
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed 
Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. 

Getting Started with Vectorization

Si Hammond (sdhammo@sandia.gov)
Scalable Computer Architectures

Center for Computing Research

Sandia National Laboratories, NM

SAND2016-8879PE



Overview

 Basic Vectorization terminology and concepts

 This will probably be familiar ground for lots of you, but lets check we 
are saying the same thing

 Intel compiler optimization reports

 Intel Vector Advisor XE

 How to analyze and improve vectorization in your applications

 Basic Tips and Techniques for Getting Better Vectorization

 Wrap Up and Some News!



VECTORIZATION 101



Terminology

for(int i = 0; i < 129; i++) {

a[i] = b[i+1] + 2;

}

a[0]

b[1]

2

=

+

a[1]

b[2]

2

=

+

i=0 i=1

a[2]

b[3]

2

=

+

i=2

a[N-1]

b[N]

2

=

+

i=N-1

…

If we have this code each iteration of the loop we get one set of operations



Data Dependency

for(int i = 0; i < 129; i++) {

a[i] = b[i+1] + 2;

}

a[0]

b[1]

2

=

+

a[1]

b[2]

2

=

+

i=0 i=1

a[2]

b[3]

2

=

+

i=2

a[N-1]

b[N]

2

=

+

i=N-1

…

If we have this code each iteration of the loop we get one set of operations

But these operations have no 
dependencies, so we could run 
them in parallel



Terminology Example

for(int i = 0; i < 129; i++) {

a[i] = b[i+1] + 2;

}

a[0]

b[1]

2

=

+

a[1]

b[2]

2

=

+

i=0

a[2]

b[3]

2

=

+

i=2

a[N-1]

b[N]

2

=

+

i=N-1

…

If we have this code each iteration of the loop we get one set of operations

a[3]

b[4]

2

=

+

“SIMD Vector”
or “Vector”

(of length 2)

“Lane”



Transformed Code

 Transform our loop into logically doing two iterations per actual iteration

 More efficient since we now spend less time in loop logic

 Allows us to run many more operations in parallel = faster to execute

for(int i = 0; i < 129; i+=2) {

a[i] = b[i+1] + 2;

a[i+1] = b[i+2] + 2;

}



Correct Execution

 We need to ensure we execute exactly the same computation as before 
vectors

 Have to be very careful exactly how the code is transformed

 Compiler needs to do some more work

for(int i = 0; i < 129; i+=2) {

a[i] = b[i+1] + 2;

a[i+1] = b[i+2] + 2;

} ✗



Remainder Loops

for(int i = 0; i < 128; i+=2) {

a[i] = b[i+1] + 2;

a[i+1] = b[i+2] + 2;

}

for(int i = 128; i < 129; i++) {

a[i] = b[i+1] + 2;

}

Vector Body

Epilogue
Or “Remainder”

Sometimes we also introduce a prologue to ensure we get into vector alignment



Vector Alignment

a[0]

b[1]

2

=

+

a[1]

b[2]

2

=

+

a is a pointer to memory

Vector alignment usually means we want the pointer “a” to located at an address
which is modulo the SIMD width == 0

Why? Because this usually means vectors don’t span cache lines == more efficient 
loads and stores



General Rules

 Data dependency breaks the ability to vectorize

 If dependencies are found or might exist the compiler will not
generate vectorized code

 Data alignment costs performance

 Loops which have short loop trip counts will usually execute in the 
remainder loop (and so not benefit from the vectorization)

 Most compilers estimate the potential speedup from using vector 
instructions, if its too low, the compiler will not generate vector loops

 Which means lost performance opportunities



Vectorization Reports

 Generally easy way if using the Intel compiler, add the following to your 
CFLAGS, CXXFLAGS or FFLAGS

 -opt-report=5

 This will generate a lot of information about inlining, vectorization and 
OpenMP threading in a file put in the working directory

 Usually mapped onto files and line numbers (where the loop starts)



Good Example

Source Code Location

Variable 
alignment info

Vector length 
and loop 
unrolling

Profitability 
Estimation

Loop variants

So vector width is 2, we get a speed up of 2.05X 



Bad Example (Dependence)

 Different types of dependence (long story, they are all bad if they 
generate this message)

 Means one iteration of the loop interferes with another



Bad Example (Performance)

 Profitability analysis says that vectorization will be slower so it will not 
generate the slower sequence here

 Typically because it does not know loop bounds



Gather/Scatter

for(int i = 0; i < 129; i++) {

a[c[i]] = b[d[i+1]] + 2;

}

a[c[0]]

b[d[1]]

2

=

+

A[c[1]]

b[d[2]]

2

=

+

i=0 i=1

a[c[2]]

b[d[3]]

2

=

+

i=2

a[c[N-
1]]

a[c[N-
1]]

b[d[N]]

2

=

+

i=N-1

…

If we have this code each iteration of the loop we get one set of operations

Indirect write 
= Scatter

Indirect read 
= Gather



Gather/Scatter

 In general gathers and scatters are 
slower than packed (direct) 
reads/writes) and the compiler explicitly 
tells you when it generates these



Vector Masks

a[0]

b[1]

2

?=

+

a[1]

b[2]

2

?=

+

i=0

a[2]

b[3]

2

?=

+

i=4

a[N-1]

b[N]

2

?=

+

i=N-1

…a[3]

b[4]

2

?=

+

“SIMD Vector”
or “Vector”

(of length 4)

C[0]<1 C[1]<1 ...“Mask” allows 
conditionally keep 
some of the lanes 
turned off

✕

✕

✕

Masking helps to vectorize more code but can mean we are less efficient if 
many lanes get disabled all the time – delicate balance

We don’t know this until runtime



VECTOR ADVISOR XE



Vector Advisor XE

 Designed to be a survey, analysis and recommendation tool

 Vectorization Workflow – add vectorization, make existing 
vectorization more efficient, plan for future KNL processors

 Threading Workflow – add threading and parallelism into your 
application, check for safety conditions etc

 Latest version 2017 is in beta

 Installed on some of the ASC test bed machines, will be adding to ATDM 
test beds when product

 Should have a site license for installs on other machines



Vector Advisor XE GUI

Look at loops only

Predict potential 
speedup



GENERAL VECTORIZATION TIPS



General Tips

 Use the const and __restrict__ keywords on arrays/variables

 Compiler can determine these are read-only/don’t have dependency 
on other variables

 This makes a HUGE different not just for vectorization but general 
optimization

 Don’t mix integer types in loop control

 For instance, unsigned int compared to an int or a long long int
compare to a 32-bit int

 Causes lots of additional data type conversion instructions and this 
breaks vectorization profitability analysis

 Better to use standard int where you can (most compilers are built 
around this assumption)



General Tips

 Try to access arrays with p[i] notation, do not use pointer arithmetic

 Do not use pointer arithmetic

 Compiler often cannot determine dependency pattern

 Will often not vectorize or optimize this loop at all

 Kokkos Views stick with a(i, j, k) style, this is all handled correctly 
underneath abstraction layers

for(int i = 0; i < N; i++) {
p[0] = 64 + i;
p++;

}



General Tips

 Use tertiary for comparison evaluations where possible

 This can lead to very efficient code generation on most modern 
platforms

 Very efficient on KNL and Sky Lake Xeon processors which have strong 
masking capabilities

 if-statement equivalent sometimes do not vectorize well 

for(int i = 0; i < N; i++) {
p[i] = a[i] < 32 ? 1 : -1;

}



Advanced Tips

 Force alignment for allocations where using malloc/free

 This allows compiler to bypass some of the prologue loops

 Faster to get to main vector loops

 Smaller binaries/code sequences = better instruction cache utilization

 Kokkos does this already (in general)

double* a __attribute__((aligned(64)));
..
posix_memalign(&a, 64, sizeof(double) * N));
..

for(int i = 0; i < N; i++) {
a[i] = i * 111;

}



Compiler Flags

 Make sure you use the right compiler flags (these are for Intel):

 -mavx for Sandy Bridge (Chama)

 -xCORE-AVX2 for Haswell (Trinity) and Broadwell (CTS-1)

 -xMIC-AVX512 for KNL (Trinity/Bowman/Ellis)

 -mmic for Knights Corner only (Compton/Morgan)

 Otherwise you get Pentium-4 era instructions (yes 2004!)

 Compiler will generate vector instructions as much as it can

 To disable –no-vec on Intel compiler



WRAP UP



Comments

 Vectorization can have a huge impact on performance

 Not just compute performance, it helps cache efficient, memory 
subsystem etc

 Very important moving in the future

 Lots of small changes (which aren’t always measurable) eventually all add 
up as code gets more efficient

 If you improve vectorization across your code base, in general it all 
adds up to better optimization opportunities over time

 Vectorization is an important part of running on CPU/many-core systems 
including Intel Xeon Phi, IBM POWER, AMD and other vendors

 Also helps get efficient kernels ready for Kokkos where we can add 
threading too



AND ONE MORE THING…



SRN KNL Test Bed Cluster

 ellis.sandia.gov joins the ASC test bed family

 32 x KNL B0 Bin-1 silicon (68 cores, 1.4GHz, 16GB HBM, 96GB DDR4)

 Intel OmniPath v1.0 network interconnect

 Familiar Linux environment, Intel 17.0 compilers, OpenMPI etc

 Will be a replica of bowman.sandia.gov (SON)

 Expected in a few weeks for installation and then WebCARS access

 SLURM queues, expecting heavy NGP and ATDM testing




