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Introduction

@ Practical engineered physical systems involve significant uncertainty
@ Model structure, parameters, inputs, operating conditions, . . .

@ Hence the relevance of optimization under uncertainty (OUU)

@ Two examples of our ongoing OUU work

@ Scramjet combustor design @ Power grid operation

Isolator / Combustor
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Scramjet OUU

Joint work with

@ Sandia National Labs:

- Joe Oefelein, Guilhem Lacaze, Zachary Vane (LES-Comb.)
- Khachik Sargsyan, Cosmin Safta, Xun Huan (UQ)
- Mike Eldred (OUU)

e MIT:
- Youssef Marzouk, Florian Augustin (OUU)

Work funded by DARPA EQUIPS program.
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Scramjet Application

@ 3D supersonic turbulent spray combustion system

@ Optimization goals - examples:
@ Maximize specific thrust while ensuring stable combustion
e ... and also minimize weight

e etc

@ Control variables: geometry and/or fuel injection details
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Example flow pictures
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Scramjet OUU Challenges and Mitigation

Challenges
@ Model complexity and associated per-sample computational cost
o Noisy objective function due to finite sample size in flow statistics
@ No analytical gradients or Hessians
@ High dimensionality in both random and design domains
Mitigation
@ Rely on Multilevel Multifidelity (MLMF) methods
o Multigrid optimization
e Trust region model management (TRMM)
@ Derivative free methods using local sparse surrogates

o TRMM with gradient-based minimizers
o Local fitted surrogates of Qols over design+random space

R(&.d) =) ar¥i(é,d)
k=0

@ Existing optimization+UQ libraries
e DAKOTA - https://dakota.sandia.gov
o (SINOWPAC - https://bitbucket.org/fmaugust/nowpac
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Preliminary results - SNOWPAC (MIT)

minE[Z,]
st. E[M] > 2

@ Z,: spatial standard deviation of mixture fraction close to outlet
@ M: Mach number (spatial mean) close to outlet

Constraints on + uncertain parameters

@ My € [2.259,2.761] @ 1y € [6.633,8.107] - 1072
@ My € [0.95,1.05] °
® T} c [285,315] °

Computational setup

@ Use surrogate models from GSA as substitutes for LES code

@ Use only 10 samples to approximate expected values
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Optimization - Results

@ 2D slice of E[Z,] and E[M] around initial design (cyan dot)
@ Initial design violates constraint (i.e., yields E[M] < 2)
@ Objective and constraint evaluations are noisy
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Optimization - Results

@ 2D slice of E[Z,] and E[M] around optimal design (cyan dot)
@ Optimal design satisfies constraint (i.e., yields E[M] > 2)
@ Minimization and finding a feasible design despite noise
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Optimization of Power Grid Operations

Joint work with

@ At Sandia National Labs:

- Cosmin Safta (UQ)
- Richard Chen, Ali Pinar, Jiangiang Cheng, and
Jean-Paul Watson (Optimization)

Work funded by the Sandia National Labs. LDRD program.
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Power Grid Optimization under Uncertainty

@ The electric power grid is a large complex system comprised of
o Generators

- Conventional power (coal, gas, hydro, nuclear, geothermal)
- Alternative power (wind, solar, . . .)

o Loads - Residential, industrial, . . .
o Network — Transmission cables, hubs, . ..

@ Conventional power plants are large and heterogeneous
= Starting up, power ramping, and shutting down involve significant
time lags and operational constraints
@ Optimal grid operation requires forward planning for generation
power levels over a time scale of days - hourly time resolution

@ Which power plants will be ON at which times
© What power levels will they be generating

@ This has to be done given uncertainties in

o Loads - predictable to some extent given historical data
e Alternative power generation - higher level of uncertainty
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A small benchmark 118-bus power grid system




Stochastic Power Grid Optimization Problem Structure

Given time epochs {¢1,...,t1}
Decision variables - given N generators:

e Binary variables: ON/OFF indicators x = {z1(tx),...,zn(tx)}
e Continuous variables: Gen. power levels Q = {Q1(tx),...,Qn(tk)}

Constraints - physical constraints due to generators, lines, and loads
Demand: D = {D;(tx),... Dp(t;)} - L loads
Objective: Minimize expected operational Cost
o other measures - moments/statistics of uncertain cost
Challenges
o Two level Mixed integer optimization problem

- Outer (integer) problem: Stochastic Unit Commitment

- Inner problerm: Economic Dispatch
Large complex system - computational expense of cost evaluation
High dimensional - large # generators, loads, constraints
Uncertain demand
Uncertain alternative power generation
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Stochastic optimization solution

@ Need to evaluate moments of uncertain outputs given uncertain
inputs - for evaluation of objective function

@ Require joint probability density function on uncertain inputs over
time
o Correlations among uncertain inputs are important
@ Autocorrelation in time - stochastic process structure
@ Conventional solution methods:
o Evaluate expected cost via random sampling of uncertain inputs
e Monte Carlo (MC) sampling in its many varieties - Quasi MC (QMC)
e Advantage:
- Robust performance given high-dimensional uncertain input

o Disadvantage: low accuracy

@ Recent work:

e Functional representations of random variables / fields
o Evaluate expectation integrals using sparse quadrature samples
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Polynomial Chaos based Propagation of Uncertainty

@ Polynomial Chaos expansion (PCE): X = Y7 (2, V(&)
o A Fourier-like expansion of any random variable (with finite variance) in
terms of orthogonal functions of a set of iid standard random variables

@ Karhunen-Loéve expansion (KLE)

@ An L2-optimal expansion for a random field in terms of a set of
uncorrelated random variables - covariance matrix eigenmodes

@ Deal with functional representations of random variables/fields,
rather than probability densities

@ Given X =), 2, ¥ (&), the coeffs. of Y = f(X) = >, yx Vi (&)
can be found via Galerkin projection

Ug)
Yk = <f\112k = \112 /.f (S)dé

@ Efficient numerical integration via sparse quadrature
- rather than Monte Carlo sampling
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Stochastic Economic Dispatch

QW)= min > > cp)+d > M

teT geG teT ieN

s.t.
SophEW)+ Do ph+ Y fi= > fl=Di¢w)) - g,

re€ER; geqG; eclE ; eckE;.
Be(0f —6%) — fL =0, Ve=(i,j)t
F,<fl<F. Vet
Pl <pl < Pgxl, Vgt

Pg pt 1<Ru t— 1+Su(x —x

D+ Py(l—al), Vgt
Pt — ggijthrSg( ab ™t — )+ Py(1 -

i), Vgt

Consider uncertain renewables p’.(£(w)) and demand D! (£(w)).

PCE for Q:
Qx,8) =Y Qu(x) Ty (€)

k
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Stochastic Unit Commitment

_ . _ @ G and T index sets of generating units
min () + (z) + Q=) and time periods

st. xe X, @ X and x: set of unit commitment
z e {0 1}\(;\ x| constraints and vector of unit
’ commitment decisions

@ c“(x)and c?(x): generating unit
start-up and shut-down costs

@ Q(x): the expected generation cost

Compute

S|

@(z) = <Q(213,€)> = QO(w)|PCSp. Quad — @(w)h"\c ~ % ZQ(wvgs)

using a finite number of renewable generation and load realizations (i.e.,
scenarios) s € S
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lllustration on a Model Power Grid problem

o |EEE 118-bus system augmented with 3 wind farms

@ Economic dispatch problem, with a specified set of ON generators
@ 24-hr time horizon, 1-hr time epochs

@ Uncertain power from each wind farm is a random field

- Random field KLE based on empirical wind data

- Correlation among two neighboring wind farms in
longer-timescale random field structure - observed in data
and accounted for in KLE structure

Uncertain input thus represented with a 16 dimensional PCE

Comparisons in computed Qo (x) among:
PC-sparse quadrature

MC

MC with scenario reduction

QMC - low discrepancy sequence
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Error Convergence in Economic Dispatch Expected Cost
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o Highlighted two applications of optimization under uncertainty
being worked on at Sandia

@ Scramijet
e Prohibitive computational costs

e Focus on multifidelity multilevel strategies with TRMM and MG/Opt
o Efficient estimation of local surrogates with controlled accuracy is key

@ Power Grid

o KLE enables low-dimensional representation of uncertain
time-dependent wind power — Captures correlations

@ In 16D, PCE superior over MC/variants for accuracies < 1%

e With higher dimensionality, global sensitivity analysis is useful for
employing sparse lower-dimensional PCE constructions

e Ongoing work on extension of PCE/Sparse-quadrature to the Unit
Commitment problem
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