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" Motivated through observation ®  Compact tension specimens, B~ 13 mm; W ~ 26 mm 10 " Fracture toughness degrades with increasing helium concentrations
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= Strong chemo-mechanical coupling Constant pressure of gaseous hydrogen: 103 MPa . O # > Both tritium and helium are requisite for degradation
_ " “Loading rates” ~ 0.6 - 10 MPa m/2 per minute i _w ® Transition from void evolution to fracture along twin and grain boundaries
" Capture sub-grid processes through a surface approach s

Morgan and Tosten, Tritium and decay helium

" Explore fast pathways for diffusion at structural and microstructural scales 1600: O - ] 250 T 0.50 effects on the fracture toughness, International
® Develop models for H/T/He embrittlement w/focus on void nucleation § 1400(- O H-precharged ] _ _ § Conference on Hydrogen (1994)
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coupling character pathways i ' = ST heat B (HF) heat A (LF) ° ' * e e Figure 4 - Fracture Modes In Trithum-Exposed-And-Aged Stainless Stecls: (a) Type 304
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Note: 220 MPa m¥/2 = 224 kJ/m2 (N/mm) MO ~0 T, M
This path heavily leverages Sofronis/McMeeking (1989)* and Krom (1998). Goal: Capture sub-grid processes through methods that regularize the jump Fox and Simo (1990), Callari, Armero, Abati (2010)
Recent work by Leo and Anand (2013). _
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® Time: 3850s
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o Diffusion slows down due to 5 Diffusion speeds up due to 21Cr-6Ni-9Mn (220 MPa m1/2)
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We seek to find descriptors of helium bubble formation that result from the radioactive

decay of tritium (T) to He. _ Concentration From helium bubble ODEs, we have: Y =710 MPa
- Schaldach and Wolfer (2004) focus on the total number of clusters (total bubble density) 5000 0
N total bubble density 10001 | H=0.0298u
1000s of ODEs for helium clusters are condensed into 3 coupled ODEs written in #0009 S, bubble volume fraction R =35
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- ODEs are nonlinear. We can integrate them implicitly with Newton’s method o000 — Tritium (appm)  Calculate average bubble radius: | B o, = 63.9 ki/mol
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Comparison of current model to experimental data by Robinson 3 Rb 2 0 ' ' ' '
G(t) — helium source term and Thomas (1991). Data from hydrogen yields a, (hydrogen = Y(CT, Rb) =Yy + o Cr + as <—> 0.00 0.05 0':0 train ( /0'}5 0.20 0.2
CH _ Nl 4+ Q Sb r, - initial bubble radius tritiu.m-). Nonlinearity in fit stems from average bubble radius, R rue strain tm/m
€ N - number of He atoms/vacant site not fitting p.arame.:ter Ot'z- Both parameters are needed to o, and o, are constants fit to experiments From Robinson and Thomas, “Accelerated Fracture due to Tritium and Helium in 21-6-9 Stainless Steel” (1991). We
Q - partial molar volume accurately fit Robinson’s data. cannot locate the source data. Missing He concentrations of 774, 950, and 1128 appm.
In spirit of Chu and Needleman (1980) we choose an void nucleation Initial constitutive modeling parameters for T/He embrittlement - more work needed T/He embrittled microstructures can move from nucleation to coalescence
appropriate state variable to capture void nucleation o He 1440 appm ¢-coa! Initial models for void evolution provide a pull for additional experimental data ~ @9€ 1.8 years in tritium
through elevated stresses at pile-ups. 0.15) 0002 010} and enable a greater understanding of the crack resistance. 465 appm helium
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