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Abstract

We analyze single bunch transverse instabilities due to
wakefields using a Fokker-Planck model. We expand on
the work of Suzuki [1], writing out the linear matrix equa-
tion including chromaticity, both dipolar and quadrupolar
transverse wakefields, and the effects of damping and diffu-
sion due to the synchrotron radiation. The eigenvalues and
eigenvectors determine the collective stability of the beam,
and we show that the predicted threshold current for trans-
verse instability and the profile of the unstable agree well
with tracking simulations. In particular, we find that pre-
dicting collective stability for high energy electron beams
at moderate to large values of chromaticity requires the full
Fokker-Planck analysis to properly account for the effects
of damping and diffusion due to synchrotron radiation.

INTRODUCTION

Understanding, predicting, and controlling collective in-
stabilities is an imporatnt part of storage ring design and
operation. Single bunch transverse instabilities are of par-
ticular importance in high-energy electron storage rings, as
they typically set the limit on the maximum achievable cur-
rent. The standard analysis of these instabilities decom-
poses the linearized Vlasov equation into normal modes,
and then stability is determined by comparing the maxi-
mum growth rate with the transverse synchrotron and Lan-
dau damping rates (see, e.g., [2-6]). However, synchrotron
emission results in both damping and diffusion in phase
space, so that when synchrotron radiation provides the dom-
inant damping mechanism it can render the Vlasov model
incomplete. This is often the case for high energy electron
storage rings, in which case a Fokker-Planck description
must be employed to accurately predict stability. Here we
build on the work of Ref. [1] to develop a more complete
Fokker-Planck analysis of transverse stability, where partic-
ular attention is paid to the dynamics at large chromaticity.

MODEL EQUATIONS

Our starting pointis very similar to the Hamiltonian mod-
els in the textbooks [4, 5], but it includes the Fokker-Planck
damping and diffusion associated with synchrotron radia-
tion. Hence, the distribution function F obeys the equation
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Here (z, p;) = (ct — s, —0) are the longitudinal variables,
(J,P) are the transverse action-angle variables, 7, is the
longitudinal damping time, o5 is the equilibrium energy
spread, T, is the transverse damping time, &g is the nat-
ural emittance, and {, } denotes the Poisson bracket. We
assume that the Hamiltonian H is comprised of the linear
synchrotron and betatron motion, the first order chromatic-
ity nonlinearity, and the lowest order effects of the dipolar
wakefield. The basic procedure to simplify Eq. (1) is to

1. linearize with respect to perturbations about the self-
consistent equilibrium;

2. assume that the transverse motion is described by
dipole oscillations at the (chromaticity-corrected) be-
tatron frequency

3. expand the longitudinal perturbation as a sum of linear
modes in longitudinal action and angle;

4. solve the resulting eigenvalue problem to determine
normal modes and complex frequencies as a function
of current / and chromaticity &x.

Mathematically, the first two steps can be expressed as
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where the equilibrium is a negative exponential in action,
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while the perturbation is a product of a simple dipole oscilla-
tion in the transverse dimension [2], with all the wakefield-
driven complexity in the longitudinal perturbation gi:
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Here, (¥ + kgz) represents the chromaticity corrected be-
tatron oscillation phase, with the head-tail phase ks =
woéx/acc [T], while Q is the complex frequency, and in-
stability is characterized by J(Q) > 0.

We insert the perturbation (4) into the equation (1) and
isolate the betatron oscillations by multiplying by v 7 e~
and integrating over the transverse dimensions. When the
dust clears the transverse part of the Fokker-Planck opera-
tor reduces to a simple damping term with damping time
7. This is because we have assumed that there is no inter-
esting structure in the transverse plane; in contrast to this,
we will find that the longitudinal Fokker-Planck damping
and diffusion will depend on the longitudinal mode profile.



The next step is to linearize the problem for |g;| <« 1 and
apply Sacherer’s linear mode formalism by expanding g as
a sum of orthogonal linear modes
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Here Ly(r) is the associated Laguerre polynomial, the
scaled longitudinal action r = I /{(I) with (I) = o0,
while the radial mode number is ¢ and the azimuthal mode
number is n; the number of nodes in » of the orthogonal
mode functions equals p if m > 0, and p+m if 0 > m > —p.
After a lengthy calculation similar to that in [4, 5] and de-
tailed further in [8], we find that the linearized equation for
the mode coeflicient aj, becomes
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where the Alfven current /4 ~ 17 kA and 7 is the mean
energy; the dipolar impedance coupling matrix is
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while the Fokker-Planck diffusive coupling terms are

=V +Dp+m), T, =+plp+m+1).  (3)

The first thing to note about the Fokker-Planck mode
equation (6) is that the effective longitudinal damping time
of the mode with radial, angular mode number (p,m) is
7./(2p + m). This decreasing damping time contrasts with
the Vlasov results and was first found in Ref. [1]. It can be
understood if we consider the fact that the diffusion time
tqir for a perturbation of scale length Ap is given by
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where the second scaling comes from the asymptotic prop-
erties of the Gauss-Laguerre functions. Hence, diffusion
acts more strongly to smooth out the fine structure associ-
ated with high-order modes. It turns out that in the zero-
chromaticity limit studied by Ref. [1] we have the usual
transverse mode coupling instability (TMCI), wherein the
(p, m) = (0,0) mode merges with the (1, —1) mode. In this
case the additional dissipative terms do not strongly affect
the dynamics. On the other hand, increasing the chromatic-
ity stabilizes the low-order modes such that the unstable pro-
files are comprised of a superposition of many higher-order
modes. In this limit we will find that the increase in mode
damping plays a significant role in stabilizing the dynamics.
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Figure 1: Twiss functions and basic parameters.

TRANSVERSE INSTABILITY FOR
LARGE CHROMATICITY

We have found that the Fokker-Planck theory can be
relatively well-approximated by retaining only the (0, 0)
and (1, —1) modes provided the chromatic head-tail phase
kgo; < 0.7; in more familiar units this implies that § <
0.7a.c/woo ;, where @ is the momentum compaction, wq
is the revolution frequency, and o, is the rms bunch length.
At larger values of chromaticity many modes play a role in
the dynamics, and the effectively large Fokker-Planck damp-
ing serves to help stabilize the dynamics.

To illustrate these effects, we have compared elegant
[9] simulation results to our theory for a simplified model of
the APS-U lattice [10] and its impedance [11]. In particular,
we use the linear lattice and essential parameters of the 67
pm lattice shown in Fig. 1. The one simplification that we
have made to the lattice is that we have artificially set the
second order chromaticity to zero; it turns out that the large
second order chromaticity lowers the instability thresholds
in a manner that we have been able to incorporate in the
model, but is beyond the scope of the present work.

In addition, for this study we have chosen to use the re-
sistive wall impedance of the ring to model the transverse
wakefields. Specifically, we assume that the chamber is ei-
ther round or essentially flat with a half-gap of b(s) that
varies slowly over its length. Then, the ring-average dipole
impedance can be approximated by

sgn(k) —
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where p(s) is the piece-wise constant resistivity, sgn(k)
gives the sign of k, and the factor np depends on the
chamber geometry, with np = 1 for round chambers and
np = 72/24 for flat chambers [12]. In summary, we take
the scaled, 8 function-weighted dipolar impedance to be
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Finally, while the quadrupolar impedance vanishes in round
vacuum chambers, the flat ID chambers have Zg(k) =
—Zp(k); we discuss this effect in Ref. [8].
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Figure 2: Comparison of theory and simulation for the pre-
dicted instability threshold as a function of chromaticity for
the APS-U 67 pm lattice. The purple (blue) region shows
where the 2-mode theory is valid for Vi = 4.1 (8.2) MV.

We compare predictions for this model lattice and
impedance in Fig. 2, where we plot the instability thresh-
old current Jipresh as a function of chromaticity for both the
Fokker-Planck theory and the elegant simulations. We see
that the theory and simulation agrees well over a wide range
of chromaticity at both the nominal voltage of Vit = 4.1 MV
and the hypothetical Vs = 8.2 MV.

At vanishing chromaticity we have the usual TMCI,
where the impedance shifts the frequency of the m = 0
mode until it merges with the (nearly constant) m = —1
mode frequency = wg. In this case the threshold current in-
creases as the frequency difference ~ w; increases, so that
increasing the rf voltage leads to larger Iiyresh. As mentioned
earlier the two-mode approximation is valid if the chro-
maticity “low”; we show this region defined by kg0, < 0.7
by the purple (blue) shaded region for an rf voltage of 4.1
(8.2) MV in Fig. 2. In this region it turns out that increas-
ing the chromaticity first decreases Iinresh as the dipolar ma-
trix becomes complex, and then increases the current as the
mode merging picture becomes a less accurate description
of how the instability develops. Finally, the edge of the
shaded region shows where the two mode approximation
predicts no instability, so that accurate madeling must in-
corporate more higher order modes.

As the chromaticity is increased further, different spectral
regions of the impedance play a role according to the head-
tail frequency shift. In addition, the unstable mode profile
becomes a superposition of an ever increasing number of or-
thogonal modes. We show a comparison between the unsta-
ble mode profile predicted by theory and extracted from the
elegant simulations at £ = 5 in Fig. 3. Figure 3 shows that
the unstable mode is largely comprised of m = —4 modes,
although roughly 20% have m = -3 and m = —-5. For
these parameters Landau damping plays a negligible role in
determining stability.
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Figure 3: Comparison of theory (a) with simulation (b) for
J(g1) of the unstable mode at & = 5 and I = 2.25 mA.

CONCLUSIONS

We have presented a Fokker-Planck theory of collective
instability, and shown that it agrees well with simulation for
a model problem. We have found that the classic TMCI pic-
ture holds for only a limited range about ¢ = 0. For most
of the considered range of chromaticity the unstable eigen-
mode is comprised of many basis modes, and longer bunch
lengths with lower peak currents lead to higher instability
thresholds. We believe that similar analysis should apply to
other high energy electron storage rings, although the analy-
sis becomes complicated when the longitudinal potential is
distorted by wakefields and/or higher harmonic rf systems.
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