Multi-Resolution Characterization of

Hydrogen-Assisted Intergranular Fracture of Ni-201

R. Karnesky, D. Medlin, K. Hattar, D. Bufford, A. Koh, S. Lawrence, B. Somerday

Sandia National Laboratories

/ ABSTRACT \ / ATOM PROBE TOMOGRAPHY \
Subtle changes to the local chemistry and grain boundary structure can have dramatic consequences AR : ol /
on material performance [1-3]. Some lots of as-received commercially pure Ni-201 exhibit brittle Coherent twins show no discernible D segregation. L
intergranular fracture when charged with hydrogen. After grain-boundary engineering (thermo- Higher volume twins do; here, 4 at.% D (an ﬁ'{: 5
mechanical treatments that increase the fraction of twin and other low-sigma “special” boundaries), enrichment of over ten from the bulk) is observed.

a more ductile fracture is observed [2]. We have assessed the chemistry of different boundaries (in Higher angle boundaries also show a greater degree Wi 8
terms of segregated hydrogen and various impurity elements) using atom-probe tomography, the of segregation of impurity elements (e.g. Pb, S) el |
structure of the boundaries using scanning transmission electron microscopy (TEM), and the naturally present in Ni-201. 2R
deformation behavior using both in situ TEM and engineering-scale mechanical testing. This : L . T
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experimental work is presented in the context of atomistic and mesoscale simulations of the : e
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structure [1-3,5,6,7], chemistry, and cohesive strength of the boundary and detail the building blocks boundaries
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that are needed for a multi-scale, multi-physics predictive model for environmentally-assisted
fracture.
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The degree of environmentally-assisted intergranular fracture is reduced by grain-boundary
engineering treatments that lead to a large fraction of low-sigma boundaries.
: However, it also depends upon on trace quantities of impurity elements that tend to segregate to
S grain boundaries.
- The two micrographs were from different heats of Ni, each charged to 5000 appm H.
They have a similar grain size (ca. 30 um) and fraction of “special” grain boundaries (ca. 40%).

HRTEM, LEAP tomograph

- Grain-level mechanical response Intergranular fracture vs. H However, a sample with 5.7 appm Pb (left, also highlighted in the TEM and APT micrographs) shows a
GB structure / composition

[ tructural evoluti : : . : : :
L m'cmsGr; s;:?st?:: uHen R (concentration, special GB fraction.. greater degree of intergranular fracture than a sample with 0.05 appm Pb (right).

Expeﬁmental discovery and a'idation tools This is still well below what is permitted in the Ni-201 specification and is not great enough to lead to

intergranular fracture of specimens tested in air.
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