

LA-UR-17-23596 (Accepted Manuscript)

A new measurement of the ${}^6\text{Li}(n, \gamma)t$ cross section at MeV energies using a ${}^{252}\text{Cf}$ fission chamber and ${}^6\text{Li}$ scintillators

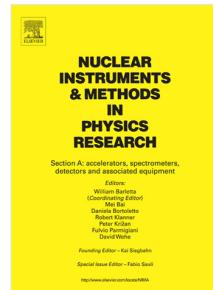
Kirsch, Leo Edward
Devlin, Matthew James
Mosby, Shea Morgan
Gomez, Jaime A.

Provided by the author(s) and the Los Alamos National Laboratory (2017-12-08).

To be published in: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment

DOI to publisher's version: 10.1016/j.nima.2017.08.046

Permalink to record: <http://permalink.lanl.gov/object/view?what=info:lanl-repo/lareport/LA-UR-17-23596>


Disclaimer:

Approved for public release. Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Accepted Manuscript

A new measurement of the ${}^6\text{Li}(\text{n},\alpha)\text{t}$ cross section at MeV energies using a ${}^{252}\text{Cf}$ fission chamber and ${}^6\text{Li}$ scintillators

Leo E. Kirsch, M. Devlin, S.M. Mosby, J.A. Gomez

PII: S0168-9002(17)30946-4

DOI: <http://dx.doi.org/10.1016/j.nima.2017.08.046>

Reference: NIMA 60065

To appear in: *Nuclear Inst. and Methods in Physics Research, A*

Received date: 20 April 2017

Revised date: 10 August 2017

Accepted date: 26 August 2017

Please cite this article as: L.E. Kirsch, M. Devlin, S.M. Mosby, J.A. Gomez, A new measurement of the ${}^6\text{Li}(\text{n},\alpha)\text{t}$ cross section at MeV energies using a ${}^{252}\text{Cf}$ fission chamber and ${}^6\text{Li}$ scintillators, *Nuclear Inst. and Methods in Physics Research, A* (2017), <http://dx.doi.org/10.1016/j.nima.2017.08.046>

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1 A New Measurement of the ${}^6\text{Li}(\text{n},\alpha)\text{t}$ Cross Section at
 2 MeV Energies Using a ${}^{252}\text{Cf}$ Fission Chamber and ${}^6\text{Li}$
 3 Scintillators

4 Leo E. Kirsch^{a,*}, M. Devlin^b, S. M. Mosby^b, J. A. Gomez^b

5 ^a*Nuclear Engineering Department, UC Berkeley, CA 94720, USA*

6 ^b*P-27, Los Alamos National Lab, Los Alamos, NM 87545, USA*

7 **Abstract**

A new measurement is presented of the ${}^6\text{Li}(\text{n},\alpha)\text{t}$ cross section from 245 keV to 10 MeV using a ${}^{252}\text{Cf}$ fission chamber with ${}^6\text{LiI}(\text{Eu})$ and $\text{Cs}_2\text{LiYCl}_6:\text{Ce}$ (CLYC) scintillators which act as both target and detector. Neutron energies are determined from the time of flight (TOF) method using the signals from spontaneous fission and reaction product recoil. Simulations of neutron downscatter in the crystals and fission chamber bring ${}^6\text{Li}(\text{n},\alpha)\text{t}$ cross section values measured with the ${}^6\text{LiI}(\text{Eu})$ into agreement with previous experiments and evaluations, except for two resonances at 4.2 and 6.5 MeV introduced by ENDF/B-VII.1. Suspected neutron transport modeling issues cause the cross section values obtained with CLYC to be discrepant above 2 MeV.

8 *Keywords:* cross section, ${}^{252}\text{Cf}$ fission chamber, ${}^6\text{Li}$,
 9 scintillator, CLYC, ${}^6\text{LiI}(\text{Eu})$

10 **1. Introduction**

11 Neutron detection arrays, conceptual fission reactor designs, and other applications rely on precise knowledge of the ${}^6\text{Li}(\text{n},\alpha)\text{t}$ reaction [1, 2]. However, new experiments and R-Matrix fits have led some nuclear data evaluators and experimental physicists to express doubts about previously reported ${}^6\text{Li}(\text{n},\alpha)\text{t}$ cross sections [3–5]. Furthermore, it has been suggested that contradictions between observed abundances of ${}^6\text{Li}$ and ${}^7\text{Li}$ with Big Bang Nucleosynthesis modeling

*Corresponding Author

Email address: kirsch2@berkeley.edu (Leo E. Kirsch)

Preprint submitted to Nuc. Instrum. Meth. A

August 9, 2017

17 from cross section data could be explained by the existence of long-lived massive,
 18 negatively charged leptonic dark matter particles [6, 7].

19 Previous measurements of the ${}^6\text{Li}(\text{n},\alpha)\text{t}$ cross section rely on ${}^6\text{LiI}(\text{Eu})$ [8–10]
 20 and Li-glass detectors [11, 12], while some use ${}^6\text{Li}$ target foils [4, 13, 14]. All
 21 previous procedures in the literature utilize charged particle beams to produce
 22 neutrons via ${}^1\text{H}(\text{t},\text{n})$, ${}^2\text{H}(\text{d},\text{n})$, ${}^3\text{H}(\text{p},\text{n})$, ${}^7\text{Li}(\text{p},\text{n})$, or spallation ${}^{\text{W}}(\text{p},\text{xn})$. These
 23 measurements disagree as much as 20% in the few MeV region. The experiment
 24 introduced in this paper is the first ${}^6\text{Li}(\text{n},\alpha)\text{t}$ experiment known to the authors
 25 without a charged particle beam. We test the performance of a ${}^{252}\text{Cf}$ fission
 26 chamber neutron source with the conventional ${}^6\text{LiI}(\text{Eu})$ detector so that the
 27 measurements can contribute absolute ${}^6\text{Li}(\text{n},\alpha)\text{t}$ cross section data from 245
 28 keV to 10 MeV for use in future evaluations.

29 This experiment also explores the quantitative reliability of $\text{Cs}_2\text{LiYCl}_6:\text{Ce}$
 30 scintillators (CLYC) by testing a ${}^6\text{Li}$ enriched CLYC detector (C 6 LYC) with the
 31 same fission chamber procedure to see if it can reproduce the standard ${}^6\text{Li}(\text{n},\alpha)\text{t}$
 32 cross section. Previous experiments have not been able to reproduce simulations
 33 of ${}^{35,37}\text{Cl}(\text{n},\text{p})$ response in ${}^7\text{Li}$ enriched CLYC detectors (C 7 LYC) [15]. Poorly
 34 modeled neutron transport inside the crystal is likely the cause of the mismatch
 35 since there are not many measurements of ${}^{35,37}\text{Cl}(\text{n},*)$ from 100 keV to 14 MeV.
 36 New results will give the CLYC development community some insight to proceed
 37 with optimization of crystal fabrication and experimental design.

38 **2. Experiment**

39 The procedure to precisely measure a cross section consists of three concepts:
 40 time of flight to determine neutron energy, identification of ${}^6\text{Li}(\text{n},\alpha)\text{t}$ events, and
 41 scattering simulations of the ${}^{252}\text{Cf}$ neutron spectrum.

42 The 1" diameter fission chamber¹ was situated at the center of an otherwise
 43 empty 8×6 meter room inside the Lujan Center of the Los Alamos Neutron

¹Double Contained Hemispherical Fission Chamber CF-53, model Q-6610-1, Rev. 2, manufactured by Oak Ridge National Laboratory.

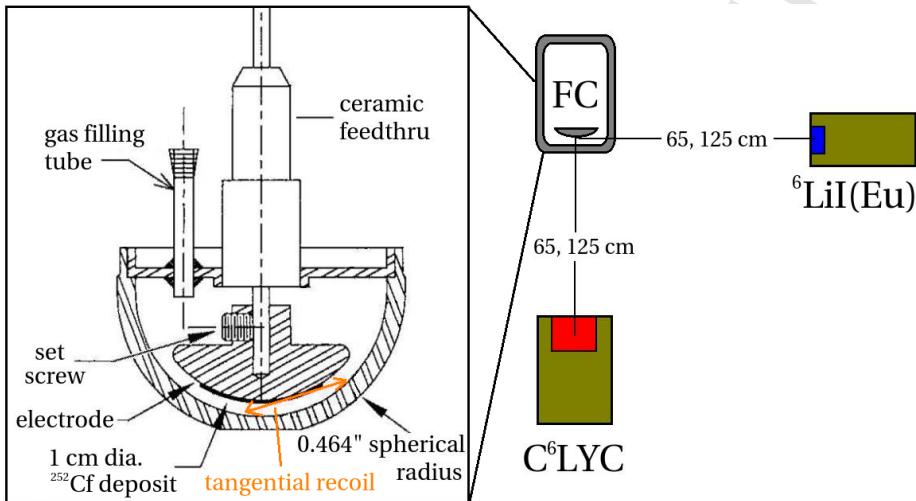


Figure 1: Experimental setup and schematic of the fission chamber. Back-to-back fission fragments cannot both recoil into the electrode due to its hemispherical shape.

44 Science Center for several months. Roughly $0.345 \mu\text{g}$ of ^{252}Cf initially resided
 45 on the rounded side of the enclosed hemispherical electrode. The ^{252}Cf sponta-
 46 neous fission fragments recoil through an electrically biased gas cell producing
 47 a signal. Fission fragments recoiling in a plane tangential to the ^{252}Cf surface
 48 layer produce a larger signal since both fragments contribute to the Townsend
 49 avalanche as seen in Figure 1; hence, all fissions produce a signal. The fragments
 50 emit an average of 3.76 prompt neutrons per fission for a total of approximately
 51 795,000 neutrons per second.

52 Neutrons pass through 2-3 mm of the stainless steel capsule and into the
 53 open air room before potentially striking one of two lithium detectors. In two
 54 iterations of this experiment, the detectors were 65 cm and 125 cm from the
 55 fission chamber. All experimental and simulated data presented in this paper
 56 correspond to the 65 cm “near configuration” (except Figures 15, 16, and Table
 57 2). Due to the falloff in neutron flux with distance ($\sim 1/d^2$), various features are
 58 more prominent in the near configuration. Analysis of the 125 cm “far configu-
 59 ration” data uses the same procedure, but for brevity the plots are omitted and
 60 are available upon request. Data were collected for 27 days in each configura-

61 tion. The ${}^6\text{Li}(\text{n},\text{Eu})$ and C^6LYC scintillators performed duties of both target and
 62 detector: ${}^6\text{Li}(\text{n},\alpha)\text{t}$ charged particle reaction products recoil inside the crystals
 63 generating a luminescent response. Photomultiplier tubes (PMTs) attached to
 64 the crystal faces convert the light into electrical signals.

65 Signal output from the fission chamber and detectors transmit directly into
 66 separate channels of a 14-bit, 500 MS/s digitizer². Each input independently
 67 self-triggers using leading edge discrimination. Waveform pre-processing re-
 68 moves the ${}^{252}\text{Cf}$ alpha decay and fission fragment beta decay; while waveform
 69 post-processing uses a constant fraction discrimination (CFD) algorithm to as-
 70 sign pulse-height-independent timestamps. The digitizer records signal output
 71 every 2 ns, but interpolation of CFD output yields sub-nanosecond zero cross-
 72 ings. Timing resolution is a function of detector pulse height and can reach
 73 standard deviations as low as 1.5 ns for ${}^6\text{Li}(\text{n},\text{Eu})$ and 0.5 ns for C^6LYC in this
 74 experiment. A data analysis code organizes coincident fission chamber and de-
 75 tector output into an event structure containing timestamp and pulse height
 76 information. An event satisfies the coincidence condition if either detector trig-
 77 gered as early as 75 ns before or as late as 500 ns after fission. Section 3 addresses
 78 dead time issues resulting from the high fission rate.

The time of flight (TOF) of a neutron is the time difference between the emission signal from the fission chamber and the reaction signal from the scintillators' PMTs. Varying cable lengths, digital signal post-processing, and other experimental factors obfuscate an absolute TOF measurement. Therefore, a timing calibration ensures that prompt photons from fission arrive precisely at time $t = d/c$, where d is the distance from the ${}^{252}\text{Cf}$ fission deposit to the center of the detector active volume. No attempt was made to absolutely calibrate the time offset. The relativistic conversion to neutron kinetic energy E_n is

$$E_n = \left(\frac{1}{\sqrt{1 - \left(\frac{d}{c \cdot \text{TOF}} \right)^2}} - 1 \right) mc^2, \quad (1)$$

²Model VX1730. Manufactured by CAEN S.p.A., Viareggio, LU 55049, Italy.

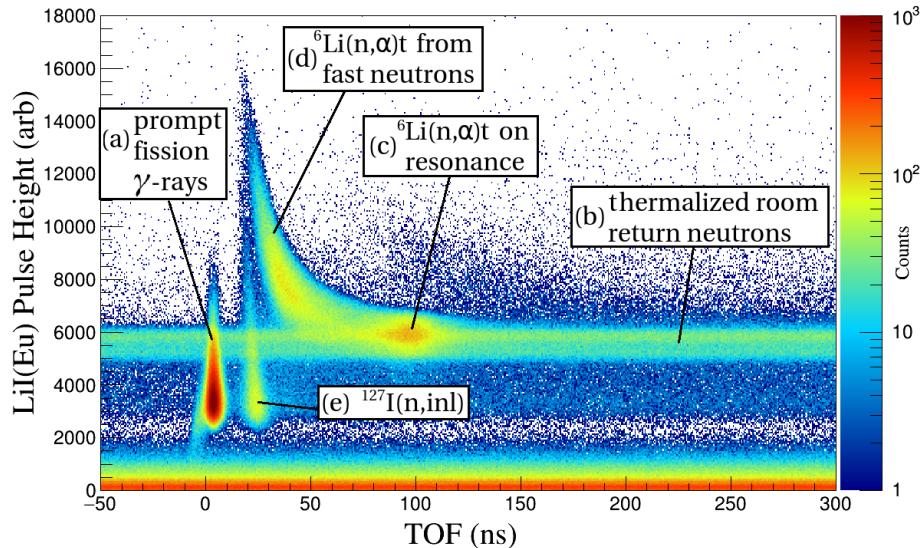


Figure 2: ${}^6\text{LiI}(\text{Eu})$ experimental TOF spectrum. Additional descriptions corresponding to the letters given in the text. The experimental and simulated plots in this paper correspond to the 65 cm near configuration except where otherwise noted.

79 where m is the rest mass of the neutron. The TOF uncertainty is the afore-
 80 mentioned detector pulse height dependent timing resolution. The distance un-
 81 certainty is a combination of digital laser sight systematic uncertainty, detector
 82 half thicknesses, machining tolerances, and neutron source spatial distribution:
 83 5 mm for ${}^6\text{LiI}(\text{Eu})$ and 8.5 mm for C ${}^6\text{LYC}$.

84 Pulse height magnitude typically reflects the sum of a reaction Q-value and
 85 incident neutron kinetic energy. However, different recoiling charged particles
 86 generate different amounts of light in the stopping process. For example, prompt
 87 fission γ -rays Compton scatter to produce electrons of a few hundred keV, the
 88 ${}^6\text{Li}(\text{n}, \alpha)\text{t}$ reaction produces tritons and alphas up to 13 MeV, ${}^{35}\text{Cl}(\text{n}, \text{p})$ produces
 89 protons up to 10 MeV, and γ -rays from ${}^{127}\text{I}(\text{n}, \text{inl})$ produce electrons of a couple
 90 hundred keV in photoelectric absorption.

91 The ${}^6\text{Li}(\text{Eu})$ detector³ has an active crystal⁴ volume measuring 25 mm in
 92 diameter by 3 mm in thickness. Production of ${}^6\text{LiI}$ crystals began in the early
 93 1950's [16–18]. After several decades of testing, many dependable descriptions of
 94 fast neutron pulse height spectra exist [19, 20]. Figure 2 shows the pulse height
 95 vs. TOF spectra for ${}^6\text{LiI}(\text{Eu})$. In this experiment there are many noteworthy
 96 features:

97 (a) Events within the vertical "teardrop" shape calibrated to time $t = d/c$ are
 98 prompt fission γ -rays Compton-scattering off electrons in the crystal.

99 (b) Events within the horizontal band at pulse height 5500 stretching over all
 100 times are ${}^6\text{Li}(\text{n},\alpha)\text{t}$ reactions from thermalized room return neutrons reach-
 101 ing the crystal. This reaction has a Q-value of +4.78 MeV.

102 (c) The surge of events at 95 ns with pulse height centered slightly above the
 103 thermal band are ${}^6\text{Li}(\text{n},\alpha)\text{t}$ reactions near the 240 keV resonance from un-
 104 scattered fission neutrons.

105 (d) Events within the "banana" shape that extends from the resonance toward
 106 12 ns with increasing pulse height are also ${}^6\text{Li}(\text{n},\alpha)\text{t}$ reactions from unscat-
 107 tered fission neutrons. This band of events exhibits a kinematic curve be-
 108 cause high energy neutrons that arrive earlier produce a larger pulse height.

109 (e) Events within the "curved teardrop" around 25 ns are photoabsorption or
 110 Compton scattering of the γ -rays from ${}^{127}\text{I}(\text{n,inl})$. The pulse height separa-
 111 tion of this band with ${}^6\text{Li}(\text{n},\alpha)\text{t}$ arises from the different reaction Q-values.

112 Events from ${}^{127}\text{I}(\text{n,inl})$ begin to appear below approximately 33 ns correspond-
 113 ing to incident neutron energies above 2.0 MeV for the near configuration via
 114 Equation (1). This energy onset is much higher than the 1st excited state of ${}^{127}\text{I}$

³Model 25.4B/1.5LiI(neg). Manufactured by ScintiTech Inc., Shirley, MA 01466, USA.
 PMT Photonis XP2042.

⁴Manufactured by Cryos-Beta Ltd., 60 Lenina Avenue, Kharkov 61001, Ukraine.

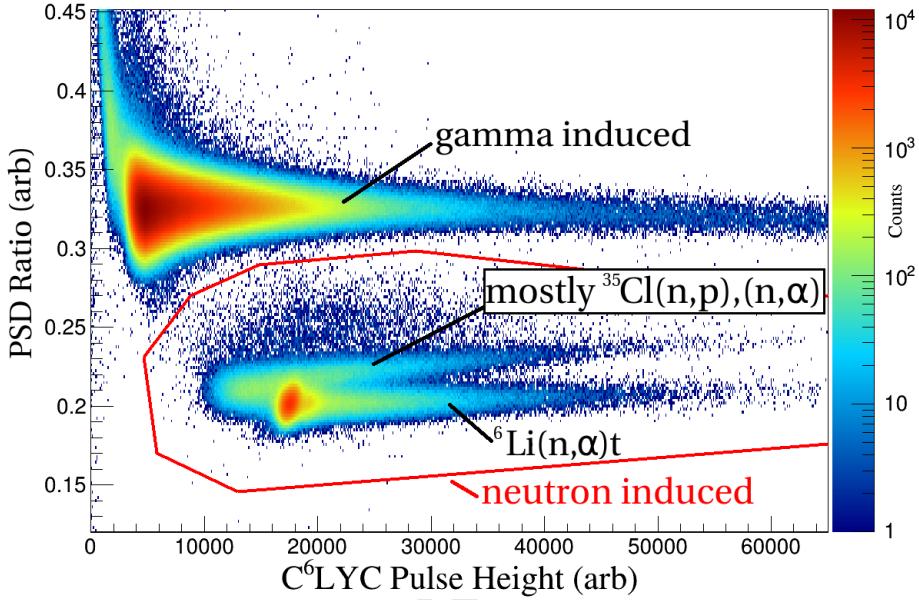


Figure 3: C^6 LYC pulse shape discrimination for the full spectra of neutrons and γ -rays from ^{252}Cf spontaneous fission. The three neutron induced bands that arise from $^6\text{Li}(n,\alpha)t$, $^{35}\text{Cl}(n,p)$, and $^{35}\text{Cl}(n,\alpha)$ are not separable from each other with PSD.

115 at 57.6 keV. Events depositing less than 2.0 MeV do not trigger the pulse height
 116 threshold of the digitizer data collection software except by random coincidence.

The C^6 LYC scintillator⁵ has an active volume measuring 25.4 mm in diameter by 10 mm in thickness. Production of CLYC began in 1999 [21], and only recently have other groups explored the crystal's response to fast neutrons [22]. The C^6 LYC detector has the benefits of pulse shape discrimination (PSD), shown in Figure 3. The PSD process uses the scintillation decay profile to identify if the event is a γ -ray induced electron recoil or a neutron induced proton or alpha recoil. Electron recoil has a shorter scintillation decay time and therefore has a larger PSD ratio

$$PSD = \frac{h_{short}}{h_{long}}, \quad (2)$$

117 where h_{short} and h_{long} are integrated pulse heights of C^6 LYC PMT output over

⁵Model CLYC-627-1A.u PMT Hammatsu R6231-100.

short and long intervals, respectively. Pulse height integration begins 112 ns before the pulse height trigger, and short and long time intervals have durations of 120 and 600 ns, respectively. There was no optimization attempt of PSD short and long time intervals. As Figure 3 shows, neutron induced events of all integrated pulse heights are almost completely disconnected from γ -ray induced events using PSD. Additionally, TOF information separates neutrons and γ -rays since the majority of γ -rays are prompt products of fission and arrive at the detector much earlier than fission neutrons. Hence, there was minimal ambiguity as to which events were neutrons or γ -rays for this experiment's neutron energy range and source to detector distances.

Figure 4 shows the pulse height vs. TOF spectrum for C⁶LYC. This spectrum has features similar to that of ⁶LiI(Eu) with the addition of two new kinematic curves. Events within the middle "banana" are ³⁵Cl(n,p)³⁵S_{g.s.} reactions where ³⁵S_{g.s.} is the ground state of ³⁵S. Events within the bottom "banana" are the combination of ³⁵Cl(n, α)³²P and ³⁵Cl(n,p)³⁵S* reactions where ³⁵S* are excited states starting at 1.57 MeV. This band may also contain events from other reactions with charged particle products such as ³⁷Cl(n,p),(n, α), or ³⁵Cl(n,d).

Obtaining the net number of ⁶Li(n, α)t events, n_n , requires a good understanding of fission-induced background. Neutrons that thermalize in surrounding material and migrate to the detectors contribute a constant background. Neutron and γ -ray events with recorded "negative TOF" spawn from earlier fissions not associated with the most recent trigger. Figure 5 shows pulse height vs. TOF spectra after subtraction of background events averaged from -49 ns to -9 ns. Subtracting background this way removes the fully thermalized neutron bands, but the structure of room return neutrons persists. The pre-fission background subtraction does not remove single scatter neutrons that maintain a timing correlation with the fission trigger.

Section 4 investigates the geometric quality of the graphical cut in Figure 5. Specifically, Sections 4.1, 4.2 and 4.3 address the fact that the graphical cut includes some intrusive ⁶Li(n, α)t events in which neutrons first scatter on materials inside and outside the detectors. Moreover, Section 4.4 addresses the

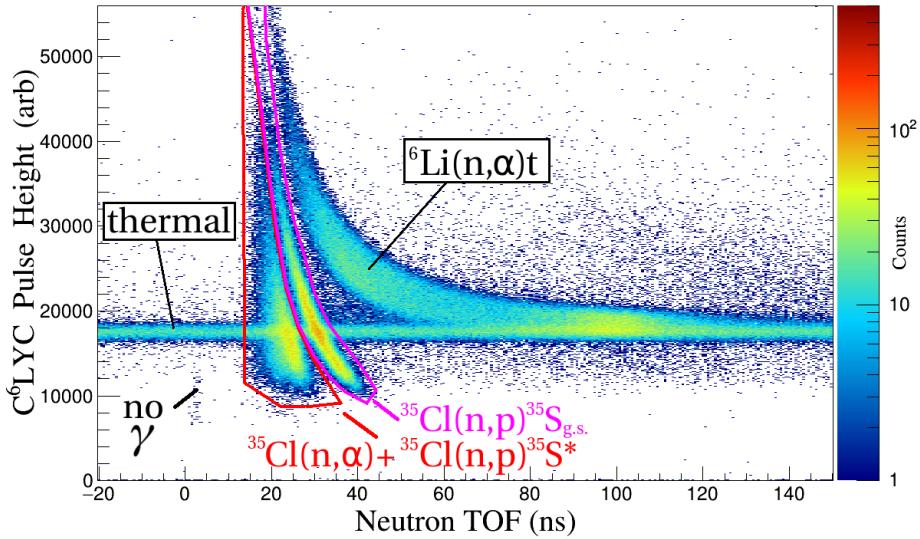


Figure 4: C⁶LYC experimental TOF spectrum. The ³⁵Cl(n,p)³⁵S reaction has Q-value +615 keV but does not have a large cross section until the neutron has over 1 MeV. Neutron pulse shape discrimination of Figure 3 ensures γ -ray events do not appear.

149 fact that the graphical cut excludes some legitimate ⁶Li(n, α)t events due to
 150 particle ejection from the crystal and the broadening of the kinematic curve due
 151 to detector pulse height and timing resolutions.

152 3. Absolute Normalization

The expression for the absolute ⁶Li(n, α)t cross section σ is

$$\sigma(E_n) = \frac{n_n(E_n)}{N_{f,tot} N_{^6\text{Li}} \phi_{det} n_f(E_n)}, \quad (3)$$

153 where n_n is the net number of background subtracted ⁶Li(n, α)t events detected
 154 for incident neutron energy E_n , $N_{f,tot}$ is the total number of neutrons emitted
 155 during the count time of the experiment, $N_{^6\text{Li}}$ is the number of ⁶Li nuclei in each
 156 crystal, ϕ_{det} is the path length estimate of particle flux for the geometries of
 157 this experiment, and n_f is the relative number of neutrons emitted from fission
 158 at energy E_n .

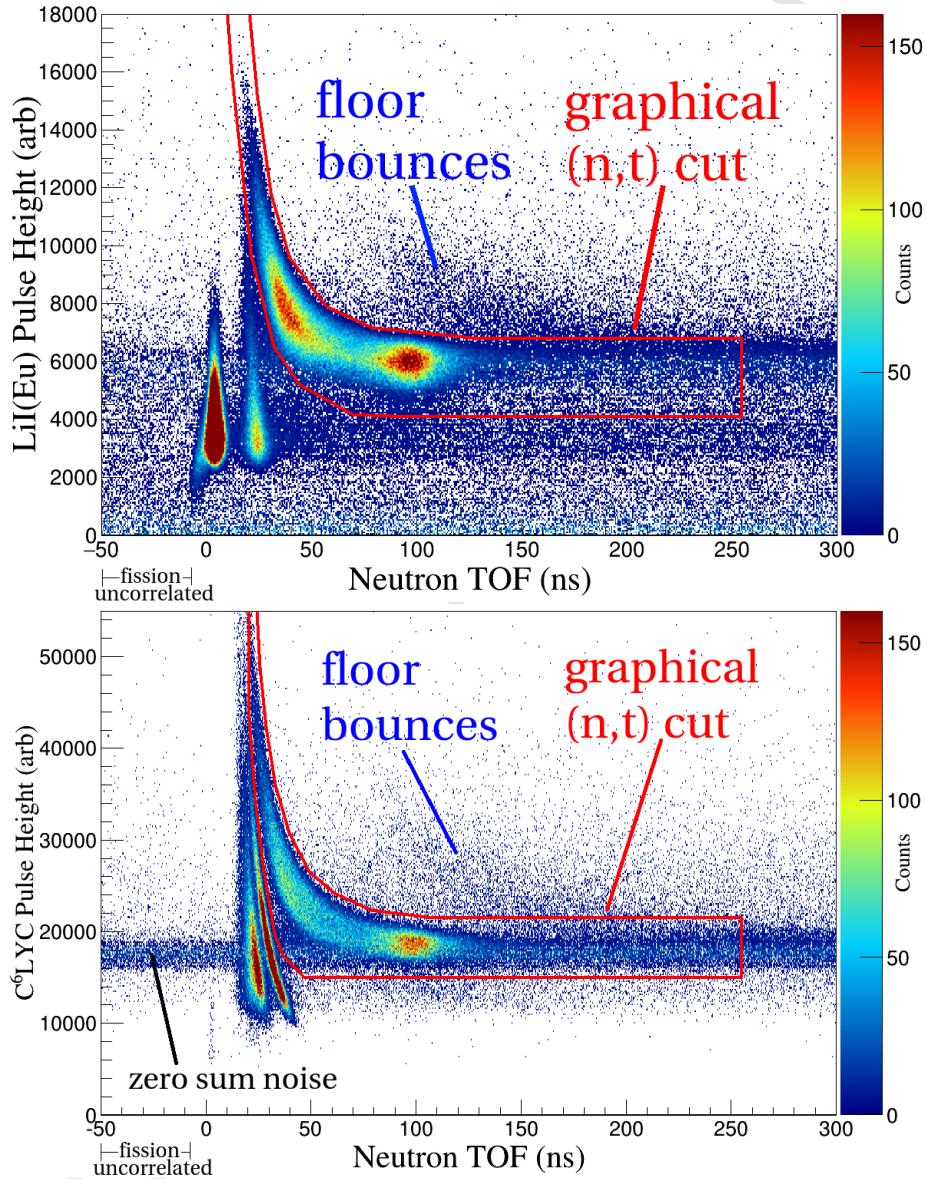


Figure 5: Background subtracted pulse height vs. neutron TOF: top ${}^6\text{LiI(Eu)}$, bottom C^6LYC . The fission uncorrelated region is the background subtraction source. The graphical cut selects ${}^6\text{Li}(n,\alpha)t$ events for cross section calculations. Faint room return neutron bands show that neutrons taking a single bounce off the floor and deflecting into the detectors retain the majority of their energy but arrive noticeably later in time.

The detectors and fission chamber do not register events for the entirety of the experiment. The quantity $N_{f,tot}$ includes dead time and down time losses which effectively reduce the number of usable neutrons:

$$N_{f,tot} = f_{live} f_{rec} \bar{\nu}_p \int_{t_i}^{t_f} dt' A_{252,i} 2^{-t'/t_{1/2}}, \quad (4)$$

where f_{live} is the fraction of time the digitizer boards are live, f_{rec} is the fraction of time the data acquisition system is recording, $\bar{\nu}_p = 3.7590 \pm 0.0047$ is the average number of prompt neutrons emitted from ^{252}Cf spontaneous fission, t_i and t_f are the start and end times of this experiment respectively, $A_{252,i}$ is the initial ^{252}Cf fission rate, and $t_{1/2} = 2.645 \pm 0.008$ yr is the ^{252}Cf half-life. The ^{252}Cf fission rate changes slightly over the course of the experiment making the integration in Equation (4) necessary. The run time ($t_f - t_i$) for the setup where the detectors were in the far configuration (125 cm) was 26.765 ± 0.044 days, causing approximately a 1.9% decrease in the ^{252}Cf fission rate.

Figure 6 shows the results of the fission chamber calibration and reveals that the digitizer board has some inherent dead time as there are seemingly no events until at least 372 ns after each pulse. After subtracting out the effects of tail retrigerring and detector ringing, the total number of entries in this calibration is 2.5932×10^7 . The integral of the exponential fit of counts vs. interevent time ($e^{p_0 + p_1 t}$ in Figure 6) is 2.7317×10^7 . This integral would equal the total number of entries if digitizer board could transfer data without breaks, but the high ^{252}Cf pulse rate results in many unregistered events during this time. However, Equation (4) uses the ratio of the number of calibration entries to integrated fit, referred to as live time fraction $f_{live} = 0.949 \pm 0.005$, which appropriately manages the high pulse rate.

The data acquisition system quickly generates large run files due to the high fission rate. An automated code stops the collection after 10 minutes of recording data to save the current file, begin a new run, and reinitialize parameters. This down time is 1-2 seconds, and therefore the fractional recording time is $f_{rec} = 0.9975 \pm 0.0008$.

In practice, the fission chamber measures ^{252}Cf fission as well as fission of

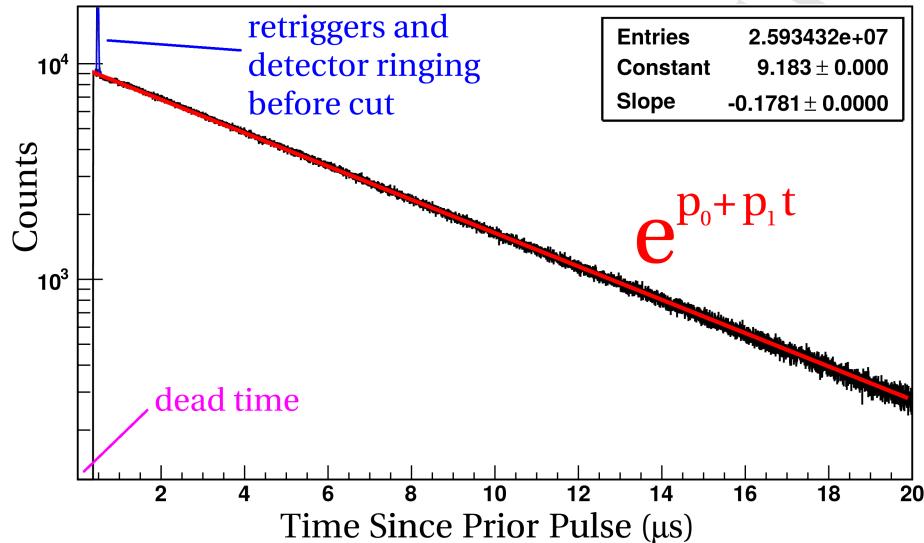


Figure 6: Interevent time of fission. Data taken on 3/16/17 with measured total fission rate $p_1 = 178,100$ f/s. The number of counts measured for a given interevent time is proportional to the probability of observing zero events during that time using a Poisson process.

various impurities and daughter nuclei:

$$A_{tot,i} = A_{252,i}/f_{252}, \quad (5)$$

184 where $A_{i,tot}$ is the initial total fission rate from all isotopes and f_{252} is the
 185 fraction of fissions from ^{252}Cf . Table 1 provides a summary of the mass assay
 186 of curium and californium isotopes from the fission chamber manufacturer and
 187 predicts a purity of $f_{252} = 0.9972 \pm 0.0005$ on the start day of the experiment.
 188 The manufacturer also provides a separate analysis of the total fission rate and
 189 states that their mass assay values are 5-10% too high. This rate discrepancy
 190 does not greatly affect the purity levels. The authors of this paper performed
 191 a separate calibration of the total fission rate in March 2017, over six years
 192 after the manufacturer's original December 2010 assay. Figure 6 shows results
 193 from the new calibration and projects a total fission rate of $211,400 \pm 130$ f/s
 194 on the July 2016 start date of the experiment, confirming the projection of
 195 manufacturer's mass assay as 7% too high.

Table 1: Projected Fission Rates of Californium Isotopes

Isotope	12/10 Assay (μg)	$t_{1/2}$ (yr)	SF (%)	7/16 Fiss. Rate(f/s)
^{246}Cm	0.006	4706	0.03	0.3
^{248}Cm	0.206	3.48e5	8.39	18.1
^{249}Cf	0.201	351	5.0e-7	0.053
^{250}Cf	0.264	13.08	0.077	610
^{252}Cf	1.608	2.645	3.09	2.264e5
^{254}Cf	<0.001	0.166	99.69	

The number of ^6Li nuclei $N_{^6\text{Li}}$ in each crystal is

$$N_{^6\text{Li}} = \pi R^2 T \rho \cdot N_A f_{^6\text{Li}} / M_X, \quad (6)$$

196 where R , T , ρ , and M_X are crystal radius, thickness, density, and molar mass,
 197 respectively, N_A is Avagadro's number, and $f_{^6\text{Li}}$ is the ^6Li enrichment. The
 198 uncertainties for these quantities are quite low except for radius and thickness
 199 which have respective tolerances of 0.05 and 0.1 mm as quoted from the manu-
 200 facturer.

201 A detector that collects particles from a distributed source does not have
 202 a well-defined solid angle. Also, particles that graze the corners of the crystal
 203 do not have the same interaction probability as particles passing through the
 204 entire thickness. Simulations using the Monte Carlo N-Particle transport code
 205 MCNP[®] [23] determined the path length estimate of particle flux ϕ_{det} for the
 206 geometries of this experiment. Again, the most sensitive quantities are crys-
 207 tal radius and thickness of the crystal. For the setup where $^6\text{LiI}(\text{Eu})$ was in
 208 the far configuration, $\phi_{det} = 5.107 \pm 0.005 \times 10^{-6} \text{ n/cm}^2$ per source neutron,
 209 meaning that on average, only five out of one million neutrons pass through the
 210 entire thickness of the crystal. However, neutrons scatter in the fission cham-
 211 ber and the crystals themselves. Sections 4.2 and 4.3 address these scattering
 212 corrections.

213 The most up to date ^{252}Cf prompt fission neutron spectrum $n_f(E_n)$ is the

214 Mannhart evaluation [24] retrievable from the Evaluated Nuclear Data File
 215 (ENDF) database [25]. The evaluation provides relative standard deviations
 216 varying from 1-3% in the region from 100 keV to 10 MeV from a global fit to
 217 available data with a simple model of the shape of the neutron spectrum. These
 218 uncertainties are much lower than the evaluated ${}^6\text{Li}(\text{n},\alpha)\text{t}$ cross section uncer-
 219 tainties, and do not contribute to the uncertainty in absolute normalization
 220 since n_f is normalized to unity.

221 In total, the absolute normalization has an uncertainty of 3.6% for ${}^6\text{LiI}(\text{Eu})$
 222 in the far configuration. The largest contributors to the uncertainty are crystal
 223 radius and thickness. Both the number of ${}^6\text{Li}$ nuclei and subtended neutron flux
 224 scale quadratically with radius. For ${}^6\text{LiI}(\text{Eu})$, the uncertainty in crystal thick-
 225 ness dominates because the tolerance is a larger fraction of the whole dimension.
 226 The correction factors of the following section have comparable systematic un-
 227 certainties.

228 **4. Correction Factors**

229 Neutrons emitted from a fission chamber react with the environment differ-
 230 ently than the collimated neutrons of previous beam experiments. This section
 231 presents the measurement constraint due to room return, two correction factors
 232 for neutron downscatter in the fission chamber and crystal, and one correction
 233 factor for reaction product escape from the walls of the thin crystals.

234 *4.1. Effect of Room Return*

235 More neutrons pass through the detectors than expected from a naïve con-
 236 version of the Mannhart ${}^{252}\text{Cf}$ energy spectrum to TOF spectrum. Neutrons
 237 not initially moving in the direction of the detectors bounce off the room and
 238 react at times later than they would on a direct path from fission chamber to
 239 detector. For example, the shortest path from fission chamber to the concrete
 240 floor (93 cm below) to detector is 225 cm. Neutrons with kinetic energy of a
 241 few MeV on this path induce events which enter the graphical cut of Figure

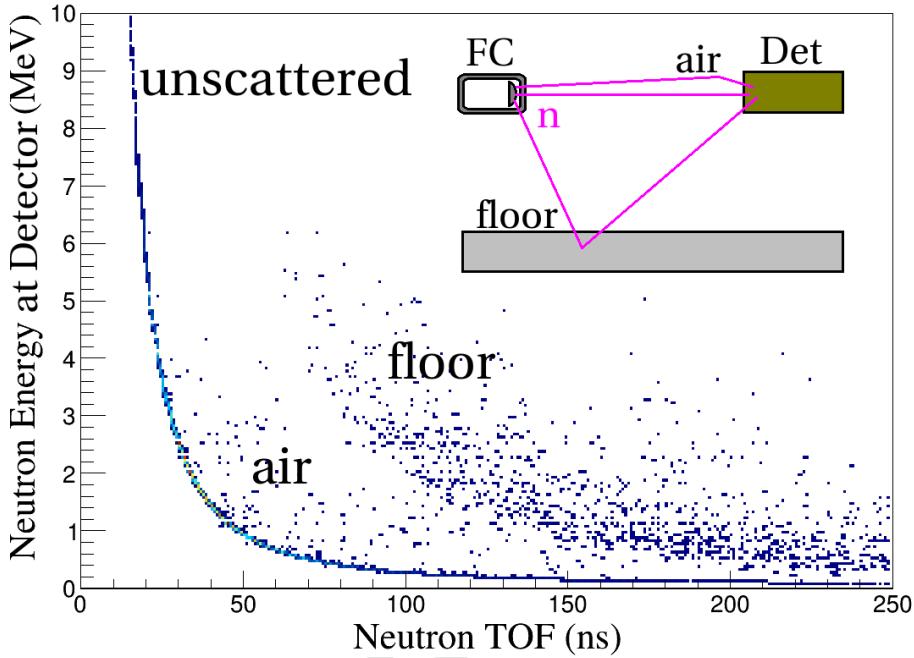


Figure 7: Simulation of room return including concrete floor and surrounding air. The floor bounce band disappears when void replaces the concrete floor material. The air bounce band disappears when void replaces the air material.

242 5. However, the room walls are too far for neutron reflections to induce events
 243 which enter the graphical cut.

244 Figure 7 shows results from an MCNP[®] simulation which contains the dis-
 245 tributed neutron source, the concrete floor, surrounding air, and a flux tally
 246 at the location of the detector. This simulation omits fission chamber and de-
 247 tector geometry. The same floor bounce band appears as first noted in the
 248 experimental spectra of Figure 5. Overlap of the floor bounce and unscattered
 249 bands occurs when the energy difference is less than twice the experimental
 250 pulse height resolution. For instance, ⁶LiI(Eu) has pulse height resolution ap-
 251 proximately 1 MeV so the simulation predicts overlap for TOF > 95 ns which
 252 matches the experimental values. Then, according to Equation (1), the concrete
 253 floor does not interfere for $E_n > 245$ keV.

254 Figure 7 also reveals an air bounce band which enters the graphical cut for

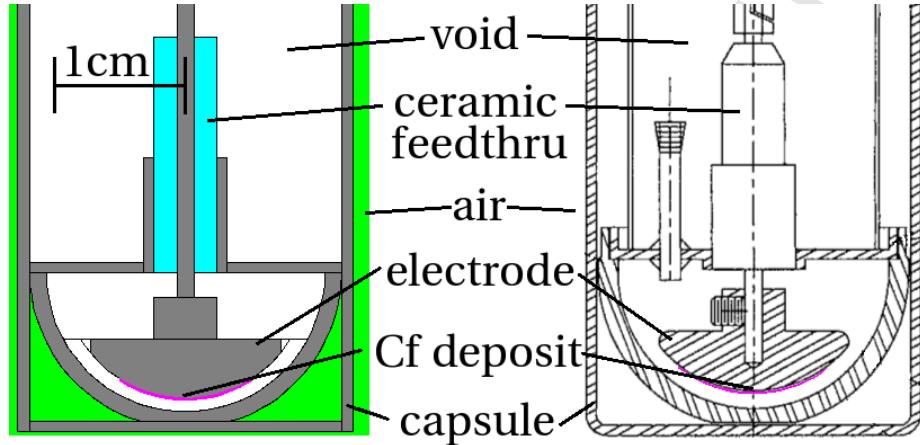


Figure 8: Simulation geometry of the fission chamber and ^{252}Cf deposit. Trivial geometric features omitted from simulation for the sake of computation time.

255 all TOF. However, air bounces cause less than a 0.5% change to flux at any
 256 energy.

257 *4.2. Effect of Fission Chamber Scatter*

258 The ^{252}Cf fission chamber is not physically large enough to significantly
 259 alter neutron TOF. Scattering converts fast neutron source particles into slow
 260 neutron source particles. Figure 8 shows that the dimensions of the fission
 261 chamber are of the order 1 cm. Neutrons with kinetic energy 240 keV experience
 262 a 1.5 ns maximum deviation from the path length increase of a single scatter.
 263 This change to TOF is greatest at low energy, but is always within experimental
 264 timing resolution. Therefore, the fission chamber geometry modifies the neutron
 265 flux magnitude but not the relationship between energy and TOF.

266 Figure 9 shows MCNP[®] simulation results containing the fission chamber
 267 geometry. The output, $R_{FC/Void}$, is the energy dependent neutron flux ratio
 268 between rooms with and without fission chamber material. Flux incident upon
 269 the detector volume increases with the inclusion of the electrode which acts as
 270 a scattering source. Flux decreases with the inclusion of capsule walls which
 271 act as attenuating barriers. Electrode addition dominates at low energy where

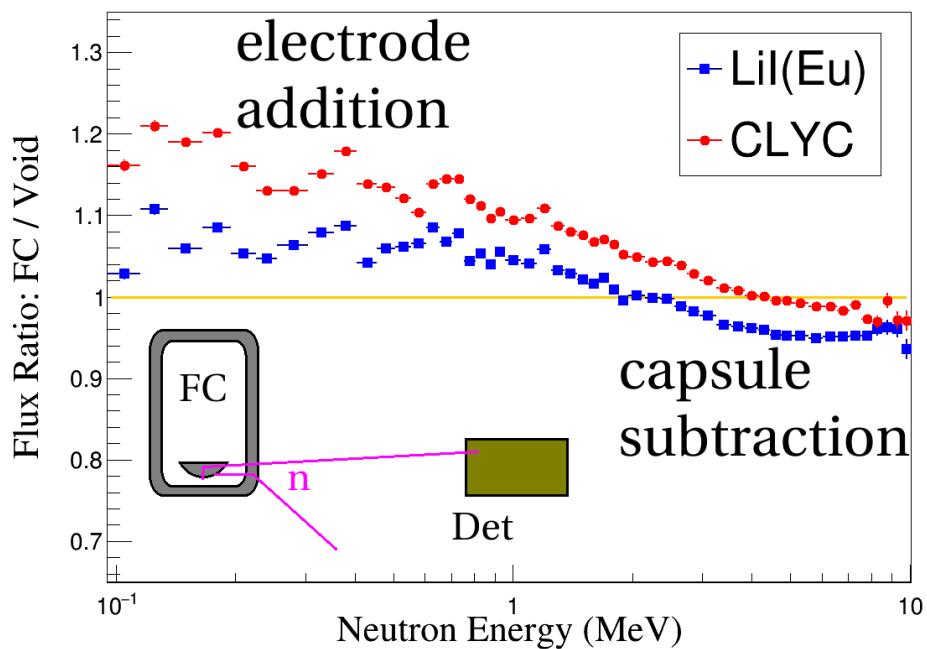


Figure 9: Fission chamber scatter. Scattering resonances in steel isotopes cause the fluctuations in flux ratio. The $^{6}\text{LiI}(\text{Eu})$ and C^6LYC receive different neutron spectra due to anisotropies in elastic scattering and asymmetric geometry.

272 large angle scatters are common. Capsule subtraction dominates at high energy
 273 where elastic scatter is forward-focused.

The correction factor for fission chamber scatter F_{FC} is

$$F_{FC}(E_n) = \frac{1}{R_{FC/Void}(E_n)}. \quad (7)$$

274 The assigned systematic uncertainty for fission chamber scattering effects is 1/4
 275 the maximum correction. This maximum ensures that systematic uncertainties
 276 persist even when electrode addition and capsule subtraction cancel out.

277 *4.3. Effect of Downscatter*

278 Downscatter consists of four effects that modify the neutron flux: path length
 279 increase, elastic scatter energy loss, inelastic scatter energy loss, and neutron
 280 removal. These are issues common to all active target experiments where the
 281 detector internally hosts the primary reaction alongside an assortment of sec-
 282 ondary reactions. Additionally, the detector casing and PMT usually sit inside
 283 the beamline and unavoidably cause neutron scatter. For example, a neutron
 284 can severely increase its path length through the target volume if it scatters
 285 in proximity to the crystal as shown in Figure 10. This extended path length
 286 increases the target’s effective thickness. The small detector dimensions do not
 287 significantly disturb TOF, but downscatter still greatly impacts neutron energy.

288 At high incident energies, neutrons lose a lot of their energy via inelastic
 289 scattering (n,inl) with ^{127}I , ^{133}Cs , ^{89}Y , and $^{35,37}\text{Cl}$. These other chemicals make
 290 scintillation possible, but degrade the quality of an incident neutron beam. The
 291 downscattered neutron beam then continues through the crystal at energies
 292 with a larger corresponding $^6\text{Li}(n,\alpha)t$ cross section. This effect obscures the
 293 cross section measurement most at high energies, where as Figure 11 shows, the
 294 primary $^6\text{Li}(n,\alpha)t$ cross section falls well below that of the secondary reactions
 295 available.

296 In C⁶LYC, the (n,p) and (n, α) reactions on $^{35,37}\text{Cl}$ remove neutrons from the
 297 beam, reducing the $^6\text{Li}(n,\alpha)t$ reaction probability altogether. The ^{133}Cs and ^{89}Y

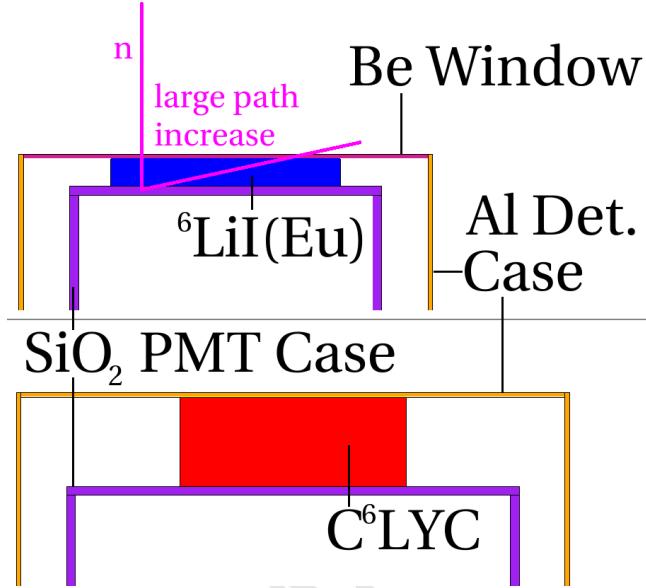


Figure 10: MCNP® geometry of crystal surroundings. A neutron backscatters off the PMT glass resulting in a longer path through the ${}^6\text{LiI}(\text{Eu})$ crystal.

298 in C^6LYC and ${}^{127}\text{I}$ in ${}^6\text{LiI}(\text{Eu})$ do not have significant (n,p) and (n,α) contributions.
 299 Currently there are no experimental measurements of ${}^{35}\text{Cl}(\text{n},\text{p})$ from 200
 300 keV to 14 MeV. In their work, D’Olympia *et. al.* show that MCNP® simulations
 301 do not reproduce C^6LYC ${}^{35}\text{Cl}(\text{n},\text{p})$ spectra well [15]. As mentioned in Section
 302 2, C^6LYC has access to the ${}^{35}\text{Cl}(\text{n},\text{p}){}^{35}\text{S}_{\text{g.s.}}$, ${}^{35}\text{Cl}(\text{n},\text{p}){}^{35}\text{S}^*$, and ${}^{35}\text{Cl}(\text{n},\alpha){}^{32}\text{P}$
 303 cross sections. Preliminary results show that ${}^{35}\text{Cl}(\text{n},\text{p}){}^{35}\text{S}_{\text{g.s.}}$ does not match
 304 the ENDF/B-VII.1 database [25] and is the subject of a future article.

The bottom panel of Figure 12 shows the result of a typical MCNP® downscatter simulation. Here, nearly monoenergetic neutrons around 4 MeV impinge upon the crystal geometry of Figure 10 and lose energy in many ways. This downscatter spectrum is then multiplied by and integrated with the ${}^6\text{Li}(\text{n},\alpha)\text{t}$ cross section to obtain a correction factor at each energy as shown in the top panel. The explicit expression for this correction factor is

$$F_{\text{down}}(E_n) = \frac{\int dE'_n \sigma(E'_n) n_{\text{down}}(E'_n)}{\sigma(E_n) n(E_n)}, \quad (8)$$

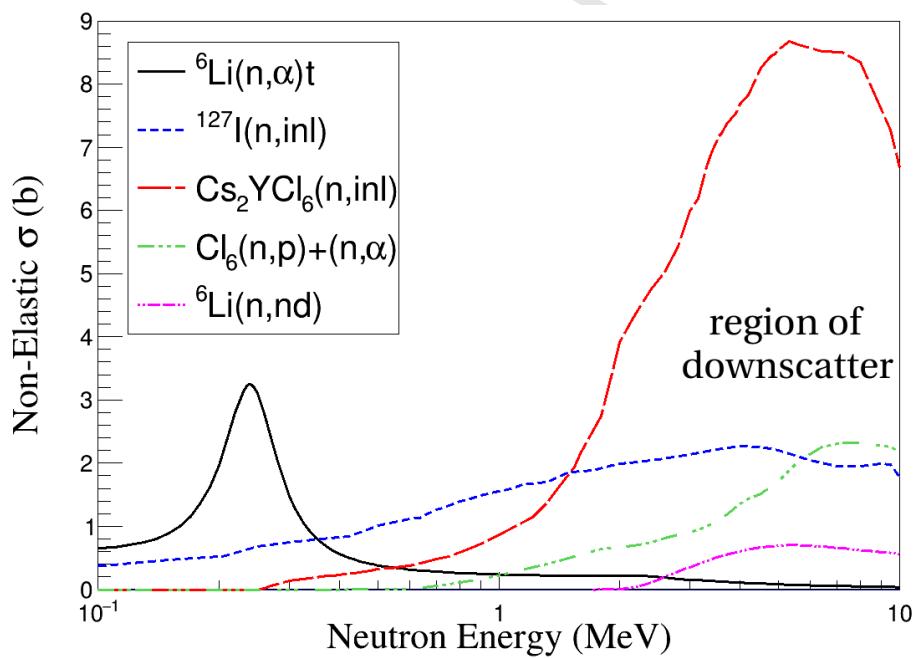


Figure 11: Dominant cross sections in crystal material. Cross sections for Cs and Cl are weighted by their atomic ratios and isotopic abundances. Non-pure targets suffer significant neutron attenuation at higher energies.

305 where n_{down} is the downscattered flux of the bottom panel of Figure 12 and
 306 $n(E_n)$ is the incident unscattered flux. There are a lot of additional downscatter
 307 ${}^6\text{Li}(n,\alpha)t$ reactions at high energies, but (n,inl) often puts the neutron energy
 308 outside the graphical cut of Figure 5. Events outside the cut do not contribute
 309 to the cross section correction.

310 The uncertainty assigned to the combination of simulation geometry and
 311 cross sections is large: 1/3 the correction. This includes uncertainty associated
 312 with the subtraction of incident flux and addition of epithermal flux.

313 *4.4. High Energy Particle Leakage*

314 In their work, Murray and Schmitt [10] suggest a correction to the data to
 315 account for the loss of alphas and tritons from the faces of thin crystals. These
 316 effects are most prominent at high incident neutron energies where the recoiling
 317 ejectiles travel a large distance.

318 Particle leakage is not a straightforward effect to estimate. Cross sections
 319 depend on outgoing particle angles which govern the two-body kinematics. Even
 320 if one or both ions leave the detector, they may deposit enough energy prior
 321 to leaving such that the event pulse height enters the graphical cut of Figure
 322 5. Photoluminescence determines pulse height, but it is a complex condensed
 323 matter process and the corresponding light response curves require prior mea-
 324 surement. At least for ${}^6\text{LiI}(\text{Eu})$, there are data to show these curves differ
 325 vastly between electrons, alphas, protons, and other various charged particles
 326 [8]. These charged particles will have different recoil distances for equivalent
 327 initial kinetic energies. There is some theoretical background on ion ranges in
 328 matter, but they too require experimental verification. Fortunately, many tables
 329 exist that provide readily accessible projected-range data for almost all target
 330 and incident ions [26]. Finally, experimental timing and pulse height resolutions
 331 obscure the boundaries between escaping and stopping ions. A newly created
 332 detector response simulation code called `detResp.C` addresses each of these phe-
 333 nomena and approximates event loss due to particle leakage specifically for the
 334 ${}^6\text{LiI}(\text{Eu})$ and C^6LYC crystals.

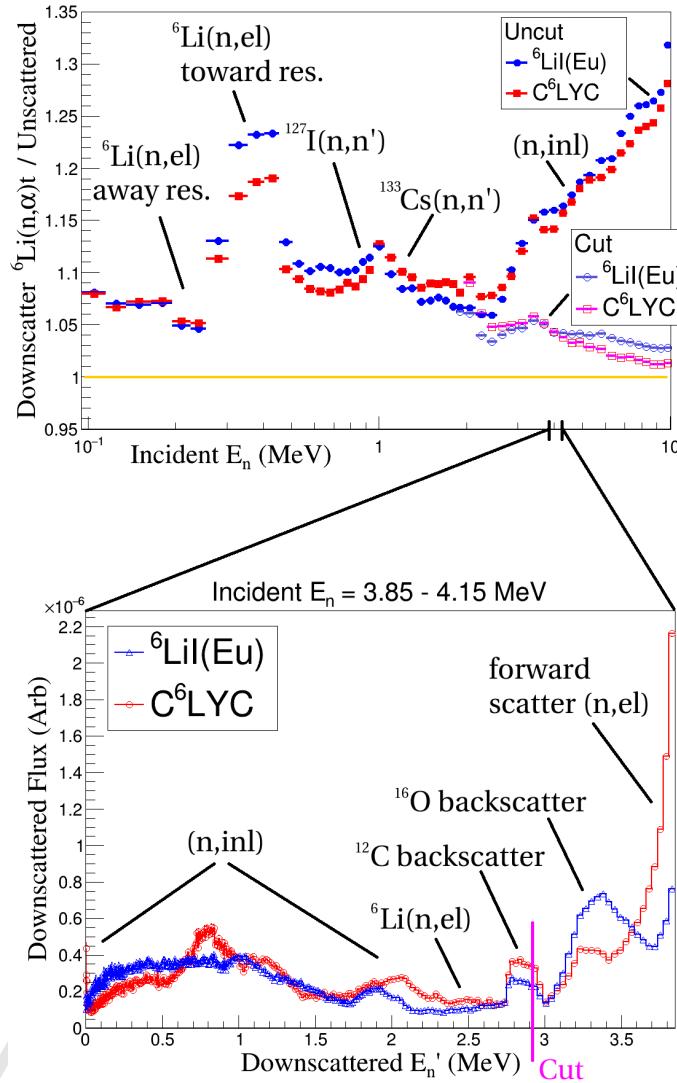


Figure 12: Correction factors for crystal downscatter at all incident energies (top) and downscatter spectrum at 4 MeV (bottom). The downscatter spectrum is convolved with the ${}^6\text{Li}(n,\alpha)t$ cross section to generate a correction factor (a single point in the top panel). For instance, there may not be many downscattered neutrons around 240 keV, but ${}^6\text{Li}(n,\alpha)t$ is on a resonance at this energy so the correction factor is large. However, neutrons that downscatter this low do not induce events with a large enough pulse height to enter the graphical cut of Figure 5 (lower bound shown at 2.85 MeV in bottom panel). A separate integral, truncated at this low energy bound, produces the correction factor labeled “Cut” in the top panel.

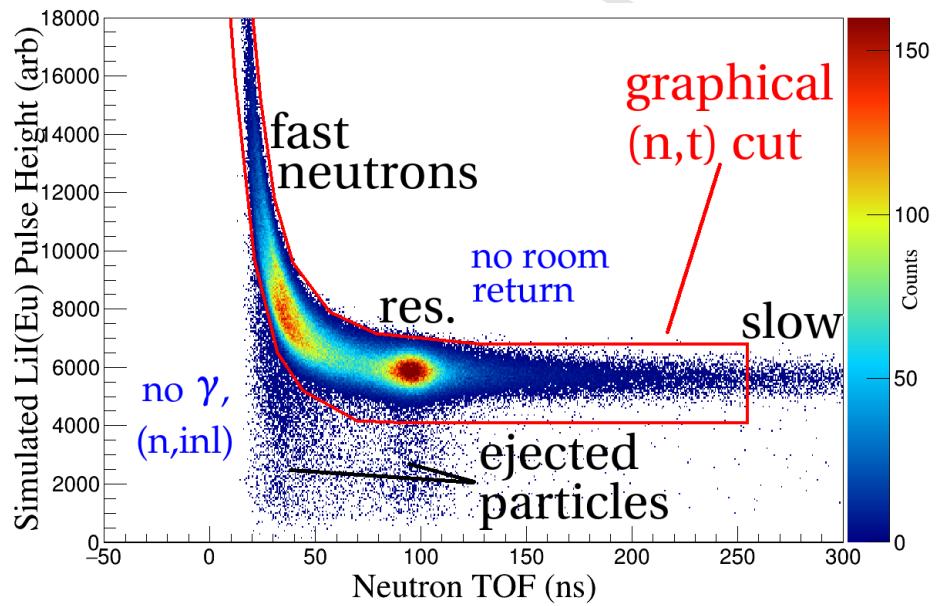


Figure 13: Simulation of ${}^6\text{LiI}(\text{Eu})$ response to ${}^{252}\text{Cf}$ fission neutron spectrum. This `detResp.C` simulation omits the γ -ray flash, room scattering geometry, and other inelastic reactions besides ${}^6\text{Li}(\text{n},\alpha)\text{t}$, but otherwise has all the features of the background subtracted spectrum of Figure 5.

335 Figure 13 shows `detResp.C` simulated pulse height vs. TOF spectrum for a
 336 ^{252}Cf neutron spectrum incident upon a $^{6}\text{LiI}(\text{Eu})$ detector. Equation (1) con-
 337 verts random samples of neutron energy from the Mannhart spectrum [24] into
 338 TOF. Reaction locations inside the cylindrical crystal geometry are uniformly
 339 distributed, neglecting self-shielding. Random samples of $^{6}\text{Li}(\text{n},\alpha)\text{t}$ angle differ-
 340 ential cross section [25] govern triton ejection angles and correlated alpha ejec-
 341 tion angles. Elementary recoil kinematics [27] determine initial ejectile recoil
 342 energies from emission angles. Stopping curves [26] determine energy deposi-
 343 tion of each particle before, or if, it escapes. Renormalized detector response
 344 curves [8] determine pulse height from particle energy deposition. Experi-
 345 mental timing and pulse height resolutions simulate fluctuations so that any given
 346 event has a finite probability to escape the graphical cut. Analysis of fabricated
 347 data incorporates the same graphical cut as Figure 5 to determine event escape
 348 probability based on simulated TOF and pulse height.

349 Using results of the previous simulation, Figure 14 plots escape probabilities
 350 vs. neutron energy. Triton leakage is more likely than alpha leakage because
 351 ion range is inversely proportional to $Z_i^2 m_i$, where Z_i is ion charge, and m_i is
 352 ion mass. Therefore tritons have roughly 5.3 times the range as alpha particles.
 353 Murray and Schmitt [10] propose a 6% correction at neutron energy 8 MeV for a
 354 2.5 mm thick $^{6}\text{LiI}(\text{Eu})$ crystal and express that this leakage effect increases with
 355 incident neutron energy. The simulation of a slightly thicker $^{6}\text{LiI}(\text{Eu})$ crystal
 356 has a comparable 5.5% combined alpha and triton leakage at 8 MeV. However,
 357 not all ion-escape events have total pulse height outside the graphical cut due
 358 to its finite acceptance width.

359 The range curves of alphas, tritons, and protons in C^6LYC are very similar
 360 to those of $^{6}\text{LiI}(\text{Eu})$. The event loss for the C^6LYC crystal is not shown in
 361 Figure 14, but is approximately a factor of 10/3 smaller since the crystal is a
 362 factor of 10/3 times thicker than the $^{6}\text{LiI}(\text{Eu})$.

The correction factor for particle escape F_{Esc} is

$$F_{Esc}(E_n) = \frac{1}{1 - P_{Esc}(E_n)}, \quad (9)$$

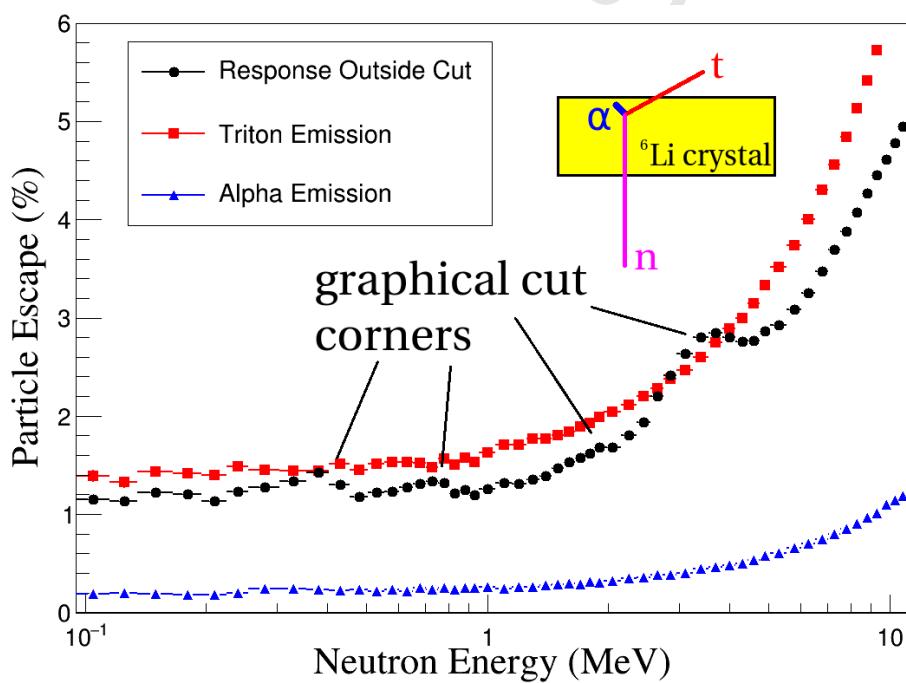


Figure 14: Triton, alpha, and response escape in ${}^6\text{LiI}(\text{Eu})$. Sharp corners in the graphical cut impose noticeable shoulder features in the response cut escape. No such feature exists for the triton and alpha escape curves since escape does not rely on the graphical cut but rather on detector geometry.

363 where P_{Esc} is the fraction of events that have pulse heights outside the graphical
 364 cut at incident neutron energy E_n , shown in Figure 14. The assigned systematic
 365 uncertainty is 1/4 the correction.

366 **5. Corrected Cross Section and Discussion**

The correction factors for fission chamber scatter F_{FC} , crystal downscatter F_{down} , and particle escape F_{esc} modify Equation (3) as follows:

$$\sigma_{corr}(E_n) = \frac{n_n(E_n)F_{FC}F_{down}F_{esc}}{n_f(E_n)N_{f,tot}\phi_{det}N_{^6\text{Li}}}. \quad (10)$$

367 Section 4.1 shows that this corrected cross section, σ_{corr} , is valid for $E_n > 245$
 368 keV since room return is absent.

369 Figure 15 shows the corrected ${}^6\text{Li}(n,\alpha)t$ cross section. Unlike previous ex-
 370 perimental and simulated plots, Figures 15, 16, and Table 2 display results for
 371 the detectors in the 125 cm far configuration. The ${}^6\text{LiI}(\text{Eu})$ data match previous
 372 experiments and the ENDF/B-VII.0 evaluation [28] from 245 keV to 10 MeV
 373 reasonably well in both magnitude and shape. However, the C⁶LYC data had is-
 374 sues above 1.5 MeV likely due to poorly modeled simulation of neutron transport
 375 inside the crystal since there are few experimental cross section measurements
 376 for ${}^{133}\text{Cs}$, ${}^{89}\text{Y}$, and ${}^{35,37}\text{Cl}$. In certain cases, the MCNP® transport simu-
 377 lation relies exclusively on prior calculations by the reaction codes EMPIRE [29]
 378 and SAMMY [30]. ENDF evaluations utilizing these codes do include emitted
 379 particle angular distributions, but depend on phenomenological fits and param-
 380 eterizations of many models and few experiments. Since ${}^6\text{Li}$ has only a 9.5%
 381 atom fraction in C⁶LYC and the calculated cross sections do not have much
 382 experimental support, it is not surprising that quantitative agreement for the
 383 ${}^6\text{Li}(n,\alpha)t$ measurement is poor. The chlorine isotopes are especially sensitive,
 384 since they have the highest isotopic abundance present but the least experimen-
 385 tal data. For instance, a poorly simulated magnitude of ${}^{35}\text{Cl}(n,p)$ and (n,inl)
 386 could underestimate neutron flux attenuation; which in reality brings down the
 387 ${}^6\text{Li}(n,\alpha)t$ cross section measurement.

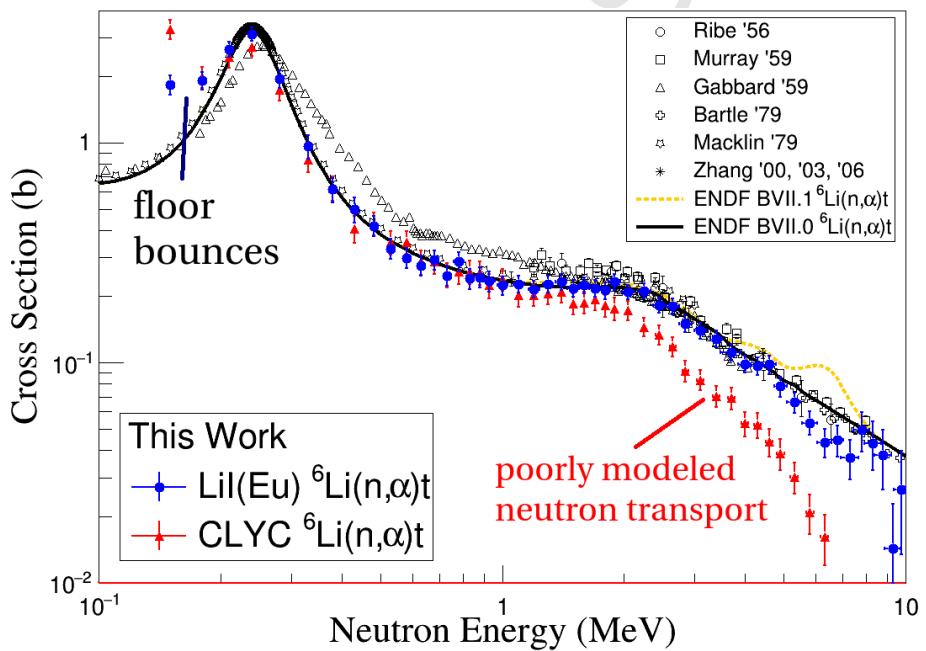


Figure 15: Experimental ${}^6\text{Li}(\text{n},\alpha)\text{t}$ absolute cross section with correction factors included. The data shown was collected exclusively with detectors in the 125 cm far configuration. The upturn below the 240 keV resonance is the result of room return, specifically single scatters off the floor. Inadequate ${}^{35,37}\text{Cl}(\text{n},\text{p})$ and (n,inl) database values result in poorly modeled neutron transport simulations for C ${}^6\text{LYC}$.

388 At high incident neutron energies the multitude of systematic uncertainties
 389 become difficult to manage. Near relativistic speeds the energy determination
 390 is increasingly sensitive to the measurement of distance from fission chamber to
 391 detector. Both neutron flux and ${}^6\text{Li}(\text{n},\alpha)\text{t}$ cross section are low at high energy.
 392 When a high energy ${}^6\text{Li}(\text{n},\alpha)\text{t}$ event does occur, the particle ejection probability
 393 is high and the shape of the graphical cut of Figure 5 may not optimally
 394 select ${}^6\text{Li}(\text{n},\alpha)\text{t}$ events while excluding downscattered events and other reactions.
 395 Figure 12 shows that this cut makes the difference between a 4% and
 396 15% downscatter correction at 4 MeV. Finally, the steel fission chamber capsule
 397 consists of many isotopes for which there are not many cross section measurements
 398 at high energies. The scarce data, along with machining tolerances make
 399 the fission chamber scatter difficult to simulate.

400 The ENDF/B-VII.1 evaluation adds two large resonances to the ${}^6\text{Li}(\text{n},\alpha)\text{t}$
 401 cross section at 4.2 MeV and 6.5 MeV. The measurements shown in Figure 15
 402 do not reveal these resonances, but the statistical fluctuations at these energies
 403 might be large enough to conceal the structure. The fluctuations are large in
 404 Figure 15 because the data shown are from the iteration where the detectors were
 405 in the far configuration where solid angle is small and the number of ${}^6\text{Li}(\text{n},\alpha)\text{t}$
 406 counts are low. To further investigate the existence of these resonances, Figure
 407 16 shows cross section results for ${}^6\text{LiI}(\text{Eu})$ in the near configuration where the
 408 solid angle and number of counts are larger. At high energies, the cross section
 409 measurement of the near configuration has a discrepancy in magnitude which
 410 may be due to uncertainties in path length or the shape of the graphical cut.
 411 However, any large resonances would still appear with perhaps a slight shift in
 412 centroid energy. Therefore, the smaller statistical fluctuations of this iteration
 413 resolve small scale shape and confirm that there are no large resonances at 4.2
 414 MeV and 6.5 MeV.

415 Table 2 reports the ${}^6\text{Li}(\text{n},\alpha)\text{t}$ cross section measured by ${}^6\text{LiI}(\text{Eu})$ in the far
 416 configuration which has the most reliable magnitude and overall shape.

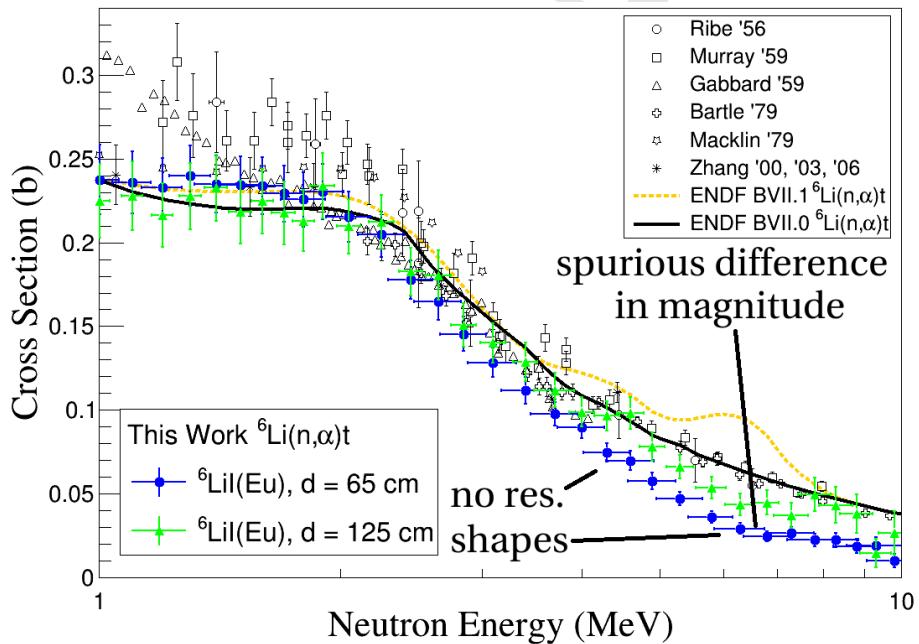


Figure 16: ${}^6\text{Li}(\text{n},\alpha)\text{t}$ cross section measured with ${}^6\text{LiI}(\text{Eu})$ detector in the near and far configurations. An unresolved factor causes a discrepancy in cross section magnitude at high energies. However, the large number of counts in the near configuration data reduces statistical fluctuations and reveals that there are no outstanding resonances at 4.2 and 6.5 MeV.

Table 2: Final Corrected ${}^6\text{Li}(n,\alpha)t$ Cross Section from ${}^6\text{LiI}(\text{Eu})$ in the Far Configuration

E (MeV)	σ (b)	E (MeV)	σ (b)
0.24 \pm 0.0047	3.12 \pm 0.23	1.9 \pm 0.064	0.234 \pm 0.020
0.28 \pm 0.0058	1.95 \pm 0.18	2.05 \pm 0.068	0.210 \pm 0.016
0.33 \pm 0.0070	0.961 \pm 0.12	2.25 \pm 0.081	0.212 \pm 0.016
0.38 \pm 0.0086	0.613 \pm 0.077	2.45 \pm 0.084	0.183 \pm 0.014
0.43 \pm 0.010	0.498 \pm 0.064	2.65 \pm 0.094	0.181 \pm 0.015
0.48 \pm 0.012	0.419 \pm 0.044	2.85 \pm 0.11	0.151 \pm 0.013
0.53 \pm 0.013	0.330 \pm 0.035	3.1 \pm 0.11	0.140 \pm 0.012
0.58 \pm 0.015	0.299 \pm 0.032	3.4 \pm 0.12	0.129 \pm 0.011
0.63 \pm 0.016	0.277 \pm 0.029	3.7 \pm 0.21	0.112 \pm 0.010
0.68 \pm 0.018	0.293 \pm 0.030	4.0 \pm 0.15	0.0988 \pm 0.0088
0.73 \pm 0.019	0.249 \pm 0.026	4.3 \pm 0.16	0.0964 \pm 0.0089
0.78 \pm 0.023	0.289 \pm 0.029	4.6 \pm 0.18	0.0981 \pm 0.0094
0.83 \pm 0.023	0.241 \pm 0.025	4.9 \pm 0.18	0.0781 \pm 0.0084
0.88 \pm 0.025	0.245 \pm 0.026	5.3 \pm 0.21	0.0662 \pm 0.0069
0.93 \pm 0.029	0.235 \pm 0.025	5.8 \pm 0.25	0.0533 \pm 0.0066
1.0025 \pm 0.030	0.225 \pm 0.022	6.3 \pm 0.27	0.0434 \pm 0.0064
1.1 \pm 0.033	0.228 \pm 0.021	6.8 \pm 0.23	0.0445 \pm 0.0073
1.2 \pm 0.037	0.216 \pm 0.019	7.3 \pm 0.37	0.0369 \pm 0.0075
1.3 \pm 0.040	0.228 \pm 0.020	7.8 \pm 0.36	0.0495 \pm 0.010
1.4 \pm 0.046	0.233 \pm 0.020	8.3 \pm 0.41	0.0431 \pm 0.011
1.5 \pm 0.049	0.218 \pm 0.019	8.8 \pm 0.42	0.0380 \pm 0.012
1.6 \pm 0.050	0.225 \pm 0.019	9.3 \pm 0.41	0.0143 \pm 0.0085
1.7 \pm 0.057	0.218 \pm 0.019	9.8 \pm 0.42	0.0265 \pm 0.013
1.8 \pm 0.057	0.213 \pm 0.018		

417 **6. Conclusion**

418 We have presented a new measurement of the ${}^6\text{Li}(\text{n},\alpha)\text{t}$ cross section in the
 419 neutron energy range of 245 keV to 10 MeV, which to our knowledge is the
 420 first of such measurements utilizing a fission chamber. The measurements with
 421 ${}^6\text{LiI}(\text{Eu})$ disagree with the addition of two resonances at 4.2 and 6.5 MeV by
 422 the ENDF/B-VII.1 evaluation. Correction factors for neutron downscatter in
 423 both the fission chamber and ${}^6\text{LiI}(\text{Eu})$ crystal as well as particle leakage seem
 424 tractable within this energy range. However, the correction factor for neutron
 425 downscattering in the C^6LYC crystal does not bring the ${}^6\text{Li}(\text{n},\alpha)\text{t}$ measurement
 426 into quantitative agreement with previous results. This inconsistency is likely
 427 the result of an unmeasured ${}^{35}\text{Cl}$ or ${}^{37}\text{Cl}$ cross section which supports previous
 428 simulation discrepancies of other authors.

429 **7. Acknowledgements**

430 This work was performed with the support of the DOE NNSA Steward-
 431 ship Science Graduate Fellowship under cooperative agreement number DE-
 432 NA0002135 in joint affiliation with Los Alamos National Laboratory. It is a
 433 pleasure to thank to L. A. Bernstein, T. Brown, M. Simanovskaia, and A. Lewis
 434 for stimulating conversations and suggestions.

435 [1] R. C. Haight, H. Y. Lee, T. N. Taddeucci, J. M. O'Donnell, B. A. Perdue,
 436 N. Fotiades, M. Devlin, J. L. Ullmann, A. Laptev, T. Bredeweg, M. Jandel,
 437 R. O. Nelson, S. A. Wender, M. C. White, C. Y. Wu, E. Kwan, A. Chyzh,
 438 R. Henderson, J. Gostic, Two detector arrays for fast neutrons at LANSCE,
 439 Journal of Instrumentation 7 (03) (2012) C03028.
 440 URL <http://stacks.iop.org/1748-0221/7/i=03/a=C03028>

441 [2] J. Serp, M. Allibert, O. Beneš, S. Delpech, O. Feynberg, V. Ghetta,
 442 D. Heuer, D. Holcomb, V. Ignatiev, J. L. Kloosterman, L. Luzzi, E. Merle-
 443 Lucotte, J. Uhlíř, R. Yoshioka, D. Zhimin, The molten salt reactor (MSR)
 444 in generation IV: Overview and perspectives, Progress in Nuclear Energy

445 77 (2014) 308 – 319. doi:<http://dx.doi.org/10.1016/j.pnucene.2014.02.014>.

446

447 [3] G. M. Hale, H. M. Hofmann, Neutron standard cross sections for ^1H and
448 ^6Li from R-Matrix analyses and microscopic calculations for the N-N
449 and ^7Li systems, AIP Conference Proceedings 769 (1) (2005) 75–78. doi:
450 [10.1063/1.1944960](https://doi.org/10.1063/1.1944960).

451 [4] M. Devlin, T. N. Taddeucci, G. M. Hale, R. C. Haight, J. M. O'Donnell,
452 Differential cross section measurements for the $^6\text{Li}(n, t)\alpha$ reaction in the
453 few MeV region, AIP Conference Proceedings 1090 (1) (2009) 215–219.
454 doi:[10.1063/1.3087015](https://doi.org/10.1063/1.3087015).

455 [5] D. Ichinkhorloo, M. Aikawa, S. Chiba, Y. Hirabayashi, K. Katō, Low en-
456 ergy scattering cross sections for $n + ^{6,7}\text{Li}$ reactions using the continuum-
457 discretized coupled-channels method, Phys. Rev. C 93 (2016) 064612.
458 doi:[10.1103/PhysRevC.93.064612](https://doi.org/10.1103/PhysRevC.93.064612).

459 [6] M. Asplund, D. L. Lambert, P. E. Nissen, F. Primas, V. V. Smith, Lithium
460 isotopic abundances in metal-poor halo stars, The Astrophysical Journal
461 644 (1) (2006) 229.
462 URL <http://stacks.iop.org/0004-637X/644/i=1/a=229>

463 [7] M. Kusakabe, T. Kajino, R. N. Boyd, T. Yoshida, G. J. Mathews, Simulta-
464 neous solution to the ^6Li and ^7Li big bang nucleosynthesis problems from
465 a long-lived negatively charged leptonic particle, Phys. Rev. D 76 (2007)
466 121302. doi:[10.1103/PhysRevD.76.121302](https://doi.org/10.1103/PhysRevD.76.121302).

467 [8] C. M. Bartle, Total cross sections for the $^6\text{Li}(n, \alpha)^3\text{H}$ reaction between
468 2 and 10 MeV, Nuclear Physics, Section A 330 (1979) 1. doi:[10.1016/0375-9474\(79\)90532-3](https://doi.org/10.1016/0375-9474(79)90532-3).

469 [9] F. Gabbard, R. H. Davis, T. W. Bonner, Study of the neutron reactions
470 $^6\text{Li}(n, \alpha)^3\text{H}$, $\text{F}^{19}(\text{n}, \gamma)\text{F}^{20}$, and $\text{I}^{127}(\text{n}, \gamma)\text{I}^{128}$, Physical Review 114 (1959)
471 201. doi:[10.1103/PhysRev.114.201](https://doi.org/10.1103/PhysRev.114.201).

473 [10] R. B. Murray, H. W. Schmitt, Cross section for the ${}^6\text{Li}(n, \alpha){}^3\text{H}$ reaction
 474 for $1.2 < E < 8.0$ MeV, Physical Review 115 (1959) 1707. doi:10.1103/
 475 PhysRev.115.1707.

476 [11] M. Drosig, D. M. Drake, J. Masarik, Calibration of a Li-glass detector
 477 for neutron energies above 50 keV by the ${}^1\text{H}(t, n){}^3\text{He}$ reaction, Nucl. In-
 478 strum. Methods in Physics Res., Sect.B 94 (1994) 319. doi:10.1016/
 479 0168-583X(94)95371-6.

480 [12] R. L. Macklin, R. W. Ingle, J. Halperin, ${}^6\text{Li}(n, \alpha){}^3\text{H}$ cross section from
 481 70 to 3000 keV from the ${}^{235}\text{U}(n, f)$ calibration of a thin glass scintillator,
 482 Nuclear Science and Engineering 71 (1979) 205.

483 [13] G. Zhang, G. Tang, J. Chen, Z. Shi, G. Liu, X. Zhang, Z. Chen, Y. M.
 484 Gledenov, M. Sedysheva, G. Khuukhenkhuu, Differential cross-section mea-
 485 surement for the ${}^6\text{Li}(n, t){}^4\text{He}$ reaction at 3.67 and 4.42 mev, Nuclear Science
 486 and Engineering 134 (2000) 312.
 487 URL <http://www.ans.org/pubs/journals/nse/vv-134>

488 [14] F. L. Ribe, ${}^6\text{Li}(n, \alpha){}^3\text{H}$ cross section as a function of neutron energy,
 489 Phys. Rev. 103 (1956) 741.

490 [15] N. D'Olympia, P. Chowdhury, E. Jackson, C. Lister, Fast neutron re-
 491 sponse of ${}^6\text{Li}$ -depleted CLYC detectors up to 20 MeV, Nuclear Instru-
 492 ments and Methods in Physics Research Section A: Accelerators, Spec-
 493 trometers, Detectors and Associated Equipment 763 (2014) 433 – 441.
 494 doi:<http://dx.doi.org/10.1016/j.nima.2014.06.074>.

495 [16] R. Hofstadter, J. A. McIntyre, H. Roderick, H. I. West, Detection of slow
 496 neutrons, Phys. Rev. 82 (1951) 749–749. doi:10.1103/PhysRev.82.749.

497 [17] W. Bernstein, A. W. Schardt, Activation of LiI crystal phosphors, Phys.
 498 Rev. 85 (1952) 919–920. doi:10.1103/PhysRev.85.919.

499 [18] J. Schenck, Activation of lithium iodide by europium, Nature 171 (4351)
 500 (1953) 518–519. doi:<http://dx.doi.org/10.1038/171518a0>.

501 [19] T. Ophel, Response curves of alkali halide scintillators with special reference
 502 to the ${}^6\text{Li}(n, \alpha)$ reaction in lithium iodide, Nuclear Instruments 3 (1) (1958)
 503 45 – 48. doi:[http://dx.doi.org/10.1016/0369-643X\(58\)90048-3](http://dx.doi.org/10.1016/0369-643X(58)90048-3).

504 [20] D. Johnson, J. Thorngate, P. Perdue, A sensitive spectrometer for fast
 505 neutrons using ${}^6\text{LiI}(\text{Eu})$, Nuclear Instruments and Methods 75 (1) (1969)
 506 61 – 65. doi:[http://dx.doi.org/10.1016/0029-554X\(69\)90650-8](http://dx.doi.org/10.1016/0029-554X(69)90650-8).

507 [21] C. Combes, P. Dorenbos, C. van Eijk, K. Krämer, H. Güdel, Opti-
 508 cal and scintillation properties of pure and Ce^{3+} -doped $\text{Cs}_2\text{LiYCl}_6$ and
 509 $\text{Li}_3\text{YCl}_6:\text{Ce}^{3+}$ crystals, Journal of Luminescence 82 (4) (1999) 299 – 305.
 510 doi:[http://dx.doi.org/10.1016/S0022-2313\(99\)00047-2](http://dx.doi.org/10.1016/S0022-2313(99)00047-2).

511 [22] N. D'Olympia, P. Chowdhury, C. Guess, T. Harrington, E. Jackson,
 512 S. Lakshmi, C. Lister, J. Glodo, R. Hawrami, K. Shah, U. Shirwad-
 513 kar, Optimizing $\text{Cs}_2\text{LiYCl}_6$ for fast neutron spectroscopy, Nuclear Instru-
 514 ments and Methods in Physics Research Section A: Accelerators, Spec-
 515 tometers, Detectors and Associated Equipment 694 (2012) 140 – 146.
 516 doi:<http://dx.doi.org/10.1016/j.nima.2012.07.021>.

517 [23] X-5 Monte Carlo Team, “MCNP - Version 5, Vol. I: Overview and
 518 Theory”, LA-UR-03-1987 (2003).

519 [24] W. Mannhart, C. Reich, T. Englad, INDC(NDS) 220 (L).

520 [25] M.B. Chadwick et. al., ENDF/B-VII.1 nuclear data for science and tech-
 521 nology: Cross sections, covariances, fission product yields and decay data,
 522 Nuclear Data Sheets 112 (12) (2011) 2887 – 2996, special Issue on ENDF/B-
 523 VII.1 Library. doi:<http://dx.doi.org/10.1016/j.nds.2011.11.002>.

524 [26] J. F. Ziegler, M. Ziegler, J. Biersack, SRIM- the stopping and range of ions
 525 in matter (2010), Nuclear Instruments and Methods in Physics Research
 526 Section B: Beam Interactions with Materials and Atoms 268 (1112) (2010)
 527 1818 – 1823, 19th International Conference on Ion Beam Analysis. doi:
 528 <http://dx.doi.org/10.1016/j.nimb.2010.02.091>.

529 [27] K. Krane, Introductory Nuclear Physics, John Wiley & Sons, Inc., Hobo-
530 ken, New Jersey, 1988.

531 [28] M.B. Chadwick et. al., ENDF/B-VII.0: Next generation evaluated nu-
532 clear data library for nuclear science and technology, Nuclear Data Sheets
533 107 (12) (2006) 2931 – 3060, evaluated Nuclear Data File ENDF/B-VII.0.
534 doi:<http://dx.doi.org/10.1016/j.nds.2006.11.001>.

535 [29] M. Herman, R. Capote, B. Carlson, P. Obložinský, M. Sin, A. Trkov,
536 H. Wienke, V. Zerkin, EMPIRE: Nuclear reaction model code system
537 for data evaluation, Nuclear Data Sheets 108 (12) (2007) 2655 – 2715.
538 doi:<http://dx.doi.org/10.1016/j.nds.2007.11.003>.

539 [30] N. Larson, Updated users' guide for SAMMY: Multilevel R–Matrix fits to
540 neutron data using bayes' equationsORNL/TM-9179/7.
541 URL <https://www.oecd-nea.org/tools/abstract/detail/psr-0158#i10>