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Abstract—HPC systems have shifted to burst buffer storage
and high-radix interconnect topologies in order to meet the
challenges of large-scale, data-intensive scientific computing.
Both of these technologies have been studied in detail indepen-
dently, but the interaction between them is not well understood.
I/O traffic and communication traffic from concurrently sched-
uled applications may interfere with each other in unexpected
ways, and this behavior may vary considerably depending on
resource allocation, scheduling, and routing policies.

In this work, we analyze I/O and network traffic interference
on burst-buffer-equipped dragonfly-based systems using the
high-resolution packet-level simulation provided by the CODES
storage and interconnect simulation framework. The analysis
is performed using realistic I/O workload sizes, a variety of
resource allocation and network routing strategies employed
in production environments, and a dragonfly network config-
uration modeled after current vendor options. We analyze the
impact of interference on both I/O and communication traffic.

We observe that although average network packet latency
is stable across a wide variety of configurations, the maximum
network packet latency in the presence of concurrent I/O traffic
is highly sensitive to subtle policy changes. Our simulations
reveal a worst-case single packet latency of 4,700 times the av-
erage latency for sub-optimal configurations. While a topology-
aware mapping of compute nodes to burst buffer storage nodes
can minimize the variation in maximum packet latency, it can
slow down the I/O traffic by creating contention on the burst
buffer nodes. Overall, balancing I/O and network performance
requires careful selection of routing, data placement, and job
placement policies.

Keywords-burst buffer, dragonfly networks, discrete-event
simulation, checkpoint, I/O and communication traffic

I. INTRODUCTION

Recently, extreme-scale computing has also become data-
intensive computing, as the size of datasets consumed and
produced by experiments and simulations running on today’s
high-performance computing (HPC) systems has grown.
As a result, next-generation supercomputers are moving to
alternative storage designs to the venerable globally shared
parallel file system model. As part of this shift, the con-
cept of “burst buffers” is being adopted in leadership-class
machines. Burst buffers form a new storage tier in HPC
systems that serve as an intermediate, high-bandwidth store
between computational resources and the primary parallel

file system and are aimed to absorb periodic high-intensity
I/O phases (“bursts”) from applications, alleviating the need
of parallel file systems to scale to short-lived peak I/O
rates. For example, both the Cori and Trinity systems (being
deployed at Lawrence Berkeley and Los Alamos National
Laboratories, respectively) have deployed burst buffers using
solid state drives (SSDs) [1], [2].

One of the primary motivations for burst buffer de-
ployment is to improve application reliability by enabling
faster application checkpointing/restarting [3], a fundamental
resiliency strategy to retain computational progress upon
component failures. Understanding the behavioral implica-
tions of burst buffers is crucial for designing performant
checkpoint/restart approaches. However, recent shifts in the
storage and interconnect design of emerging HPC systems
raise numerous questions. For example, leadership systems
are also moving to high-radix, low-diameter network topolo-
gies using nondeterministic routing for load balancing, such
as the dragonfly topology [4]. While the research community
has performed targeted studies of these designs [5], [6],
[7], [8], [9], [10], much remains to be learned about the
interaction between subsystem designs (storage placement
on the network topology). More important, little is known
about the interference of communication traffic with the
I/O traffic being directed to the burst buffer nodes. To the
best of our knowledge, this is the first study that is aimed
at quantifying I/O and network traffic interference with
different configurations of burst buffer equipped dragonfly
networks.

Evaluating resource allocation, job placement, and routing
policies on real hardware requires dedicated access to such
systems for an extended period of time, with the ability to
orchestrate complex scenarios. Because regularly obtaining
this type of access is not feasible, the research community
has relied on predictive design techniques such as ana-
lytical modeling and simulation; the cited studies all rely
on such techniques. While these techniques can assist in
the design and deployment of exascale systems, there are
very few performance prediction tools that can accurately
reflect complex HPC applications and architectures with
high fidelity at a large scale while executing in a reasonable



time. In this paper, we build our models using the CODES
interconnect and storage simulation suite that provides the
ability to efficiently execute detailed, large-scale discrete-
event simulations.

The primary contributions of this paper are the following:
• We have extended the CODES simulation suite to

support a general-purpose burst buffer storage model
that provides concurrent, pipelined RDMA read and
write operations.

• We have extended the CODES packet-level dragonfly
network model to support vendor designs, such as the
ones offered in Cray Cori and Theta systems [1], [11].
A detailed validation report of the dragonfly network
model on the Theta Cray XC systems can be found at
[12].

• Using the extended simulation suite, we present a
study of communication and I/O interference on a
large-scale simulated HPC environment that executes
multiple workloads, comprising background network
traffic being generated at up to 12.5 GiB/s message
rate and an aggregate of 1 TB being generated for I/O
checkpoint traffic.

• We examine the following policy/design points, with
the goal of quantifying performance characteristics of
our case study workloads : (i) allocation of burst buffer
nodes to application nodes, (ii) application placement
on the dragonfly topology, and (iii) routing strategies
on the dragonfly.

While exploring the plausible permutations of routing, job
placement and data placement policies for the I/O traffic, our
key findings are the following: (i) certain configurations get
efficient I/O performance but lead to significant perturbation
to background communication traffic, in some cases delaying
individual network packets by a factor of 4700 or more; (ii)
configurations that cause least perturbation to the commu-
nication traffic can substantially slow down the I/O traffic;
and (iii) a careful choice of routing, data, and job placement
policies can achieve minimal perturbation to communication
traffic while efficiently utilizing the burst buffers for I/O.

II. BACKGROUND & MOTIVATION

This section provides an overview of the recent shifts in
HPC interconnect and storage hierarchy, which serves as a
motivation for the interference study conducted in this paper.
It also discusses the existing research work carried out in the
areas of burst buffers management and HPC networks.

A. HPC Storage Hierarchy
The HPC memory/storage hierarchy has recently under-

gone changes to support the spikes in I/O bandwidth gen-
erated by modern science applications [13], [14]. With the
recent addition of SSD-based burst buffer storage, HPC ap-
plications can keep compute resources busy while I/O bursts
can be handled by the high-bandwidth burst buffer storage.
Some typical use cases for burst buffers are data-intensive
applications, in situ analysis, and checkpoint/restart [15];

the last is particularly important to ensure that systems
can exhibit both high utilization and fault tolerance [14].
Previous work on simulating burst buffers examines their
viability in the context of a simulated, torus-connected IBM
Blue Gene/P system [16].

Further, in recent years, numerous studies have exam-
ined aspects of the incorporation and management of burst
buffers [17], [18], [19], [20]. Now, HPC architectures are
employing such technologies as a first class architectural
component, such as National Energy Research Scientific
Computing Center’s (NERSC) Cori machine, supporting
Cray DataWarp technology that uses SSD-based storage
nodes to serve as a bridge between the compute nodes and
external storage servers. Recently, DDN has announced an
infinite-memory engine with burst buffers that achieves 1
TB/s of I/O performance for the Oakforest-PACS supercom-
puter in Japan [21]. Cray’s Julia system to be deployed as
part of the Human Brain Project at Jeulich Supercomputing
Center will also have the DataWarp caching technology for
accelerating I/O [22].

B. High-radix Interconnects

The interconnect technology of HPC systems is also
undergoing major changes. While the previous generations
of supercomputers (Blue Gene series [23], Cray XE and XT
series [24]) often employed a torus interconnect network, the
current generation systems such as Cori [1], Aurora [25],
and Edison [26] have moved to a low-diameter and high-
radix dragonfly network topology. Studies propose several
job placement policies for the dragonfly interconnects [7],
but the impact of these job placement policies on network
interference is not well understood, especially with respect to
the interference of communication traffic with the I/O traffic.
Figure 1 shows the dragonfly architecture for the Cori system
at a high level where the network routers are arranged in a
two dimensional matrix format. Each row is a chassis, and
the routers in the row have all-to-all connectivity. Multiple
compute nodes can send read/write requests to the router
having burst buffer nodes.

C. Burst Buffer Placement on High-radix Interconnects

The design of burst-buffer-enabled dragonfly systems
poses several questions. First, how can burst buffers be
best utilized in the presence of network contention? Second,
what should be the allocation policy for these burst buffer
nodes, as they will be used by multiple compute nodes
in the network? Should the compute nodes select the next
available burst buffer node from the available pool without
considering locality? Does choosing the closest burst buffer
node, for example one that is connected in the same chassis,
provide better performance by causing less interference
between the I/O and network traffic?

In this paper, we explore these questions by modeling the
I/O workload in the form of a classic checkpoint on a simu-
lated HPC system based on the Cray Cori architecture, where
several processes of a data-intensive application perform
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Figure 1: Burst buffer node placement on current dragonfly-based systems. Only a subset of network is shown for clarity.
The evaluation done in the paper takes into account all the pieces shown.

read/write operations on the shared burst buffer node. We
study I/O and network traffic interference by using various
configurations of the dragonfly routing and job placement
policies along with access policies for burst buffer nodes.
We examine the implications of network and I/O interference
at a detailed architectural level using system configurations
similar to the systems described above, as well as examining
variations on the routing and resource allocation policies.

III. CODES OVERVIEW AND DESIGN

Since varying the network routing, job placement and
resource allocation policies on a real HPC system would
not be feasible and cost-effective, we have used the CODES
simulation suite to study interference with different sys-
tem configurations. CODES is a high-performance parallel
discrete-event simulation framework targeting large-scale
networking and storage systems relevant to HPC environ-
ments. It provides a library of validated submodels for
key system components, a mechanism for combining di-
verse submodels into a coherent single system model, and
a hierarchical configuration system that provides runtime
control of the overall topology. It leverages Rensselaer’s
Optimistic Simulation System (ROSS) [27], [28] to scalably
drive simulations. Since simulation entities are represented
in ROSS as logical processes (LPs), CODES additionally
provides high-level mechanisms for managing and config-
uring LPs from human-readable descriptions to ROSS’s
flat namespace. The following subsections describe each
component further, summarized in Figure 2.

A. ROSS Discrete-Event Simulation Framework
ROSS provides the parallel discrete event simulation

(PDES) foundation for CODES, using MPI to distribute and
pass discrete timestamped messages between LPs. ROSS
employs the Time Warp protocol [27], [28] to achieve scal-
able simulation performance for models comprising thou-
sands or millions of LPs. Time Warp enables each LP in
the model to independently and optimistically execute its
local event population. Models built atop ROSS (such as
our CODES models) provide reverse event handlers to revert
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Figure 2: CODES high-level diagram.

the state of an LP during rollback, thereby avoiding the need
for ROSS to store explicit state snapshots at every time step.
This combination of optimistic coordination and lightweight
rollback capability speeds up the simulations, reduces the
frequency of explicit global synchronization and amount of
memory capacity needed to ensure model coherence.

B. Network and Storage Components

CODES uses a simulation abstraction layer called “model-
net” that allows the network models to be used as plug-
gable components of higher-level system or application
simulations. High-fidelity (packet-level) network topologies
currently modeled include the dragonfly [5], Slim Fly [29],
torus [30], and fat tree [10] topologies. The model-net layer
unifies common network modeling functionality such as
breaking down messages into network packets and mapping
simulated network endpoints to user-defined LPs. It also
provides a networking API that sits on top of the network
models to simulate MPI message passing as well as RPC-
style communication.



CODES provides a solid state storage (SSD) model based
on the analytical techniques of Ruemmler and Wilkes [31].
The model represents SSD-based storage by scheduling read
and write I/O requests in a first-come first-served manner
where the available storage space can be configured by the
user.

C. Workload Generator

The CODES workload generator is an abstraction layer
that allows I/O and network workloads from a variety of
different sources to drive the storage and network mod-
els discussed in Section III-B. The sources of network
workloads currently supported are MPI application traces
generated by the SST DUMPI library and synthetic network
workloads such as uniform random traffic and nearest-
neighbor traffic [8]. The I/O workloads come from a variety
of different sources studied in previous work [32]. In the
experiments presented in this paper, we use the synthetic
communication pattern to represent background traffic and a
checkpoint workload, discussed in Section IV-B, to represent
the I/O traffic.

IV. SIMULATION DESIGN

In order to study the I/O and network interference, we
setup the communication and I/O workloads, the dragonfly
network model and the burst buffer storage model that we
are using to simulate the interference analysis.

A. Dragonfly Network Topology

The dragonfly is a hierarchical network topology having
several groups connected by multiple all-to-all links. Unlike
the topology originally proposed in [4], a group in the Cray
XC dragonfly network [33] comprises of a fixed number
of routers arranged in a two dimensional matrix. Routers
in the same row and same column are connected to each
other via all-to-all links. Each router has a specific number
of nodes attached to it. Each router also has a number of
global channels, which are inter-group connections through
which one group connects to the other.

The CODES dragonfly network model supports multiple
routing algorithms that have been proposed for the dragonfly
networks, including adaptive, progressive adaptive, and min-
imal and nonminimal routing [4], [34]. Similar to the Cray
systems, the adaptive routing supports both non-minimal
routes within a group and across the groups [33]. Non-
minimal route within a group is taken when congestion
is detected on the minimal route and both source and
destination nodes are in the same group. Global non-minimal
route may be taken when source and destination nodes
belong to different groups.

The performance measurements reported by the CODES
dragonfly network model have been validated against the
Theta Cray XC system at the Argonne Leadership Com-
puting Facility (ALCF). The validation was performed by
using the bisection pairing and ping-pong benchmarks [35],
[36]. A variety of message sizes (ranging from 0 to 64 KiB)

and network scales (up to 2,048 network nodes) were used.
Performance of the CODES dragonfly model and Theta Cray
XC system were similar in a majority of the cases. In the
worst case, around 8% difference was observed. More details
about the dragonfly network model and its validation are
presented in the report [12].

B. I/O Workload and Background Communication Traffic

CODES provides the ability to simulate multiple jobs
concurrently in the simulated system, consisting of network
and/or I/O traffic, an important capability for the analyses at
the center of this study. In our experiments, we execute jobs
that generate I/O traffic in the form of checkpoint writes to
the burst buffer nodes as well as jobs that generate uniform
random network traffic, in order to explore network interfer-
ence effects across independently executing workloads. Each
compute node entity in the simulated system generates either
checkpointing traffic or communication traffic.

1) Checkpoint Traffic: The checkpointing of application
state is a widely used fault tolerance approach in HPC, but
determining the frequency of checkpointing is a nontrivial
task. Daly proposed an optimum checkpointing interval for
applications to minimize both the time spent writing check-
points and the time recomputing lost work due to failure,
given the system’s expected mean time to failure (MTTF),
the amount of data to be checkpointed, and the available stor-
age bandwidth [37]. Since checkpointing typically produces
high-intensity bursts of I/O, studies indicate that utilizing
burst buffers for checkpoint storage will accelerate the
process [18], [19]. Additionally, using burst buffers hides the
true cost of data movement to the external file system. For
our experiments, we evaluate the performance of burst buffer
nodes on HPC networks through a checkpointing workload
based on Daly’s model, implemented as a new module for
the CODES workload generator (see Section III-C).

2) Background Traffic: To model interference with the
checkpointing I/O traffic, we generate “background” net-
work traffic through a separate job on the remaining non-
checkpointing nodes. To form a realistic representation of
the background traffic, we analyzed application traces of
the HPCG [38] benchmark captured on a current generation
computing platform to get the data transfer rate per rank. We
configured our simulation with the same communication vol-
ume for generating the background traffic, using a uniform
random pattern in which each participant randomly selects
peers within the same job to receive messages. Specifically,
each participant transmits a 1 KiB message every 500
microseconds. The uniform random pattern has frequently
been used to evaluate high-radix HPC interconnects [4],
[39] and it also represents a sub-pattern of HPC workloads
such as graph computations and linear algebraic solvers [40].
Since we wanted to minimize intra-job interference, uniform
random traffic was a good candidate since it is a load-
balanced pattern and performs well on high-radix networks.
Application pattern specific network interference has been
explored by Yang et al. [9].
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Figure 3: Dragonfly topology examples with varying job and burst buffer allocation strategies. Network routes with minimal
routing are shown in red. Only a subset of the network is shown for clarity.

To warm up the simulation, background traffic starts a
few simulated seconds prior to the checkpoint workload and
continues until the completion of the checkpoint workload,
after which a notification is sent to the background traffic
generators to terminate. Note that the total quantity of back-
ground traffic depends on the checkpointing job’s progress.

C. Modeling Burst Buffers

The CODES HPC system model with burst buffers is
inspired by the design of the Cori HPC system at NERSC,
which has specialized storage nodes as burst buffers with
SSD devices installed. These burst buffer nodes are part
of the interconnect network so that the compute nodes can
efficiently transfer data to these nodes. Each burst buffer
node on Cori has a capacity of 6.4 TB and a read/write
bandwidth of 5.7 GiB/s [1]. Burst buffer nodes communicate
with external storage (i.e., the parallel file system) through
separate I/O nodes.

Similar to the Cori architecture, our burst buffer model
occupies a subset of nodes in the dragonfly such that one
router in each chassis is directly connected to two burst
buffer nodes. The burst buffer model is composed of two
LPs: a storage manager LP and a SSD LP. The storage
manager LP manages I/O to/from the burst buffer, while the
SSD LP represents the SSD storage available on the burst
buffer node, as described in Section III-B. Figure 4 shows
the interaction between the workload-executing compute
node LPs and burst buffers. The storage manager LP receives

write requests from compute node LPs and makes a blocking
(with respect to the request) call to the SSD LP in order
to reserve the requested space. Once space is reserved
on the SSD LP, the storage manager begins a series of
concurrent, pipelined RDMA reads of fixed-sized blocks
from the requester and data writes to the SSD. Concurrency
control on the storage manger is controlled by the fixed-at-
startup memory pool allocated for block transfers and the
per-operation pipelining factor.
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Figure 4: Interaction between compute node, storage man-
ager, and SSD LPs

V. EVALUATION

In this section, we evaluate the parameter space of job
placement and burst buffer allocation policies on an assort-
ment of job sizes to study the impact on I/O and network
traffic interference. First, we present the job placement and
burst buffer policies being studied in the simulations, the



simulation setup, and the metrics being used for the perfor-
mance evaluation. We then describe the experimental results
and analysis to quantify the I/O and network interference
as predicted by our high-resolution HPC interconnect and
storage simulation.

A. Simulation Configuration

We perform a strong scaling study by using a fixed
aggregate checkpoint size of 1 TB and varying the job
sizes from 512 to 8,192 nodes. In our simulation, one job
generates a single checkpoint. The remaining nodes form
a single job generating background traffic as described in
Section IV-B2. Both I/O and network traffic get the same
priority in the simulation, a practice followed on the current
generation of HPC platforms.

We use the following network configuration, the node
count and link bandwidths based on the Cray Cori Phase
II architecture at NERSC. The simulated system uses a
dragonfly topology that services 9,600 nodes with 25 groups,
where each group has 96 routers. The routers in a group are
structured in a 6x16 matrix, where each router row is called
a chassis. Of the 16 routers in a chassis, 15 of the routers
have 4 compute nodes attached, and one router has two burst
buffer nodes attached. The routers in each row are connected
through green links with each link having a bandwidth of
5.25 GiB/s. Across the rows, routers are connected via three
electrical links called black links [33]. Each of the black
links have a bandwidth of 5.25 GiB/s. Figure 1 shows the
network architecture used in the simulation for a small-scale
dragonfly network. The compute nodes are connected to the
routers with a bandwidth of 16 GiB/s. The network has a
total of 300 burst buffer nodes, where each burst buffer node
has 6.4 TB of capacity with a read/write bandwidth of 5.7
GiB/s.

Across the groups, routers are connected via global chan-
nels referred to as blue links. There are 12 bidirectional
global channels between each group with each global chan-
nel having a bandwidth of 4.69 GiB/s. In addition to the
intragroup and compute node-router connections, each router
has 4 global channels. This results in each router having a
radix of 38 with 15 same row (green) links, 15 same column
(black) links, 4 global links and 4 terminal-router links.

B. Burst Buffer Allocation Policies

Various strategies exist for mapping data from compute
nodes onto the burst buffer nodes. The current job schedulers
for burst buffers do not take the locality into consideration.
For example, with Cray Data Warp Storage Services, com-
pute nodes select the next available burst buffer node from
the pool of burst buffer nodes in the network [41]. In this
paper, we study the following allocation policies.

Random: Each compute node in a job is assigned a
random burst buffer node (from anywhere in the system)
to write data to for the duration of the job. This policy
distributes I/O traffic across a broad range of burst buffer
storage devices at the expense of introducing additional

traffic on shared chassis and group links within the network.
This bears similarity to the Memcached-based BurstMem
work, which uses a hashing approach to map writes to burst
buffer servers [19].

Nearest: Each compute node in a job is assigned to the
nearest burst buffer node (in terms of network topology) to
write data to for the duration of the job. This means that
each application node writes to a burst buffer node on the
same chassis in the architecture used in this study. If minimal
routing is used with this nearest burst buffer allocation, the
packets belonging to I/O traffic will traverse one green link
and two compute node-router links, as shown in Figure 3a.
This policy offers superior locality to the random policy but
also restricts the amount of load balancing that is possible
across burst buffer storage devices. This resembles the I/O
forwarding model in the IBM Blue Gene series of systems
as well as more specifically the IBIO burst buffer file system
that uses a fixed node-to-node mapping [18].

For the purposes of this paper, we assume that the system
provides a means for a job to identify the nearest burst buffer
node to a given compute node. Note that neither the random
nor nearest burst buffer allocation policy guarantees equal
utilization of available burst buffer storage, however. We
discuss the impact of this characteristic in Section V-G.

C. Job Placement Policies

Job placement is the process of assigning a set of compute
nodes to a parallel application. A number of job placement
policies have been suggested for the dragonfly interconnect.
In this work, we explore the following policies that are
either being used at supercomputer centers or have been
shown to bring performance improvement as part of previous
work [7], [9].

Contiguous: Each job is assigned a consecutive set of
available nodes; first at router granularity, then at local group
granularity, and finally across groups.

Random router: Each job is assigned all nodes directly
linked to a set of randomly selected routers. Within the router
sets, available nodes are ordered consecutively.

Random node: Each job is assigned a randomly selected
set of nodes with no ordering constraints.

D. Performance Metrics

We use the following metrics for traffic and system
analysis.

Time to complete checkpoint: This metric measures the
makespan for the checkpointing job, starting when the first
data transfer request is made and ending after the last data
commit on any burst buffer.

Packet latency: Since the communication traffic is more
latency sensitive, we use minimum, average, and maximum
packet latencies to measure the performance of the back-
ground communication traffic job. The maximum packet
latency is of particular relevance because of its potential
impact on aggregate operations such as MPI collective
routines that are sensitive to jitter.
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Figure 5: Average packet latency observed by non-checkpoint nodes as the number of checkpoint nodes is varied from 512
to 8,192 using random burst buffer allocation. Vertical lines denote the minimum and maximum latency values in each case.
Horizontal red line indicates the average packet latency without I/O traffic at 0.001ms.
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Figure 6: Average packet latency observed by non-checkpoint nodes as the number of checkpoint nodes is varied from 512
to 8,192 using nearest burst buffer allocation. Vertical lines denote the minimum and maximum latency values in each case.
Horizontal red line indicates the average packet latency without I/O traffic at 0.001ms.

E. Performance Analysis of Communication Traffic

We begin our analysis by evaluating the degree to which
network communication performance is perturbed by con-
current checkpoint I/O traffic. Figure 5 shows the effect of
I/O interference on the performance of background commu-
nication traffic with a randomly allocated burst buffer policy
and Figure 6 with a nearest burst buffer allocation policy.
We compare the slowdown in packet latency to the baseline
average packet latency (0.001 ms) observed when there is
no I/O traffic. We observe that although the minimum and
average background communication packet latency shows
only modest sensitivity to allocation and routing policy, the
maximum packet latency varies significantly. This distinction
is essential for applications with tightly coupled communi-
cation patterns (such as MPI collective operations) that are
sensitive to jitter [42]. The major observations that we draw
from these results are as follows:

Impact of burst buffer allocation scheme: The combi-
nation of nearest burst buffer allocation and minimal routing
(Figure 6b) causes the least perturbation to network commu-
nication, regardless of job allocation policy. This is an intu-

itive result, because it minimizes intragroup and intergroup
I/O traffic as illustrated in Figure 3a. However, even this
configuration does not completely eliminate interference; the
worst-case maximum background network packet latency is
5-25 times slower in the presence of checkpoint I/O traffic
than without it. On the contrary, the random burst buffer
allocation policy with adaptive routing (Figure 6a) produces
large network communication interference. This is evidenced
by a worst-case network packet latency of few milliseconds.
This configuration makes the heaviest use of shared network
links in the dragonfly network.

Impact of routing: Adaptive routing produces longer
worst-case latency than minimal routing in all cases, though
the difference is most pronounced with random burst buffer
allocations (comparing Figures 5a and 6a). This is largely
due to the higher-volume I/O traffic taking non-minimal
routes, further exacerbating contention on shared network
links. When the I/O traffic is routed minimally, the pertur-
bation to background communication traffic is significantly
less, even with randomly selected burst buffer allocations
(Figure 5b). However, the routing policy has only a minor
effect on average packet latency.



In general we see that random burst buffer allocations tend
to perturb network performance more than nearest (locality-
aware) burst buffer allocations because it introduces a high
volume of traffic on both group and global network links.
On the other hand, with nearest burst buffer node selection,
I/O data transfers utilize one green link and two compute
node-router links only, minimizing interference with network
communication traffic.

Impact of job placement: We observe that the job place-
ment policies have an impact on the perturbation caused
by the I/O traffic to the background communication traffic.
Contiguous job placement brings the least perturbation to
background traffic in all cases, as opposed to random router
and random node policies. On the other hand, random node
job placement brings maximum jitter, which increases as
more nodes are involved in the I/O activity, even if the
aggregate I/O volume is held constant.

F. Performance Analysis of I/O Traffic

In this section we evaluate the degree to which checkpoint
I/O performance is perturbed by concurrent network com-
munication traffic. We first establish a baseline using exper-
iments with application nodes generating checkpoint traffic
in isolation without background communication traffic. The
experiments were then repeated with background traffic
to determine the degree of perturbation to the checkpoint
traffic. Figures 7 and 8 show the time to complete the
checkpointing workload with and without background traffic
and with different job sizes, routing protocols, job placement
policies, and burst buffer allocation policies.

As noted earlier in this section, the burst buffer nodes
themselves (and thus their SSD storage devices) are not
necessarily evenly utilized for any given checkpoint scenario
simulated in this study. The nearest burst buffer allocation
policy uses only burst buffers that are located in the same
chassis as the checkpointing application. The random burst
buffer allocation policy chooses a random target for each
checkpointing application node, which means that some
burst buffers receive more data than others. However, the
SSD performance, even with this imbalance, is not the
bottleneck for any checkpoint workloads in this study. The
job and data placement combination that writes the most
data on a single SSD is the nearest burst buffer case with
contiguous allocation, as shown in Figure 3a. In that case, 30
compute nodes will write a total of 60 GiB of data to a single
SSD when the job size is 512 nodes. With a write bandwidth
of 5.7 GiB/sec, the worst case cost of writing the data to the
SSD will be 10 seconds, which is less than the makespan of
the checkpoint in our simulation. Any additional overhead
is caused by the network fabric.

The major observations that we draw from these results
are as follows:

Impact of burst buffer allocation scheme: Smaller jobs
checkpoint faster with a random burst buffer allocation
policy, while larger jobs checkpoint faster with a nearest
burst buffer allocation policy. The reason is that the smaller

jobs benefit from dispersing I/O to a larger number of burst
buffers to take advantage of additional concurrent I/O paths.
Large-scale jobs, in contrast, already span multiple groups
with significant I/O path concurrency and thus benefit more
from improved locality instead. The 512-node nearest burst
buffer jobs in Figure 8 utilize no more than 10 burst buffer
nodes.

Figures 9(a) and (b) show a zoomed in view of the time
to complete 1 TB of checkpoint workload by each of the
512 nodes using randomly selected and nearest burst buffer
nodes, respectively. With randomly selected burst buffer, the
time to complete checkpoint traffic increases continuously
as the packets take non-minimal routes to avoid congestion.
With nearest burst buffer selection, we see groups of network
nodes completing their checkpoint process earlier than the
others, which constitutes the steps in the graph. This is
because the network links get fully congested, which causes
some network nodes to get delayed in completing their
checkpoint traffic.

Impact of routing: Adaptive routing offers a slight im-
provement to checkpoint traffic time for randomly allocated
burst buffers (Figure 7a). This allows I/O traffic to avoid
heavily contended links, although the tradeoff (shown in
the preceding section) is that it has a negative impact on
background traffic on the system.

For nearest burst buffer allocation policy, adaptive routing
offers improvement with random node and random router
job placements but brings a slow down with contiguous job
placement (Comparing Figures 8a and 8b). With contiguous
job placement, the compute node and its nearest burst buffer
node lie in the same group, therefore, adaptive routing takes
non-minimal routes within a group to alleviate congestion.
However, since all compute nodes in a group are partici-
pating in I/O, this increases network contention and slows
down the I/O traffic.

Impact of job placement: The job placement policies
have a noticeable impact with nearest burst buffer selection
policy (Figure 8). Since contiguous job placement restricts
the traffic in a specific part of the network, it over-utilizes
selected burst buffer nodes while the rest of the burst buffer
nodes stay un-utilized. Random node and random router job
placements offer the opportunity for a better utilization of
burst buffer nodes with locality aware burst buffer placement
and result in a faster time to complete I/O.

G. Discussion of Tradeoffs

We analyze the results for both background communi-
cation and I/O traffic to find the configuration that brings
minimum perturbation to communication traffic and effi-
ciently utilizes the burst buffer nodes. Our observations are
as follows:

• Nearest burst buffer allocation (i.e., a topology-aware
mapping of burst buffer nodes to compute nodes) is an
intuitive policy for burst buffer allocation, but check-
point performance and communication performance are
directly (and inversely) impacted by the job placement
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Figure 7: Time to complete checkpoint as the number of nodes participating in the checkpoint is varied from 512 to 8,192 with
random burst buffer allocation. The solid color bars denote checkpoint time with background traffic while the crosshatched
bars denote checkpoint time without background traffic for each job allocation strategy. The aggregate checkpoint size is
held constant at 1 TB in all configurations.
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Figure 8: Time to complete checkpoint as the number of nodes participating in the checkpoint is varied from 512 to 8,192 with
nearest burst buffer allocation. The solid color bars denote checkpoint time with background traffic while the crosshatched
bars denote checkpoint time without background traffic for each job allocation strategy. The aggregate checkpoint size is
held constant at 1 TB in all configurations.
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Figure 9: Time to complete checkpoint by each checkpoint node for a 512 node checkpoint job with minimal routing. Time
with random burst buffer placement increases from 0.4 to 16 seconds. The steps in nearest burst buffer allocation case are
due to network congestion.

policy in this configuration (Figure 8). Furthermore,
the benefits of nearest buffer allocation are limited
if the application’s I/O phase requires completion by
all nodes, due to the variability in completion time
as shown in Figure 9(a). While contiguous placement
causes the least perturbation to background traffic, it
increases the I/O completion time by up to 5 times.
Random router policy is 1.5 times slower than the
random node policy, but it causes less perturbation to
background traffic. The random node policy has a high-

performing I/O completion time in all cases but causes
more perturbation to the background network traffic.

• In addition to the job placement and burst buffer
selection, routing plays a key role in determining the
performance of I/O and network traffic. While adaptive
routing takes nonminimal routes to reduce congestion,
it interferes with the background traffic and causes
performance degradation. Minimal routing creates con-
gestion on the network and SSDs when used with
compact job and burst buffer allocation policies, but



it causes less interference with background network
traffic.

• Overall, in order to attain minimum perturbation to
background network traffic and effectively utilizing
burst buffers for I/O traffic, the I/O traffic should be
routed minimally while using the closest burst buffer
nodes (Figures 8b and 6b). To alleviate congestion in-
troduced by the I/O traffic, the jobs should be placed by
using either random node or random router strategies.
The tradeoff is that random node job placement would
introduce more perturbation to the background traffic
while random router placement would impact the I/O
performance.

VI. CONCLUSION AND FUTURE WORK

The addition of a burst buffer storage tier and the recent
shift in interconnect topology of HPC systems have created
several questions for the research community. In this work,
we have applied the CODES simulation framework, based
on composable HPC-oriented modules, to quantify the I/O
and network traffic interference using various configurations
of job sizes, job placement policies, and routing and burst
buffer allocation policies on dragonfly networks. Our analy-
ses used detailed packet-level simulations to do performance
predictions for 1 TB of checkpoint I/O traffic in the presence
of background communication traffic.

From the communication traffic perspective, we observed
that configurations with non-topology aware burst buffer
assignments brought a wide variation in packet latencies of
the background communication traffic. In the worst-case a
packet latency of 4700 times the average latency has been
recorded. Configurations with a topology-aware mapping
of burst buffer nodes to compute nodes offered minimum
variation in packet latencies but slowed the I/O traffic by
creating contention on the burst buffer nodes. Balancing
the tradeoff between I/O and network performance required
choosing an optimal configuration of job placement, burst
buffer allocation, and routing policies.

The paper aims to establish a baseline methodology for
quantifying I/O and communication traffic with different
configurations of a high-radix dragonfly network. The work
can be extended by studying a wider variety of workloads
and other HPC interconnect topologies. We have made the
simulation framework open source, and the mechanisms for
workloads and interconnect models are modular and can be
easily extended.

APPENDIX

A. Simulation Suite Description
The CODES, ROSS and codes-storage-server are open

source toolkits available for HPC interconnect and storage
design space exploration. The source code for the burst
buffer storage model and workload replay is available
at https://xgitlab.cels.anl.gov/codes/codes-storage-server.git.
The job allocation files and network configuration files used
in the experiments are also available in the source repo.

Documentation need to run the experiments in this paper is
provided at https://xgitlab.cels.anl.gov/codes/codes-storage-
server/wikis/checkpoint-study.
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