
LLNL-TR-737748

A Walking Method for
Non-Decomposition Intersection and
Union of Arbitrary Polygons and
Polyhedrons

M. Graham, J. Yao

August 30, 2017



Disclaimer 
 

This document was prepared as an account of work sponsored by an agency of the United States 
government. Neither the United States government nor Lawrence Livermore National Security, LLC, 
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States government or Lawrence Livermore National Security, LLC. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the United States government or 
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product 
endorsement purposes. 

 
 

 

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore 
National Laboratory under Contract DE-AC52-07NA27344. 
 



A Walking Method for Non-Decomposition Intersection

and Union of Arbitrary Polygons and Polyhedrons

Marissa Grahama,b, Jin Yaob,1

aBrigham Young University
bLawrence Livermore National Laboratory

Abstract

We present a method for computing the intersection and union of non-
convex polyhedrons without decomposition in O(n log n) time, where n is
the total number of faces of both polyhedrons. We include an accompanying
Python package which addresses many of the practical issues associated with
implementation and serves as a proof of concept.

The key to the method is that by considering the edges of the original ob-
jects and the intersections between faces as walking routes, we can efficiently
find the boundary of the intersection of arbitrary objects using directional
walks, thus handling the concave case in a natural manner. The method also
easily extends to plane slicing and non-convex polyhedron unions, and both
the polyhedron and its constituent faces may be non-convex.

Keywords:
non-convex, non-decomposition, intersection, union, directional walk

1. Introduction

While polyhedron intersection is a well-studied problem, traditional meth-
ods require one or both polyhedrons to be convex [1] [2], or involve decompo-
sition of the original objects. We notice that the boundary of the intersection
is composed of subsets of the original faces of the polyhedrons, as demon-
strated in Figure 1; specifically, the portion which is interior to the other
polyhedron. In the case of the union, the boundary is composed of the exte-
rior portions.

1corresponding author

LLNL technical report September 1, 2017



Figure 1: Example of intersection and union between two convex objects.

Figure 2: Example of the walks which form the faces of the intersection and union.

For two closed polyhedrons whose faces have outward pointing normal
vectors, we may find these interior portions with a counterclockwise walk
around the interior or exterior portion of the original faces, as demonstrated
in Figure 2. The problem is then reduced to finding the interior or exterior
portion of each face.

We observe that the edges of these new faces are created by a combination
of subsets of the original edges and edges formed by intersection with faces
of the other polyhedron. The intersection of polyhedrons P and Q then
becomes a three step process, as shown in Figure 3.

• Intersect each face of P with the relevant faces of Q to find and save
the segments of intersection.

• Check the edges of each face, if necessary, and clip away the exterior
portions (or interior for the union) to get the rest of the edges of the
intersection polyhedron.

• For each face of the original polyhedrons, walk along the saved edges

2



to obtain the new face(s) of the intersection polyhedron.

Figure 3: Overview of the steps of the intersection process.

1.1. Preprocessing

Throughout the method, we assume that the polyhedron is closed, and
that vertices can uniquely hashed to a certain number of decimal places. We
ensure that this is the case by only accepting polyhedrons on read-in that
satisfy our requirements.

To ensure that our polyhedron is closed and the normal vectors point
uniformly outwards or inwards, we require that each edge be present exactly
twice and running in opposite directions. We attempt to minimize numerical
instability by ensuring that all faces have area greater than a given ε which
is intended to represent the digits of accuracy in the vertices. Similarly, all
edges must have length greater than the same ε. We also check for non-
planar, non-simple, and degenerate faces.

2. Inclusion Testing

In order to determine the portions of an edge which are interior or exterior,
we need to be able to test whether the vertices of a polyhedron are inside,
outside, or on the boundary of another. We also need to test the midpoints
between vertices and intersections to determine whether line segments are
interior or exterior. For our implementation, we use a ray casting method.

3



2.1. Bounding Boxes

For both inclusion testing and face intersection, it is important to quickly
find the faces which intersect a certain bounding box or casting ray. In the
absence of tree-based spatial structures, we use a simple set intersection to
accelerate this process.

Figure 4: Even and odd numbers of
boundary crossings indicating exte-
rior and interior query points.

We find the minimum and maximum co-
ordinate of each face along each axis and
sort. Then finding the faces that satisfy
a certain inequality condition (x <= xmax,
etc.) is reduced to the O(log n) operation of
searching a sorted list, and we can use set
intersection to find the faces that satisfy all
the necessary inequality conditions. Exclud-
ing preprocessing, this method can approach
O(log n) under good conditions. It is not
a substitute for tree-based data structures,
but it allows the large test cases to run in
a reasonable amount of time, comparable to
their read-in cost.

2.2. Method

Since our polyhedron is closed, we can
count the number of boundary crossings to determine whether a certain query
point is interior or exterior. An odd number of boundary crossings indicates
an interior point and an even number indicates exterior, as in Figure 4.

Figure 5: Projection of a query point and a
face to test for a boundary crossing.

To find these boundary crossings,
we cast a ray from the query point
in an axis-aligned direction. We find
the faces whose bounding box inter-
sects the ray, and determine whether
each of them represents a boundary
crossing, as in Figure 5. We project
onto the plane perpendicular to the
casting ray and test whether the pro-
jected query point is inside the pro-
jected face. If it is, we have crossed
the boundary; if it is exterior, we
have not.

4



Figure 6: If the query point is directly below an edge or vertex, the result is ambiguous.

If, however, the projected query point is along the boundary of the pro-
jected face, as in Figure 6, we know nothing.

In this case, we randomly choose a new point between the original query
point and the intersection point, and cast the ray in another direction, as in
Figure 7.

Since the trouble is usually a result of integer-aligned vertices and query
points, the randomly chosen point is highly unlikely to encounter edges or
vertices and the process terminates with the next iteration.

We also encounter a problem if the query point is inside the bounding
box of a face and it is therefore unclear which side of the face we are on, also
as shown in Figure 7. In this case, we project the query point onto the face
along the casting axis, and check whether the projected point is along the
casting ray. This tells us whether the casting ray crosses the plane defined
by the face.

3. Face Intersection

If two faces are not coplanar or parallel, there exists a line of intersection
between the planes in which they lie. If the faces are not disjoint, the inter-
section between the two faces is then a subset of this line, consisting of line
segments and points. The single points are ignored, but the line segments
form edges of the polyhedron intersection or union.

For each face of each polyhedron, we collect the faces which intersect its
bounding box, and for each of those we find these segments of intersection

5



Figure 7: Left: Projecting query point onto the face to see if the projection is along
the casting axis. On the left, the projection point is along the casting axis, so we have
crossed the boundary. On the right, we have not. Right: Switching directions to avoid an
ambiguous boundary crossing case.

Figure 8: Left: A segment of intersection between two polygons. Center: Multiple seg-
ments of intersection between two polygons. Right: A segment of intersection between
two faces, with corresponding edge directions.

and as illustrated in Figure 9.

• Get the points of intersection between the edges of each face and
the plane in which the other face lies. This reduces to repeated line
segment-plane intersection. In Figure 9, these are represented as stars
the same color as their face of origin.

– We note that this is the primary place in the code where new
points are created, and thus the primary place in the code in
which perturbations can be introduced. It is therefore important
to have a robust implementation of line-plane intersection.

– These points of intersection form the potential endpoints of the
segments of intersection.

6



Figure 9: Collecting intersection points and testing midpoints for inclusion to determine
the segments of intersection between two faces.

– In addition to forming endpoints of the segments of intersection,
these points indicate where edges may have crossed the boundary
of the other polyhedron and therefore need to be stored for future
use.

• Sort the points with respect to their distance along the line of intersec-
tion.

• Test the midpoints of each pair for inclusion in the spatial polygons be-
ing intersected. Since these are midpoints between the only intersection
points, we are unlikely to lose the result to perturbations introduced
in the 2d conversion process. In Figure 9, these are represented as red
dots.

• If the midpoint between a sequential pair belongs to both polygons, it
forms an edge of the intersection or union.

• Store the edge on both faces, ensuring the direction of the edge is
counterclockwise with the face.

7



3.1. Coplanar Faces

Since the intersection between coplanar faces does not lie along a single
line, they need to be handled differently. We convert the faces to 2d and get
the intersection or union there, then add the resulting edges to each face. We
also notice that in the case of the union, the rest of the edges found during
the usual intersection process may be interior to the union of the coplanar
faces, as shown in Figure 10. Therefore, while we still store the intersection
points as usual, we do not store any additional edges.

In practice, this is implemented by clearing all edges when we discover
that a face is coplanar and flagging it as such, and checking that faces have
not been flagged as “coplanar” before intersecting them.

Figure 10: We take the union of the polyhedrons on the left. Notice that when we take
the union, while the dotted red lines are on the boundary of their source faces, they are
interior to the union of the two faces and should therefore not be included in the result.

3.2. Union

The edges found by face intersection are used in both the polyhedron
intersection and the union. The difference is that the edges used for the
intersection run the opposite direction as those used in the union, and are
stored accordingly.

4. Edge Clipping

The rest of the edges used in the polyhedron intersection or union are
found by clipping away the exterior or interior portion of the edges in the
original faces. Since each edge of each face knows the intersections that occur
along it, this is a fairly simple process.

8



• If the vertices of a face are uniformly exterior or interior to the other
polyhedron and there are no edge intersections associated with the face,
it can be safely added or ignored.

• Otherwise, we check each edge of the face individually.

– If there are no intersections along an edge, it will be either com-
pletely interior or exterior. If the vertices are not both interior
or exterior, we test the midpoint. This allows us to handle faces
whose vertices are on the boundary of the other polyhedron.

– If there is one intersection, store a new edge from the intersection
point to the vertex or vice versa.

– If there are multiple intersections, we test the midpoints between
sequential pairs of vertices and intersections in a process similar
to the face intersection.

Figure 11: Left: The edge clipping process. Right: Edge walking.

In the case of an edge which lies along the boundary, it turns out that we
need to keep the edge if we are intersecting and discard it if we are taking
the union.

9



5. Edge Walking

We store our edges as relationships between numbered vertices; each edge
is an entry in a Python dictionary with the tip as the key and the tail (or list
of tails) as the value. This allows us to use the same walking method across
dimension and for both intersection, union, and plane slicing. In each case,
the process is simple, as described in Algorithm 1.

The main difficulty we encounter is the case in which vertices are shared
by multiple edges on the same face. To solve this, we give the code the
ability to handle both a single integer or a list of integers as the tail of
an edge, both in insertion and in deletion. This will sometimes result in a
non-simple polygon, but the presence of repeated vertices makes this easy to
check for. Breaking the walk apart between the repeated vertices gives us
the simple polygons we prefer.

Figure 12: Handling non-simple polygons in the walking algorithm.

6. Special Considerations

6.1. 2d Intersection and Union

The same method applies to polygon intersection and union in two dimen-
sions, but is even simpler, since the only edges involved are clipped from the
original edges of the polygons. We collect the intersections between edges of
each polygon, clip away the interior or exterior portion of the edges as usual,
and then walk.

10



Algorithm 1 walk edges

while edges are still available in the dictionary do
Choose an edge
if a tail of the chosen edge is the tip of another edge then
while we have not hit a dead end or returned to the start do

Get the next edge and add it to the walk
Remove the edge from the dictionary

end while
if the resulting walk is non-simple then

Split the walk up according to the repeated vertices
end if

else
The tail is a dead end and the edge is deleted

end if
end while

6.2. Plane Slicing

The method is also easily adapted to clip non-convex objects against an
arbitrary plane. Instead of expensive inclusion testing, we only need to test
whether vertices are left or right of a plane, which is a simple dot product
with the normal vector.

Clipping a polygon against a plane is similar to the polyhedron inter-
section process. The segments of intersection between the polygon and the
plane are stored as edges and also indicate the intersection points along the
edges of the face. We then clip the edges of the polygon at the intersection
points to keep only the portion which is left of the plane, and walk to get
the result, as in Figure 14.

To clip a polyhedron against a plane, we first collect all the faces which
cross the plane. All those to the right are discarded, and all those to the
left are added to the result polyhedron. To get the rest of the faces, we clip
each face that crosses the plane against it and store those faces, and store
the edges of intersection in the walking dictionary. Walking these edges gives
us the faces along the slicing plane, and the clipped polyhedron is complete.
Some examples are shown in Figure 15.

11



Figure 13: Examples of 2d intersection and union.

6.3. Holes

When we slice or take the union of non-convex objects, we frequently
encounter a result in which some of the faces contain holes, as in Figure 16.
The method does not require any special consideration to handle these, and
represents them as clockwise faces which are contained in other faces of the
object. In practice, however, this does cause a problem. Faces with holes
are not supported by the .obj file format used in this project. Currently,
we simply flag these cases. If any of the normal vectors point opposite the
normal vector of the original face, we know we have a hole and store the
indices of the relevant faces for postprocessing.

7. Conclusion

The overall temporal complexity of the algorithm is approximately O((n+
m)(f(n)+f(m))), where f(n) is the cost associated with searching the spatial
structure of the polyhedron and n and m are the number of faces of each
polyhedron. With good tree-based spatial structures, f(n) can be as low as
log n. Thus the overall complexity of the method can be as low as O(n log n).

We have observed successful intersection and union of small non-convex
polyhedrons, including those with coplanar faces, vertices along the bound-
ary, edges along the boundary, results including holes, results with faces with

12



Figure 14: Slicing a polygon against a plane with normal vector in blue.

shared vertices (potential non-simple polygons in the result). We also note
that the 2d inclusion method used is also independent of convexity, so both
the polyhedron and its constituent faces may be non-convex.

The next step for the project is to convert the package to C++. In this
process, we will take advantage of existing robust computational geometry
primitives and efficient tree-based spatial structures in order to bring the
total complexity of the algorithm to O(n log n).

The conversion process will afford the opportunity to handle larger test
cases and continue to make the algorithm more robust. We also intend to
add or integrate further preprocessing features, including unit normalization
and the ability to read and write to multiple file formats. In addition, the
holes sometimes created in the union process need to be decomposed into
simpler polygons in order to avoid problems with the .obj file format.

We will also add set differencing. Theoretically, this is accomplished by
reversing the faces and normal vectors of the polyhedron to be removed and
then intersecting. However, in practice, we need to rework the 2d inclusion
methods to handle clockwise polygons more effectively before this feature
can be added.

Currently, we simply discard polyhedrons with non-planar faces, but de-
formation processes can easily result in these and it is therefore useful to
extend the method to handle these.

13



Figure 15: Some sliced polyhedrons generated by the code and viewed as .obj files.

Overall, this method presents a practical alternative to traditional meth-
ods of answering geometric queries for non-convex polyhedrons. Our Python
code is intended to be a tool for simple cases and serve as a framework to
address some of the practical issues associated with implementation of the
method including numerical stability, poor inputs, data structures, and var-
ious edge cases.

Appendix A. Package Functionality

The package functionality can be roughly classified into 2d methods,
methods of the Polyhedron class, and 3d functionality, as summarized in
the the table below.

14



Figure 16: Left: A face with holes resulting from the union process. Right: Such holes are
not properly represented by the .obj file format.

2d Functionality Polyhedron Methods 3d Functionality
Polygon area Read from .obj files Polygon area
Left-right testing Write to .obj files Find normal vectors
Inclusion testiong Print relevant features Polygon-polygon intersection
Line intersection Volume Polygon-plane intersection
Polygon intersection Naive join Left-right testing
Polygon union Equality testing Line-plane intersection

Translation Polyhedron inclusion testing
Scaling Polyhedron plane slicing
Rotation by a matrix Polyhedron intersection
Display using matplotlib Polyhedron union

References

[1] D.E.Muller and F.P.Preparata, “Finding the intersection of two convex
polyhedra”, Theoretical Computer Science, vol.7 issue 1, pp 217-236,
1978.

[2] Kurt MehlhornKlaus Simon, “Intersecting two polyhedra one of which
is convex”, Fundamentals of Computation Theory, Lecture Notes in
Computer Theory, volume 199, 1985.

[3] A. Bemporad, K. Fukuda, and F. D. Torrisi, “Convexity recognition of
the union of polyhedra”, Computational Geometry 18, 141154, 2001

15



Figure 17: A successful intersection and union of two non-convex objects, colored to show
the source of each face in the result.

[4] B. Aronov, M. Sharir, B. Tagansky, “The union of convex polyhedra in
three dimensions” SIAM J. Comput. 26, pp. 1670-1688, 1997.

[5] F.R. Feito and J.C. Torres, “Inclusion test for general polyhedra”,
Computers & Graphics, vol. 21, pp. 23-30, 1997

[6] J. Lane, B. Magedson, and M. Rarick, “An efficient point in
polyhedron algorithm” Computer Vision, Graphics, and Image
Processing. vol. 26. pp. 118-125, 1984.

[7] J. O’Rourke, “Computational Geometry in C”, Combridge University
Press, 2005.

16


