SAND2016- 8879PE

Sandia

L service in the national interest National
Laboratories

Getting Started with Vectorization

Si Hammond (sdhammo@sandia.gov)

Scalable Computer Architectures
Center for Computing Research
Sandia National Laboratories, NM

;,‘_ ‘4‘ U.S. DEPARTMENT OF !‘ ' ' bm‘
i @) NERGY I VA‘M Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
"v-.»‘! atmal N loar Sac oy Ao st Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

Sandia
|I'| National
Laboratories

Overview

Basic Vectorization terminology and concepts

= This will probably be familiar ground for lots of you, but lets check we
are saying the same thing

= |ntel compiler optimization reports

Intel Vector Advisor XE

= How to analyze and improve vectorization in your applications

Basic Tips and Techniques for Getting Better Vectorization

Wrap Up and Some News!

Sandia
l"| National
Laboratories

VECTORIZATION 101

Terminology 1) .

If we have this code each iteration of the loop we get one set of operations

for(inti=0;i<129; i++) {
a[i] = b[i+1] + 2;

o
+ + +
z

Sandia
|I'| National
Laboratories

Data Dependency

If we have this code each iteration of the loop we get one set of operations

for(inti=0;i<129; i++) {
ali] = b[i+1] + 2;
}
i=0/\> i=1/\> ig\ i=N-1
a[2]
o o [
. - —— But these o.perations have no
dependencies, so we could run
2 them in parallel
I

Sandia
rl'| National
Laboratories

Terminology Example

If we have this code each iteration of the loop we get one set of operations

for(inti=0;i<129; i++) {
a[i] = b[i+1] + 2;
}

i=o/\> i=2/-\> i
a[0] | a[1] al2] | a[3]

N-1

(of length 2)

“SIMD Vector”
or “Vector”

Transformed Code) .

for(inti=0; i< 129; i+=2){
a[i] = b[i+1] + 2;
a[i+1] = b[i+2] + 2;

= Transform our loop into logically doing two iterations per actual iteration
= More efficient since we now spend less time in loop logic

= Allows us to run many more operations in parallel = faster to execute

Sandia
ll'| National
Laboratories

Correct Execution

for(inti=0;i<
ali] = b[i+1] + 2;
ali+1] = b[i+2] + 2;

= We need to ensure we execute exactly the same computation as before
vectors

= Have to be very careful exactly how the code is transformed

= Compiler needs to do some more work

Sandia

Remainder Loops)

for(inti=0: i< 128; i+=2){

afi] = b[i+1] + 2; = Vector Body
afi+1] = b[i+2] + 2:

} L
for(inti=128;i < 129; i++) {
a[i] = b[i+1] + 2: L Epilogue
} Or “Remainder”

Sometimes we also introduce a prologue to ensure we get into vector alignment

Vector Alighment) B,

a is a pointer to memory

4

+ +

Vector alignment usually means we want the pointer “a” to located at an address
which is modulo the SIMD width ==

Why? Because this usually means vectors don’t span cache lines == more efficient
loads and stores

General Rules)

= Data dependency breaks the ability to vectorize

= |f dependencies are found or might exist the compiler will not
generate vectorized code

= Data alighment costs performance

= Loops which have short loop trip counts will usually execute in the
remainder loop (and so not benefit from the vectorization)

= Most compilers estimate the potential speedup from using vector
instructions, if its too low, the compiler will not generate vector loops

= Which means lost performance opportunities

Vectorization Reports L

Generally easy way if using the Intel compiler, add the following to your
CFLAGS, CXXFLAGS or FFLAGS

= -opt-report=5

This will generate a lot of information about inlining, vectorization and
OpenMP threading in a file put in the working directory

Usually mapped onto files and line numbers (where the loop starts)

Sandia
National
Laboratories

Sandia

Good Example =N

LOOP BEGIN at lulesh.cc(300,3) inlined into lulesh.cc(2444,5)
remark #15389: vectorization support: reference domain[i] hdS OMedkig :
S PP t Source Code Location
remark #15389: vectorization support: reference domain[i] has unaligned access [lulesh.cc(
301,60)]
remark #15389: vectorization support: reference sigzz[i] has unaligned access [1ules .
01,27)] Variable
remark #15388: vectorization support: reference sigyy[i] has aligned access [lulesh. i i
Groi alignment info
remark #15388: vectorization support: reference sigxx[i] has aligned access [lulesh.cc(301
»3)]
remark #15381: vectorization support: unaligned access used inside loop body
remark #15305: vectorization support: vector length 2 \/EB(:tC)r |E§T1§th1
remark #15399: vectorization support: unroll factor set to 4 and |()()F)
remark #15309: vectorization support: normalized vectorization overhead 0.342 .
remark #15300: LOOP WAS VECTORIZED unrolling
remark #15442: entire loop may be executed in remainder
remark #15449: unmasked aligned unit stride stores: 2
remark #15450: unmasked unaligned unit stride loads: 2 F)r fit ”it
remark #15451: unmasked unaligned unit stride stores: 1 ()_ Eit). y
remark #15475: ; Estimation
7 scalar loop cost: 20
: vector loop cost: 9.500
: estimated potential speedup: 2.050
--- end vector loop cost summary --;

LOOP END :
Loop variants
LOOP BEGIN at lulesh.cc(300,3) inlined into lulesh.cc(2444,5)
<Alternate Alignment Vectorized Loop>

LOOP END

So vector width is 2, we get a speed up of 2.05X ©

Sandia

Bad Example (Dependence) e

LOOP BEGIN at lulesh.cc(982,7)

remark #15344: loop was not vectorized: vector dependence prevents vectorization

remark #15346: vector dependence: assumed FLOW dependence between domain[*(this+i*4)] (983:16) a
nd domain (983:16)

remark #15346: vector dependence: assumed ANTI dependence between domain (983:16) and domain[*(t
his+i*4)] (983:16)

remark #25439: unrolled with remainder by 2
LOOP END

LOOP BEGIN at lulesh.cc(982,7)
<Remainder>
LOOP END

= Different types of dependence (long story, they are all bad if they
generate this message)

= Means one iteration of the loop interferes with another

Sandia

Bad Example (Performance) e

LOOP BEGIN at lulesh.cc(300,3) inlined into lulesh.cc(2444,5)
<Remainder loop for vectorization>
remark #15389: vectorization support: reference domain[i] has unaligned access [lulesh.cc(
301,46)]
remark #15389: vectorization support: reference domain[i] has unaligned access [lulesh.cc(

301,60)]

remark #15389: vectorization support: reference sigzz[i] has unaligned access [lulesh.cc(3
01,27)]

remark #15389: vectorization support: reference sigyy[i] has unaligned access [lulesh.cc(3
01,16)]

remark #15388: vectorization support: reference sigxx[i] has aligned access [lulesh.cc(301

»5) 1
remark #15381: vectorization support: unaligned access used inside loop body
‘ remark #15335: remainder loop was [feldRjectorized: vectorization possible but seems inefficien ’
t. Use vector always directive or -vec-threshold® to override
remarie-#15305: vectorization support: vector length 2
remark #15309: vectorization support: normaiLizea vectorization overhead 0.806

LOOP END

= Profitability analysis says that vectorization will be slower so it will not
generate the slower sequence here

= Typically because it does not know loop bounds

Gather/Scatter) .

If we have this code each iteration of the loop we get one set of operations

for(inti=0;i<129; i++
(T
i=0/\> i=1/\> ig\ =N

ot o(cio] [Alcrt)) ERIEICE
ndrectread WCCIIN ECIAIR | bld[3I] b[d[N]]
+ + +
z

Gather/Scatter

remark #15389:
sh.cc(2030,9)]
remark #15389:
029,32)]
remark #15381:
remark #15415:
ndirect.ccless, elem
remark #15415:
ndirect access, elem
momark #15415:
ndirect access, elem
remark #15415:
ndirect access, elem
remark #15415:
ndirect access, elem
remark #15415:
ndirect access, elem
remark #15415:
direct access, elem
remark #15415:
direct access, elem
remark #15305:
remark #15309:
remark #15301:
remark #15442:
remark #15450:
remark #15451:
remark #15458:
remark #15475:
remark #15476:
remark #15477:
remark #15478:
remark #15486:

remark #15488:
remark #25456:
LOOP END

vectorization support:
vectorization support:

vectorization support:

vectori zatinam coooo

——pFpr~ v

is read from memory

vectorization support: [¢

is read from memory

vectorization support:

1 Commrn "
LS 1 caw LTI =i

vectorization support:

is read from memory

vectorization support:

is read from memory

vectorization support:

is read from memory

vectorization support:

is read from memory

vectorization support:

is read from memory

vectorization support:
vectorization support:

Sandia
National _
Laboratories

reference compHalfStep[i] has unaligned access [lule

reference delvc[i] has unaligned access [lulesh.cc(2

unaligned access used inside loop body
.]

T LLA

Chamal S gonerweCh T variahle <domain[elem]>, i
[lulesh.cc(2017,27)]

was generated for
[lulesh.cc(2018,27)]
was generated for
L lulesh ccf2019 273 1
was generated for
[lulesh.cc(2020,27)]
was generated for
[lulesh.cc(2021,28)]
was generated for
[lulesh.cc(2022,28)]
was generated for
[lulesh.cc(2028,39)]

was generated for
[lulesh.cc(2029,18)]
vector length 8
normalized vectorization

the variable <domain[elem]>, i

the variable <domain[eleml> .

the variable <domain[elem]>, i

the variable <domain[elem]>,

the variable <domain[elem]>,

the variable <vnewc[elem]>, in

the variable <vnewc[elem]>, in

overhead 0.148

FUSED LOOP WAS VECTORIZED

entire loop may be executed in remainder
unmasked unaligned unit stride loads: 2
unmasked unaligned unit stride stores: 8

masked indexed (or [Fllpas) loads: 8

--- begin vector loop
scalar loop cost: 109

vector loop cost: 28.620
estimated potential speedup: 3.550

divides: 2

--- end vector loop cost summary ---
Number of Array Refs Scalar Replaced In L¢

In general gathers and scatters are
slower than packed (direct)
reads/writes) and the compiler explicitly
tells you when it generates these

cost summar

Vector Masks) i

Laboratories

“SIMD Vector”
or “Vector” a[3]
(of length 4)
?= 7= ?= ?=

conditionally keep / o]

some of the lanes

turned off 0
IR R0 D[3] | b[4] b[N]
+
B - |-

Masking helps to vectorize more code but can mean we are less efficient if
many lanes get disabled all the time — delicate balance

= We don’t know this until runtime i

Sandia
l"| National
Laboratories

VECTOR ADVISOR XE

Vector Advisor XE) i

Designed to be a survey, analysis and recommendation tool

= Vectorization Workflow — add vectorization, make existing
vectorization more efficient, plan for future KNL processors

= Threading Workflow — add threading and parallelism into your
application, check for safety conditions etc

= |[atest version 2017 is in beta

= |nstalled on some of the ASC test bed machines, will be adding to ATDM
test beds when product

= Should have a site license for installs on other machines

Vector Advisor XE GUI) S,

X! fhome/sdhammo/intel/advixe/projects/lulesh - Intel Advisor
File View Help |

‘a2 @ ETRAE SO

'Weiuume | e000 3¢ |

[55] spactime: o0 [VAGRER [OMENAGER [~
FILTER: [All Mocules -] [Al Sources '”ﬁm

@ Summary E Survey Report 3§ s (3 Annotatior
Vector Instruction Set: SSE, SSE2 Number of CPU Threads: 1 3
») Loop metrics
Total CPU time g.60s — 100.0% | | ook at |oops on'y
Time in 8 vectorized loops 2,185 [25.3%
Time in scalar code 6.425 4. 7%
N
)) @r~Vectorization Gain BTy
Predict potential Vectorized Loops GainEfficiency 1.16x [EANNE |
b, Program Theoretical Gain 1.04x
speedup <
() Top time-consuming loops”
Loop Source Location Self Time? Total Tim&?
(& CalcHourglassControlForElems lulesh.cc:845 0.9961s 1.6550s -
O CalcMonotonicQGradientsForElems lulesh.cc:1372 0.6498s 0.6498s
5 CalcFBHourglassForceForElems lulesh.cc:679 0.3795s 1.4348s
CalcFBHourglassForceForElems lulesh.cc:691 0.3571s 0.3571s
O CalcMonotonicQR egionForElems lulesh.cc:1521 0.2000s 0.2900s
-l

Sandia
l"| National
Laboratories

GENERAL VECTORIZATION TIPS

Sandia
National

General Tips) .

= Use the const and __restrict__ keywords on arrays/variables

= Compiler can determine these are read-only/don’t have dependency
on other variables

= This makes a HUGE different not just for vectorization but general
optimization

= Don’t mix integer types in loop control

= For instance, unsigned int compared to an int or a long long int
compare to a 32-bit int

= Causes lots of additional data type conversion instructions and this
breaks vectorization profitability analysis

= Better to use standard int where you can (most compilers are built
around this assumption)

General Tips i

for(inti=0;i<N; i++){
pl0] = 64 + i
pt+;

= Try to access arrays with p[i] notation, do not use pointer arithmetic
= Do not use pointer arithmetic
= Compiler often cannot determine dependency pattern
= Will often not vectorize or optimize this loop at all

= Kokkos Views stick with a(i, j, k) style, this is all handled correctly
underneath abstraction layers

Sandia
National
Laboratories

General Tips 1) .

for(inti=0;i<N; i++){
plij=afi]<32?1:-1;
}

= Use tertiary for comparison evaluations where possible

This can lead to very efficient code generation on most modern
platforms

= Very efficient on KNL and Sky Lake Xeon processors which have strong
masking capabilities

= jf-statement equivalent sometimes do not vectorize well

Advanced Tips)

double* a __ attribute ((aligned(64)));

posix_memalign(&a, 64, sizeof(double) * N));

for(inti=0;i<N;i++){
afi] = i * 111:
}

= Force alignment for allocations where using malloc/free

= This allows compiler to bypass some of the prologue loops

= Faster to get to main vector loops

= Smaller binaries/code sequences = better instruction cache utilization
= Kokkos does this already (in general)

Compiler Flags) .

= Make sure you use the right compiler flags (these are for Intel):
= -mavx for Sandy Bridge (Chama)
= -XCORE-AVX2 for Haswell (Trinity) and Broadwell (CTS-1)
= -xMIC-AVX512 for KNL (Trinity/Bowman/Ellis)
= -mmic for Knights Corner only (Compton/Morgan)

= Otherwise you get Pentium-4 era instructions (yes 2004!)

= Compiler will generate vector instructions as much as it can

= To disable —no-vec on Intel compiler

WRAP UpP

Comments rh)

= Vectorization can have a huge impact on performance

= Not just compute performance, it helps cache efficient, memory
subsystem etc

= Very important moving in the future

= Lots of small changes (which aren’t always measurable) eventually all add
up as code gets more efficient

= |f you improve vectorization across your code base, in general it all
adds up to better optimization opportunities over time

= Vectorization is an important part of running on CPU/many-core systems
including Intel Xeon Phi, IBM POWER, AMD and other vendors

= Also helps get efficient kernels ready for Kokkos where we can add
threading too

Sandia
l"| National
Laboratories

AND ONE MORE THING...

SRN KNL Test Bed Cluster) o

= ellis.sandia.gov joins the ASC test bed family
= 32 x KNL BO Bin-1 silicon (68 cores, 1.4GHz, 16GB HBM, 96GB DDR4)
= |ntel OmniPath v1.0 network interconnect

= Familiar Linux environment, Intel 17.0 compilers, OpenMPI etc
= Will be a replica of bowman.sandia.gov (SON)

= Expected in a few weeks for installation and then WebCARS access

= SLURM queues, expecting heavy NGP and ATDM testing

[e]e]

Q0

0000

00000# 0000
0000000
00000000800
CO000000000

Sandia
National
Laboratories

Exceptional service in the national interest

