
Metaprogramming-Enabled Parallel Execution of
Apparently Sequential C++ Code

David S. Hollman
dshollm@sandia.gov

Janine C. Bennett
jcbenne@sandia.gov

Hemanth Kolla
hnkolla@sandia.gov

Jonathan Lifflander
jjliffl@sandia.gov

Jeremiah J. Wilke
jjwilke@sandia.gov

Nicole Slattengren
nlslatt@sandia.gov

Sandia National Labs
Scalable Modeling and Analysis

Livermore, CA, 94550

ABSTRACT
Task-based execution models have received considerable at-
tention in recent years to meet the performance challenges
facing high-performance computing (HPC). In this paper we
introduce MetaPASS - Metaprogramming-enabled Parallelism
from Apparently Sequential Semantics - a proof-of-concept,
non-intrusive header library that enables implicit task-based
parallelism in a sequential C++ code. MetaPASS is a data-
driven model, relying on dependency analysis of variable
read/write accesses to derive a directed acyclic graph (DAG)
of the computation to be performed. MetaPASS enables
embedding of runtime dependency analysis directly in C++
applications using only template metaprogramming. Rather
than requiring verbose task-based code or source-to-source
compilers, a native C++ code can be made task-based with
minimal modifications. We present an overview of the pro-
gramming model enabled by MetaPASS and the C++ run-
time API required to support it. Details are provided re-
garding how standard template metaprogramming is used
to capture task dependencies. We finally discuss how the
programming model can be deployed in both an MPI+X
and in a standalone distributed memory context.

CCS Concepts
•Software and its engineering → Parallel program-
ming languages; Object oriented languages; Impera-
tive languages; Functional languages; Data flow languages;

Keywords
task-based runtimes, template metaprogramming, parallel
computing, programming models, execution models

1. INTRODUCTION
Task-based execution models have received considerable

attention in recent years as a mechanism for improving the
performance of science and engineering codes. Examples

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ESPM2 ’16 November 18, 2016, Salt Lake City, UT, USA
c© 2016 ACM. ISBN 123-4567-24-567/08/06.

DOI: 10.475/123 4

include node-level tasking systems for use with MPI [18] ap-
plications (i.e., the X in MPI+X) [6] as well as holistic dis-
tributed memory task-models that completely replace MPI
(e.g., Legion [7], HPX [22]). In both scenarios, a compu-
tational directed acyclic graph (CDAG) [17] captures de-
pendencies between tasks.1 The CDAG provides the run-
time system with the ability to execute asynchronously
and to perform application lookahead, often referred to
as deferred execution. Lookahead enables performance-
improving transformations of a default sequential schedule
(i.e., in-order reading of the source code):
• Prefetching: Memory/remote accesses can be executed

in advance, hiding communication latency to avoid
stalls in the computational pipeline.
• Out-of-order execution: Tasks can run immediately

when inputs are available to avoid stalls in the com-
pute pipeline or be re-ordered to maximize data reuse.
• Move tasks to data: Tasks can be flexibly scheduled to

the compute resource closest to the required data.
These transformations mitigate critical challenges posed by
extreme-scale architectures by enabling optimizations such
as exposing maximal parallelism to effectively leverage ever-
increasing on-node compute resources, managing locality
and staging of data across deep memory hierarchies, and
hiding communication latency.

The creation and scheduling of a task-based CDAG for a
particular application requires the following properties to be
defined or determined at some level of the software stack:

1. Task granularity: How many statements should be
grouped together within a task?

2. Task dependencies: What ordering dependencies be-
tween tasks must be preserved?

3. Task placement and scheduling: Where and when
should a task execute?

In most existing tasking systems, task granularity (Item
1) is chosen a priori by the application developer. There is
a vast amount of research on task placement and scheduling
(Item 3), with proposed solutions that span the spectrum
of placing the burden of responsibility on application de-
veloper, compiler, and runtime system. The current work
focuses on Item 2: dependency capture and analysis.

Broadly, task-based programming models are either
execution-driven, requiring explicit fork/join statements to
create asynchronous work, or data-driven, implicitly creat-
ing asynchronous work when data usages do not conflict.
Data-driven systems require dependency analysis to implic-
itly derive which tasks may run in parallel. This occurs ei-

1We define a task here only as a group of related opera-
tions or instructions that, once scheduled, must be executed
together on a single compute resource.

SAND2016-8707C

ther at compile-time for auto-parallelizing compilers [29] or
at runtime with libraries like Legion [7]. Data-driven models
often rely on sequential semantics to derive a concurrency
specification. When data usages conflict, the task appear-
ing first in program order must execute first. In execution-
driven models, on the other hand, “dependency analysis” is
essentially performed by the application developer since he
or she chooses which tasks are parallel.

The precursor to dependency analysis for data-driven
models is dependency capture - associating dependencies and
their access modes with a given task. Even if the runtime
system automatically performs dependency analysis, it ei-
ther requires compiler modifications to auto-generate cap-
ture hooks, a new language (for instance, in the case of
Regent [31]), or application developers to explicitly enumer-
ate dependencies. Enumerating dependencies requires task
pragmas in OpenMP [27] or creating region requirements
in Legion [7], which leads to verbose and arguably difficult
to maintain code (sometimes with loss of type-safety) that
differs significantly from a sequential C/C++ code.

Here we introduce a proof-of-concept header library
named MetaPASS (Metaprogramming-enabled Parallelism
from Apparently Sequential Semantics) that can embed de-
pendency analysis and deferred execution directly in sequen-
tial C++ codes by transparently creating dependency cap-
ture hooks without requiring a complicated source-to-source
compiler or compiler extension. Template metaprogram-
ming alone is leveraged, producing user-level C++ code
that is almost indistinguishable from a sequential applica-
tion. As a proof-of-concept, MetaPASS has an extremely
simple user interface. It introduces only two user-level con-
structs: a class template async_ptr and an async function.
The MetaPASS header library is non-intrusive and modu-
larly designed, allowing existing C++ codes to be adapted
and integrated with existing runtime dependency analysis
libraries and task-based runtime systems.

We begin in Section 2 by introducing MetaPASS along
with existing C++ concurrency features, comparing to re-
lated work in Section 3. Section 4 shows example applica-
tions written using MetaPASS. Section 5 explains the soft-
ware stack and runtime required to support the program-
ming model. Section 6 explains the C++ parameter de-
tection idiom used to capture task dependencies without
extending the compiler. Finally, Section 7 discusses how
the programming model can be used in an MPI+X or stan-
dalone distributed memory context, particularly addressing
whether sequential semantics itself can be scalable.

2. METAPASS AND C++ CONCURRENCY
CLASS TEMPLATES

Asynchronous tasks, data-driven futures, and the
thread-safe std::shared_ptr templates (for multi-threaded
garbage collection) are now part of the C++ standard li-
brary [2]. C++ concurrency features leverage lightweight
class templates wrappers around existing types that “ap-
pend” functionality - reference counting in the case of
std::shared_ptr and asynchronous task creation with
std::future. A simple use of std::future and std::async
is shown in Figure 1, which allows integers to be computed
asynchronously and in parallel. While these C++ features

int taskA ();
int taskB ();
void print(int a, int b);
std::future <int > a = std::async(taskA);
std::future <int > b = std::async(taskB);
print(a.get(), b.get ());

Figure 1: Basic use of C++ std::future and std::async

enable several powerful programming patterns, they require

using namespace mpass;
void taskA(int& a);
void taskB(int& b);
void print(int a, int b);
/* ... */
async_ptr <int > a, b;
async(taskA , a);
async(taskB , b);
async(print , a, b);

Figure 2: A simple example using MetaPASS, which enables
a data-driven task model.

a blocking get() call to access values. Additionally, they
carry no information on whether the future value will be
used for reading or writing, and thus support execution-
driven task models only.

Following the C++ standard philiosophy, MetaPASS pro-
vides async_ptr, a type-safe, lightweight template wrapper
that enables a data-driven task model. Figure 2 shows the
MetaPASS code corresponding to the simple example from
Figure 1. We highlight that no blocking get() calls are
required and async_ptr need not even appear in the func-
tion prototypes. When tasks run, MetaPASS can transpar-
ently extract the value. To preserve sequential semantics,
the print function should execute after taskA and taskB.
taskA and taskB operate on different variables and hence
may safely run in parallel. Dependency analysis first requires
dependency capture of the variables used to derive ordering
constraints (i.e. the CDAG). OpenMP and Legion require
dependencies to be explicitly enumerated and tagged as read
or write. The C++ type system already distinguishes pass-
by-value, pass-by-reference, const, and non-const parame-
ters. C++ type traits can therefore distinguish read-only
copies, read-only in-place, and read-write uses. taskA re-
quires a non-const reference indicating read-write access.
print takes two arguments by value, indicating a read-only
copy.

spawn TaskA(a);
spawn TaskB(b);
sync;
spawn print(a,b);

Figure 3: An execution-driven transformation would require
that all decisions regarding when it is safe to spawn and sync
work must occur at compile-time.

The MetaPASS header library provides
metaprogramming-based transformations of application
code, allowing dependency capture to occur transparently.
These transformations occur at compile-time through
template metafunctions that perform functionality similar
to a source-to-source compiler (but are fully embedded in
standard C++). To illustrate, the code in Figure 2 could
be transformed in an execution-driven manner (Figure 3)
or a data-driven manner (Figure 4). The transformation to
the execution-driven code in Figure 3 requires the compiler
to perform dependency analysis, deciding at compile-time
when spawn is safe and when sync must occur to preserve
sequential semantics. Such transformations have been
explored in the context of auto-parallelizing compilers [29].
The data-driven transformation does not create explicit
spawn/sync statements, rather the transformation inserts
dependency capture hooks, but still requires runtime
dependency analysis. MetaPASS provides transformation
functionality equivalent to that in Figure 4 by directly lever-
aging the C++ language without requiring any compiler
modifications or extensions.

In summary, MetaPASS enables the following:
• Implicit parallelism from sequential semantics with a

non-blocking model
• Type-safety for all task arguments
• Dependency analysis across translation units (since

Task A(taskA , 1); //task with 1 dep
A.add_dependency(a, ReadWrite);
Task B(taskB , 1); //task with 1 dep
B.add_dependency(b, ReadWrite);
Task print(print , 2); //task with 2 deps
print.add_dependency(a, Read);
print.add_dependency(b, Read);

Figure 4: A data-driven transformation with dependency
capture hooks instead of explict spawn/sync statements,
rather the transformation inserts Dependency analysis is still
required at run-time.

analysis occurs at runtime)
• Read/write access modes automatically inferred from

type traits without explicit annotations

3. RELATED WORK
Legion is a data-driven framework that implements run-

time dependency analysis based on sequential semantics and
read/write access requests on so-called logical regions [7].
Logical regions are similar to async_ptr class templates
since they wrap an underlying data structure and track us-
ages. However, logical region substructure is specified in
terms of Legion-specific index and field spaces instead of
C++ types. Regent is a Lua-based higher-level language
that generates code for the underlying Legion C++-runtime,
which reduces much of the verbosity of the Legion C++
interface [31]. In both C++ and Regent, access modes
of logical regions must be explicitly marked in each task.
OpenMP [27, 5] and OmpSs [10] are pragma-based tasking
frameworks that provide a #pragma task for which in, out,
an inout dependencies can be declared.

HPX [22, 19] provides futures and other local control ob-
jects for controlling program execution. While HPX imple-
ments type-safe task objects and is amenable to data-flow
algorithms, it does not support sequential semantics with au-
tomatic dependency analysis, instead relying on explicit syn-
chronization constructs. PARSEC (previously DaGuE) sim-
ilarly supports data-flow applications [32]. While individual
kernels in PARSEC can be implement in C/C++/Fortran,
the code generating the DAG is usually given in a PARSEC-
specific JDF (job description format). Other notable exam-
ples of data-driven frameworks include TASCEL/Scioto [15,
23] and Deterministic Parallel Java [28].

Many execution-driven tasking frameworks exist that pro-
vide explicit async-finish or fork-join keywords for creating
tasks, inluding Cilk [8], X10 [13], and Habanero Java [12].
Another example of a runtime system requiring explicit
CDAG creation is OCR [24], where task dependencies are
explicitly defined through event structs. In all of these sys-
tems task creation and synchronization is done explicitly.

Asynchronous tasks, data-driven futures, and the thread-
safe shared_ptr templates (which manage multi-threaded
garbage collection) have been part of the C++ standard [2]
for some time now. One significant advantage of C++ con-
currency features is that their associated C++ class tem-
plates are lightweight wrappers around user-defined types.
This contrasts with systems like Legion (which uses index/-
field space constructs), MPI datatypes [11] (which uses vec-
tor/struct type creation calls and runtime-specific type de-
scriptors), or OCR (which requires void* data blocks be cast
to the correct type).

Domain-specific languages can also enable implicit paral-
lelism. Uintah implements patch-based structured adaptive
mesh refinement [30]. A sequential “patch-specific” code is
implemented and the runtime system automatically derives
task parallelism within a patch and implements data paral-
lelism across patches. Listzt defines operations on vertices,
edges, faces, and cells, which the Liszt framework then com-
piles into a task-based execution [14].

Template meta-programming has been used in Kokkos [16]

using namespace mpass;
using MatrixBlock = std::vector <double >;
void square_dgemm(int n, MatrixBlock const& a,

MatrixBlock const& b, MatrixBlock& c);
/* ... */
init ();
async_ptr <MatrixBlock > A[N][N];
for (int i=0; i < N; ++i){
async(dpotrf , n, A[i][i]);
for (int j=i+1; j < N; ++j){
async(dtrsm , n, A[i][i], A[j][i]);

}
for (int j=i+1; j < N; ++j){
async(dsyrk , n, A[j][i], A[j][j]);
for (int k=j+1; k < n; ++k){

async(square_dgemm , n, A[j][i], A[k][i], A[j][k]);
}

}
finalize ();

Figure 5: A Cholesky decomposition example written using
the MetaPASS programming model.
and Raja [21] for performance-portable loop programs.
Implicit parallelism has been also pursued through auto-
parallel compilers [29]. We cannot cover the entire field
and instead refer the reader to notable examples such as R-
stream [25] and Pluto [9], the latter of which relies heavily
on polyhedral analysis for auto-parallelization of loops [20].

4. METAPASS EXAMPLES
4.1 Cholesky Decomposition

To illustrate the programming model enabled by the
MetaPASS library, we consider the N ×N tile-based, right-
looking Cholesky decomposition [32] for blocks with n × n
elements. The MetaPASS code is shown in Figure 5. Simi-
lar to C++ futures, asynchronous tasks are created by pass-
ing a function and its arguments to an async function. In
contrast to an std::async and std::future, which create
asynchronous tasks without any dependency analysis, Meta-
PASS will detect the access modes of all variables used and
pass the information to a runtime dependency analysis layer.
The non-blocking Cholesky code in Figure 5 is not possible
with C++ futures, and would require tedious insertion of
synchronization or get() calls to ensure a correct algorithm
(to say nothing of a maximally performant one).

Figure 6: CDAG illustrating task dependencies for the tile-
based Cholesky decomposition example in Figure 5.

MetaPASS distinguishes task arguments (regular C++ ar-
guments) from task dependencies (async_ptr arguments).
In MetaPASS, task creation via async can mix arguments
and dependencies. Note that the function prototype param-
eters for Cholesky do not need to distinguish between regular
arguments and async_ptr arguments; however, at the call

using namespace mpass;
void stencil(int nGrid ,const Array& grad ,

Array& x_grd);
void chemistry(int nGrid ,const Array& Y,

const Array& T,const Array& p,Array& omega);
void updateRho(int nGrid ,const Array& rho_grd ,

const Array& u_grd , Array& rho);
...

using ArrayWrapper = async_ptr <Array >;
ArrayWrapper rho , u, p, T, Y, omega;
ArrayWrapper rho_grd ,u_grd ,p_grd ,T_grd ,Y_grd;
int nGrid = ...;
int nStep = ...;
init ();
async(initial_values , rho , up, T, Y, omega);
for (int t=0; t < nStep; ++t){

async(stencil ,nGrid ,rho ,rho_grd);
async(stencil ,nGrid ,u,u_grd);
async(stencil ,nGrid ,p,p_grd);
async(stencil ,nGrid ,T,T_grd);
async(stencil ,nGrid ,Y,Y_grd);
async(updateRho ,nGrid ,rho_grd ,u_grd ,rho);
async(updateVel ,nGrid ,rho_grd ,u_grd ,p_grd ,u);
async(chemistry ,nGrid ,Y,T,p,omega);
async(updateY ,nGrid ,rho_grd ,u_grd ,Y_grd ,omega ,Y);
async(updateT ,nPoints ,rho_grd ,u_grd ,p_grd ,T_grd ,T);
async(updateP ,nPoints ,rho ,T,Y,p);

}
finalize ();

Figure 7: An iterative 1D-stencil chemistry example written
using the MetaPASS programming model.

sites, the metaprogramming layer distinguishes between the
integer argument n and the async_ptr dependencies. For
square_dgemm, there are three dependencies and one argu-
ment at the call site. All arguments are copied since the
corresponding parameters in the function prototype have
pass-by-value semantics, whereas the dependencies to this
function are pass-by-reference, indicating that the argument
should be a asynchronously referencable entity (in this case,
an async_ptr). In this way, task parameters may be ar-
guments at one async invocation and may be dependencies
at another async invocation. This symmetry of arguments
and dependencies in the function prototype is (as far as we
know) unique to MetaPASS.

Figure 6 shows the CDAG generated for a 4x4 tiled al-
gorithm, showing task-ordering dependencies. The dense
Cholesky shown here is not data-dependent aside from the
structure parameters n and N . However, the dependency
analysis still occurs at runtime. MetaPASS only captures
variable uses and emits calls to a dependency analysis layer.
Execution of tasks and dependency analysis/CDAG genera-
tion can be occurring concurrently.

4.2 Chemistry
Chemistry problems can introduce much more exten-

sive CDAGs and are often iterative, introducing anti-
dependencies into the graph, in which a task with write per-
missions (non-const reference) must wait for a reader (const
reference) to complete. MetaPASS fully supports the spec-
ification and capture of anti-dependencies, as shown in the
simple 1-D chemistry example in Figure 7. In the first few
lines of the example, we again see that function prototypes
do not have to refer to async_ptr objects. The combination
of const/non-const and value/reference determines whether
a variable is a read-only copy, read-only in-place, or read-
write dependency. In this example each function takes an
initial argument (an integer number of points on the grid)
followed by dependencies. Capturing variables and access
modes with sequential semantics produces the CDAG in Fig-
ure 8, showing how data usages induce task ordering con-
straints (both dependencies and anti-dependencies).

5. METAPASS SOFTWARE STACK
The overall software stack for an application written us-

ing MetPASS is shown in Figure 9. Like Boost [1] or the

Figure 8: Data-flow CDAG with dependency edges between
data vertices (squares) and task vertices (circles) for the 1D-
stencil chemistry example from Figure 7. Anti-dependency
constraints are shown in red octagons.

C++ Standard Template Library, MetaPASS is a header-
only library containing the async_ptr class template and
corresponding template metaprogramming features. As dis-
cussed in Section 2, the template layer creates hooks into
a runtime dependency analysis layer. At run-time, the en-
forcement of sequential semantics occurs within the depen-
dency analysis layer. Once dependency analysis is complete
for a given task, it can be registered with a scheduler. The
MetaPASS layer does not require any thread-safety aside
from atomic integers for reference counting. In contrast, the
dependency analysis layer must safely run in parallel. Once
multiple tasks begin running on different threads, the adding
or clearing of the same variable (dependency) from multiple
tasks might occur simultaneously.

The runtime implementation could leverage several dif-
ferent libraries, for example using async/join calls in Cilk
or X10, Event Driven Tasks (EDTs) in OCR, or explicit
pThreads or std::threads. Dependency analysis [33] and cor-
responding runtime implementations have been described in
detail elsewhere. Here we emphasize the C++ concepts en-
abling type-safe deferred execution and delay a complete
description of the dependency analysis and scheduler using
MetaPASS for later work. The focus here is providing an
“STL-inspired” C++ programming model for task-based ex-
ecution that is compatible with existing runtime infrastruc-
ture. The remainder of this section provides additional de-
tails regarding the C++ runtime API required to support
the MetaPASS programming model.

5.1 Header Library
As a proof-of-concept library, MetaPASS provides a very

minimal interface. Calls to async create task objects. To
avoid template code in the dependency analysis and runtime
layers, tasks have a simple abstract interface:

struct TaskBase {
virtual void run() = 0;
std::vector <Dependency > dependencies;

};

Each Dependency is assigned a unique ID by the header li-

Compile-time Dependency Capture
MetaPASS Header-only Library

C++ Template Metaprogramming

Runtime Dependency Analysis
C++ Library

Sequential Application Code
C++

Task Scheduler/Runtime
Cilk/
X10 REALMstd:thread/

pThread OCR

Legion

Figure 9: Basic software stack showing transformation of se-
quential C++ code into task-based execution. Example li-
braries that might be integrated with MetaPASS are shown.

brary. The header library register tasks with the dependency
analysis layer via the function:

void register_task(TaskBase && task);

The function uses C++-11 move semantics, indicating
“transfer of ownership” to the dependency analysis layer.
The IDs and read/write access mode of all variables in the
task is contained in the vector of dependencies, providing all
the information needed for dependency analysis.

The concrete Task class template in MetaPASS uses
variadic templates to store all function arguments in a
std::tuple. This critical step enables deferred execution
(and hence task-based lookahead). Rather than execut-
ing immediately, the function arguments are stashed in a
std::tuple (making copies only as necessary, based on the
call-site argument type and the function parameter type
traits). When dependencies are satisfied, task->run() can
be invoked, which unpacks arguments (potentially from de-
pendencies) and passes them to the function.

5.2 Dependence Inference: Call Arguments
and Function Parameters

The class declaration above does not show how depen-
denices are actually inferred. C and C++ allow implicit type
conversions. The variable type passed to a function may
not exactly match the function prototype. Both the call-
site type and the function parameter type are required for
dependency capture. Table 1 details the semantics of C++
variable captures. Table 1 shows that MetaPASS is actually
compatible with multi-level tasking, the details of which we
delay to later work. Functions may take async_ptr param-
eters, which indicates that they may themselves schedule
more tasks dependent on that parameter.

6. PARAMETER DETECTION IDIOM
To embed the above programming model in C++ without

compiler modifications, we need several C++ template
metafunctions that detect if the function parameter2 is by
value, a const reference, or a non-const reference. As de-
scribed above, the first two of these indicate read-only usage,
while the last indicates modify usage. If we wish to support
multilevel tasking, we also need to be able to detect when a
function requests permission to schedule tasks dependent on
an argument — that is, when it has a parameter of the form
async_ptr<T>. For the first three of these requirements, we
define the metafunctions parameter_N_is_by_value,
parameter_N_is_const_lvalue_ref, and
parameter_N_is_nonconst_lvalue_ref, all of which
are described in Section 6.3.2. The last, which is a simple
extension to the first three, is described in Section 6.3.3.

2The distinction between parameter and argument is impor-
tant here. “Parameter” is a formal parameter in the function
definition while“argument”is a variable given at the call site.

These metafunctions build on a fairly broad array of tem-
plate metaprogramming idioms and patterns and therefore
we begin this Section by laying out the foundational idioms
upon which our metafunction implementations rely.

6.1 Parameter Detection and SFINAE
Much of modern C++ template metaprogramming is

based on the Substitution Failure Is Not An Error (SFINAE)
principle — that is, when the compiler creates a candidate
set of function overloads or class template instantiations by
substitution of template arguments, candidates that would
lead to errors are ignored.[4, §14.8.2] For instance:

template <class T> void func(T) { }
template <class U> void func(typename U::type) { }
struct A { typedef double type; };
int main() {

func <A >(3.14); // calls 1st overload
func <int >(25); //calls 2nd overload
// failed subsitution on 2nd overload isn’t an error
//even though ‘typename int::type ‘ is ill -formed

}

We can detect if a valid function overload func exists:

// Some functions to do detection on:
double func(int);
int func(std:: string const &);

// helper , needed for reasons explained below
template <class > struct wrap { typedef void type; };

// Metafunction that "detects" if func can be
// called with an object of type T
template <class T, class Enable=void >
struct func_valid_for { enum { value = false }; };

// This specialization takes advantage of SFINAE:
template <class T>
struct func_valid_for <T, test substitution func(T)>
{ enum { value = true }; };
/* ... */
func_valid_for <int >:: value; // true
func_valid_for <long >:: value; // true
func_valid_for <std::string >:: value; // true
func_valid_for <std::vector <int >>::value; // false

with pseudocode inserted. Because of rules for partial order-
ing of class template specializations,[4, §14.5.5.2] any type T
that does not lead to a substitution failure for the second ver-
sion of func_valid_for will prefer that specialization, and
have an enumeration member value equal to true. That
will only happen if it is valid call func with objects of type
T. The test substitution pseudocode can be written out:

typename wrap <decltype(func(std::declval <T>())) >:: type

which will be a valid substitution if the function overload
exists and a failure otherwise (the details of decltype and
declval are not needed here and the interested reader can
consult the C++ reference). SFINAE is the basis for a num-
ber of widely used C++ idioms, most notably the enable_if
idiom (incorporated into namespace std in C++11 on-
wards), which allows the selection of function overloads
or class template partial specializations based on arbitrary
properties of template arguments.

The simple form of func_valid_for doesn’t work for arbi-
trary functions, functors, or other callables3 with arbitrary
number of arguments. Making this generalization requires
the use of variadic template parameters, which is a feature
available in C++11 onwards. We can also make the gener-
alization to an arbitrary callable by making it a template
parameter as well. For instance:

template <class Callable , class Enable , class ... Args >
struct detect_valid : std:: false_type { };

using std:: declval;
template <class Callable , class ... Args >
struct detect_valid <

3A “callable” here refers to functions, lambdas, and classes
(termed functors) with a call operator operator()

Call Argument Type
Function Parameter Type

By-value Reference const Reference async_ptr<T> async_ptr<T const>

async_ptr<T> Read-write copy
dependency

Read-write in-place
dependency

Read-only in-place
dependency

Read-write schedule
dependency

Read-only schedule
dependency

async_ptr<T const> Read-only copy
dependency

Compile-time error Read-only in-place
dependency

Compile-time error Read-only schedule
dependency

lvalue Read-write copy
argument

Compile-time error Compile-time error Compile-time error Compile-time error

rvalue Read-write copy
argument

Read-write copy
argument

Read-only copy
argument

Compile-time error Compile-time error

Table 1: How read-only/read-write and argument/dependency properties are inferred from variables types at the call site and
parameter types in the function.

Callable ,
typename wrap <

decltype(declval <Callable >()(declval <Args >()...))
>::type ,
Args ...

> : std:: true_type { };

Inheriting from std::false_type and std::true_type is
the preferred way of setting value to false or true.
We can then use detect_valid the same way we used
func_valid_for:

void f1(int);
std:: string f2(float);
struct Functor { double operator ()(double , int); };
/* ... */
detect_valid <decltype(f1), void , int >:: value // true
detect_valid <decltype(f2), void , float >:: value // true
detect_valid <Functor , void , double , int >:: value // true

This can be cleaned up using a simple alias:

template <class F, class ... Args >
using is_valid = detect_valid <F, void , Args ...>;

A very simple generalization on this theme leads to the
void_t-based detection idiom, first popularized by Walter
E. Brown and accepted as an extension to the C++ stan-
dard library for the C++17 standard.[3]

6.2 Reverse Template Argument Deduction
The idiom discussed above provides much of the frame-

work needed for detecting the validity of specific arguments
when their type and number are known. For our program-
ming model, we need something more general. Most C++
developers are familiar with template argument deduction:

template <class T>
void my_func(T const& arg) { }
/* ... */
my_func (42); // T deduced as int , arg is int const&
std:: string my_str = "hello";
my_func(my_str); // T deduced as std::string , arg

// is std:: string const&

The compiler pattern matches the type of the call argument
(int in the first, std::string& in the second) with the type
expression of the function parameter (T const&) to deter-
mine the type T for substitution.4 This process can be made
to happen backwards:

struct backwards {
template <class T>
operator T const &();

};
void f1(std:: string const &);
void f2(double);

When the compiler encounters a call like f1(backwards()),
the C++ standard states[4, §14.8.2.3] that template argu-
ment deduction works basically the same way, but back-
wards: the compiler pattern matches the function param-
eter (std::string const& for f1) with the type expression
in the conversion operator (T const& in this case).

6.3 Generalized Parameter Type Detection
4The exact rules for template argument deduction are quite
extensive,[4, §14.8.2][26]).

The basic strategy for the parameter detection metapro-
gramming toolkit is as follows: 1) provide a metafunction
that can count the number of arguments (using a class with
a permissive templated conversion operator), then 2) replace
the Nth argument with a class with a restrictive templated
conversion operator, and finally 3) use the call detection id-
iom to determine the validity of making a call of the callable
in question with the replacement argument.

6.3.1 Counting Parameters
To count the parameters to a callable, we first need an ar-

gument that we can count on to be a valid argument for any
parameter. For our purposes, there are four main catagories
of parameters we need to worry about: by-value parame-
ters (T or T const), non-const lvalue references (T&), const
lvalue references (T const&), and rvalue references (T&&).
The class that we need for this purpose is

struct any {
template <class T> operator T();
template <class T> operator T&() const;

};

Consider each of the categories relevant here. For non-const
lvalue reference parameters (for instance, int&), the first
overload clearly fails deduction since a temporary can’t bind
to a non-const reference. The second overload works. Simi-
larly, for rvalue reference parameters like int&&, the second
overload fails because a lvalue can’t bind to an rvalue ref-
erence, but the first overload (which generates an rvalue)
works. The const lvalue reference case is a bit more compli-
cated, since either template could generate a type that can
bind to a const lvalue reference, but the compiler prefers
const conversion of a reference to the generation of a tem-
porary,[4, §8.1.3/(5.1.2)] thus imposing a partial order on
the generated candidates. Now consider a by-value param-
eter like int. The first overload works,5 but the second
overload also works. This ambiguity would normally lead to
a substitution failure, except we’ve marked the second con-
version operator as a const member function of any, thus
imposing a partial ordering on these two candidates (i.e., if
the instance of any on the call side is const, the second will
be preferred; otherwise, the first will be preferred).

With the form of the “universal argument” any estab-
lished, it is relatively simple to write a recursive metafunc-
tion that counts arguments of a given callable (using the
is_valid metafunction from above):6

template <class F, class ... Args >
struct count_parameters

: std:: conditional <
is_valid <F, Args ...>::value ,
std:: integral_constant <size_t , sizeof ...(Args)>,
count_parameters <F, Args..., any >

5assuming the copy and move constructors of the parameter
type aren’t both deleted; if they are, the callable itself can’t
be invoked in any usual context anyway
6A more general version of count_parameters can quite eas-
ily be written to handle things like multiple overloads and
default arguments, but is omitted here for brevity.

>::type::type
{ };

where std::conditional is a metafunction from the C++
standard library that selects the second or third argu-
ment depending on the value of the first (boolean) tem-
plate argument. The double ::type::type allows the re-
cursion to short-circuit properly, so that arbitrarily many
count_parameters instantiations aren’t generated.

6.3.2 Replacing the Nth Argument
To actually garner useful information about the callable’s

parameters, we need both (A) more restrictive analogs of
any that work for some (but not all) of our parameter
“catagories” of interest (or that test for some other type
property of interest), and (B) a way to probe each parameter
individually by substituting these more constrained analogs
into the Nth argument slot and testing for validity of the
call. The latter of these two can be done using a recursive
metafunction similar to count_parameters:

template <class F, size_t N, size_t I, size_t Tot ,
class sub_any , class ... Args >

struct sub_N_helper
: sub_N_helper <F, N, I+1, Tot , sub_any , Args...,

typename std:: conditional <
I == N, sub_any , any

>::type
>::type { };

// recursive base case specialization:
template <class F, size_t N, size_t Tot ,

class sub_any , class ... Args >
struct sub_N_helper <F, N, Tot , Tot , sub_any , Args...>

: is_valid <F, Args...> { };
// type alias to call the helper:
template <class F, size_t N, class constrained_any >
using is_valid_substitute_N = sub_N_helper <F, N, 0,

count_parameters <F>::value , constrained_any >;

All that remains to develop a metafunction like
parameter_N_is_by_value<F, N> is to come up with
useful types to give for the constrained_any template ar-
gument. Eventually, we want to detect the four parameter
categories (e.g., int, int&, int const&, and int&&) so that
we can determine whether an argument’s usage is read-only
or read-write. We can start with the by-value case. As
mentioned in Section 6.3.1, the implementation of any
in that section would not work (i.e., would generate two
ambiguous candidates) if latter template function were not
marked as const. We can use that to our advantage here:

struct ambiguous_if_by_value {
template <class T> operator T();
template <class T> operator T&();

};
// The Nth parameter is by value only if it *cannot* be
// called with ambiguous_if_by_value in the Nth slot:
template <class F, size_t N>
using parameter_N_is_by_value = std:: integral_constant <

bool , !is_valid_substitute_N <
F, N, ambiguous_if_by_value

>::value
>;

Next, we can handle const lvalue references:

struct any_const_lvalue_ref {
template <class T> operator T const &();

};
template <class F, size_t N>
using parameter_N_is_const_lvalue_ref =

std:: integral_constant <bool ,
is_valid_substitute_N <F, N,

any_const_lvalue_ref >:: value
&& !parameter_N_is_by_value <F, N>:: value

>;

where we’ve explicitly excluded by-value parameters because
they can also accept an argument of the form T const&.
parameter_N_is_rvalue_ref is omitted here for brevity.
Once these three are implemented, the implementation of
parameter_N_is_nonconst_lvalue_ref is just the negation
of the other cases:

template <class F, size_t N>
using parameter_N_is_nonconst_lvalue_ref =

std:: integral_constant <bool ,
!parameter_N_is_by_value <F, N>:: value
&& !parameter_N_is_const_lvalue_ref <F, N>:: value
&& !parameter_N_is_rvalue_ref <F, N>:: value

>;

This provides most of the functionality we need for the pro-
gramming. To detect a parameter of the form async_ptr<T>
(required for hierarchical tasking), we need one more piece.

6.3.3 Generalizing Constraints on any

Using enable_if and a template template parameter, we
can actually generalize the constraint of our universal argu-
ment any to use an arbitrary metafunction as such:

template <template <class...> class UnaryMetafunction >
struct conditional_any {

template <class T, class=typename enable_if <
UnaryMetafunction <T>::value >:: type

>::type >
operator T();

template <class T, class=typename enable_if <
UnaryMetafunction <T&>::value >:: type

>::type >
operator T&();

};

Then, we can detect async_ptr<T> arguments using:

template <class T>
struct is_async_ptr : std:: false_type { };
template <class T>
struct is_async_ptr <async_ptr <T>>

: std:: true_type { };
// Make a "decayed" version so we can detect ,
// e.g., async_ptr <T>& as well:
template <class T>
using decayed_is_async_ptr =

is_async_ptr <typename std::decay <T>::type >;
// and use this metafunction to build a detector:
template <class F, size_t N>
using parameter_N_is_async_ptr =

is_valid_substitute_N <F, N,
any_conditional <decayed_is_async_ptr >

>;

Using this detector, we can determine whether a callable
intends to use an argument’s data or whether it intends to
schedule child tasks that do so.

7. DISTRIBUTED MEMORY
Using MetaPASS for MPI+X parallelism is straightfor-

ward. While future extensions may incorporate MPI calls
into the dependency capture and analysis, the current ver-
sion follows the OpenMP model of parallel regions. OpenMP
uses C/C++ scope to begin/end regions. The current work
uses init and finalize calls to begin and end a MetaPASS
region. An alternative syntax could use C++11 lambdas to
explicitly scope parallel regions without init and finalize
calls, but we delay that for later work.

Rather than MPI+X mode, MetaPASS is compatible with
HPX or Legion tasking that begins with a single-level top
level task instead of many SPMD (single-program, multi-
ple data) tasks as done in MPI. Sequential semantics would
therefore cover both on-node and off-node parallelism. The
critical challenge in such a unified programming model is
the scalability of sequential semantics itself. Consider an
SPMD-style loop launching a huge number of tasks corre-
sponding to grid patches in a mesh (i.e., N is large):

int top_level_task(int argc , char** argv){
...
for (int patch =0; patch < N; ++patch){

async(timestep , mesh.patches[N]);
}

For this to be performant two issues must be addressed:
1. Dependency analysis must be distributed since a sin-

gle process would quickly become a bottleneck if all

analysis were performed in one place.
2. All mesh data cannot be allocated in the root task since

the root process would quickly run out of memory.
MetaPASS helps in addressing the second issue.

async_ptr works much like a shared_ptr and can there-
fore hold a null or stub value. Tasks can be scheduled to
an async_ptr without allocating memory to large under-
lying arrays. After timestep tasks have been distributed,
arrays for holding mesh data can be allocated in a scal-
able manner. For scheduling remote tasks or work-stealing,
MetaPASS tasks critically know the exact type of all param-
eters (with some additional complications for polymorphic
base classes). For migrating tasks, MetaPASS can there-
fore easily provide user-level serialization hooks for moving
dependencies between processes.

The first issue (scalable dependency analysis) is more chal-
lenging and has received considerable attention in Legion [7].
Legion provides an index space launch over data partitions
with special optimizations for partitions that are explicitly
declared as disjoint (hence guaranteeing no read/write con-
flicts between tasks). The index space launch is a program-
ming model construct, leaving the mechanism unspecified
and is hence compatible with a, e.g., tree-based implemen-
tation. Extending MetaPASS to support distributed mem-
ory will similarly require a programming model construct.
Rather than relying directly on C++ loops, MetaPASS will
introduce another feature to indicate that the backend must
support a scalable launch, e.g.:

async_for(timestep , 0, N, mesh.patches);

8. CONCLUSIONS
In this paper we introduced the MetaPASS programming

model, highlighting the ease with which it integrates into ex-
isting C++ application codes through examples. Our “STL-
inspired”C++ programming model for task-based execution
has a modular design and is compatible with existing run-
time infrastructure (the header library will be made publicly
available at http://darma.sandia.gov pending Sandia’s soft-
ware release process). Herein we have focused on the C++
concepts that enable type-safe deferred execution of tasks,
describing in detail the template metaprogramming infras-
tructure comprising our header library. Future work will ex-
plore MetaPASS integration with existing dependency anal-
ysis and runtime system technologies, both in an MPI+X
and a standalone context.

9. ACKNOWLEDGMENTS
Sandia National Laboratories is a multi-program labora-

tory managed and operated by Sandia Corporation, a wholly
owned subsidiary of Lockheed Martin Corporation, for the
U.S. Department of Energy’s National Nuclear Security Ad-
ministration under contract DE-AC04-94AL85000. This work
was supported by the U.S. Department of Energy (DOE)
National Nuclear Security Administration (NNSA) Advanced
Simulation and Computing (ASC) program.

10. REFERENCES
[1] Boost C++ Libraries. http://www.boost.org.
[2] ISO/IEC 14882:2014(E) - Programming Language C++.
[3] ISO/IEC JTC1 SC22 WG21 N4436 - Proposing Standard

Library Support for the C++ Detection Idiom. Technical
Report N4436, Geneva, Switzerland, April 2015.

[4] ISO/IEC 14882:2014(E) - Programming Language C++
[Working Draft]. Technical Report N4594, Geneva, Switzerland,
May 2016.

[5] E. Ayguadè et al. A Proposal for Task Parallelism in OpenMP.
In A Practical Programming Model for the Multi-Core Era.
Springer Berlin Heidelberg, 2008.

[6] R. F. Barrett et al. Toward an evolutionary task parallel
integrated MPI + X programming model. In PMAM ’15:

Programming Models and Applications for Multicores and
Manycores, pages 30–39, 2015.

[7] M. Bauer et al. Legion: expressing locality and independence
with logical regions. In SC ’12: High Performance Computing,
Networking, Storage and Analysis, pages 1–11, 2012.

[8] R. D. Blumofe et al. Cilk: An Efficient Multithreaded Runtime
System. SIGPLAN Notices, 30:207–216, 1995.

[9] U. Bondhugula et al. A practical automatic polyhedral
parallelizer and locality optimizer. In PLDI 2008:
Programming Language Design and Implementation, pages
101–113, 2008.

[10] J. Bueno et al. Productive Programming of GPU Clusters with
OmpSs. In IPDPS: 26th International Parallel & Distributed
Processing Symposium, pages 557–568, 2012.

[11] S. Byna et al. Improving the Performance of MPI Derived
Datatypes by Optimizing Memory-Access Cost. In Cluster
2013, pages 412–419, 2003.

[12] V. Cavè et al. Habanero-Java: the new adventures of old X10.
In PPPJ 2011: Principles and Practice of Programming in
Java, pages 51–61, 2011.

[13] P. Charles et al. X10: An Object-Oriented Approach to
Non-Uniform Cluster Computing. In OOPSLA 2005: 20th
Annual Conference on Object-Oriented Programming
Systems, Languages, and Applications, pages 519–538, 2005.

[14] Z. DeVito et al. Liszt: a domain specific language for building
portable mesh-based PDE solvers. In SC ’11: High
Performance Computing, Networking, Storage and Analysis,
pages 1–12, 2011.

[15] J. Dinan et al. Scioto: A Framework for Global-View Task
Parallelism. In ICPP 2008: 37th International Conference on
Parallel Processing, pages 586–593, 2008.

[16] H. C. Edwards and C. R. Trott. Kokkos: Enabling Performance
Portability Across Manycore Architectures. In XSW 2013:
Extreme Scaling Workshop , pages 18–24, 2013.

[17] N. Fauzia et al. Beyond reuse distance analysis: Dynamic
analysis for characterization of data locality potential. ACM
Trans. Archit. Code Optim., 10:1–29, 2013.

[18] M. P. I. Forum. MPI: A Message-Passing Interface Standard:
Version 2.1 . 2008.

[19] G. R. Gao et al. ParalleX: A Study of A New Parallel
Computation Model. In IPDPS 2007: 21st International
Parallel and Distributed Processing Symposium, pages 1–6,
2007.

[20] M. Griebl. Loop Programs for Distributed Memory
Architectures. PhD thesis, Universität Passau, 2004.

[21] R. Hornung and J. Keasler. The RAJA Portability Layer:
Overview and Status Tech Report LLNL-TR-661403. , 2014.

[22] H. Kaiser et al. HPX: A Task Based Programming Model in a
Global Address Space. In International Conference on
Partitioned Global Address Space Programming Models, pages
1–11, 2014.

[23] J. Lifflander, S. Krishnamoorthy, and L. V. Kale. Work
Stealing and Persistence-Based Load Balancers for Iterative
Overdecomposed Applications. In HPDC ’12:
High-Performance Parallel and Distributed Computing, pages
137–148, 2012.

[24] T. Mattson and R. Cledat. OCR: The Open Community
Runtime Interface v1.1.0.

[25] B. Meister et al. R-Stream Compiler. In Encyclopedia of
Parallel Computing. Springer US, Boston, MA, 2011.

[26] S. Meyers. Effective Modern C++: 42 Specific Ways to
Improve Your Use of C++11 and C++14. O’Reilly Media,
2014.

[27] S. L. Olivier et al. OpenMP Task Scheduling Strategies for
Multicore NUMA Systems. Int. J. High Perform. Comput.
Appl., 26:110–124, 2012.

[28] J. Robert et al. A type and effect system for deterministic
parallel Java. SIGPLAN Not., 44:97–116, 2009.

[29] R. Rugina and M. Rinard. Automatic parallelization of divide
and conquer algorithms. In PPoPP ’99: Principles and
practice of parallel programming, pages 72–83, 1999.

[30] J. Schmidt et al. Large Scale Parallel Solution of Incompressible
Flow Problems Using Uintah and Hypre. In CCGrid ’13:
Cluster, Cloud and Grid Computing, pages 458–465, 2013.

[31] E. Slaughter et al. Regent: a high-productivity programming
language for HPC with logical regions. In SC ’15: High
Performance Computing, Networking, Storage and Analysis,
pages 1–12, 2015.

[32] F. Song et al. Dynamic Task Scheduling for Linear Algebra
Algorithms on Distributed-Memory Multicore Systems. In SC
’09: High Performance Computing, Networking, Storage and
Analysis, pages 1–11, 2009.

[33] S. Treichler, M. Bauer, and A. Aiken. Language Support for
Dynamic, Hierarchical Data Partitioning. In OOPSLA 2013:
Object Oriented Programming Systems Languages and
Applications, pages 495–514, 2013.

