities may easily be calculated from (1) as pq(a|â)= 1
2

(
1 + a â · ~u

)
and pq(b|b̂)= 1

2

(
1 + b b̂ · ~v

)
. The quantum expectation values satisfy 〈a〉q = â · ~u, 〈b〉q = b̂ · ~v , and

〈ab〉q = â†Rb̂.

B. Local hidden variables

If local hidden variables can describe the correlation between the two parties, then the local joint
probability is

pl(a, b|â, b̂)=
∫

p(λ)pA(a|â, λ)pB(b|b̂, λ)dλ, (2)

where λ indicates the hidden variables, their distribution p(λ) satisfying ∫ p(λ)dλ = 1, and
0 ≤ pA(a|â, λ), pB(b|b̂, λ) ≤ 1 are the local probabilities of Alice and Bob, respectively.

If Alice were measuring her subsystem alone, her own local probability would be

pA(a|â)=
∫

p(λ)pA(a|â, λ)dλ. (3)

Note that pA denotes two different but related probability functions, with inclusion of the arguments
removing ambiguity. Without loss of generality, we can write

pA(a|â, λ)=
1
2

[
1 + a fA(â, λ)

]
, (4)

for function f A satisfying−1 ≤ fA ≤ 1. The analogue holds for Bob’s local probability with the notation
changing accordingly.

One can then rewrite the local joint probability (2) as

pl(a, b|â, b̂)=
1
4

(
1 + a fA(â) + b fB(b̂) + ab fA(â)fB(b̂)

)
, (5)

where the overline indicates the weighted average over the hidden variable λ, as per
f (n̂)≡ ∫ p(λ)f (n̂, λ)dλ.

We are now in a position to demand that the quantum probabilities be simulable via a local hidden
variable model. Doing so requires equality of joint probabilities (1) and (5), yielding

â · ~u= fA(â), b̂ · ~v = fB(b̂), â†Rb̂= fA(â)fB(b̂). (6)
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Bell’s famous inequalities demonstrate that for some quantum states (e.g., the singlet state ~u=~v = 0,
R = �I), hidden variables are impossible.2 Characterizing the exact set of ~u,~v , R for which (6) has
a solution for some f A, f B is equivalent to characterizing two-qubit states simulable by local hidden
variable models. Currently, this problem only has partial solutions.23,26

III. NONCOMMUTING OBSERVABLES

A. Joint probability

Before discussing Bell inequalities with noncommuting observables, we must answer the fol-
lowing question: what can one say about joint probabilities of noncommuting observables? More
precisely, suppose Alice makes one of the two measurements along the directions â0, â1 yielding
results a0, a1 ∈ {1,−1}. In general, these are incompatible observables due to their noncommutativity
and cannot be measured simultaneously, despite theoretical attempts at such a definition.27,28 Thus
the question of a joint probability function does not arise operationally in quantum theory.

However, if we attempt to describe the correlations in terms of hidden variables, that is, outcomes
existing prior to measurement, then we should be able to find a joint probability function. It is of interest
to study the properties of such a joint probability distribution if it could exist. In fact, the existence
of such a joint distribution has been reported to be equivalent to Bell’s inequalities holding.18 The
question has also been investigated for the continuous degrees of freedom position and momentum.29

We extend this to the bivalent qubit observables at hand.
We seek a reasonable expression for pA(a0, a1 |â0, â1), the joint probability that Alice’s mea-

surement would yield outcomes a0, a1, respectively, for measurements along the directions â0, â1.
We require that the joint probability yield the correct marginal probabilities for each measurement.
For example,

∑
a1

pA(a0, a1 |â0, â1)= pA(a0 |â0)= 1
2

(
1 + a0 â0 · ~u

)
. Making use of the known marginal

probabilities and the probability function’s completeness, we can write without loss of generality,

pA(a0, a1 |â0, â1)=
1
4

(
1 + a0 â0 · ~u + a1 â1 · ~u + a0a1 〈a0a1〉

)
. (7)

The expectation value 〈a0a1〉 is some as yet undetermined function of â0, â1, and ~u.
It is instructive to compare the noncommuting joint probability function (7) with commuting

one (1). The two are very similar: with the expression for commuting observables potentially sim-
ulating that for noncommuting ones if we set ~v =~u and the expectation of the product takes the
form 〈a0a1〉= â0Rncâ1 for some Rnc, the “correlation matrix” for simulating the noncommuting
measurements.

We now turn our attention to potential criteria to determine or limit the joint expectation
value 〈a0a1〉. We consider two criteria that are natural in classical probability theory: positivity
and satisfaction of the Fréchet inequalities for joint probabilities.

B. Positive distribution

One obvious condition is the positivity of the joint probability distribution,

p(a0, a1 |â0, â1) ≥ 0, (8)

such that the joint probabilities are realizable non-negative values. We enforce (8) by requiring the
right hand side of (7) to be non-negative for the four possible values of the pair a0, a1. This yields
conditions that are instructively summarized in the following inequalities:

−(1 ± â0 · ~u)(1 ± â1 · ~u) ≤ 〈a0a1〉 − (â0 · ~u)(â1 · ~u) ≤ (1 ± â0 · ~u)(1 ∓ â1 · ~u), (9)

which hold for both the upper and lower signs. Defining the difference quantity in the middle,

D(â0, â1)≡ 〈a0a1〉 − (â0 · ~u)(â1 · ~u), (10)

we seek its allowable functional forms. Since D(â0, â1) must be basis independent, it must be a
function of dot products of â0, â1 and ~u.
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1. Pure state

In case the underlying single qubit state is pure |~u| = 1, the minimum of the upper bound and
the maximum of the lower bound are both zero, attained for â0 =±~u or â1 =±~u. More precisely,
D(±~u, â1)= 0, ∀ â1 and D(â0,±~u)= 0, ∀ â0. It can be shown that this implies D(â0, â1) which is
identically zero, and therefore

〈a0a1〉 ≡ (â0 · ~u)(â1 · ~u). (11)

That is, the expectation value of the product is equal to the product of expectation values, meaning
the two measurements are independent. We can use commuting measurements on two qubits to
simulate these noncommuting measurements on a single qubit if we set the correlation matrix as an
outer product Rnc =~u~u†, i.e., the two qubits are in a product state. This is not surprising, since we
required positivity, and the only physical two-qubit states where each individual qubit’s state is pure
are product states.

However, given that the two noncommuting measurements are on the same qubit, this indepen-
dence is highly unexpected. This is partial because in the limit â1→ â0 we get 〈a0a1〉→ (â0 · ~u)2,
which is not identically unity as 〈a2

0〉= 1 would imply. It is intuitively expected that different mea-
surements of the same qubit should be at the very least correlated. If this intuition is correct, the
independence derived above casts doubt on the assumption of positivity of the joint probability.

In a different context, Ballentine found independent joint probability distributions of noncom-
muting observables to satisfy positivity, but dismissed this on physical grounds.29 If we follow suit
and choose to reject independence of noncommuting measurements, we will have to accept negative
probabilities, a recurring theme within quantum theory, which we address in more detail in Sec. V.

2. Mixed state

In case the underlying single qubit state is mixed, u≡ |~u| < 1, there is an allowed range for
D(â0, â1) and hence 〈a0a1〉. In particular, (9) implies

(−1 + â · ~u)(1 − u) ≤D(â, û), D(û, â) ≤ (1 + â · ~u)(1 − u). (12)

This condition will be satisfied by any D= (α + â · ~u)(1 − u) for some −1 ≤ α ≤ 1. For example, we
may define D(â0, â1)≡

[
â0 · ~u + â1 · ~u + (1 − u)â0 · â1

]
(1− u), where the two right most terms in the

square brackets constitute α and encompass the range between 1 and �1. Note that this definition
of D(â0, â1) is symmetric in its two arguments, as one would expect. The expectation value of the
product then takes the interesting form,

〈a0a1〉 ≡
[
â0 · ~u + â1 · ~u + (1 − u)â0 · â1

]
(1 − u) + (â0 · ~u)(â1 · ~u). (13)

If the underlying qubit is maximally mixed, ~u= 0, then (9) simplifies to the weak condition
−1 ≤ 〈a0a1〉 ≤ 1. In this case, there is a great deal of freedom in assigning a functional form to 〈a0a1〉

that always lies within this range. We may follow the form of (13), which yields 〈a0a1〉 ≡ â0 · â1 for
u = 0 and incidentally corresponds to the symmetrization of noncommuting observables, the subject
of Sec. V.

One can conclude that if the quantum state is mixed, requiring the joint probability of noncom-
muting observables to be positive does not necessarily imply independence. This is interesting in
its own right and opens the door for reasonable and positive joint probabilities for some quantum
states. However, the implied independence for pure states means that one cannot demand positivity
in general.

C. Fréchet inequalities

Possible values for the joint probability of two classical events are bounded by the individual
(marginal) probability of each event. For example, the joint probability of two events each with
probability unity (zero) must itself be unity (zero). The joint probability of two events each with
probability 1

2 may be 0 if they are mutually exclusive, 1
4 if they are independent, 1

2 if they fully
coincide, or any value in between.
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More precisely, classical joint probabilities must satisfy the Fréchet inequalities,30,31 which place
bounds based on the individual probabilities,

p(a0 |â0) + p(a1 |â1) − 1 ≤ p(a0, a1 |â0, â1) ≤min{p(a0 |â0), p(a1 |â1)}. (14)

Plugging the marginal and joint probabilities implied by (7) into (14), rearranging and simplifying
yield the following two inequalities:

1
4

(
1 − a0 â0 · ~u − a1 â1 · ~u + a0a1 〈a0a1〉

)
≥ 0, (15)

1
4

(
1 + min{a0 â0 · ~u, a1 â1 · ~u} −max{a0 â0 · ~u, a1 â1 · ~u} − a0a1 〈a0a1〉

)
≥ 0. (16)

Upon comparing with (7), it is evident the left hand side of (15) is equal to p(−a0,−a1 |â0, â1).
Similarly, the left hand side of (16) is equal to p(−a0, a1 |â0, â1) or p(a0,−a1 |â0, â1) depending on
whether a0 â0 ·~u or a1 â1 ·~u is larger. Since all the above inequalities are meant to hold ∀a0, a1

∈ {1,−1}, (15) and (16) are each equivalent to (8). In other words, requiring the Fréchet inequalities
hold is identical to the requirement of positivity of the joint probability, which as we showed in
Sec. III B, has the unwanted consequence of independence for pure states.

IV. THREE OR MORE OBSERVABLES

Suppose we increase the number of noncommuting observables, starting with three. A derivation
similar to that of (7) will show that the triple joint probability, without loss of generality, can be written
as

p(a0, a1, a2 |â0, â1, â2)=
1
8
(
1 + a0 â0 · ~u + a1 â1 · ~u + a2 â2 · ~u + a0a1 〈a0a1〉

+ a0a2 〈a0a2〉 + a1a2 〈a1a2〉 + a0a1a2 〈a0a1a2〉
)
. (17)

If we require this joint probability to always be nonnegative, we may engage in a derivation similar
to that of inequality (9). For pure states |~u| = 1, the result will be analogous to the two-observable
case. That is,

〈a0a1a2〉 ≡ (â0 · ~u)(â1 · ~u)(â2 · ~u). (18)

Thus, requiring positivity of the joint probability distribution of three noncommuting observables
for a pure state also implies their independence. The same procedure can be extended to show the
independence of any number of noncommuting observables on a pure state, if positivity is required.

However, it is interesting that the two Fréchet inequalities when applied to three (or more)
noncommuting observables are not both equal to the positivity condition, as was the case for two
observables. Given three observables, the two-observable Fréchet inequalities (14) will still hold for
all pairs. The additional three-observable Fréchet inequalities are

max
ijk
{p(ai |âi) + p(aj, ak |âj, âk) − 1} ≤ p(a0, a1, a2 |â0, â1, â2) ≤min

mn
{p(am, an |âm, ân)}, (19)

where the indices i, j, k are distinct, l, m, n are distinct, and all take values 0, 1, 2. Note that (19)
is obtained from (14) by treating the occurrence (a0, a1, a2 |â0, â1, â2) as a two-way conjunction of
(ai |âi) and (aj, ak |âj, âk). We could also treat it as a three-way conjunction of (ai |âi), (aj |âj), and
(ak |âk). However, this more reductionist approach yields a weaker inequality that is implied by (19)
and (14) anyway.

We proceed by plugging (17) and (7) into (19), rearranging, and simplifying. This yields the
following two inequalities for the lower and upper bounds, respectively:

1
8
(
3−3ai âi ·~u−aj âj ·~u−ak âk ·~u + aiaj 〈aiaj〉+ aiak 〈aiak〉−ajak 〈ajak〉+ aiajak 〈aiajak〉

)
≥ 0, (20)

1
8
(
1− al âl ·~u + am âm ·~u + an ân ·~u− alam〈alam〉 − alan〈alan〉+ aman〈aman〉 − alaman〈alaman〉

)
≥ 0,

(21)
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where the indices i, j, k and l, m, n are assumed to be the ones satisfying the maximum/minimum in
(19). These two bounds can be rewritten as

p(−ai,−aj,−ak |âi, âj, âk) + p(−ai,−aj, ak |âi, âj, âk) + p(−ai, aj,−ak |âi, âj, âk) ≥ 0, (22)

p(−al, am, an |âl, âm, ân) ≥ 0. (23)

The lower Fréchet bound (22) is implied by, but weaker than the positivity condition. The upper
bound (23) is equivalent to the positivity condition.

Therefore, we may conclude that for the three observables, the Fréchet bounds, taken together,
are again equivalent to the positivity condition. This seems to hold for more observables as well.

V. SYMMETRIZATION

Thus far, we considered requiring the joint probabilities to be nonnegative or, equivalently, that
they satisfy the Fréchet inequalities of classical probability theory. It was found that in the case of pure
quantum states, these imply the independence of measurements of any noncommuting observables.
We deemed this independence unsatisfactory on physical grounds and now seek a different approach.
It is obvious that any approach that does not explicitly require positivity of the joint distribution
may yield some negative probabilities. Though physically meaningless, negative probabilities need
not be an operational problem since they correspond to impossible simultaneous measurements.32 In
Feynman’s words, they may be used if “the situation for which the probability appears to be negative
is not one that can be verified directly.”33

The negativity of joint probabilities of noncommuting observables is well known.28,34–37 It has
even been shown as equivalent to fundamental nonclassical features of quantum theory.38–42 This
phenomenon is also related to the Wigner quasi-probability distribution taking negative values.43,44

As per (7), thus, we need an expression for 〈a0a1〉 based on the quantum expectation value. At first
glance, the product of noncommuting observables which cannot be simultaneously measured may
seem precluded by quantum mechanics. However, consider that the sum of noncommuting observ-
ables is a well-defined observable in its own right, e.g., σ1 +σ2. As Bell argued, “a measurement of
a sum of noncommuting observables cannot be made by combining trivially the results of separate
observations on the two terms — it requires a quite distinct experiment.”45 Similarly, the product
does not involve measuring each operator and multiplying the results, rather the product is itself a
legitimate observable whose operator can be derived in a manner consistent with quantization rules.
The question is then finding such an operator.

Some authors have explored joint quasiprobability distributions for spin- 1
2 states.46–48 As

expected, the quasiprobabilities may be negative. However, some of these methods lack symmetry in
the arguments, or basis independence. Others do not easily lend themselves to variable directions of
the spin operators. Therefore we pursue a more flexible approach.

A. Heuristic derivation

Commonly used heuristic arguments consistent with quantum theory provide symmetrization as
the quantization of the product of two noncommuting observables, such as position and momentum.
That is, the quantization of the product is set equal to the average of all possible permutations of the
product of the quantizations. The result is Hermitian, symmetric in all the operators, and reduces to
the simple product if the operators commute. For example, xp→ 1

2 (x̂p̂ + p̂x̂). Many authors have made
use of such a symmetrization.20,49–52 Some ambiguity arises if any of the quantities in the product
are raised to a power greater than unity. However, this is not a concern here.

Note that there are two related but subtly different concepts here, both involving a classical
quantity in some way underlying a quantum operator. One is when a classical expression is quantized
into a quantum observable, and the other is when a classical hidden variable is posited to model the
measurement results on the said observable. It is in the former case that symmetrization is traditionally
used, while here we use it in the latter, as others did.20,35
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Going forward, we now find the quantum operator that corresponds to the classical product
a0a1, with the intention of applying standard quantum measurements to get the joint probability
function. The quantizations of a0, a1 are â0 · ~σ, â1 · ~σ, respectively. Applying symmetrization for
two observables, the result is simply half the anticommutator, yielding

a0a1→
1
2

{
â0 · ~σ, â1 · ~σ

}
= â0 · â1I . (24)

The symmetrized observable is proportional to the identity matrix, with two identical eigenvalues
â0 · â1, not±1 as the individual realizations of the classical hidden variable product a0a1. Nonetheless,
there is no inconsistency. To see this, consider sums instead of products once more. The fact that the
eigenvalues of σ1 + σ2 are not sums of eigenvalues of σ1 and σ2 does not preclude a local hidden
variable model, whose individual realizations yield eigenvalues of σ1 and σ2, but not of their sum.

This is the essence of Bell’s refutation of von Neumann’s purported proof for the impossibility of
hidden variables.53 Bell argued that there is no reason to require the individual realizations of a hidden
variable model to be additive over sums of noncommuting observables, since the observables cannot
be measured simultaneously anyway. The function of a hidden variable is the model “to reproduce
the measurable peculiarities of quantum mechanics when averaged over,”45 that is, to reproduce the
expectation values. Similar reasoning may be applied to products of noncommuting observables.

To be fully consistent with the statistical predictions of quantum mechanics, a0, a1 of the hidden
variable model must be correlated with one another in such a way that the classical expectation value
of their product coincides with the quantum expectation value of its quantization, which as in (24), is
the symmetrized product operator. Aside however, note that the analogy of the sum to product breaks
down in that the expectation value of sum is the sum of expectation values, but the expectation value
of the product is not related to the individual expectation values in a simple way.

Moving forward, we find that the expectation value of the product is then

〈a0a1〉=Tr
[
ρAâ0 · â1I

]
= â0 · â1, (25)

which very interestingly is independent of Alice’s reduced (single qubit) quantum state ρA ≡TrB[ρ]
and its Bloch vector ~u.

The joint probability associated with symmetrization is then

p(a0, a1 |â0, â1)=Tr

[
ρA

1
2

{
Pa0 (â0), Pa1 (â1)

}]

=
1
4

(
1 + a0 â0 · ~u + a1 â1 · ~u + a0a1 â0 · â1

)
. (26)

As expected, the joint probability in (26) is sometimes negative. For example, if a0 = a1 = �1,
â0 = (1, 0, 0), â1 = (0, 1, 0), ~u= (1, 1, 0)/

√
2, then it yields p(a0, a1 |â0, â1)= (1 −

√
2)/4=−0.104. We

reiterate that the negative probability is unobservable directly since the qubit cannot be measured
along â0 and â1 simultaneously and hence does not lead to operational contradictions.

Now turning our attention to the three noncommuting observables, we seek the quantum operator
for the classical product a0a1a2. Let S be the set of the six possible permutations of 0, 1, 2. Then
symmetrization yields

a0a1a2→
1
6

∑
lmn∈S

(
âl · ~σ

) (
âm · ~σ

) (
ân · ~σ

)
= ~a012 · ~σ, (27)

where the symmetric product vector ~a012 is defined as

~a012 ≡
1
3

[(â1 · â2)â0 + (â2 · â0)â1 + (â0 · â1)â2] , (28)

fully symmetric in â0, â1, and â2 as required. Note that |~a012 | ≤ 1, and the eigenvalues of ~a012 · ~σ are
±|~a012 |. This triple symmetrization has previously been applied by Barut et al.20

The expectation value of the triple product is then

〈a0a1a2〉=Tr
[
ρA~a012 · ~σ

]
= ~a012 · ~u. (29)
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Unlike the product of two noncommuting observable in (25), the triple product in (29) depends on
the Bloch vector ~u, more in line with intuitive expectation.

Based on the commutation properties of the Pauli matrices, one can generalize these properties of
the product of noncommuting observables a0a1a2 . . . aN . If the number of operators N + 1 is even, the
symmetrization is always an operator proportional to the identity matrix, resulting in an expectation
value independent of ~u. If N + 1 is odd, the symmetrization can be written as an operator ~a01...N · ~σ,
with an expectation value ~a01...N · ~u. It is the odd case that is relevant for the Quasi-Bell inequalities
we introduce.

B. Moyal characteristic function derivation

The heuristic application of symmetrization, though substantiated, may be objected to as con-
taining an element of speculation. We therefore produce a more concrete derivation, based on Moyal’s
seminal representation of quantum mechanics as a statistical theory.19 Our derivation is simpler and
more flexible than that of Chandler et al.,46 which applied Moyal’s full Fourier approach to the limited
case of mutually orthogonal spin directions.

We begin by defining the characteristic function of the three classical quantities a0, a1, a2, given
by

M(θ0, θ1, θ2)≡ 〈ei(θ0a0+θ1a1+θ2a2)〉, (30)

where the classical expectation value is over the ai, and the θi are real parameters.
The characteristic function is a standard construct in statistics,54 useful for the calculation of

moments. Of interest to us, the first triply joint moment of a0, a1, a2 is given by the mixed partial
derivative of the characteristic function evaluated at zero, as per

〈a0a1a2〉=

[
∂3

i3∂θ0∂θ1∂θ2
M(θ0, θ1, θ2)

]θi=0

, (31)

where θi = 0 denotes the evaluation θ0 = θ1 = θ2 = 0.
One can then apply Moyal’s novel idea of quantizing the characteristic function to the problem at

hand. We can unambiguously quantize (30) in the standard manner of replacing the classical quantities
with quantum observables. In doing so, we end up with the quantum characteristic function,

Mψ(θ0, θ1, θ2)≡ 〈ψ | ei(θ0â0+θ1â1+θ2â2)·~σ |ψ〉, (32)

where |ψ〉 is the quantum state. Replacing M in (31) with Mψ , we can then calculate first joint moment
of the quantum characteristic function to get the quantum expectation value of the product as

〈a0a1a2〉ψ = 〈ψ |

[
∂3

i3∂θ0∂θ1∂θ2
ei(θ0â0+θ1â1+θ2â2)·~σ

]θi=0

|ψ〉. (33)

It is clear from (33) that the quantum operator corresponding to the product a0a1a2 is sim-
ply the one whose expectation value is calculated on the right hand side. Relegating the algebra
to the Appendix, this operator reduces to precisely ~a012 · ~σ defined in (27). Therefore, the Moyal
quantization yields exactly the same result as heuristic symmetrization. Although this equivalence is
remarkable in many ways, it may be seen as following from the characteristic function’s symmetry
in a0, a1, a2 and the subsequent application of canonical quantization.

A derivation analogous to the above can be performed for the product of any number of spin
observables. The result is identical to heuristic symmetrization in each case.

We emphasize that our derivation above only made use of the existing concepts in classical
probability theory and standard canonical quantization. Therefore symmetrization is not an additional
concept per se, rather it arises from the combination of old concepts in a new way, and logically follows
from established quantum theory.

That said, canonical quantization for all its successes is known to create ambiguity in some
cases.55,56 It is uncertain whether Moyal’s and our choice of applying quantization to the exponential
in the characteristic function are consistent with applying it to other possible functions. Therefore,
although symmetrization is straightforward mathematically, this does not necessarily mean that it
corresponds to physical reality.
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It may be possible to test symmetrization experimentally, by evolving real systems whose Hamil-
tonians contain products of noncommuting observables, and comparing the experimental results with
theoretical simulations based on symmetrization. If the two approaches agree, this would be the ideal
justification of symmetrization. However, it is not trivial to create such Hamiltonians, making this a
challenging and interesting potential research project.

VI. QUASI-BELL INEQUALITIES: THREE OBSERVABLES

We are now in a position to construct the main result of this paper, the Quasi-Bell inequalities
involving products of noncommuting observables. They yield a quantum to classical violation higher
than analogous Bell inequalities that do not use noncommuting products.

We start with the traditional CHSH inequality. Consider classical quantities a0, a1, b0, b1

∈ {1,−1}, two each for Alice and Bob. Define L = a0b0 + a0b1 + a1b0 � a1b1. It can be factored
to

L = a0(b0 + b1) + a1(b0 − b1). (34)

Of the two bracketed terms in (34), one must be 0 and the other ±2. Then L =±2 for any a0, a1, b0,
b1.

Extending to the classical probabilistic case, suppose that a0, a1, b0, b1 each have some probability
of being 1 or �1. In other words, there exists an ensemble of possible realizations, each element
of which has L =±2. Then the classical expectation value over the whole ensemble must satisfy
−2 ≤ 〈L〉 ≤ 2. More precisely

|〈L〉| = |〈a0b0〉 + 〈a0b1〉 + 〈a1b0〉 − 〈a1b1〉| ≤ 2, (35)

which is the well-known CHSH inequality.3,57 It can be written in matrix form as
������

〈[
a0

a1

]† [
1 1
1 −1

] [
b0

b1

]〉������
≤ 2. (36)

Quantizing our model, suppose that our bipartite system is made up of two spin- 1
2 particles,

shared between Alice and Bob, with measurement results governed by quantum theory. Let a0, a1

represent the spin of Alice’s particle along the directions of unit vectors â0, â1, and b0, b1 represent
the spin of Bob’s particle along b̂0, b̂1. Alice (Bob) chooses the spin measurement direction â0 or â1

(b̂0 or b̂1). Assuming Alice and Bob share a singlet state |ψ〉= 1√
2

(
| ↑↓〉 − | ↓↑〉

)
, expectation values

of joint measurements are
〈(~a · ~σ) ⊗ (~b · ~σ)〉ψ =−~a · ~b, (37)

for any ~a and ~b. Choosing

â0 =
*.
,

1
0
0

+/
-

, â1 =
*.
,

0
1
0

+/
-

, b̂0 =
1√
2

*.
,

1
1
0

+/
-

, b̂1 =
1√
2

*.
,

1
−1
0

+/
-

, (38)

and using (37) to quantize the expression (35), we have

|〈L〉ψ | = | − â0 · b̂0 − â0 · b̂1 − â1 · b̂0 + â1 · b̂1 | = 2
√

2. (39)

Therefore, quantum mechanics violates the classical bound of the CHSH inequality (35) by a factor
of
√

2, its maximal possible violation,58 famously indicating that quantum theory is not locally real.
We now introduce additional choices for Alice and Bob to measure the spin along the directions

â2 and b̂2 with results a2, b2 ∈ {1,−1}, respectively. We call this case the second order and the CHSH
inequality first order.

In (34), we made the simple yet useful observation that exactly one of the two quantities b0 + b1

and b0 � b1 was nonzero and took on the value ±2. We seek analogous quantities that include b2.
Consider the test expression

b0 + b1 + b2 + b0b1b2. (40)

It takes the value ±4 if b0 = b1 = b2 =±1 and is 0 otherwise. Of the eight (23) possible realizations of
the triple b0, b1, b2, only two of them lead to a nonzero value for the expression (40).
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We produce three additional test expressions from (40) by flipping the sign of b1, b2, or both.
For any realization of b0, b1, b2, exactly one of the four total test expressions has a nonzero value,
equal to ±4. This is outlined in Table I.

We then define the quantity L2, as the sum of products of the four test expressions with the four
factors a0, a1, a2, and a0a1a2, respectively. Since each factor has a value ±1, and only one of the test
expressions has a nonzero value ±4, we conclude L2 =±4 for any given realization. Averaging all
possible realizations of am and bn in the ensemble, we have

|〈L2〉| =

����������

〈

a0

a1

a2

a0a1a2



† 

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1





b0

b1

b2

b0b1b2



〉����������

≤ 4. (41)

This matrix inequality is the sought-after generalization of (36) and must hold under assumptions
of local realism. Note that the entries of the matrix in (41) are the coefficients of the individual terms
in the lower part of the leftmost column in Table I.

We now quantize this expression by applying the symmetrization heuristic. Defining ~a012,~b012

as in (28), and making use of (37) to evaluate the quantization of the expression in (41), we have

|〈L2〉ψ | =

����������



â0

â1

â2

~a012



† 

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1





b̂0

b̂1

b̂2
~b012



����������

, (42)

where the transpose also applies to the unit vectors inside the left supervector, and â†mb̂n = âm · b̂n.
Next, assign the following unit vectors:

â0 =
*.
,

1
0
0

+/
-

, â1 =
1
2

*..
,

1
√

3
0

+//
-

, â2 =
1
2

*..
,

1
−
√

3
0

+//
-

, b̂0 =
*.
,

−1
0
0

+/
-

, b̂1 =
1
2

*..
,

−1
√

3
0

+//
-

, b̂2 =
1
2

*..
,

−1
−
√

3
0

+//
-

.

(43)
These are six maximally separated vectors in the plane, with an angle π

3 between the adjacent vectors.
The inner product any two vectors is the cosine of a multiple of this angle, i.e., 1

2 , − 1
2 , or �1. Indeed

â0 · â1 = â0 · â2 = b̂0 · b̂1 = b̂0 · b̂2 =
1
2 , â1 · â2 = b̂1 · b̂2 =−

1
2 , and the inner product matrix between the

a and b vectors is


â†0
â†1
â†2



[
b̂0 b̂1 b̂2

]
=



−1 − 1
2 − 1

2

− 1
2

1
2 −1

− 1
2 −1 1

2



. (44)

Moreover, for this assignment, (28) implies~a012 =
1
6 (−â0 + â1 + â2)= 0. Similarly,~b012 = 0. Therefore,

evaluating (42) yields
|〈L2〉ψ | = 6. (45)

The quantized result violates the classical bound of 4 in (41) by a factor of 3
2 , surpassing the CHSH

violation factor of
√

2. Quantum mechanical violation of classical bounds can be increased when

TABLE I. Values of the four test expressions for the eight possible realizations of b0, b1, b2. For each realization, only one
of the test expressions is nonzero and takes the value ±4.

b0 +1 +1 +1 +1 �1 �1 �1 �1
b1 +1 +1 �1 �1 +1 +1 �1 �1
b2 +1 �1 +1 �1 +1 �1 +1 �1

b0 + b1 + b2 + b0b1b2 +4 0 0 0 0 0 0 �4
b0 � b1 + b2 � b0b1b2 0 0 +4 0 0 �4 0 0
b0 + b1 � b2 � b0b1b2 0 +4 0 0 0 0 �4 0
b0 � b1 � b2 + b0b1b2 0 0 0 +4 �4 0 0 0
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observables on the same subsystem (qubit) are multiplied, and their noncommutation is exploited.
Put differently, noncommutativity of quantum operations contributes to the quantum violation of
classical realism. Indeed, it has been argued that the product of noncommuting quantum observables
in an isolated system can violate classical realism without any entanglement.59–61

In a similar vein to Tsirelson’s bound, Lagrange multipliers show that the vectors in (43) are a
local maximum of (42). Numerical optimization suggests it is a global maximum, and |〈L2〉ψ | cannot
exceed 6.

Interestingly, the quantum to classical violation of the factor of 3
2 is precisely the maximal

quantum violation of Bell’s original inequality,2 which is realized for the same measurement directions
â0, â1 and â2 in (43).62,63 This is despite the very different forms of (41) and Bell’s original inequality,
and the presence of noncommuting products in one but not the other.

VII. QUASI-BELL INEQUALITIES: N + 1 OBSERVABLES

In search of a higher quantum to classical violation, we generalize our inequality (43) to arbitrary
order. Let the N th order inequality be constructed as follows. Suppose Alice and Bob share a bipartite
system of two spin- 1

2 particles in a singlet state. They each have N + 1 measurement options, yielding
results a0, a1, . . . , aN ∈ {1,−1} and b0, b1, . . . , bN ∈ {1,−1}, respectively. The unit vectors indicating
the direction of the quantized spin operator for am, bn are âm, b̂n, respectively.

Define the scaled Hadamard matrices M and Mn as

M ≡
1
2

[
1 1
1 −1

]
, Mn ≡M⊗n, (46)

where we used the tensor power. The matrix Mn has dimensionality 2n × 2n and satisfies Mn

=M ⊗Mn−1. For completeness, define the trivial matrix M0 ≡ [1].
Recursively define the vectors ~An and ~Bn as

~An ≡

[
1

a0an

]
⊗ ~An−1, ~Bn ≡

[
1

b0bn

]
⊗ ~Bn−1, (47)

with ~A0 ≡ [a0], ~B0 ≡ [b0]. Both ~An and ~Bn are of length 2n. In the recursion, we use a2
n, b2

n = 1 to
simplify, leading to no terms having a power greater than unity. Table II lists the first few ~An.

Define the N th order quantity KN ≡ ~A
†

N MN~BN . Given the above, it can be simplified as follows:

KN = ~A†N MN~BN

=

( [
1

a0aN

]†
⊗ ~A†N−1

)
M ⊗ MN−1

( [
1

b0bN

]
⊗ ~BN−1

)
= a0b0

1
2

[
a0

aN

]† [
1 1
1 −1

] [
b0

bN

]
⊗ ~A†N−1MN−1~BN−1

=±KN−1, (48)

TABLE II. The vector ~An as defined in (47) for the first few n.

~A1 ~A2 ~A3 ~A4

[
a0
a1

]


a0
a1
a2

a0a1a2





a0
a1
a2

a0a1a2
a3

a0a1a3
a0a2a3
a1a2a3





~A3
a4

a0a1a4
a0a2a4
a1a2a4
a0a3a4
a1a3a4
a2a3a4

a0a1a2a3a4
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TABLE III. The maximized quantum expectation value |〈KN 〉ψ | to three decimal places for N up to 10.

Order N 0 1 2 3 4 5 6 7 8 9 10

max |〈KN 〉ψ | 1 1.414 1.5 1.432 1.469 1.443 1.467 1.45 1.467 1.455 1.469

where in the last line we noted a0b0 =±1, and the matrix multiplication on the left side of tensor
product is a CHSH term taking values ±2. Extending the recursion,

KN =±KN−1 = · · ·=±K0 =±a0b0 =±1.

Since for each realization of an and bn, KN is±1, the average over the classical ensemble satisfies

|〈KN 〉| = |〈~A
†

N MN~BN 〉| ≤ 1. (49)

Comparing (49) with its precursors (42) and (36), we see a power of 2 scaling difference. The factor
of 1

2 in the definition of M (46) cancels this power and ensures that the classical expectation value
has an absolute value at most unity for all orders. This facilitates the comparison of inequalities of
different orders.

Finally, we quantize the expression for KN and maximize its quantum expectation value over
all possible measurement choices ân, b̂n. The products of noncommuting observables are always
quantized through symmetrization, analogous to (28). We obtained numerical results up to N = 10,
shown in Table III.

The 0th order is the classical case, the 1st order violation is the CHSH value of
√

2, and the
2nd order yields 3

2 violation demonstrated above. Interestingly, optimized violation ratios for higher
orders always lie between the 1st and 2nd order cases.

The optimal measurement vectors in the 1st and 2nd order cases, in (38) and (43), respectively,
were coplanar. The optimal vectors for higher orders also turn out to be coplanar. More precisely,
we found that the optimal vectors satisfy â2 = â3 = · · ·= âN , b̂2 = b̂3 = · · ·= b̂N . Thus, for each qubit
subsystem, the N + 1 optimized spin measurement vectors include only three unique (and coplanar)
vectors, as N � 1 of them are identical. This gives insight into why going beyond the 2nd order
actually decreases the violation ratio; adding more measurement options beyond three only replicates
an existing measurement option when optimized. Further, product vectors~a012,~a013,~a123, etc., cannot
all simultaneously be optimized to zero as in the 2nd order case.

If this family of inequalities turns out to yield the highest possible violation, it would imply that
adding a third spatial dimension to a two dimensional system does not increase the maximal possible
“non-classicality.” It is unclear what the effect of additional spatial dimensions beyond three would
be.

VIII. LOCALITY OF WERNER STATES

Here we put the findings in perspective by comparing them to the existing work on ranges of
locality. We start by adding noise to our singlet state |ψ〉, by replacing it with the two qubit Werner
state,

ρ(z)=
1 − z

4
I + z |ψ〉 〈ψ |.

This results in the expectation value (37) changing to

〈(~c · ~σ) ⊗ (~d · ~σ)〉ρ(z) =−z~c · ~d. (50)

Therefore all quantum expectation values are now scaled by a factor of z.
A rich research program has followed from investigating the lowest value of z for which the

Werner state violates a Bell inequality, and the highest value for which a local hidden variable model
can be constructed. With the progress of research, the two values have been converging, but have yet
to meet.
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The CHSH inequality implies a nonclassicality range of z > 1√
2
≈ 0.7071, Vértesi’s slightly

improved the range to z > 0.7056,15 and Brierley et al. to z > 0.7012.16 It is worth noting that although
John Bell’s original inequality matches our 3

2 violation for a singlet state,2 it loses much of its efficacy
for Werner states, yielding a weaker nonclassicality range for z than the CHSH inequality.62

On the other end of the spectrum, the Werner state is separable, and therefore local, for z ≤ 1
3 . By

explicit construction of a simple hidden variable model, Werner showed that it is local for z ≤ 1
2 ,21 with

the surprising implication that an entangled state could have a local hidden variable description. Toner
et al. constructed an even stronger hidden variable model demonstrating locality for z . 0.6595.22,26

Most recently, Hirsch et al. reported locality for z . 0.6829,64,65 meaning the boundary between the
local and nonlocal Werner states must lie between 0.6829 and 0.7012.

It is now natural to ask where our result lies along this spectrum. The expectation value (50)
changes our maximal quantum to classical violation to 3

2 z. This means that the Werner state violates
our Quasi-Bell inequality for z > 2

3 . It may then seem that our result contradicts the range of locality
given by Hirsch et al. But, in fact, this is to be expected; the additional burden of producing joint
probabilities consistent with quantum theory weakens our local hidden variable models relative to
the standard ones, leading to a smaller range of locality.

The above local hidden variable models by various authors do not define joint probability distri-
butions for noncommuting observables as we do. Therefore, they should not be compared at a face
value with our z > 2

3 nonlocality range.
Nonetheless, addressing joint probabilities is a burden that local hidden variable models should be

able to bear. It is in principle possible to extend standard local hidden variable models to do this. Defin-
ing joint probabilities (e.g., p(a0, a1 |â0, â1)) that imply the marginal probabilities (p(a0 |â0), p(a1 |â1))
in the existing models would achieve this. The joint probabilities would be constructed to respect
some desired criteria, such as positivity, the Fréchet inequalities, or, more likely, the symmetriza-
tion procedure, in which case the resulting local hidden variable model must satisfy our Quasi-Bell
inequalities.

IX. DISCUSSION

Here we summarize our results, discussing their meaning and significance. We began by
reviewing the concept of joint probabilities for commuting observables, and relating the quantum
probabilities with those due to classical local hidden variables. We then examined joint probabilities
of noncommuting observables, showing that in general they require some assumptions to determine
them from the marginal probabilities.

We found that assuming the joint probability of noncommuting observables obeys the Fréchet
inequalities is equivalent to assuming its positivity. It turns out that for pure single-qubit states,
positivity implies independence of measurement results from noncommuting observables. Since inde-
pendence is problematic, we sought other avenues to calculating the joint probability. This resulted in
negative joint probabilities, well known for noncommuting observables, which do not lead to physical
contradictions as they cannot be directly measured.

We introduced symmetrization as a means to quantization of classical products of noncom-
muting observables, and justified it heuristically then more carefully via Moyal quantization.
The justification of symmetrization is interesting in its own right, independent of Bell inequali-
ties. It may lead to its own research trajectory where one tests symmetrization through physical
Hamiltonians that include products of noncommuting observables. Although symmetrization math-
ematically follows from the application of canonical quantization, it remains to be experimentally
tested.

Based on symmetrization, we created a hierarchy of Quasi-Bell inequalities, which yields
a quantum to classical violation higher than the standard Bell inequalities. Moreover, the fam-
ily of Quasi-Bell inequalities in Secs. VI and VII exceeds treatments relying on Grothendieck
inequalities.66–68 This is because the latter are restricted to unit vectors, while in this work, the
vectors derived from quantization of noncommuting products, such as ~a012, are not generally of unit
magnitude.
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Although our Quasi-Bell inequality yields a higher violation, it cannot be compared with standard
Bell inequalities or local hidden variable models on Werner states, because the latter do not consider
joint probabilities of noncommuting observables.

Our findings shed important light on joint distributions of noncommuting observables and their
consequent extensions of Bell inequalities. The two essential “strange” features of quantum theory,
noncommutativity and nonlocality, are shown to influence one another in interesting ways. The
findings also help us better understand the limitations of local hidden variable models, and the
possibility of extending them to include joint probabilities. We showed interesting examples of
negative probabilities that appear in intermediate theoretical quantities (e.g., joint probability) but
not in observable measurements.

There of course remains the important question: can Quasi-Bell inequalities be tested experi-
mentally? Traditional Bell inequalities proved that quantum mechanics, as a theory, is nonlocal. The
question then became whether reality is nonlocal, i.e., is quantum mechanics an accurate representa-
tion of reality? This led to numerous experimental tests spanning six decades4–9,69 which confirmed
the validity of quantum theory.

However, while the insights of Quasi-Bell inequalities are many, they remain, thus far, entirely
on the theoretical side. Once one decides to do the experiment to measure the quantities in the
Quasi-Bell inequality, one has to measure symmetrized operators like ~a012 · ~σ and ~b012 · ~σ (which
are incidentally set to zero for the optimal setting for N = 3), because one cannot simultaneously
measure noncommuting observables to calculate their product. But in deriving the symmetrization
from the noncommuting product, we used canonical quantization, thereby assuming the validity of
quantum theory, and as a consequence, nonlocality. Therefore such an experiment would be implicitly
assuming nonlocality and cannot be used to test it.

This will remain true unless direct measurement of the product of noncommuting observables
becomes experimentally possible. In which case direct measurement of the non commuting product
will circumvent the need for symmetrization. Thankfully, this is not a serious problem; great strides
by experimentalists confirming the violation of traditional Bell inequalities mean that the nonlocality
of nature is no longer in doubt.
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APPENDIX: MOYAL QUANTIZATION OF THE PRODUCT

In this appendix, we simplify the expression in (33) to find the operator corresponding to Moyal
quantization of the product a0a1a2.

We define

~χ ≡ θ0â0 + θ1â1 + θ2â2,

χ ≡ | ~χ | =
√
θ2

0 + θ2
1 + θ2

2 + 2(â0 · â1)θ0θ1 + 2(â0 · â2)θ0θ2 + 2(â1 · â2)θ1θ2. (A1)

Then using the well-known identity for exponents of Pauli vectors, our quantum operator in (33)
becomes

[
∂3

i3∂θ0∂θ1∂θ2

(
cos χ I + i

sin χ
χ

( ~χ · ~σ)

)]θi=0

. (A2)
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Considering only the cosine term, we expand its Taylor series to get

[
∂3

i3∂θ0∂θ1∂θ2

(
1 −

1
2!

(θ2
0 + θ2

1 + θ2
2 + 2(â0 · â1)θ0θ1 + 2(â0 · â2)θ0θ2 + 2(â1 · â2)θ1θ2) + O(θ4)

)]θi=0

I ,

(A3)
where O(θ4) denotes terms with products of four or more θi. Since the Taylor expansion lacks a
θ0θ1θ2 term, it is clear that the expression (A3) vanishes. We are then left with the more interesting
sine term, which we also expand in a Taylor series and simplify as

[
∂3

i2∂θ0∂θ1∂θ2

(
1 −

1
3!

(
θ2

0 + θ2
1 + θ2

2 + 2(â0 · â1)θ0θ1 + 2(â0 · â2)θ0θ2

+ 2(â1 · â2)θ1θ2) + O(θ4)
)

(θ0â0 + θ1â1 + θ2â2)
]θi=0

· ~σ

=
1
3

[
∂3

∂θ0∂θ1∂θ2
((â0 · â1)θ0θ1 + (â0 · â2)θ0θ2 + (â1 · â2)θ1θ2) (θ0â0 + θ1â1 + θ2â2)

]θi=0

· ~σ

=
1
3

[(â1 · â2)â0 + (â2 · â0)â1 + (â0 · â1)â2] · ~σ

= ~a012 · ~σ, (A4)

where in going to the second line we noted that θ2
i and O(θ4) terms cannot contribute to the θ0θ1θ2

term, and the final line is exactly the one that is defined in (27).
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64 F. Hirsch, M. T. Quintino, T. Vértesi, M. Navascués, and N. Brunner, Quantum 1, 3 (2017).
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