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Abstract

We analyze single bunch transverse instabilities due to

wakefields using a Fokker-Planck model. We expand on

the work of Suzuki [1], writing out the linear matrix equa-

tion including chromaticity, both dipolar and quadrupolar

transverse wakefields, and the effects of damping and diffu-

sion due to the synchrotron radiation. The eigenvalues and

eigenvectors determine the collective stability of the beam,

and we show that the predicted threshold current for trans-

verse instability and the profile of the unstable agree well

with tracking simulations. In particular, we find that pre-

dicting collective stability for high energy electron beams

at moderate to large values of chromaticity requires the full

Fokker-Planck analysis to properly account for the effects

of damping and diffusion due to synchrotron radiation.

INTRODUCTION

Understanding, predicting, and controlling collective in-

stabilities is an imporatnt part of storage ring design and

operation. Single bunch transverse instabilities are of par-

ticular importance in high-energy electron storage rings, as

they typically set the limit on the maximum achievable cur-

rent. The standard analysis of these instabilities decom-

poses the linearized Vlasov equation into normal modes,

and then stability is determined by comparing the maxi-

mum growth rate with the transverse synchrotron and Lan-

dau damping rates (see, e.g., [2–6]). However, synchrotron

emission results in both damping and diffusion in phase

space, so that when synchrotron radiation provides the dom-

inant damping mechanism it can render the Vlasov model

incomplete. This is often the case for high energy electron

storage rings, in which case a Fokker-Planck description

must be employed to accurately predict stability. Here we

build on the work of Ref. [1] to develop a more complete

Fokker-Planck analysis of transverse stability, where partic-

ular attention is paid to the dynamics at large chromaticity.

MODEL EQUATIONS

Our starting point is very similar to the Hamiltonian mod-

els in the textbooks [4,5], but it includes the Fokker-Planck

damping and diffusion associated with synchrotron radia-

tion. Hence, the distribution function F obeys the equation
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Here (z , pz) = (ct − s, −δ) are the longitudinal variables,

(J ,Ψ) are the transverse action-angle variables, τz is the

longitudinal damping time, σδ is the equilibrium energy

spread, τx is the transverse damping time, ε0 is the nat-

ural emittance, and {, } denotes the Poisson bracket. We

assume that the Hamiltonian H is comprised of the linear

synchrotron and betatron motion, the first order chromatic-

ity nonlinearity, and the lowest order effects of the dipolar

wakefield. The basic procedure to simplify Eq. (1) is to

1. linearize with respect to perturbations about the self-

consistent equilibrium;

2. assume that the transverse motion is described by

dipole oscillations at the (chromaticity-corrected) be-

tatron frequency

3. expand the longitudinal perturbation as a sum of linear

modes in longitudinal action and angle;

4. solve the resulting eigenvalue problem to determine

normal modes and complex frequencies as a function

of current I and chromaticity ξx .

Mathematically, the first two steps can be expressed as

F = f0(J )g0(Hz) + f1(Ψ, J ; s)g1(z , pz; s), (2)

where the equilibrium is a negative exponential in action,

f0(J )g0(Hz) =
e−J/ε0

2πε0

e−I/I

2π〈I〉 , (3)

while the perturbation is a product of a simple dipole oscilla-

tion in the transverse dimension [2], with all the wakefield-

driven complexity in the longitudinal perturbation g1:

F1 ∝ −
√

J/2 f ′0 (J )e−i[Ω−(Ψ+kξ z)+ωβ s/c]g1(z , pz). (4)

Here, (Ψ + kξ z) represents the chromaticity corrected be-

tatron oscillation phase, with the head-tail phase kξ ≡
ω0ξx/αcc [7], while Ω is the complex frequency, and in-

stability is characterized by ℑ(Ω) > 0.

We insert the perturbation (4) into the equation (1) and

isolate the betatron oscillations by multiplying by
√
J e−iΨ

and integrating over the transverse dimensions. When the

dust clears the transverse part of the Fokker-Planck opera-

tor reduces to a simple damping term with damping time

τx . This is because we have assumed that there is no inter-

esting structure in the transverse plane; in contrast to this,

we will find that the longitudinal Fokker-Planck damping

and diffusion will depend on the longitudinal mode profile.



The next step is to linearize the problem for |g1 | ≪ 1 and

apply Sacherer’s linear mode formalism by expanding g1 as

a sum of orthogonal linear modes
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Here Ln
q(r) is the associated Laguerre polynomial, the

scaled longitudinal action r ≡ I/〈I〉 with 〈I〉 ≡ σzσδ ,

while the radial mode number is q and the azimuthal mode

number is n; the number of nodes in r of the orthogonal

mode functions equals p if m ≥ 0, and p+m if 0 > m ≥ −p.

After a lengthy calculation similar to that in [4, 5] and de-

tailed further in [8], we find that the linearized equation for

the mode coefficient anp becomes
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where the Alfven current IA ≈ 17 kA and γ is the mean

energy; the dipolar impedance coupling matrix is
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while the Fokker-Planck diffusive coupling terms are

Rm
p =

√

(p + 1)(p + m), Tm
p =

√

p(p + m + 1). (8)

The first thing to note about the Fokker-Planck mode

equation (6) is that the effective longitudinal damping time

of the mode with radial, angular mode number (p,m) is

τz/(2p + m). This decreasing damping time contrasts with

the Vlasov results and was first found in Ref. [1]. It can be

understood if we consider the fact that the diffusion time

tdiff for a perturbation of scale length ∆pz is given by

tdiff ∼
(

∆pz

σδ

)2

τz ∼
τz

2p + m
, (9)

where the second scaling comes from the asymptotic prop-

erties of the Gauss-Laguerre functions. Hence, diffusion

acts more strongly to smooth out the fine structure associ-

ated with high-order modes. It turns out that in the zero-

chromaticity limit studied by Ref. [1] we have the usual

transverse mode coupling instability (TMCI), wherein the

(p,m) = (0, 0) mode merges with the (1, −1) mode. In this

case the additional dissipative terms do not strongly affect

the dynamics. On the other hand, increasing the chromatic-

ity stabilizes the low-order modes such that the unstable pro-

files are comprised of a superposition of many higher-order

modes. In this limit we will find that the increase in mode

damping plays a significant role in stabilizing the dynamics.

Figure 1: Twiss functions and basic parameters.

TRANSVERSE INSTABILITY FOR

LARGE CHROMATICITY

We have found that the Fokker-Planck theory can be

relatively well-approximated by retaining only the (0, 0)

and (1, −1) modes provided the chromatic head-tail phase

kξσz . 0.7; in more familiar units this implies that ξ .

0.7αcc/ω0σz , where αc is the momentum compaction,ω0

is the revolution frequency, andσz is the rms bunch length.

At larger values of chromaticity many modes play a role in

the dynamics, and the effectively large Fokker-Planck damp-

ing serves to help stabilize the dynamics.

To illustrate these effects, we have compared elegant

[9] simulation results to our theory for a simplified model of

the APS-U lattice [10] and its impedance [11]. In particular,

we use the linear lattice and essential parameters of the 67

pm lattice shown in Fig. 1. The one simplification that we

have made to the lattice is that we have artificially set the

second order chromaticity to zero; it turns out that the large

second order chromaticity lowers the instability thresholds

in a manner that we have been able to incorporate in the

model, but is beyond the scope of the present work.

In addition, for this study we have chosen to use the re-

sistive wall impedance of the ring to model the transverse

wakefields. Specifically, we assume that the chamber is ei-

ther round or essentially flat with a half-gap of b(s) that

varies slowly over its length. Then, the ring-average dipole

impedance can be approximated by

Z
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∮
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sgn(k) − i
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2|k | , (10)

where ρ(s) is the piece-wise constant resistivity, sgn(k)

gives the sign of k , and the factor ηD depends on the

chamber geometry, with ηD = 1 for round chambers and

ηD = π
2/24 for flat chambers [12]. In summary, we take

the scaled, β function-weighted dipolar impedance to be

Z
β

D
(k) = ZRW

sgn(k) − i
|k[1/m]|1/2

with ZRW = 25 MΩ. (11)

Finally, while the quadrupolar impedance vanishes in round

vacuum chambers, the flat ID chambers have ZQ(k) =

−ZD(k); we discuss this effect in Ref. [8].



Figure 2: Comparison of theory and simulation for the pre-

dicted instability threshold as a function of chromaticity for

the APS-U 67 pm lattice. The purple (blue) region shows

where the 2-mode theory is valid for Vrf = 4.1 (8.2) MV.

We compare predictions for this model lattice and

impedance in Fig. 2, where we plot the instability thresh-

old current Ithresh as a function of chromaticity for both the

Fokker-Planck theory and the elegant simulations. We see

that the theory and simulation agrees well over a wide range

of chromaticity at both the nominal voltage ofVrf = 4.1 MV

and the hypotheticalVrf = 8.2 MV.

At vanishing chromaticity we have the usual TMCI,

where the impedance shifts the frequency of the m = 0

mode until it merges with the (nearly constant) m = −1

mode frequency ≈ ωs . In this case the threshold current in-

creases as the frequency difference ∼ ωs increases, so that

increasing the rf voltage leads to larger Ithresh. As mentioned

earlier the two-mode approximation is valid if the chro-

maticity “low”; we show this region defined by kξσz < 0.7

by the purple (blue) shaded region for an rf voltage of 4.1

(8.2) MV in Fig. 2. In this region it turns out that increas-

ing the chromaticity first decreases Ithresh as the dipolar ma-

trix becomes complex, and then increases the current as the

mode merging picture becomes a less accurate description

of how the instability develops. Finally, the edge of the

shaded region shows where the two mode approximation

predicts no instability, so that accurate madeling must in-

corporate more higher order modes.

As the chromaticity is increased further, different spectral

regions of the impedance play a role according to the head-

tail frequency shift. In addition, the unstable mode profile

becomes a superposition of an ever increasing number of or-

thogonal modes. We show a comparison between the unsta-

ble mode profile predicted by theory and extracted from the

elegant simulations at ξ = 5 in Fig. 3. Figure 3 shows that

the unstable mode is largely comprised of m = −4 modes,

although roughly 20% have m = −3 and m = −5. For

these parameters Landau damping plays a negligible role in

determining stability.

Figure 3: Comparison of theory (a) with simulation (b) for

ℑ(g1) of the unstable mode at ξ = 5 and I = 2.25 mA.

CONCLUSIONS

We have presented a Fokker-Planck theory of collective

instability, and shown that it agrees well with simulation for

a model problem. We have found that the classic TMCI pic-

ture holds for only a limited range about ξ = 0. For most

of the considered range of chromaticity the unstable eigen-

mode is comprised of many basis modes, and longer bunch

lengths with lower peak currents lead to higher instability

thresholds. We believe that similar analysis should apply to

other high energy electron storage rings, although the analy-

sis becomes complicated when the longitudinal potential is

distorted by wakefields and/or higher harmonic rf systems.
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