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ABSTRACT

Numerous applications exist in advanced transportation systems as well as in numerous
manufacturing processes that would benefit from the superior tribological properties of
diamond, diamond-like-carbon and cubic boron nitride coatings. The superior hardness of
these coatings make them ideal candidates as protective coatings to reduce adhesive,
abrasive and erosive wear in advanced diesel engines, gas turbines and spark-ignited
engines and in machining and manufacturing tools as well. The high thermal conductivity of
diamond also makes it desirable for thermal management not only in tribological
applications but also in high-power electronic devices and possibly large braking systems.

A workshop has been recently held at Argonne National Laboratory entitled "Diamond
and Diamond-Like-Carbon Films for Transportation Applications” which was attended by 85
scientists and engineers including top people involved in the basic technology of these films
and also representatives from many US industrial companies. A working group on
applications endorsed 18 different applications for these films in the transportation area
alone. Wiih this strong indication of industrial support, we envision a second workshop to
address applications in the US manufacturing industry. It is anticipated that industrial
expenditures will exceed $3000K per year and will result in numerous CRADAs between
National Labs and US companies.



1.0 EXECUTIVE MMARY

Problem Definition: Numerous applications exist in advanced transportation systems as
well as in numerous manufacturing processes that would benefit from the superior
tribologicai properties of diamond, diamond-like-carbon and cubic boron nitride coatings.
The superior hardness of these coatings make them ideal candidates as protective coatings
to reduce adhesive, abrasive and erosive wear in advanced diesel engines, gas turbines and
spark-ignited engines and in machining and manufacturing tools as well. The high thermal
conductivity of diamond also makes it desirable for thermal management not only in
tribological applications but also in high-power electronic devices and possibly large braking
systems.

Objectives: The program envisioned to follow from this Workshop will focus on
transferring technologies for depositing these films to advanced engine components (e.g.
diesel injectors, piston rings, cylinder liners, bearings, valve stems, etc.). A critical issue in
this process will be to establish the proper conditions for depositing smooth, adherent
films on a number of substrates at low deposition temperatures, and to evaluate their
performance under simulated and prototypical conditions.

Potential Industrial Participation: A workshop has been recently held at Argonne
National Laboratory entitled "Diamond and Diamond-Like-Carbon Films for Transportation
Applications" which was attended by 85 scientists and engineers including top people
involved in the basic technology of these films and also representatives from many US
industrial companies. A working group on applications endorsed 18 different applications
for these films in the transportation area alone. With this strong indication of industrial
support, we envision a second workshop to address applications in the US manufacturing
industry. It is anticipated that industrial expenditures will exceed $3000K per year and will
result in numerous CRADAs between National Labs and US companies. This initiative fits
beautifully into the planning of the Presidential Initiative entitled "Advanced Materials and
Processing Program" (AMPP) and some cooperative funding from that source is possible.

Technical Approach: Working with already-identified companies and further ones to
result from the new workshop on manufacturing applications, cooperative programs will be
established with industrial partners. Areas of application strongly endorsed by a working
panel on applications to the transportation sector are:

1. Valve guide/stem wear at high temperatures in developmental low-heat-
rejection engines.

2. Piston ring/bore tribosystem improvements to decrease wear, oil consumption
and emissions for gasoline, diesel and alternative fuels.

3. Increased load-carrying capacity for gears and bearings (including journal
bearings as temperatures rise in sump and loads increase due to higher cylinder
and injection pressures) in spark-ignited/diesel engines and vehicular drive
trains, including continuously variable transmissions (CVTs) as well as in
manufacturing.



10.

11.

12.

13.
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15.
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Electric fuel pumps and fuel-pump gears, to reduce wear and corrosion,
especially when used with low-viscosity alternative fuels such as methanol.

Applications of diamond and DLC films require improved modeling of wear
mechanisms as well as adhesion processes and improved analytical methods for
extending the results of lab-bench tests to actual operating conditions.

Improved resistance to wear-in ("beat-in") and scuffing of fuel-injector plungers
for diesel and especially for new alternative fuels in diesel and spark-ignited
engines. Erosion-corrosion of injector spray holes must also be reduced to
conserve fuel and decrease emissions.

Improvements in rolling-contact-fatigue (RCF) life of cams and cam-roller
followers for both valves and injectors, which would also reduce emissions.
Needs exist in both diesel, spark and gas-turbine engines.

Improvements in self-lubrication and scuffing resistance of new light-weight
materials for automotive applications, e.g., Al block engine/cylinder bore
surface, valve-train components, transmission case "hot spots” and air
conditioning compressor hardware.

Improvements in wear life of ferrous and non-ferrous die materials for medium-
volume applications in engine manufacture.

Diamond or DLC sensors for temperature, force and chemical conditions, along
with associated packaging systems needed for harsh transportation-related
environments, especially as temperatures continue to increase.

Improved abrasion/erosion resistance of compressor blades/stator vanes in gas
turbines and turbochargers, where small amounts of wear result in drastic
efficiency losses.

Improved abrasion resistance of windows on aircraft and automobiles.
Improved power-management capabilities for electric-powered vehicles and
power transmissions, leading to extended vehicle range and improved

safety/reliability /performance.

Improved thermal management to decrease thermal fatigue from hot spots in
combustion chambers, especially in cylinder heads.

Improved machine/cutting tools for advanced materials, e.g., composites,
ceramics.

Improved thermal management for heavy-duty trucks and aircraft braking
systems, which is currently a critical problem area.



17. New lubricants may need to be developed for compatibility with diamond and/or
DLC materials used in engines, transmissions, gears, etc.

18. Improved seals for many areas of application.

It must be strongly emphasized that if programs are undertaken with respect to any of
these identified problem areas, applied work must be coupled with projects to improve our
understanding and capabilities with respect to deposition techniques, film properties and
characterization techniques. Working panels provided specific guidance for required
parallel efforts in all three of these categories.



2.0 INTRODUCTION.
2.1 HISTORY OF THE TRIBOLOGY PROGRAM.

The Department of Energy (DOE) established the Energy Conversion and Utilization
Technologies (ECUT) Program in FY 1980 with the mission of conducting generic,
long-term, high-risk, applied research and exploratory development in energy conversion
and utilization in areas pertaining to energy conservation, which private enterprise will not
or cannot pursue. The Tribology Program of ECUT was formed in the fall of 1983. In April
1990, the Assistant Secretary for Conservation and Renewable Energy conducted a
reorganization and placed the Tribology Program under the Office of Transportation
Materials (OTM) in the Office of Transportation Technologies (OTT). The ECUT program
was already heavily oriented to transportation needs and that emphasis continues and is
further enhanced in the current program plans.

The current program is mainly intended to support researchers in industry, academia
and government to explore ideas or concepts aimed at specific applications to bring them
to a stage where private industry or other government programs can carry them into more
advanced technology and engineering development. Its goals are to (l) establish feasibility
of concepts that significantly reduce energy consumption in transportation systems, (2)
carry out exploratory development on novel or innovative concepts for advanced
transportation systems, (3) evaluate new concepts for improved efficiency or alternative-fuel
use in advanced engines and (4) expand the technology base necessary for development of
improvements in advanced transportation systems. The program attempts to be a bridge
between basic research and large-scale technology and engineering development in the
transportation sector.

2.2 OFFICE OF TRANSPORTATION TECHNOLOGY (OTT).

MISSION. The OTT is charged with long-term, high risk, and potentially high-payoff
research and development of promising transportation technologies that are unlikely to be
undertaken by the private sector alone. OTT activities are designed to develop an advanced
technology base within the U.S. transportation industry for future manufacture of more
energy-efficient, fuel-flexible and environmentally sound transportation systems. OTT
operations are focused in three areas: advanced automotive propulsion systems including
gas turbines, low-heat-rejection diesel, and electric-vehicle technologies; advanced-
malerials development and tribology research; and research, development, demonstration,
test, and evaluation (including field testing in fleet operations) of alternative fuels.

OTT's research objectives focus on the two largest segments of the transportation
sector: (1) automobiles and light-duty trucks and vans and (2) heavy-duty trucks and buses.
Roughly, 64% of all the transportation petroleum consumed in the United States is pumped
into automobiles and light-duty trucks and vans. Heavy-duty trucks and buses consume
another 15%. By focusing research and development (R&D) efforts in these two areas, even
small gains in efficiency can produce large payback for the taxpayers' funding dollar. A 10%
reduction in gasoline consumption in the U.S. automobile and light-duty-truck fleet,
attainable in the near term through increased efficiency, could accumulatively save the
owners of new vehicles billions of dollars.
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OTT works closely with the Department of Transportation (DOT), the General Services
Administration (GSA), and the Environmental Protection Agency (EPA) to ensure that
legislatively mandated goals regarding alternative fuels, reduced emissions, and clean air are
met.

OTT is structured to reflect the end-user orientation of DOE's Conservation and
Renewable Energy organization and to effect timely technology transfer to industry. Three
units comprise the office: (1) the Office of Alternative Fuels, which includes Bio-fuels
Systems Division and the Fuel Utilization Data and Analysis Division: (2) the Office of
Propulsion Systems, which includes the Electric and Hybrid Propulsion Division and the
Advanced Propulsion Division; and (3) the Office of Transportation Materials. The
synergism of the research conducted under the three units of OTT, as well as that carried
out by investigators from other government agencies, industry and universities, holds
promise for resolving our nation's transportation problems. A diagram of the organizational
structure of OTT is found in Figure 1.

2.3 OFFICE OF TRANSPORTATION MATERIALS (OTM).

MISSION. The mission of the OTM is to develop an industrial base in advanced
transportation-related materials and associated materials processing. The objective is to
enable the development and engineering of energy-efficient transportation systems that will
make possible the transition of the U.S. transportation sector from near-total dependence
on petroleum to alternative fuels and electricity.

The current structure of the OTM, Figure 2, includes the Ceramics Technology for
Advanced Heat Engines Program, ihe High Temperature Materials Laboratory and the
Tribology Program which is the basis of this planning document.

In pursuit of its mission the OTM Program seeks to accomplish the following goals:
1 Understand and improve techniques, processes and materials necessary to the
solution of specific problems associated with the efficiency limits and the

multi-fuel-use capability of advanced transportation systems and components.

2. Monitor and evaluate advances in basic scientific research for applicability to
transportation systems.

3. Conduct exploratory development of novel or innovative concepts.

4. Establish the feasibility of concepts having the potential to reduce energy
consumption significantly.

5. Ensure a continual flow of information on conservation-related technical
advances in the transportation sector to private industry.

Mainly, OTM supports research and exploratory development on a specific concept or
idea at the laboratory or bench scale in order to bring it to a stage where it might be carried
into more advanced technology and engineering development funded by private industry or



other government programs. The program encourages cooperative research between
industry and government laboratories, with an emphasis on heavy industrial involvement
and leadership.

2.4 TRIBOLOGY PROGRAM

MISSION. The mission of the OTM Tribology Program is to provide the base
technology to enable savings in annual U.S. energy consumption through tribological
advances in the transportation sector. These energy savings may be achieved directly or
through savings of embodied encrgy or enhanced productivity. This mission is carried out
in a manner so as to reduce the significant limitations in the operation of existing and
advanced tribological systems which have to operate in severe environments such as high
temperatures, high speeds, high loads, corrosive gases/liquids and combinations thereof.
The program works closely with U.S. industry to determine current and future needs for
advances of tribological systems for transportation applications and to facilitate the transfer
of the new technologies which are developed in this program. Continual coordination and
information interchange is maintained with the various other government-sponsored
tribology programs.

The DOE-OTM Tribology Program Manager is Dr. Joseph M. Perez. The technical
project direction is under the leadership of Argonne National Laboratory (ANL). The
Tribology Project Manager at ANL is Dr. Fred A. Nichols. The organizational structure for the
Tribology Project is shown in Figure 3.

The science and technology of tribology can play a critical role in raising the level of
U.S. competitiveness in world markets. Research and engineering studies in tribclogy can
help to decrease the estimated $100 billion annual energy and material losses in the
manufacturing, metalworking, transportation and utility sectors by identifying the causes of
friction and wear and devising and implementing methods to reduce these losses. Studies
have shown that a major portion of these potential savings resides in the transportation
sector where the emphasis of this program lies.

A major barrier to these advances in tribological technology, however, is the lack of
effective communication of new research results and of the best state-of-the-art
technologies. The complex, interdisciplinary research required to understand and
eliminate tribological losses involves scientists and engineers from many very diverse areas
of expertise who report their research results in journals and at meetings specialized to
their individual discipline. Such compilations of results and techniques are being
generated at ever-increasing rates. Nevertheless, progress in tribology ic hindered by the
relative inaccessibility of information on these advances. It has been estimated that a
significant [raction of these tribological losses could be saved simply by better technology
transfer.

Additional savings in energy, as well as significant increases in the effictency and
reliabilitv of tribological components and systems, could be achieved if it were possible to
optimize their performance and increase their operating lifetimes through the use of
realistic design and analysis methods. The need for adequate models and codes becomes
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2vin more urgent as the operating conditions become more severe (e.g., high temperature,
high loads. corrosive atmospheres, etc.}.

2.5 CURRENT TASK AREAS. L

The current major task areas of the tribology program are Advanced Lubrication,
Engineered Tribological Interfaces and Advanced Tribomaterials and Components:

The Advanced Lubrication task area includes experimental and theoretical
investigations of lubrication phenomena and the development of improved or novel
lubricants and lubricant-delivery systems for current and advanced transportation systems.

The Engineered Tribological Interfaces task area includes research and development

on advanced coating processes to modify the microstructure and chemical composition of
near-surface regions in crder to improve their friction and wear properties for use in
advanced transportation systems.

The Advanced Tribomaterials and Components task area encompasses two subtasks:

tribomaterials evaluation, which assesses the potential of newly developed materials for
transportation applications; and tribocomponents, which includes transportation-system
component models, design-tool development, and the disseraination of tribology
information to U.S. transportation industry.

Project Management encompasses the administrative and managerial duties of
pl.  ang, including assessments of application areas with significant tribological energy
losa. ind opportunities for tribological advances in the transportation sector; program
implementation, including the review of proposals, organization and conduct of Requests
for Proposals (RFP) and/or Research Opportunity Announcements (ROA), advice on
selection of R&D projects and the issuing of subcontracts, grants and purchase orders;
monitoring of project activities (site visits, phone contacts and review of reports); reporting
(bi-monthly and semi-annual reports as well as special formal and information reports) and
information interchange.

10



3.0

WORKSHOP PLENARY LECTURES

11



sioul||] ‘euuobiy

2661 ‘G B v Atenugoe

ABiau3g ajgqemausay pue UOIBAIISUO)
s|els9}e|y uoneliodsuel] Jjo adlyoO
1abeuepy weiboiqd Abojogiig
Zalad "IN ydassop

mainiang doysiiom

suoijeaijddy uoilieriodsue.s] loj
Swiji4 ayIT—-puoulelq pue puowelq

12



v11L2-98S (202) XV
62£2-968 (202) S14
G2€2-98S (202) "ud

G8S02 "O°Q ‘uolbuiysep
MS @Ay aouepuadapu| 0001

labeuepy weiboid AbBojoquj
pe-30  zaied aop

weiboid ABojoquil

13



n

VAVA3N
OOSIONVH NYS OHva! Y34V NHILSIM
GNVIHOM ODVYIIHD ITUAINNOS
39AIBNVO 3noy3nongiv
3301340 SNOILVH3dO SNOLLVHLSININGY H3MOd
sopanq (Bugoy) 1010840 (6unay) s010211Q (Bupoy) s030811Q Jojegsipwpy (Bunoy) sojeqsuupy
BHOUOW “[* Sfujusoq 19308 "4 sewmep OSENOY jehureg >==O 097 uepjieyy v inwiey uBwIIQ UBA T 18puUBy)
INIWIOVYNYIN 3LSVM
ANINIOVYNVA ANV NOLLYHO1S3H

SNOILOVIH NOILLONAOHd HOHV3S3H ADHINI 31SYM JALLOVOIaYH TVININNOHIANT NOILYHLSININQY NOLLVHISININGY

M3N 30 301440 40 301440 NVIIAID 30 301440 40 301440 NOWLVAHOLNI ADHINT | | AHOLYIND3H JINONO23

“3p 'uciseq P uyop (Bugay) ysnug °N s8ed (Bugov) yany "0 uyor §1ABQ [PBUNN e[muen "H 11eqoy Bunoa " umiim

S3IONIOHINI
ADHINI ONY HLTVIH ANV ADH3N3 318VMINIH
SHIVY TYNOILYNHILNI ‘AL34VS ‘INIWNOBIANI SWVHDOUd 3SN343a ANV NOLLYAHISNOD ADH3N3 ISSOd ADH3N3 HY3TONN
‘AHV13HO3S INVLSISSY ‘AHYL3HO3S INVLSISSY ‘AHV13HO3S INVISISSY ‘Al (3HO3S INVISISSY ‘AHVL3HO3S INVISISSVY | | ‘AHVIIHOIS INVLISISSY
L I | [ J
SNOILONNS SNOILONNA
IALVHISININGY A2ONOd ® IN3WIOVNVIN
#nj O uyop
ABViI3HOIS H3ANN usieyd
. Kepily 7 unreyy
3JOOWN UOSUBH "M e e

AHV13HO3S ALNG3Q

SUDQUM “Q sewer
AHVYL3HO3S

NOISSINNOD AHOLYIND3IY

ADH3INI TWH3334

s|eualepy uonelodsuel] Jo 290

ADHINI 40 LIN3N1HVYd3Aa JHL

14



essny yBnedy Y
SISATVNY ONV SW3ALSAS NOISTNdOHC -
viva ZO_H_..<N:_._'D 13and J3ONVAQY
19100p °H ssqreg N
AHOLVHOESY B
STIVIHILVA 3HNIVHIdW3L HOIH - SW3LSAS NOISTNAOHd
ADOIO8ILL + SN31SAS $13N4018 OH10313
ADOTONHOIL SIVIHILVN -
ADOTONHO3L OINVH3D -
pisweqy r dnsyy ueboig p
STVIHILIVIN NOLLVYIHOdSNYHL ST3Nd JALLVNHILTY SN3LSAS NOISTINdOHd
40 301440 40 301440 40 301440
ssg °p
seuseyy v

S3IDOTONHOIL NOLVIHOISNVHL

40 30idd40

mw.mo_o:_._oo._. :o:mtoamcﬂ L JO 92140 wE ho :o_umn_:mmho

m_m:m_ms_ :o:mt_onm:E 1 }O 92110

15



'SDOIONHOIL
AlNUuNn 40 301440

3ONVLSISSY TVIONVNId S3IDOTONHO3L SIIDOTONHIIL S3IDOTONHIIL
QNV TVJINHO3L 40 301440 NOLLYIHOJSNVHL 40 301440 ONIgUNg 40 301440 IVIHASNANI 40 30140

vemels ‘N d seusayd vV v euoyiN d Qs T Y ‘| ugle veg 1 Y

:oﬁso.z.m.%n.:_i
SKEQ ‘W T A0ag ety

ADHIN3 318VMINTY ONV
NOILVAHISNGO 40 30i440 _

ABiaugy ajqemausdy pue
UONEAIBSUOD JO 32O 3yl jo uoneziuebip

16



soibfojouydal uonepodsuel] Jo adlO aul

jo sweibo.id ayl o) noddns juswdojaaap

sjelialew pazijelijuad e apinoid 0} pajeald sem
(NLO) siela1ey uoneliodsuel] jo ad140 ayL -

uonoy .

0661 [11dy uonezjuebioay 39 /3040 - WIbMO

wesbouid yuawdo|anaag sjeriale

17




INHO

Aiojeloqe sjeusiep
sinjesadws | ybiH

NV .

yoiessay
uonedUQNT pue ‘Ieap
‘uonou4 :A6ojoqu |

INHO

ABojouyoe |
SOIWEI)

L0 J0 ainjoniis weuboud uaiing

s|eu9ien
uoijeliodsues)
Jo @210

....................................

18



UOISSI|A| pue 9]0y

A R T R R A S S N A

sjeuajepy uonepodsuel] Jo 32O

19



R RN T R N R AN TR R S A RN

Al1ou100]@ pue sjan} aAljeula)je

0} wnajo}ad uo asuspuadap jejo)} Jeau wodj J0)09S

uolerodsuel) *S'nN ayl jJo uonisuel ayj ajqissod

9)yew |jim jey} swalsAs uoieodsuely Juaiolyyo
-AB.iaua jo Bunsauibus pue yuswdojanap ajqeuy .

Buissadsoid sjeriajew
pajeloosse pue sjelLiajew pajejal-uoneliodsued)
paoueape ul aseq Abojouyosj jeriisnpul ue dojana( .

UoISSIN

20



-ajqissod 1502 }Samo| ay} ik [|e s|en} aAneusalje buizynn -
pue {uonepelbap |ejuswuoliaud Buionpal -
¢Aouaioiye ABisua Buinosdwy -

0} UoiNQqLIIUod

1sabie} ay) 9xew ued saiuadosd souadns Ajjualayul

i19Y1 ey} os pajiojdxa aq ued (soweldd pue sajisodwod

xujew sowAjod ‘siawAjod ‘sojjjelowiajul ‘saysodwod
Xujew jejaw ‘sjejowl) sadAj jje jo sjepialew: panosdwj -

‘soljljigedes aosuewopad ubisap 119y} aAsiyoe o}
swa)sAs pue sjusauodwod sajqeua ABojouyoa) sjeiaiey -

‘Burisauibua pue adua19s sjeridlew uldopouw Jo sijauaq
ay} Awouo023 a3y} Jo 10)0es uoneuodsued) ayl inoybnoayy
puaixa o} s)aas ysiym weiboid gy anisuayaidwiod

e Buidojanap si sjelaepy uonenodsuel) jo adO Ayl

..............

21

“s{euajeyy uonenodsuel] Jo a0

...........................................



1S00 sjepajew o} J10iNqUIUOD Jofeul e s§ Buissasold

%

passanoid si |elialew e moy Aq pauiuialap si (siawijod
O 9seD 8y} ul Jejndsjowl 10/pue aiNjon4so4oil) ainonis

T

jel49jew e Jo 81njonJsolojwi pue uojlisodwod Aq paujwiajap
ale ("oj9 ‘ssauybno) ainjoely ‘yibuails dealo ‘anbie} ajoho ‘aouey
-S1SaJ UoJs04109 ‘Yibuails ainjesadwa) ybiy) saniadoid sjeisarep

i

sajiadoud sjeisjew uo spuadap
jusuodwod 10 Wid)sAs e Jo asurUIIOLIdd

4

ABojouysa) Buijqeus,, Lay e s} sjeiaiep

solluadoud sjeidalep] uo si snoo4
dR4 sjelien

o m_m_._mwm_z _.._O_wmtcn_mﬂm._._,.. .hO wo_:nw

22



ubisap Aq ABojoqil] 0§ :ealy)sel
sasesalu] ABojoqui] pataaulbug gz :ealy ysel

uonEe3UqNT JUSWUOIIAUT 3Wwallxg Q| :eady )sel

2661 Ad 10} ue|d Juawainodoid

weaboid ABojoquiy

23




S A R

jueasjas Asnpuj
‘udel-lauoys  tweaboud ABojoqul W10-300d

yoleasau oiseq

‘%sSM ybiH
‘abuevi-b6uo] :weiboid ABojoqul 1N9D3-300

wesboig AbBojoqii

s|euajely uonepodsuel] Jo 830

24



"}salajul Jo
seale sjueouqnT] paosueapy / Abojoqii |
ul wesboid uo indul Asnpul uielqo oj

asoding

weiboid AbBojoquil

R R R R R A e e

25

R S St S



uswajdwy

¥

MaInay

L 3

sjuswwo?)/ induj Ansnpuj

¥

ueld weibold Jesa-nnN

¥

sdoysHIop,
shaning .
8UO UO BUQD -«
uonoeIBlUl 10} seale 8|qissod uo induj

yoeouddy
weiboig ABojoquiL

s|euajely uoeodsuel) JO 8210

26



"swiv)sAs uonjeuodsuel ul (97qQ) uogied
al|-puowelp pue puoweip jo uoiedydde -
aAI109Yd 1509 10} saliunuoddo Ajjusp)

aA193[qo

wel1boid AbBojoqiit

m_m _._mums_: O_amt o m‘_._. *omo_tO

27



Arewwns INY

uswuiey) |sued

Siijsusq [eljualod -
siolueq Ajiusp) -
spaau suye( -

S|aued - SUOISSAS HJOM

(siexeadg) maiAlen( SnielS Jualing

yoeoiddy

weiboid Abojoqii)




NV ‘S|OYOIN pai
uoilejjodsuel] o} suonedijddy

INV Y043 uaqoy
uoljeziiayoeley)

INHO ‘nejg J8led
suwiji4 uoqie)-ayi]-puowelq pue puowel( jo santadoid

TNV ‘@sua abioan)
saibojouyoa) uciliisodaq jo uonenjeaz aanetedwon

sjaued

weiboug ABojoqiil

s|euajely uonepodsuel) Jo 900

29



Ajpuall) AjjeluswiuoliAug «
aouapuadep ABlaus aonpay .
ssauaAliledwod anoidw| «

s|eon

R B e e N R R, S s RN T 1 e Ml T R T e i D e



Acknowledgments
Fred Nichols and staff (ANL)

Ted Vojnovich and Jim Eberhardt (USDOE)

Denise Moores for outstanding arrangements

31



DIAMOND FILMS:
HISTORICAL PERSPECTIVE

Russell Messier
The Pennsylvania State University
Materials Research Laboratory
University Park, PA 16802

Presentation at: Diamond Films Workshop
Department of Energy
Argonne National Laboratory
February 4-5, 1992

32



20— —4>PO—4MOZCN

LOW PRESSURE DIAMOND SYNTHESIS
CvD ELECTRICAL IONaBEAM

PYROLYSIS OF CHg D1 SCHARGE HYBRJ)DE
AND OTHER HYDROCARBONS METRODS

) \»«5'6Q32‘§Ré'3~w IONS FROM
SOLID
otonn Fiws  weogeured L AL
& MICROCRYSTALS ) 2

& S
VARIED £Ey RATD VARIED 257 RATIO

1911 BOLTON INGERMANY
1954 H\GH PRESSURE of GE

1955 BRIDGEMAN tceu\ssmemm
SCAM
1958 EVERSOLE of UC.
HBLAOE}’H'\A:V DC DISCHARGE
1967 ANGUS (&7 DE N 197] AISENBERG
1373 o CWR 5K M SSLON 3 CHABOT
1376 %Y Arsmc H
L 4] HYDROREH Y ig76 HOLLAND 1976 SPENCER.

¥ 1981 H°SUPEREQ. | in GB 1979 WIESSMANTAL

MICROCRYSTALS | RF in BUTANE E

P g3 KOIDL +... 1979 SOKOLOWKKI o
# 1982 MATSUMOTO A SETAKA | Un WEST GERMMY

W FILAMENT 2 MICROWAVE PLASM | RF i~ BENZENE 1982 BANKS NASK

oge= N -~
’§§ 1985 MATSUMOTO

/ RE PLASMA IN MIXTURE [%CH, IN H,



B Synthetic Diamonds

Their recent production was the culmination of a hundred years of

attempts, some of which were claimed to be successful. An account
of these ¢fforts and the thermodynamic laws defining the problem !

ol g prob
mled the wbolc human spectrum:
those engaged in it have ranged from -
first-rate scientists to downright muckers
and charlatans. There has been no little?
wishful thinking and self-deception, not

DIAMONDS raade in the General Electric Research Laberatory are enlarged about seven
diameters. They were grown by H. P, Bovenkerk in the press depicied on the opposite pege.

proved
- have done their own

by P. ¥. Bridgman

unmixed with avarice. The project has
gonecated an extensive literatuse i
tochaical jpurnals and many accounts in
the populer press, basod on rumors lader

unsubstantial. Maav amateurs
ing about the subject. | suppose that over
the last 25 vears an average of two or
three people 2 year have came into my
office, offering to share the jecret and
the profit of making diamonds in retwm

34

for my constructing the appnratus and

d-tvdajlangzslu "
Modern X-ray analysis has disclosed thel
structural differences between theni
Diamond crystallizes in a cubic
with each atomn svmmetrically ound
ed by four others, all at the same d
tance and arranged at the corners & 38
regular tetrabedron. Graphite crysi)
lizes in the hezagonal system: the
are arranged in layers; within each
the pattern is not greatly different &
the arangement in diamond, b-t -
lavers are separated by cseap
large intervals. It is to this that grap
owes its hebricating properties, for
lavers can slip over oue another u
the action f weak mechamical forces. .
Paradowically. although
very dewse and is the hardest subet
kmown, its stomns are ot packed in SR
closest possible geometrical arang"§
mewt. It would be much denser if oo
atom were surrounded by 12 &%
equidistant atoms instead of only b
\‘v'illurd Cibbs's work in
namics at the turn of the 19th oF%§

turv made it possible to say t
under what conditions carbon



o

rakic the foom of diamond in preference
lo w Gibbs's studies made clear
(hat graphiee could not turn o dia.
otk unless the “thermadvnamie po-
ential” of diamond was less than that of
graphite. The thermndvaamic posentia
sl for chemical reactions a rule close-
|r analogous to the ordimary potential of
mechanics. Just as a w elght falls from a
higher to a lower position because its
sential is less near the earth, so a
chemical reaction tends to run in the di-
rection in which its thermodynamic po-
tential becomes. less—or, expressing the
rule more rigorously. a chemical reaction
can run onlv in the direction in which
jts thermodvnamic potential decreases.
Gibbs showed how to calculate the
thermodynamic potential in terms of the
,peciﬁc heat, the thermal expansion and
4 other measurable properties of materials.
* 1t appeared probable at the time, and
later it became a certainty, that the
. thermodynamic potential of graphite is
lower than that of diamond-which is
* another way of saving that under ordi-
_ nary conditions graphite is thermody-
namically the more stable form. It fol.
low's that if any transformation is to take
place at all at ordmarv temperatures and
pressures, it is from diamond to graphite.
But there is a catch when it comes
" to using these considerations to pndsc!
what will happcn Forah oM

€
< not me same as mechanical stahlity)
. Ever\ one knows that diamonds do met
3 spon(aneously change to graphite, and
= my wife has worn her engagement ring
these many vears with no solicitude e
that score.

The mathematical expression for the
thermodynamic potewtial showed that if
the pressure could be raised high

2 enough, graphite would receive thermo-
4 dynamic permission to transform, even
A at ordinary temperatures, to diamond.
This pressure was calculated W be about
20.000 atmospheres. But here again per-
mission does not mean that the reaction
will inevitably
Just as we cannot -say gra
will change to diamond if only it has
thermodynamic permissicn, so also we
cannot say that when a carbon ~om-
pound dccomposes or when c:rbon is
precipitated from a solution, the form
of carbon that separates will be the fo

graphite is erdioariih the preferved Sorm,
but this dees not enable ws 10 sav that
the actual precipitate will be graphite
and not diamond. As a matter of fact,
there are manv known instances in
which an element’s unstable form. cor-
responding to diumond, separates from
a solidity ing liguid or solution in prefer-
ence to the more stable form.

The possibility that diumond may be
formed as an unstable phase under con-
ditions where “nascent” (uncombined)
carbon is liberated makes it impossible
to rule out the chance of an accidental
success, Thus I could never say to the
hopeful arnateur who walked into nvy
oflice: “Your process certainly will not
work.” 1 could only say this when he
proposed to transform graphite directly
into diamond under thermodynamically
impossible conditions. The aforemen-
tioned possibility has been one of the
bogeys in the whole situation. Many
geologists and mineralogists have been
of the opinion that diamond is formed in
nature under unstable conditions, which
wouldmeanthatltmghtbeammrof
anybody's lucky guess to find the proper
conditions.

J.\one of the sophistications we have

considered entered into the early
attempts to make diamonds. Many of
those who made the attempt were guid-
ed simply by the fact that diamond is
more dense than graphite, which nstu-
rallv suggested the possibilitv that it
might be formed by subjecting carbon
to great pressure. There were thea no
means of producing anything like the
20,000 atmespheres later calculated to
be mecessary, but claims of success were
mamerous nonctheless.

Ome of the earliest and still most dis-
cusved attemps was by a Scotsman, ]. B.
Hamnay, in 1880. He mixed hvdrocar-
bons, “bone oil” and lithium, sealed the
mixture in a wrought-iron tube and
heated it to redness in a forge. All but
three of 80 tubes exploded. (The pres-
sure in the tubes could not have been
more than one or two thousand atmos-
pheres.) In the residue of the unexplod-
ed tubes it wus said that diamonds of
density 3.5 were found. The claim was
accepted at its face value and reported
in the London Times by N. Story-Maske-
lvne. Subseyuent attempts by a number
of experimenters failed, however, to re-
produce Hannay's results.

The matter was reopened in 1943 by
the discovery in a forgotten corner of the
British Museum of a small exhibit labeled
“Hannay's Diamonds.” These were
analyzed with X.rays by F. A. Bannister
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HYDRAULIC PRESS in which the die-
monds were grown is capable of exerting &
force of 1,000 tens. The pressure chambers
are located below the foor level (bettom).

and Kathleen Lonsdale, and found to be
certainly diamonds, and of a somewhat
rare type at that. On the theory that it
was unlikely that diamonds fraudulent-
lv inserted would be of this rare type,
Bannister and Mrs. Lonsdale argued that
Hannay's claim was probably genuine.
But there was also contrary evidence, in
particular, as pointed out by Lord Ray-
leigh. some known instances of bad faith
on Hannav's part. It seems to be we
present consensus that Hannav was a
fraud. Mrs. Lonsdale recently told me
that she now also inclines to that view.

Perhaps the best known experiments
of all are those of the Frenchman Henri
Moissan, made in the 1890s when he was
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Carbon was M oa virgia, patursl diamond powder from methane gas at 1050°C and 0.3 Torr.
The deposits were identified 24 2ew diamond by chemical analysis, chemical etching, density measurements,

z-rey and electron diffvaction, microwave absorption,

d nond

1. INTRODUCTION

The history of diamond synthesis is long and color-
ful and relatively familiar.! Most efforts were directed
at transforming carbonaceous material to diamonds
at high pressures where diamond is the thermodynam-
ically stable phase. These efforts were successful in
1955.2

It is less well known that there have beem.a number
of serious, independent proposals for growiag diamond
at low pressures. Among thoee discusaing the possi-
bility were Bridgman,! Ubbelohde and Lewis,’ Suits,*
Lander and Morrison,* and Angus.® In addition, claims
of successf:l low-pressure syntheses were made by
Brinkman! and Ev : i
re fi All of the proposed
processes involve deposition of carbon onto & diamoad
seed crystal at pressures where diamond is thermody-
namically unstable with respect to graphite.

MMM%
question has received so little seri% ALianbion
this paper we present evidence conclusively demon-

strating that diamond crystals can be growa at sub-
atmospheric pressures.

1. DISCUSSION OF METHOD

The tendency to discuss diamond synthesis in the
terms of equilibrium thermodynamics can ebecure the
fact that kinetic factors may provide the possibility of
diamond synthesis in a temperatu regime
where diamond is actually thermodynamically unstable
with respect to graphite. For example, there is a

* Present address: NASA, Lewis Laboratories, Clevetand, Ohio.

1 P. W. Bridgman, Sci. Am. 193, 42 (1955).

1 F. P. Bundy, H. T. Hall, H. M. Strong, and R. H. Wentorf,
Nature 176, 51 (1955).

3A. R. Ubbelohde and F. A. Lewis, Graphils omé Iis Crystel
Com (Oxford University Press, London, 1968), p. 62.

+C. G. Suits, The Synthesis of Diamond—A Case History in
Modern Sciemcs, A paper presented before the American Chesni-
cal Society, Rochester, New York, Nov. 3, 1960, Reference s

i report by R. A. Oriani and W. A. Rocco.

+]. J. Lander and J. Morrison, Surface Sci. 4, 241 (1968),
J. C. Angma, Synthasis of Diamonds, unpublished report, Nov.,

[]
1961,
7]. A, Brimkmaan, U.S‘.J;uent No. 3.142.99,)u|y 28, 1964,
s W. G. Eversole, Canadian patent No. 628,567, October 3, 1961,
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eleczron spm resonance, and visual observations. The

hed: it cound range from polycrystalline

significant activation barrier impeding the spontaneous

transformation of diamond to graphite. In fact, the
rate of spoataneous transformation does not become

significant until 1300°C. Also the mobility of carbon

atome on clean diamond surfaces at 1000°C is quite
igh $

These considerations show that a diamond seed
crystal might be expected to grow if placed in an
environment supersaturated with respect to carbon at
temperatures ranging from 1000°C to 1300°C. A
competing process will, of course, be the spontaneous
nucleation of new graphite crystals from the super-
saturated vapor phase. (This is not to be confused
with the spontaneous transformation of the diamond
substrate into graphite). It can be expected that the
rate of homogeneous nucleation of graphite in the
vapor phase will be small because of the surface free-
energy barrier to nucleation predicted by conventional
nucleation theory. Heterogeneous nucleation of graph-
ite on the diamond seed crystals cannot be avoided,
but the mobile carbon atoms on the diamord surface
may be more likely to attach themselves to the diamond
crystal rather than to form new graphite n clet.

Graphite has a lower Gibbs free energy (chemical
potential) than diamond. Therefore, if the atmosphere
above the crystal is supersaturated with respect to
diamond, then it will be even more supersaturated with
respect to graphite. This means that the possibility of
nucleating graphite can never be eliminated but it is
expected that the probability will be low because of
the factors listed above.

In this paper we report on the growth of natural,
virgin diamond powdsr by vapor deposition at sub-
atmospheric pressures. Our experiments show that
new diamond is formed. The crystalline quality of the
niew diamond has not been established, however.

1. EXPERIMENTAL METHOD

A. Deposition and Cleaning Procedures

A gas phase supersaturated with carbon was pro-
vided by the thermal decomposition of methane gas
at pressures ranging from 0.15 to 458 Torr and tem-

13
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vAPOR GROWTH OF DIAMOND ON DIAMOND AND OTHER SURFACES

B.V. SPITSYN. LL. BOUILOV and B.V. DERJAGUIN
[nsanute of Physical Chemuisary. Academy of Sciences of the USSR. Moscow. USSR

It 1s shown that r.hlmond crysulhzanon by chemical vapof depounon should preferably be carned out at reduced pressures.
mac_Rydrogen into the crystallization zone: this suppresses crystal-

de Thepomhmeofbomoepumm' Iond Ties Fe8Tied | um/h at 1000°C: film properties were whentical to
those of bulk crystals. The latuce parameter in boron-donad flms (~0.1at.%) decreased by 0.0009 A the film and -ubsirate
Mmudopcmmmmd~lu% and the semuconductor diamond film intergrows with the subetrate

. Diamond crystals up to several tens of microns in thickaess were grown glao on non-diamond subsicates A! large
supsrasmuration. the crystal habit is octabedral and at low supersaturation. it is cubic. The linear growth rate 18 constant at the
carly stages of crystal growth but thew it diminishes 10 a level typacal for the homoepitaxial growth of diamond films.

1. latreduction surface of the diamond seed crystal. The matenal
is trameferred to the growing crystal due to the
The unique combination of excelient temperature gradient between the source and the
mechanical. physical. and chemical properties of substrate [3]. Akhough this process is. in prin-
diamond has been the driving force for the ciple. possible. in practice it is inhibited by a
development of new and cheaper methods of number of {actors:
synthesis. Different fiekds of diamond ap- (1) According to LEED data [4], the diamond
plications both in research and industry can be surface retains the bulk structure up to tem-
satisfied only by essentially different techniques peratures ~1300°C (in vacuum). At such tem-

of crystallization. For instance. the unique elec- peratures the equilibrium carbon vagor pressure
tncal and thermal properties of diamond. as a over the diamond phase is almost twice [3] that
high-temperature semiconductor, can be fully over graphite [S]. and reaches ~1x 10"" Torr.

developed only under the following strictly con- An acceptable growth rate (about 1 um/h)
trolied conditions of synthesis: layered structures requires that the carbon vapor pressure over
are grown, consisting of alternating dielectric and diamond phase exceed 107" Torr. Hence. the
semiconducting single crystalline diamond films, sublimation growth of diamond at such rates
with thickness of the order of one msicron each. requires supersaturation ~ 10’ which obviously
Such conditions can be obtaimed by means of entails high defect density in the overgrowth. In
vapor growth techniques at reduced pressure. addition. the probability of nucleation and
that is in the region of metastability of diamond. growth of th~ graphite phase which is stable at
Research in this direction Uﬁbe'm almost at low pressures. wili also be considerable at such
the same time as the well-known work on high supersaturations [6].
diamond synthesis at ultrahigh pressures. (2) The composition of carbon vapor over
graphite shows a predominance of C.-type
molecules [S] with multiple bonds between car-

2. Physical and chemical crystaitizstion bon atoms. this factor inhibits incorporation of
carbon units into the diamond lattice.

The simplest process of diamond crystalliza- (3) Finally. even single carbon atoms in the
don s the sublhimation of graphite and sub- ground (non-excited) state are bivalent. so that
sequent condensation of the carbon vapor on the about 96 kcal/g-atom has to be expended to
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when the crystallization temperature decreases
and the partial pressure of the component com-
prising the crystallized material increases. In the
synthesis techniques that we have chosen. the
supersaturation is a function of both the pressure
of hvdrocarbons. and of the partial pressure of
atomic hydrogen. The latter changes the concen-
tration of the hydrocarbon complexes adsorbed on
the substrate, by interacting with hydrocarbons in
the gas phase and on the surface. Hence. the
atomic hydrogen not only maintains selectivity of
the process but also affects the growth rate. thus
having the role of an active participant in the
diamond crystallization.

3. Diamead growth on diamoad surfaces

Substrate temperature is _one of the factors

syructure of the deposit. Diamond layers grown
on single crystals at 600°C are polycrystalline
with grain size of 15 to 20 A [15]. However.
high-perfection single-crystalline layers were
obtained on the {110} face of naturai diamond at
750°C. this is confirmed Ly electron diffraction
(fig. 1) which shows a well-pronounced system of

Fig. | Electron diffrachon pattern (E = n5keV) of a

diamond film .8 um thick. grown on {110} face of a natunai

diar- ond crystal at a growth rate ~0.4 um/hour.
RTRERREERY
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Kikuchi lines. As the temperature is increased
further. the growth rate of homoepitaxial film
increases (activation energy of the order of
d5kcal/mole) and reaches a maximum ap
~ ION°C. Further increase in temperature results
in reduction of the growth rate and in deteriora.
tion of the structure of the diamond layers. so
that HEED analysis reveals graphite inclusions

Cathodoluminescence [17] and X-ray topo-
graphy [16] have demonstrated that void-type
growth defects produce stresses in homoepitaxial
diamond films. As the crystallization tem-
perature is lowered from 1100 to 800°C, the
stress in the film increases by a factor of ap-
proximately three. When the stresses in the
substrate-film system exceed a certain threshold.
lattice discontinuities and microtwin lamellae are
formed in the film [18]. At the same time. ESR
studies show that the film contains broken C-C
bonds. Stresses produced during growth and high
rates of crystallization may result in deterioration
in the morphology of the diamond deposit (fig. 2)
and in a gradual transformation from a single-
crystalline film into a polycrystalline one. The
diamond layers were characterized (using SIMS)

by a comparatively high purity {19]; the impurity -

content was found to be approximately the same
as in natural single crystals. One exception is

Fig. 2. Diamond laver ~3um thick. grown at a rate of
~2 um/hour on {111} face of a natural crystal
e ]
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Fig. 4. Growth twinning on (a) {111}, and (b) {100}. taces.

of a polycrystalline copper specimen annealed in
hvdrogen (fig. 5a). After a certain growth time
the specimens were extracted from the reactor.
photographed in a scanning electron microscope.
and then returned to the reactor. A conducting
gold layer was not found necessary to obtain an
image when applying a scanning electron micro-
scope to photograph diamond crystais. having
sizes up to 50 um. that were grown on a conduc-
ling substrate.

Figs. Sb and Sc show the same area of the
copper substrate as that in fig. a. after 1S
and ¥ min of growth. Crystals spontaneously
nucleated on the substrate surface are seen to
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Fig S Growth of diamond crystals on copper substrave: (a)
area f substrate with twn rounded-shape diamond seed
crystals. (b) and (c) same area after 1S and ¥ mn of crystai-
hizanon . respectivelv
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Vapor Depositioa of Dismoud Particles from Methane

Seiichiro MATSUMOTO, Yoichiro SATO, Mutsukazu Kamo
and Noduo SETAKA

Nonensl ixstinae for Ressarch in Inerganic Materials,
1-1 Nemiki, S cura-smma, Nithori-gwn, Ibaraki 305
(Recsived February 9, 1982 acaspaed for publicaticn March 20, 1982)

Microcrystallins diggusag has bess formed oo silicon or melybdennm ssberetes by ve).or depcaition from & geseous
mdmuhn“wwwmmmmmdm
deposis wes e by slren difppmion tad Ramge sppgcin-

The considerable effort that has besn devotsd to the
synthesis of diamoad has besn motivated by the umique
combination of propertiec exhibited by this material.
These properties include great hardmess, high thermal
conductivity, high electrical resistivity, optical trams-
parency and semiconductivity induced by impurity doping.
Besides high pressure techniques, currently used for
commercial production of diamond, attempts have been
made to make diamond by chemical vapor depotition
(CVD),'"¥ ion-beam techniques,*”* and plasma-
imduced vapcr deposition.” ~ %’ The carbon films obtained
by these tec_-i7ues are often termed di jke, since
they show, to some extent, properties similar to those of
diamond. Unambiguous identification. of the structure
of these Slms, however, is difficult owing to the amorphous
nature of the films or the appearance of forbidden reflec-
tioms and of reflections from sroctures other than
diamond in electron diffraction.?:¢:%-%

On the other hand, Dervagin ¢f g’ reporsed that
octakecral or cubo-octah=dral diessond crystals caa be
grown on aon-diamond substrates sech as copper and
goid by chemical transport in & clessd sysssm. Ressmaly,
a more detailed account of the growth features, chasscier-
ization and possible growth mechesism bas besm gives
by Spitsyn er o' -Diamond crystals were grows om
diamond, silicon, tungsten and molybdenum at growth
The importance of the rcle played
pointed out, but the details of

jgue were not given. § pAPST, Ve
report that diamond ~ry:-tals can also be growa ¢a °2-
diamond substrases by CVD in a flow-system.

Deposition was carried out by passing a mixture of
gaseous methame and hydrogen through a depositict
chamber, in which a tungsten Hlament was mounted
pear the sebotress, as shown ia Fig. 1. Silicon wafers or
molybdesumn pistes were weed as the ssbotrates. Obesrva-
tions by SEM were made with the doposits obtained unde
the follcwimg comditions: methane comncestration, ca. |
vol %, wial gas pressure, 10100 Torr; fowraes, ce. 10
mi/min, semperatare of deposition chasabrr, 500-1689°C;
filament tesnperature, ca. 2000°C. The temperature of
;hm_urw-mwam
I commst with the silien sebutrae: holior, as shown in

) =P WL, | SN

at. alne. -

¢
e

BN
L@ dtament
J:mlm&.

.ﬁ - Silice halder

- Thormeo couple
|

To pump
Fig. 1. Schematic diagram of depositien chessier.

Furnece
Silico tuipel

be Ligher than the temperature measured by the thr-
mocouple a3 a result of radiation from the filamest.

ANsr deposition mas of 3 hours’ duration, dismond
puﬁhanpnmfomedu:hminF‘g.l(a).
Mwwuﬁulediﬂminmm
characesristics betwesn silicon aad molybdenem
substrases. Muwitiply-twinned crystals as well as cubo-
octabedral crystals were observed. Tle was ;

resembie that obeerved with
transport ip & closed system,''-'?) Film-lile rogiows are
also formed by the contact of ™ ) B

The Gensity of nucieation appears to deped streagly oo
the substrate conditic=3, and preferestial growth along
scratches or edges was often netsd.

The structures of the depewits were identified by
refloction electroa difffestion. As Fig. 3 stows, spotted
rings were obssrved; the pussern consists oi diffraction
”ﬁ-mhnnwm.,u'rnuel
shows, the J-valkees obsained from the diffraction rings
lninpod.—lmwiththereporwdvaluesforcubic
MmhttheZﬂdoublediﬂbcﬁonm
appesn in the difvection pettern.

Raman sosmring of the deposits was also observed as
support for the structaral identieation. The spectra were




Tabie l. Comparison of o'esrved imsoriayer specings with

Fig. 2. Scanning ehictroa micrographs of diamond deposited on silicon. (a) Disnond particies deposited at 790°C

(micrograph takem by tilting swbstrasm). (b) Film-like region formed at 330°C.

reported valuss.

Obearved Reported (ASTM 6-675, Diamond)
d(A) 1 d(A) i, hk! —anD
2.06 s 2.06 100 m "
1.26 . 1.261 25 20 CRYTALE
1.08 s 1.07%4 16 311 g ) '
1.0 w -— — 22 ) W i
0.99, w 0.9916 8 480
0.81, m 08182 16 331
0.77 m 0.7200° 422
0.685 m 0.6864° 511, 333
0.633 w 0.6305° 40 j i
0.603 m 0.6029* 31 Fig. 3. Rofiecsion eclsswroa diffracton of d'ssomd particies

*  Cakcnlated from the ieporad valus of a, = 3.5667 A

deposited on silicon.
the Raman-shift ramge of 300-25(D cmm~!, the spectna

1401 spectrometer with a back-scattering geometry. The comsist of Raman peaks duse -0 diasr-1d as \/1l as - the
488.0 or 514.5 nm lines of an argon ion laser or the 441.6  substrate, sad backgrcrnd due to weak rminescence. as
am line of an He-Cd laser were used for excitation. In  Fig. 4 shows. Ram:-. saiwring from to amorphous

Intensity

Qiomond

RAmMaN
S?emun Si

1500

excitation.

Fig. 4. Raman spectrum of as-grown specimen

$i
A_ x 1 [ x‘é
L 1 L L v’ S et
1000 500

Rai in shift/ecm™!
silicon cubstrate. 441.6 nm line of He-Cd laser was used for
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e Hause of Representatives ths yeer. o
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the House but that Uwnr chances for .
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™e are speaking nstead of N
the Democrats’ piciiing up (9 0 13 com
seata. much less than has ofian on
the case when one panty has cantrelied proy
the White House for ma years. The oty
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1974, 1968 and 1984, | vour:
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U.S. HISTORY
DIAMOND VAPOR GROWTH

[at practical rates ]

pre-1985 Results. Little Belief!
1985 Cautious Belief.
1986 Belief! Cautious Acceptahce.
1987 We're Behind! = START |

1938 We're all in for the long-haul.
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Of Earth’s Diamond Age

By MICEANE. wOaRS
o e oG
— Ristorians who
progress in terms

of oew malerials that chaange soci-
ety will never kgow who fashionsd
the first steas tosis that ushered in
the Steme Age, or exactly which
inspised individuals deserve cradit

AP H
1h
;iis
E:?E

jje:
v
it

t m

'

|
ie
o

tailed repert e tha process in 1977,
scientists arennd the world igaored
it — fer ransens thet are unclear.

THE
ToLeDo

i

11
-
i

i

breader impost aa sseiety than zny
other achieverrcit
since 1008 — the yeer of the imven-
tion of the gresaas that .ande Alumi-
widaly sveiloble.

That precsss, decveleped Dy
Charles Hall and Paai Nereuit,

sively in consumer products as ale-
minam is. But be predicted “a great
expansion” in mankind's exploita-
tion of the unique properties of dia-
mond. It is the hardest and most
chemically inert material on earth,
giving it the ability to cut all other
materiels and resist attack by
chemicals.

It «lso conducts heat better than
silver, copper, and other metals.
Unlike those metals, it does not
conduct electricity, but acts as an
excellent electrical insulator. Those
properties give diamond numerous
potential applications in electronics,
where heat dissipation is 2 major
factor limiting how tightly traamis-

The films are extremely thin, per-
haps oanly 0.00001 inch thick.
Scores of industrial firms are try-

have taken the lead in transformihg
the Soviet Union's basic ressarch oe

very rapidly.
Dr. Spitase suggested that cooper
ation between US. and Soviet scies

ing to develop products that would

48




THE BLADE: TOLEDO, OHIO,

Soviets On Cutting Edge

Coatineed from First Page

He and hiv associates acknowl-
edged that diamond-film technology
has military applications. The
American Star Wars program. for
sxample, has become a major finan-
cier of diamond-film research be-
cause of its petential for improving
the performance of lasers and other
optical devices.

U.S.-Sevist Cosperaticn
But Dr. Spitsen indicated that

there could be U.S.-soviet coopera-
tion on nonmilttary aspects of thin-
filn diamond technology.

American scientists speculate
that the initial 1977 Soviet report on
diamond films was ignored because
the technalogy for depositing the
films appeared 3o simple that it was
barely believable.

Scientists knew that manufacture
of syathetic diamonds, first
achieved in the United States is
1934, required extremely high tem-
peratures and pressures. Synthetic

are made from carbon
that has been subjected to enormous
presgures and ultra-high tempara-
turea,

and microwaves similar.to those
used in ovens.
Eleetrically Charged Gas

Each molecule of methane con-
sists of one atom of carbon and four
atoms of hydrogen. In the diamoad-
film process, microwaves are wsed
to heat methane, separating the car-
bon from the hydrogea ateens. and
forming as electrically charged gas
known as a plasma.

When the plasma cemes into con-
tact with an objeet. carbea atoms
accumulats ep its surface in the
specific crystalline ferm of dia-
mond.

The Soviet apparatus now is able
to deposit about ¢ micrometers of
diamond as howr, Dr. Fedoaeyev
said. That rate should be adequate
for most purpeses, he added. One
micremeter is about 0.000039 inch

Dr. Fedoseyev said the Sovietsare
capable of depositing two distinct
kinds of films, one consisting of
ordinary diamond, and another of a
diamond-like material that a traas-
lator termed “diamond slag.”

All three of the Soviet scientists
cittd many pleasamt encounters
with American sci Dr. Spit-
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ALL | ,
HYDROCAREON  Sases
{ MAKE J)mmoub ~ SAME_

~ _v\-“-m_.‘,\_\_ .

T—— N —— - -~

nixed gases inlet

Silica tube

Heaked Flament]
CvD

W filament

|

\
Substrate Furnace -

MO cover

Thermo couple substrate holder

Fig. |. Schematic diagram of thermal CVD apparatus.

Table 1. Organic compounds for diamond synthesis in this study.

methyl alcohol CH,0H

ethyl alcohol C.H0H @ \odRka 5‘ ke

isopropy! alcohol {CH,),CHOH

2-methyl-2-propanol {CH,,COH

acetone cH,cocH, «— Nail Polish Rewover
isopropyl ether {(CH,),CH],0

diethyl ether C,;H,0CH,

methyl acetate CH,COOCH,

acetaldehyde CH,CHO

trimethylamine (CH,,N

From M- Hicose wd Y. Terasawa
ZT?-\.IAP 2_«_(,L5l1 (!1%)
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transiated by M. Suzuki

Apri) 3,88
Yeu can make diamond esslly|
(The Yomiyri Shimbyn* March 29,86, P2)
TEM JoLoa?
Dr Hirose an associate professor of Nippon eveloped

& much easier waey to synthesize diamond than ever reported. This method
works in the air, so it doesn’t need 8 vacuum pump or vessel. As shown in
the below figure, the flame ejected from the burner deposits diamond
particles on a silicon substrate which temperature {s hold between 600°C
and 300°C. The key point is to use 8 reducing flame which temperature is
above 1500°C. XRD and Raman spectrum identify the particies as diamond.
So fer, the biggest particle grown for en hour has 200 micron diameter
size. This nevs process seems to be suitable for coating on cutting tools or
curved surfaces rather than for meking diamond semiconductor.

Dr. Hirose will give & presentation about this work . 35th Applied
Physics Seminar todey.

S1 substrate A( ¢ “‘14 ,ﬂy\c Tgrc ',\_
(600°C < temp. < 900°C) ,‘.,' ] A 'r

‘Teducing Mamg - —
( flame temp. » 1500°C)

-~ raw §as
: propene(CsHs) or

oxidizing flame

at an atmospheric pressure, {n the air

A Schematic Image of the New Process

*The Yomiurl Shimbun 1s one of three big Japanese newspapers.
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acetylene(C2Hz), etc.
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HOMOEPITAXY

\

HETEROEPITAXY

¥

ORIENTED
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POLYCRYSTALLINE
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7
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AMORPHOUS

Ache ivegz

Indications; B-SiC, c-BN

-t @ @

Eﬂv_g_ontrollmoi

deposition conditions and seeding

" Typical:  800-1050°C
near - 0.5%CH,-H,

cpti mum
{ Chemistry controlled ?

"Non- it low Ts (( 500% )
‘ optimum*, &
conditions *. high %CH, s

I 94t ;iu& .
high nucleation density

bombardment (some)

LowT,
does a-C (sp?) exist?
dense hydrocarbons

{bombardment controlled }

55




He MocATANAL. [ IAkoND

81KX

Lo W

A:_., r
L

- _teu ees? poi2l

TNO

|

A.RADZIAN € T. BADZIAN



A.R. Badzian and T. Badzian
MCVD

57



Diemond ow S

MPACYD

A.82TZIAN 3 T. BADZIAN




CH4 30% .

’
W

N .. N
oM Y. Safo (NRM

59



frem Y. Sato (MfR(Mj

A



NUCLEATION

[Specific sites/dutfer layers]

v

FREE GROWTH OF DIAMOND

v

INTERGROWTH OF DIAMOND

v

RENUCLEATION

v

SECONDARY EFFECTS
(twinning/impurities]

'

EVOUTIONARY SELECTION OF CRYSTALLITES

[relative growth rates of crystal planes]
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oo 600 400 1800
e s sotlity 1500 8500 1900
}’;‘;‘g‘;‘"‘”‘m 5 x 10° 6 x 10° 1x10
clectran velocity at high felds 1x 10 1x10 2.7 x 10/
dielectric constant 11 12.5 5.5
Hepi 10° 10° 510"
eTma e ey 145 0.46 20 |
thermal expanalon coefficlent 2.6 x10°° 5.9 x 10° 1.1x16°
refractive index 3.4 2.4
g/ B 1 000 600 10 0%
Pl e pagationveloctty 18 500
IN/m C&ty 1.2 x 1012
_Eg‘}“é%a; ' : 3.5
focy & Pt 1420 1238 N/A
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FIG. 3. Thermal conductivity of two diamond films (open
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MATERIALS FOR X-RAY MASK SUBSTRATES

( KRy

~w~ TABL

Lithoq ra

III

phy

WN“")

\

vav /

42 | Wiem'K 10-¢ | Kgmm*| (0dyne-'cm?

lyo x a Kn.H UTS YM. | O.T. FM
Si 5.5 1.6 23 800 007 1.3 Poor l
SiyVa 23 0.2 1.8 2200 .08 3.36 Good 0.54
B.C 6 29 2.9 2750 .0015 39 Unk. 2.7
BN 3.3 0.8 29 2500 .10 1.8 Good 5.42
B 1.5 0.65 4.2 2900 023 4.5 Unk. 7.6
SiC 3.6 0.41 23 2540 .20 18 Good 10.6
E C(Diam. 3.0 6.55 1.2 8000 .02 1.2 Good 37

* Maximum measured value

FMeri =08 x (Ix k) x UTS x Y. M.

FM = FM..|FMq

x: Thermal Conductivity
a: Thermal Expansion

Kn.H: Knoops Hardness
UTS: Ultimate Tensile Strength
Y.M.: Young's Modulus
O.T.:Relative Cptical Transparency
FM: Tigure of Merit

TARLE 1

77

- tyw : Thickness for 50% x-ray transmission at 8.33 A

F‘j“"‘
MenT

e e e = i e o o | e Ame




Table |
Comparison ot X-Ray Mask Materials Based on Optical Transparency

and Mechanical Stiff..ess Factor
B PO N T o e ]

Material tos thm fs‘ti';f-r;f Factir)‘
— T s: toEl(1-v)
[um] (GPa-um]

Polyimide >5 43
Mylar >5 42

Ti Opaque -

Be Cpague —

Si 1 181

BN 3 330
Si0y .5 444
Alx04 1 448
SigNg 6 728

SiC 3 1,580

[ Diamond 2 2340 "

et

ty is the thickness required for 50% transmission at 632.8 nm.

frow H. Windischumann (B9
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Properties of Semiconductive Materials

Properties 'Diamond’ Si GaAs SiC
Band gap '

(eV) 5.5 1.1 1.4 3.0
Carrier mobility

(cm?/V.sec) | N -“__ﬁ S

Electron - 1,800 1,500 8,500 400

Hole 1,600 600 400 50
Dielectric constant 5.5 11.8 10.9 10
Thermal conductivity

(W/cm K) 20 1.5 0.5 5
Absorption edge 0.2 14 | 0.4

(um)
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TECHNOLOGY/COMMERCILIZATION
Nw

Products are beginning tc appear which take
advantage of diamond's excellent:

« mechanical properties

- thermal properties

«optical properties

Electronic properties/applications seem to be the
least developed and have the most comxrrcial

potential =p New Jopan NITI Progrem TUSH

Companies are continuing to make committments
to manufacturing

Most hard coating companies have significant
efforts
Sandvik Coromant Sumitomo Electric

Norton GTE Valenite
Kennametal Toshiba Tungaloy
GE Asahi Diamond
Mitsubishi Metal

o Joint Ventures
GE [ Asahi Diamond

Norfon / Sandvik , eke.
Kennamehl / Tdemitsu foinchemicsl
Diamonex/ Seiko
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e Electronic Devices for Severe '
Environments such as in Space !

® or in Nuciear Reactors
e Electro-optical devices

e LED
) o Microwave Power Devices

o Hiah Hole Mobili e Sensors 1
igh Hole Mabtlity o High Speed Electronic Devices '
.Transparent :

- —d

e Sensors for Severe Environments such
as in Space and in fuclear Reactors

- "éE ‘ @ Thermister for Automobile Engines

e X-ray and UV Sensors

@ Acid Resistive e Heat-resistive Sensors

@ Radiation Resistive

@ Heat Resistive
@ Large Band Gap

_J
/‘%[:: ’{—;Heatsmks ‘J

whndews

@ High Thermal “i C(
Conductivity ' A%:ﬁuﬁﬂ
evTers

‘I‘ Single-crystalline Films
e Formation of p-n Junction

@ B-doping for p-type
Semiconductor

o Formation of n-type
Semiconductor

@ Electric Insulator

@ ‘\ @ Abrasive Coatings

[. Uniform
Deposition

I

—

| ona large area

® Hard
. Low Friction

1
!'High-rate |
! Depositioni

i gﬂm K. Kobesh.
}‘ Thin Film Technology ' koﬁ S&"'

Microfabrication Technology
Microwave Technology
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CURRENT STATUS

CVD DIAMOND
SCIENCE

¢ Progress is being made
¢ Basic and Applied Science needed
(the more questions answered, the more posed)

TECHNOLOGY

o Companies are beginning to make major and

long term commitments
* Products are beginning to appear

GENERAL

e We're in for the long-haul!



PENNSTATE

I University Park
R Campus

CVD Diamond - Fundamental
Phenomena

WALTER A. YARBROUGH

Materials Research Laboratory
The Pennsylvania State University
University Park, PA 16802

Department of Energy Workshop
Argonne National Laboratory
4-5 February 1992
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Graphite/Diamond Equilibrium

dG=Vdp-SdT
0| _ v ( 0G| _ s
T dJT p
For diamond For graphite:
V=342 cm mol V=534 cm’ mol™
S=238Jmol K’ S=574Tmol  K*
50- ,
, /
/
40
- l ________éggr_g_x_linalc strength
= of WC
! Diamond
g 30-
% Graphite
oy
20-
10 T ' T n]
0 500 1000 1500 2000

After: J. Bassett,

Temperature, K

J. Phys. Radium, 10, 217 (1939).



Hot Filament Assisted CVD

~1%CH4inH 5
~25 Torr

TRRTRANNNARNANRANASNSY

AR AR R AR RANLANL N,

SARARARINNSNARNANSNN

SAUNNANNNANNANNRNNS

AN AN AN A MR A A

~2,000° C refractory metal
(Ta, W, Re) wire(s)

Substrate

~700 to 1000° C

Mounting and power

AR AR AN

AARARRARARARANAAAN

SRR AR AR AR

ARAAALARLAAL R AR RR N

supply
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Combustion Synthesis of Diamond

©,

Various "zones" in an oxyacetylene brazing torch (~1:1 O/C or less)

1. Transparent, colorless. Preheat zone. Premixed gas at high velocity is heated to
combustion.

2. Bright incandescent white. Primary combustion. Premixed acetylene and oxygen bums
to produce primarily CO and H,. Adiabatic combustion temperature (1:1 CH, - O,)
3300 K. Much H, expected to be atomic. Diamond growth observed here.

3. Blue, transparent. Secondary combustion. Combustion of the CO and H, produced
in primary combustion in the surrounding air.

Substrate, ~700 to 1100 K

Water Cooled Substrate
Holder




Deposition of Diamond from Fluorocarbons

tube furnace

O O O /o O

—» Gas Flow

O\O O O O

long substrate (copper, nickel, monel etc.)

850° C SOOT

~250° C

Diamond Diamond
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Observations

Diamond can be grown without hydrogen
CS,+6F,— C 4, +2SF

Methane, fluorine, hydrogen mixtures work.

Some oxygen important - best results with
alcohols, ketones, etc.

Carbon furnace best - less metal halide.
Temperature control in hot zone important

Temperature gradient may be important

8



Why Diamond ?

(and not graphite, or lonsdaleite, or glassy carbon, or cliftonite, etc.)

Critical Observations

Diamond can be grown on diamond by simple hydrocarbon
decomposition, i.e. without atomic hydrogen.

BUT only in small amounts - graphite nucleates eventually -
then graphite growth dominates.

W. G. Eversole, "Synthesis of Diamond," U. S. Pat. no. 3,030,188, April 17, 1962.
John C. Angus, H. A. Will and W. S. Stanko, J. Appl. Phys., 39, 2915 (1968).

If diamond and graphite both are present in "excess" atomic
hydrogen: graphite decreases - diamond increases. Diamond
is nucleated and grown on graphite.

H. B. Vakil, 1989.
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Kinetic Theory:

Competitive Growth Model -

Graphite is "etched" or gasified faster than diamond, hence
diamond persists.

B. V. Derjaguin and D. V. Fedoseev, Growth of Diamond and Graphite from the Gas
Phase, Nauka, Moscow (1977). (in Russian)
B. V. Spitsyn, L. L. Bouilov and B. V. Derjaguin, J. Crystal Growth, 52, 219 (1981).

If equilibrium calculations are modified to include an
enhanced etching of graphite by atomic hydrogen then the
first solid obtained is diamondi.

M. Sommer, K. Mui and F. W. Smith, "Thermodynamic Analysis of the Chemical
Vapor Deposition of Diamod Films," Solid State Comm., 69 (7), 775 (1989).
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Growth Surface Stabilization:

Stabilization by Hydrogen -

Hydrogenated diamond surface is stable relative to
hydrogenaied graphite.

Atomic hydrogen maintains surface hydrogenation at high
temperature and low pressure.

R. Roy, R. Messier and K. E. Spear, Microwave Plasma Synthesis of Diamonds and
Diamond Coatings, Final Technical Report, ONR Contract NO0O14-84-K -
0749, January, 1986.
B. B. Pate, Surface Science, 165, 83 (1986).
K. E. Spear, Earth and Miner. Sci., The Fennsylvania State University, 46(4), 53-59
(1987).

W. A. Yarbrough, "Thermodynamics and the CVD of Diamond," Diamond, Silicon
Carbide and Related Wide Band Gap Semiconductors, J. T. Glass, et. al., eds.,
MRS Proceedings, Vol. 162, Pittsburgh, PA (1990) pp. 75-84.



Variation of Predicted Phase with Atomic
Hydrogen Partial Pressure

107 Tt —g

0.9

0.8
g 0.7 _
'S g Graphite
£ 067 & Diamond Surface temperature:

Lonsdaleite

£ o057 ° ~1000° C
3
& 0.4

0.3

0.2

0.1 1

0.0 S - T Y T s T |

-7 -6 -5 - -3 2

At thermostatic equilibrium: For filament at 2000°C (50 Torr):
Log [H°] = - 6.78 Log [H°] = - 2.68
Graphite is predicted Diamond 1s predicted

Graphitic defects and twinning/stacking faults (polytypes or
diamond - lonsdaleite crystalline solutions) possible.
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Hydrogenated, Unreconstructed (111) Surface o
Diamond

|



Hydrogenated, Unreconstructed (110) Surface of
Diamond
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Hydrogenated, Unreconstructed (100) Surface

Plan View

Side View

Using Lennard-Jones Potentials with A = 31.4 A% and B = 2.97 x
10 A'? kcal/mole, AH = ~ 0.7 x 10* kcal/mole!
Simple hydrocarbon (cyclooctane) model, AH ~ 2.5 kcal/mole
Molecular mechanical modeling, AH ~ 40 kcal/mole
(Yang and D'Evelyn, 1991)
Sce: W. A. Yarbrough, in Diamond, Silicon Carbide and Related Wide Band Gap
Semiconductors, pp. 75-84, MRS Proc., Vol. 162, Pittsburgh, PA (1990)

A. V. Hamaza, et al., Surf. Sci., 237, 35 (1990).
S. J. Harris, Appl. Phys. Let., 56 (23), 2298 (1990).
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Hydrogenated, Reconstructed (100) Surface of
Diamond

CH n /c“l.'
“\C"C-' 3.0 — Ne-e +H,
CW,y ™
\ CH

B.Garrison (Pewn State)
¢ D.Breuner (NRL) 1941
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A Methyl Radical Mechanism

Gas Phase H, - H.+H. (1)
Activation

CH4 + H’ — CH3’ + H2 (2>

Surface |: CH+H o C+H, (3a)
Activation

2 C(S)H-—>2C(S)-+H2 (3b)

Addition Ci +CHyp — C(CH, (4)

C (s)CHZ. + C(S)CHZ. — C (S)CH2CH2C s (5)
Incorporation '
C (S)CHZ. + C (S). —d C(S)CHzc s (6)
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Unresolved Questions

Kinetic modeling, to date, treats diamond surface
as large hydrocarbon. How good is this
assumption?

2 C(S)I"I 2 C(S). +H2
Is it possible? important?

For 31mple hydrocarbons - not likely - forbldden
by orbital symmetry rules, hence

C2H4 + H2 > C2H6

does not happen.

Do reactive sites (radicals?) diffuse on the
diamond surface?

Can carbon species (R-CH,, R=CH,, etc.) diffuse
on diamond?
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Dissociative  chemisorption of H, on diamond is
known at low temperature.

Y. Ishikawa, et al., in The Chemistry and Physics of Carbon, P. L.
Walker and P. A. Thrower, eds., Vol. 12, (Marcel Dekker, New

York, 1975), pp. 39-108.

(111) diamond surface looses hydrbgen at low
pressure and high temperature.

If associative desorption does not happen - what
1s the mechanism?
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Polishing to enhance diamond nucleation

Post polished with c-BN

Light diamond nucleation

Polished with diamond
—

Heavy diamond nucleation
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Nucleation of Diamond on Graphite

¥ 3
[1

[110] [100] | [100] [110]

diamond \\ diamond / f\\diamond / diamond
Q E O O

[112]]
graphite
— Carbon (O
———————— [111]
T ; Diamond Hydrogen ©
[101/] graphite Twin Plane y
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Modeling of Texture Development in Polycrystalline Films
Ch. Wild, N. Herres and P. Koidl, "Texture Formation in Polycrystalline Diamond
108
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‘Model for Microstructural Development

Suinttnasstttnnititnntntnd

Substrat

@

M A A A AN O

(b)

A schematic illustrating the uniaxial growth of polycrystalline layers.
Nucleation occurs at discrete sites on the substrate and these nuclei may be
randomly oriented with respect to their crystallographic axes as illustrated in
(b) above. As growth continues, those crystals which are favorably oriented,
i e. have their dominant growth axis aligned more or less normal to the
substrate, will begin to dominate and upon continued growth the film or layer
will begin to exhibit this crystallographic texture. Impurities and voids may
be intergranularly entrained, the shaded regions in (a), leading to greater
perfection with continued growth. :
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Possibility for a vicinal <100> Texture

axis orthogonal to the
(100) | Pplane of the coating.

ForR viciNaL <1005 +EXTURE SEE !
E'DO

SPRECHT | R.E.C'AUSING AND L. HEATHERLY
J. MATER. Res. | g (1), 2351 (1940).
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Requirement for Elastic Isotropy in Cubic Materials

204 1
C11-C12
Values for diamond

from: M. H. Grimsditch and A. K. Ramdas, Phys. Rev., B11, 3139 (1975)

o2
C11=10.76, C12=1.25, C44=5.77 x10 Nm

or
2C44

=1.21 for diamond
C11-C12

Conclusion: Diamond is elastically anisotropic.
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Thermal conductivity i (W.m-K)

Table 1 Deposition condition of diamond hims.
Gas inlet :

Method MicioWave Plasima CVYD
l A Reaction gas CH,+H,;
@ 1) CH, cancentration(CH./H,) 0.1~30 vol?;
\ / Total gas pressure 4kPa
., Flow rate 300SCCM
’/ Microwave power(2.45GHz) 500W
Temperature(on sub.) ~800C
Substrale Si(100)
Substrate dimensions 30X 5X0.6mm
&)} Thickness of diamond filims 7~30;m
‘ \Ién
Pump

o -

Fig. 4 Schematic diagram for synthesis equipment of
microwave plasma CVD method. *1* magnetron
(2.45 GHz), () wave guide, '3 plurger, 4
quartz tube, 15 sleeve, '6' substrate.

T T T T
- at 100-130°C - CH,/H, [vol S5}
1000} -
o — Natural diamend
\ {Typellb!
\ o
\ ] [-"m i 01 ]
\
Y A \ \ 037%
\‘ Naturzl damend ) - M-
- \ Type lar \
\ > \ .
500|- \‘ - . g‘ { “‘w\‘OS c
b A f:.: 3 M\\\l 0%
Q — (1) -
\ J—
\ w2007,
“ N
- N X
\\ - e o
Se \N30%
S L ! '
ol ) Prmmmmm—m- Q L 1 A ) \1
010305 1.0 20 30 1700 1500 1300 - 1100

CH, it [vol %)

Raman shilt [cm 1)
Methane concentration

Fig. 5 Thermal conductivity of thamond fitms for

Fig. 8 Ramen spectia of diamond filins for dilferent
dilferent methane concentrations

methane concentrations.

A. Nishikawa, "Measurement for Thermal Conductivity of
Diamond Films," New Diamond 1 990, Japan New Diamond
Forum, through Ohmsha, Ltd., Tokyo, Japan.
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Chip Carrier Possibilities

CVD diamond layer

Signal and Power \ Flip chip s?lder bump
plane structure N structure

-

2

Pin Grid Array

Free standing, patterned
CVD diamond slab

\ | ‘
/4 2

Hermetically sealed chip carriers

with diamond lids

Notes:

1. Thermal "grease" at chip and carrier or carrier and board levels -
expansion mismatch no problem.

2. Signal/power plane structure/materials optimized for expansion
and permittivity at carrier and board levels. No need to consider Ky

3. Uniform operating temperature - reduced connection fatigue.
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) Si subslrate Cemented carbide
CVD diamond CVD diamond CVO diamond
MR AE brazed layer
T
/ /// s ////
S L
/ /// ’ s
Si substrate Cemented carbide Cemented carbide
brazed layer
fa th? ic? td)

Fig. 2 Manufacturing method for a CVD poly-crystalline diamond tool.

0.08
L
E 0.06
= Al-20 % Si alloy turning
£ - b
3 —
2 ._-__.___——/
§ 0.04 ./o
< - ./ Al-8 % Si alloy turning
e
0.02 —O— — —
o 1 ] — 1
0 20 40 60 80 100

Cutting time [min)

Fig. 4 Flank wear curve diagram of CVD poly-crystalline
diamond tips ir Al-8%Si and AI-20%Si alloy
turning.

Brazed Diamond Cutting Tool and its performance

Asahi Industrial Diamond Co., Ltd.
Osaka, Japan

F. Okuzumi, "Gaseous Phase Synthesis Poly-crystalline Diamond
Tool," New Diamond 1990, Japan New Diamond Forum, Ohmsha,
Ltd., Tokyo, 1990.
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Future Possibilities

¥ Composite designs, e.g. consider

compressive
cubic boron nitride stress

¥ Passivation of diamond surface.
- Oxidation resistance
- Graphitization/reaction/dissolution

¥ "Classical" CVD a possibility
- Methyl fluoride work confirmed -
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Comparative Evaluation
of CVD Diamond Technologies

Thomas R. Anthony
General Electric Corporate Research & Development Center
River Road, Schenectady, New York, 12309, USA

Abstract

Chemical vapor deposition (CVD) of diamonds occurs from
hydrogen-hydrocarbon gas mixtures in the presence of atomic
hydrogen at subatmospheric pressures. Most CVD methods are based
on different means of generating and transporting atomic hydrogen
in a particular system. Evaluation of these different techniques
involves their capital costs, material costs, energy costs, labor costs
and the type and quality of diamond that they produce. Currently,
there is no universal agreement on which is the best technique and
technique selection has been largely driven by the professional
background of the user as well as the particular application of
interest.
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Comparative Evaluation of CVD Diamond
Technologies

Thomas R. Anthony
General Electric Corporate Research & Development Center
River Road, Schenectady, New York, 12309, USA

Ia CRITERIA FOR EVALUATION

Four different factors should be considered in evaluating a
process for the low-pressure deposition of diamond. The first factor
is the basic process potential. This potential includes the maximum
rate of diamond growth, the ability to deposit on flat surfaces as
well as three-dimensional surfaces, the maximum area or volume of
deposition, the maximum diamond thickness achievable, the
uniformity of the deposition and the adaptability of the process to
manufacturing. The latter criterion includes the process
"ruggedness”, its reproducibility from run to run and its technical
sophistication.

Once a process satisfies the basic process potential, the costs of
the process must be calculated. These costs include the capital cost
based either on the physical life of the equipment or, more
realistically at this point in diamond research, on the time to
technological obsoiescence. A second cost is the energy costs to run
the process. Energy costs put most CVD processes above a dollar per
carat and eliminate many of the applications described in the
popular press. Another cost is labor. This cost tends to be low with
simple processes and high with technically sophisticated processes.
Cost for consumable materials such as gases, electrodes and filaments
vary considerably from process to process. Some high-rate diamond
deposition processes fail this criterion. Finally, the research and
development costs must be amortized in the product costs or the
organization spending these startup costs will fail. Certain processes
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that require large amounts of R&D spending to launch are really
uneconomical. However, if these costs are covered by a third party,
ie the government, who is not subject to the discipline of the market
place, these costs can be ignored.

The third general set of criteria that must be considered are
application dependent criteria.  These include: 1) the deposition
temperature, eg, coating plastic with diamond requires a very low
deposition temperature; 2) the required substrate composition, eg,
coating stellite valves that contain cobalt that catalyzes the
conversion of diamond to graphite necessitates operating under
special conditions that not every process is capable of; 3) substrate
cooling, eg, most high-deposition rate processes require forced water
cooling of the substrate which is not possible with some applications;
4) substrate size and shape, eg, this may not be compatible with a
particular process; 5) high adhesive bonding strength of diamond to
substrate, eg, some processes are better at making a good bond with
the substrate than others; 6) low adhesive bonding strength of
diamond to the substrate, eg, some applications require free-
standing diamond films where a low adhesive bonding strength to
the substrate is needed to remove the diamond from the substrate
without dainaging it.

The last set of general criteria is the diamond quality produced
by a particular process. Diamond quality includes it toughness, wear
resistance, electrical breakdown strength, electrical resistivity,
transparency to IR and visible light, thermal conductivity, grain size,
grain size distribution, preferred grain orientation and the intrinsic
stress grown into the film. End users may have demanding
specifications that were not anti. nated when a process was being
developed and that are not achievable by the process. Diamond
quality will gradually emerge as the principal arbiter of the "best
process" in the coming years.

The selection of the best deposition method is a difficult, time-
consuming, expensive and semi-empirical process. Currently, many
of the questions arising from the above criteria are unanswerable
from information in the public literature and choices must be based
on intuition and best guesses. In the following discussion, we can
only begin to examine the selection problem.
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Ib. BRIEF HISTORY OF LOW-PRESSURE DIAMOND SYNTHESIS

For many years the metastable growth rate of diamond at low
pressures was very small and diamond substrates were required to
obtain any diamond at all. These processes were of scientific interest
only because the cost of diamond produced by them greatly
exceeded the cost of either natural diamond or synthetic diamond
formed at high pressures. Most low-pressure methods stemmed
from the work of Eversole[l] who alternatively exposed diamond
substrates to a hydrocarbon gas and then hydrogen at high
temperatures and low pressures[1-3]. Under these conditions, the
hydrocarbon was pyrolysized to form a mixture of diamond and
graphite and then hydrogen was used to etch the graphite away.
This cycle (Reactions 1 and 2) was repeated over and over again until
the diamond deposit grew to the desired thickness.

Heat
CH4 ------- > Deposit ( Diamond & Graphite) + 2 H2 (1)
Heat
H2 + Deposit ------- > Diamond + CH4 (2).

In the late 1970's, an important invention changed this cyclic
CVD (Chemical Vapor Deposition) process to a continuous one.,
increased the diamond growth rate by orders of magnitude,
eliminated the need for diamond substrates and made the process
technologically significant[4].  This new process[5] is shown in
Reaction 3.

Heat & Atomic Hydrogen
O3 & I B > Diamond + 2 H2 (3)

The key idea was the addition of atomic hydrogen to the
reaction by Boris Spitsyn and his coworkers[5] following a suggestion
by Prof John Angus of Case Western Reserve. Atomic hydrogen has
many important rones in CVD diamond growth. These roles have
been recently summarized and will not be covered here[6]. A large
number of CVD methods based on the process of Reaction 3 have
been developed over the last decade. Most methods are basically
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just different ways of generating[7] the atomic hydrogen required in
Reaction 3.

II CVD DIAMOND DEPOSITION PROCESSES

IIA HOT FILAMENT PROCESS

Langmuir first reported the dissociation of molecular hydrogen
on a hot tungsten filament in the early 1900's [8-11]. This method
has also beern used to make atomic hydrogen in CVD diamond growth.
Typically, 2 hot filament is heated to a temperature range of 1950-
2300 Centigrade in the presence of molecular hydrogen and 1-2%
hydrocarbor[11-13] as shown in Fig 1.. The molecular hydrogen
adsorbs on the surface of the metal filament and dissociates into two
atomic hydrogens that subsequently pass back into the surrounding
gas (Fig 2).

Hz ---> 2 H ; LH = +104,000 kcal/mole 4)

In addition, many other reactions[14,15] take place on the filament
involving the hydrocarbon. The concentration of atomic hydrogen
and other hydrocarbon species around the filament have been
directly measured{16,17]. A general conclusion of these experiments
is that thermodynamic equilibrium calculations give a reasonable
guide to the type and number of species that are actually present.
The rate of deposition is dependent only on the carbon concentration
in the gas and is independent .“ the type of hydrocarbon gas used.

There are some constraint. on the electrically conductive
refractory materials that can be used for atomic-hydrogen filaments.
First, the melting point of the material must be higher than the
operating temperature of the filament. Secondly, the binary eutectic
temperature of carbon and the filament material must exceed the
filament operating temperature to prevent the melting and breakage
of the filament. This later requirement makes molybdenum
filaments marginal since a hot spot on a Mo filament may take it
above the Mo-C eutectic temperature of 2200 C and cause the
filament to melt and fail before the Mo filament is fully carburized.

While a carbon filament saiisfies the melting-point and
eutectic-point requirements, it does not produce CVD diamond
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because atomic hydrogen that forms on a carbon filament reacts with
the carbon and releases a hydrocarbon species into the gas rather
than atomic hydrogen. Without atomic hydrogen at the substrate,
graphite is deposited instead of diamond. The failure of carbon
filaments to produce diamond[18] suggests that the atomic hydrogen
does not form in the hot gas surrounding the filament but actually
forms on the filament surface[9-11] where it can react with the
filament material.

Of the remaining electrically conductive refractory materials,
tungsten, tantalum and rhenium have been used to produce CVD
diamond . Rhenium is usually not considered because it is 100 times
as expensive as tantalum or tungsten. Both tantalum and tungsten
react with the hydrocarbon in the gas to form carbides. Thus, the
tungsten and tantalum filaments quoted in the literature are really
tungsten carbide and tantalum carbide filaments. It is interesting to
note that W2C is a commonly used catalyst material in gaseous
hydrocarbon chemistry. However, experiments that have compared
the difference in diamond growth rates between tungsten or
tantalum carbide filaments show no special catalytic effect for
tungsten carbide[19]. Of course, the rate of diamond growth may
not be controlled by the production of atomic hydrogen or carbon
radicals on the filament surface but may instead be limited by some
other process. Filament carburization can have a catalytic effect on
the diamond nucleation rate by increasing the electron emission from
the filament because of the lower work function of the carbide[20].
Electron bombardment of the substrate is known to increase the
diamond nucleation rate.

Carburization is a two stage process with M2C forming first
followed by MC where M is one of the refractory metals(Fig 3).
Under typical hot-filament CVD diamond growth, M>C forms in all
cases. However, MC does not always form because the activity
coefficient of carbon is too small[21] under some conditions of CVD
diamond growth. Since the carbides of tantalum and tungsten have a
molar volume that is 40-70% larger than the molar volume of the
metal from which they were formed, the filaments swell, crack,
bend, distort and embrittle as inward radial carburization proceeds.
Because carburization occurs most rapidly along grain boundaries
where carbon mobility is the highest, cracking usually follows the
grain boundary patterns of the original metal filament. Carburization
significantly decreases the grain size of the wire. This reduction in
grain size can lead to superplastic deformation under some some

121



conditions. Carburization and cracking increase the electrical
resistance of the filament[20] so the current and voltage must be
monitored and changed to keep a constant filament temperature.
To avoid filament carburization, Aikyo and Kondo introduced the
hydrocarbon downstream from the hot filament[22]. Diamond was
successfu!'y deposited and the filament life and the quality of the
diamond film was improved. Unfortunately, the diamond deposition
rate was decreased.

A disadvantage of the filament process is that a filament is a
remote source of atomic hydrogen. During the transport of atomic
hydrogen from the filament to the substrate, a considerable fraction
is lost through trimolecular collision between two atomic hydrogens
and a third gas molecnle[23]:

H+H+M --.... > H, + M (5)

where H is atomic hydrogen and M represents a gas molecule or the
walls of the reactor.

Associated with Reaction (5) is a recombination length, L,
which gives the average distance that an atomic hydrogen travels
before it recombines in a trimolecular collision.  For typical filament-
method process conditions of T = 1500 K and P = 10 torr, the
recombination length L, is 13 cm[24]. Matsumoto and coworkers[12]
in the original filament paper found that the filament-substrate
separation must be less than 3 centimeters to get diamond growth.

The loss of hydrog.: by recombination can be decreased
by reducing the filament-substrat. separation distance. Hirose used
tiny filaments that were very close (<1 mm) to the substrate as well
as oxygen additions to attain growth rates of 10 microns/hr which is
10 times the usual diamond growth rate for the filament process[25].
Presumably, the small separation betwcen filament and substrate
decreased the loss of atomic hydrogen and other active hydrocarbon
species.

The quality of diamond produced by the filament technique
can vary widely. Problems with contamination of the diamond films
by filament material can affect electronic and thermal properties[26].
Also, filaments as discussed above are in effect point sources of
atomic hydrogen and heat and the diamond films produced under a
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filament or filaments will reflect this nonuniformity. The thickness,
grain size and quality of a diamond film produced by a filament
system will vary from place to place. Finally, because of a finite
filament life, the maximum thickness of a diamond film that can be
produced by the filament technique is limited. The construction
costs of a filament system are relatively low as it can be built with
readily available simple equipment. However, because of the low
diamond growth rate with a filament system, the capital costs per
unit of diamond produced are in the midrange of the various CVD
techniques.  Because of the simplicity of a filament system, its labor
costs are relatively low as it does not require highly-trained
personnel to operate it. Its operating costs as far as gas consumption
and energy consumption are moderate.

IIB HOT FILAMENT EACVD

The hot filament process has been modified by some
investigators to include a positive or negative bias between the hot
filament and the substrate[27] (Fig 4). The process has been named
hot-filament EACVD (electron-assisted chemical vapor deposition).
The applied bias has been reported to cause changes in the
nucleation rate, the growth rate and the crystal quality of the
deposited CVD diamond. A general remark that must be made here
is that all filament processes have an EACVD character. Consider a
filament with a current passing through it. One end of the filament is
at ground potential and the other end is at some applied voltage that
is needed to drive the current through the filament. If the substrate
is at ground potential, then the entire filament is biased with respect
to the substrate except for the very end of the filament at ground
potential. If EACVD had a large effect on CVD diamond growth, one
would see a change in diamond growth along the substrate parallel to
the filament. The lack of such reports in the literature imply that
EACVD effects are not striking.

Generally, an increase in the nucleation and growth rate of the
deposited diamond has been reported if the filament is held at a
negative bias with respect to the substrate. Alternatively, if the
filament is held at a positive bias with respect to the substrate, the
diamond nucleation and growth rate decrease while the diamond
crystal quality increases [28,29] In both cases, the bias potential
must be kept below the breakdown point of the gases since the
formation of a plasma seems to erase these favorable effects. There
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has been some confusion in the literature because some researchers
heat their filaments with AC and others heat their filaments with DC.
Identical filament-substrate biases with AC and DC heated filaments,
respectively, can cause very different results on CVD diamond
growth. Six separate cases should be documented: 1) AC heating,
positive DC bias; 2) AC heating, negative DC bias; 3) DC heating,
positive DC bias; 4) DC heating, negative DC bias; 5) AC heating, AC
bias; 6) DC heating, AC bias.

The negative effects[28] of plasma formation in hot-filament
EACVD is somewhat surprising since the next section will show that
plasmas have been effectively used for CVD diamond growth. This
contradictory evidence is not uncommon in CVD diamond deposition.
Generally, it is not the result of erroneous experiments. Rather there
are dozens of independent parameters in an experiment and
changing one parameter unavoidably changes other parameters and
makes a clear interpretation of the data difficult. As an example , let
us list some of the important parameters in a simple process such as
hot-filament EACVD: 1). Filament composition; 2). Filament
temperature; 3). Filament size and geometry, ie, wire, strip, mesh,
etc; 4). Substrate composition; 5). Substrate temperature; 6).
Substrate geometry; 7). Filament-to-substrate distance; 8). Gas
pressure; 9). Gas temperature; 10) Gas flow rate; 11). Gas flow
geometry; 12). Gas temperature gradient above substrate; 13). Gas
temperature gradient near filament; 14. Hydrocarbon concentration
in gas; 16). Impurity concentration in gas, ie, oxygen, water, nitrogen;
17). Filament-to-Substrate bias: positive, negative, AC; 18). Filament-
to-Substrate current;19) Filameut Heating: AC or DC

If an experimenter changes the filament-to-substrate bias, he
will also change the gas temperatu.:, the substrate temperature, the
temperature gradient in the gas, the filament temperature and the
filament-to substrate current. He may then report an increase of
growth rate with increasing bias that may be just an increase in
growth rate arising from an increase in substrate temperature rather
than a new filament-to-substrate bias effect. Banholzer has, in fact,
recently carried out a very careful study investigating reports that
EACVD increases the CVD diamond growth rate[30}. He finds that
there is no such effect when he keeps the filament and substrate
temperature constant as he applies a filament-substrate bias. What
previous investigators were seeing were effects caused by an
increased filament temperature and/or an increased substrate
temperature when the EACVD bias was turned on. Banholzer,
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however, did see an increased nucleation density of diamond with a
negative bias applied to a DC heated filament.

Much of what was said about the cost of a filament system
could be repeated here for a hot-filament EACVD system. A hot-
filament EACVD system will cost more than a filament system. In
most cases, a more costly DC power supply must be substituted for
an AC power supply. Also a separate DC bias supply must also be
provided. Biasing can decrease filament life by causing unwanted
electric arcs or plasma discharges which physically erode  the
filament. Contamination of the growing diamond film is more of a
problem because of the chance of bias sputtering of the filament,
reactor wall or substrate material into the diamond film. Finally, the
added complication of biasing inevitably reduces the percentage of
successful runs.

IIC. PLASMAS

Another popular method to generate atomic hydrogen is with
gas plasmas. Plasmas can be formed by many methods. Typically, a
gas is ionized by exposure to high temperatures or high electric fields
to form a neutral mixture of electrons, negative ions and positive
ions. In plasmas exposed to high AC eleciric fields, hydrogen
dissociation occurs by electron impact. Although the dissociation
energy of hydrogen is only 4.5 ev, the electron impact dissociation of
hydrogen requires electrons with energies above 9.5 ev because of
the large mass difference between the electron and a hydrogen
molecule (Fig 5). Such hydrogen dissociation by electrons reaches a
peak at electron energies of 25 ev. Atomic hydrogen with a very
high kinetic energy is consequently produced in plasmas since the
difference between the dissociation energy and the electron impact
energy must be taken up by the kinetic energy of the atomic
hydrogen. This situation contrasts with thermal methods of
generating atomic hydrogen where low kinetic energy atomic
hydrogen is formed since a direct transfer of thermal energy breaks
the hydrogen molecule apart without imparting additional excess
energy that would appear as the kinetic energy of the atomic
hydrogen product.

The typical charge density in a plasma is very low(Fig 6). Most
molecules remain as molecules which are not reactive and do not
take part in CVD diamond deposition. About 1% of the molecules in a
plasma are converted to neutral radicals that are chemically reactive
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molecules with a dangling unsatisfied bond. These radicals are the
main component of the gas that is active in CVD deposition. Finally,
about 0.01% of the molecules in a plasma are ions. Like radicals,
these ions are chemically reactive and can take part in CVD diamond
deposition. However, the extremely small concentration of ions
indicates that they are not the important depositing species in
diamond deposition. Although charged ions have a very low
concentration and are not the principal depositing species during CVD
deposition, it is possible that they may have some catalytic effects.

Plasmas can be conveniently divided into low-pressure and
high pressure plasmas (Fig 5). At low pressures in a gas excited by
an alternating electric field, the electrons and molecules are not in
thermal equilibrium.  Although electrons and molecular ions have
the same charge, the mass of the molecular ion is typically 40,000
times that of an electron. Hence, the electron can accelerate rapidly
in an alternating electric field and gain energy while the ion is too
massive to accelerate quickly and lags behind the electron in energy
gain from the alternating electric field. If the mean-free path for
collisions between electrons and molecules is large as in a low
pressure gas, there will not be a redistribution of energy between
the high energy electrons and the slowly moving molecules and they

will have different temperatures. As a result, a low-pressure
plasma typically has a relatively cool gas temperature. Generation of
atomic hydrogen and reactive molecular radicals will be

accomplished principally by collisions with high energy electrons. As
a consequence of the scarcity of electrons in the plasma and the large
mean free path path for collision with gas molecules, the absolute
concentration of atomic hydrogcn and molecular radicals will be low
in a low pressure plasma.

In high pressure plasmas on the other hand, the mean free
path for collisions between electrons and molecules will be small and
any excess energy absorbed by the electrons from the electric field
will be quickly redistributed to the more massive molecules by
electron-molecule collisions.  Hence, the temperature of the gas
molecules and electrons will equilibrate at a relatively high
temperature. Generation of atomic hydrogen and molecular radicals
can now occur as the result of either high-energy molecular or
electron collisions in the plasma. Thus, the absolute concentration of
atomic hydrogen and molecular radicals will be high in a high-
pressure plasma.
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Because of the higher concentration of atomic hydrogen and
hydrocarbon radicals in a high-pressure plasma, the CVD diamond
growth rate will be greater in a high-pressure plasma than in a low-
pressure plasma. Such a correlation is observed experimentally
where CVD diamond deposition rates in a high-pressure plasma are
typically 500 microns/hour whereas the deposition rate in low-
pressure plasmas are 0.2 microns/hour.

If the growth rate was the only parameter of interest in
diamond deposition, low-pressure plasmas would be ignored.
However, high-pressure plasmas have a very high energy content
which necessitates elaborate cooling schemes for the substrate to
prevent substrate melting. Furthermore, high pressure plasmas
tend to be unstable and difficult to control. For many applications,
these problems rule out the use of high-pressure plasmas.

IIC1. Low-Pressure Glow Discharge

A common low-pressure plasma method of atomic hydrogen
generation is based on the Wood's Tube method[31] where a stream
of low-pressure molecular hydrogen is passed through a glow
discharge between two metal electrodes (Fig 7). Over a pressure
range of 0.1 to 20 torr, up to 25% atomic hydrogen can be generated
by this method. The substrate is placed in this glow discharge or one
electrode serves as the substrate so that atomic hydrogen is
generated close to the substrate surface. Although AC or DC can be
used to form the discharge, DC is advantageous if an electrode is
used as a substrate since diamond growth rates are higher on the
positive electrode. This method has been used to produce very fine-
grain CVD diamond films by Crystallume of Palo Alto, California for
such applications as diamond windows. Disadvantages of this process
include the limited pressure range of operation, the erosion of and
contamination from the electrodes and the generally high film stress,
the high hydrogen content in the resulting diamond films and the
low rate of diamond film growth. Construction costs for a low-
pressure glow-discharge system are moderate. However, because of
the very low diamond growth rates, the capital costs are relatively
high per unit of diamond produced. Labor costs are low as it is a
simple stable system that can be run for long periods without
operator intervention. Material costs such as gas and electricity are
also low.
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IIC2. Low-Pressure Microwave Discharge

Low-pressure microwave discharges have been used more than
any other method to generate atomic hydrogen for CVD diamond
synthesis (Fig 8) [32-52]. Since microwave discharges are
electrodeless, electrode erosion problems are avoided. Microwave
discharges are also very stable and provide up to 25% H atoms under
typical CVD diamond growth conditions[7]. Moreover, microwave
sources are very economical because of the mass production of
microwave sources for microwave ovens. During CVD diamond
deposition, the plasma must not contact the walls of the reactor since
diamond and/or graphite can deposit on the walls. This carbon
deposit will couple with the microwaves and heat up causing more
deposition and the walls of the reactor ( usually quartz) will
gradually become opaque to microwaves. Under other operating
conditions, the plasma can seriously erode the reactor walls by
atomic-hydrogen reduction of the quartz. These problems can be
avoided by magnetic confinement of the plasma.

A common magnetic confinement method uses an axial
magnetic field in a cylindrical cavity with a microwave window and
substrate, respectively, on opposite ends of the cylindrical
cavity[32,36,50]. A gradient in the axial field is adjusted so electron-
cyclotron-resonance (ECR) conditions exists near the substrate end of
the cavity but not near the microwave window (Fig 9). Circularly
polarized microwave electric fields drive free electrons in circular
orbits around the axial field lines. Near the substrate, the ECR
resonance conditions allow the electrons to receive resonance
impulses during each orbit so these electrons acquire a higher energy
than electrons elsewhere in the cavity. Thus, the plasma forms
preferentially in the region of these high energy electrons adjacent to
the substrate. No plasma forms at the microwave window at the
opposite end of the cavity where ECR conditions do not exist and
electrons do not receive the added boost in energy. Hence, the
microwave window is kept free of carbon deposits or erosion. An
interesting observation in ECR experiments is that as the chamber
pressure is lowered, the substrate temperature for diamond
formation tends to decrease[32].

Similar to the work of Aikyo and Kondo for hot filaments[22],

Martin and Hill have introduced the hydrocarbon downstream from a
microwave plasma hydrogen discharge and successfully grown
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diamond[47]. These experiment again demonstrate that the only
necessary condition for CVD diamond growth is a source of atomic
hydrogen. Much work has been done on the morphology of films
grown in microwave discharges under varying conditions[41-
43,46,48]. Low substrate temperatures and low hydrocarbon
concentrations favor the development of (111) facets on the diamond
crystals, indicating that the <111> direction is the slowest growth
direction under these conditions. High substrate temperatures and
high hydrocarbon concentrations favor the development of (100)
faces showing the <100> direction is the slow growth direction. At
intermediate hydrocarbon concentrations and temperatures, (110)
facets will develop.

The lowest temperatures (365-500 C) for CVD diamond
deposition have been reported for microwave plasma deposition
techniques[40,51].  Additions of oxygen carrying species such as
alcohols, water, etc can increase the diamond film growth rate or
lower the pressure necessary for diamond growth[33,40,44,45,49].
Lower gas pressures are particularly important as they allow the
plasma to spread and make a more uniform deposit over a wider
area[33,50]. The electromagnetic waves used in microwave
discharges are launched into the deposition chamber from outside
sources. The penetration length of these waves into a low pressure
chamber varies inversely with the intrinsic plasma frequency of the
gas[53]. The plasma frequency, in turn, is directly proportional to
the square root of the gas pressure. Consequently, lowering the gas
pressure will result in a greater penetration length and a more
uniform discharge. For a pressure of about 10 torr, the penetration
length of microwaves in a plasma discharge is only a few
centimeters[54].

The quality of diamond produced by the microwave technique
can vary widely. If the plasma is in contact with the walls or
substrate of the reactor, the diamond film can become contaminated
with this material. Because of the exponential decay of microwaves
into a plasma, nonuniformities can develop in plasmas larger than
the microwave plasma penetration length and the diamond films
produced under such a nonuniform plasma will reflect this
nonuniformity with the thickness, grain size and quality of a
diamond film varying from place to place. The microwave
penetration length alsg puts a limit on the maximum size of a
diamond film that can be grown under a microwave discharge. The
maximum thickness of a diamond film that can be produced by the
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microwave technique is limited by the surprisingly low (in view of
the high atomic hydrogen concentration) diamond growth rate of
microwave reactors. The construction costs of a microwave system
are moderate because of the widespread availability of microwave
magnetrons. However, because of the low diamond growth rate with
a microwave system, the capital costs per unit of diamond produced
is in the higher range of the various CVD techniques. The microwave
system has a low energy consumption because most of its energy
goes into producing atomic hydrogen rather than heat or radiation.
Its operating costs as far as gas consumption are also low.  Finally,
microwave discharges are easy to use and are very stable and can be
run for long periods without much attention. Therefore, labor costs
for a microwave system are expected to be low.

IIC2. Remote Low-Pressure Microwave Discharge

One way to avoid the microwave penetration length limit on
the size of the microwave reactor is to generate atomic hydrogen by
a microwave discharge in a small volume with dimensions less than
the microwave penetration length and then to quickly distribute this
atomic hydrogen to a much larger-area substrate by convective gas
flow. This method requires very high gas velocities on the order of
10,000 cm/sec in order to transfer the atomic hydrogen from its
remote source to the substrate before the atomic hydrogen can
recombine[ 55]. As a result, the process uses such a large quantity of
gases that the process is uneconomical unless the gases are
recirculated. Gases must not only be recirculated but their
composition must be constantly adjusted. In addition, it may be
necessary to remove some gas products produced in the microwave
discharge if they build up in a recirculating system and tend to
poison the diamond growth process. Currently, Astec Corp of
Woburn, Mass is designing and building a CVD diamond machine of
this type complete with a gas recirculating system, all of which
should be commercially available in 1992-93 time frame. The
advantages of a remote discharge system with its larger area of
deposition will have to be balanced against the complications and
costs of the required gas recirculating system. Labor costs and
energy costs are both expected to be higher than with a simple
microwave discharge system. The cost per unit area of diamond
films will probably be higher with this reactor but the films will be
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more uniform, possibly of higher quality and much larger in area
than they could be with a simple microwave system. Consequently,
this machine may fill a market need where uniform large-area
diamond films are necessary in a particular application.
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IIC3. Low-Pressure RF Discharge

There has been much less work[56-62] done with low pressure
RF discharges than with microwave discharges for CVD diamond
growth (Fig 10). At first glance, this is somewhat surprising as RF is
easier to scale to large volume and high power. Moreover, large RF
plasma discharge units have been used in the semiconductor
industry for some time. The scarcity of reported work in the RF area
in CVD diamond growth may be the result of many unreported
failures to achieve good quality diamond films rather than the result
of not trying RF sources. The deposition rate of CVD diamond is
closely correlated with the generation of atomic hydrogen and
hydrocarbon radicals. The generation of such radicals seems to be
more efficient in a microwave plasma than in an RF plasma. This is
probably caused by both the higher energy and higher density of
electrons in a microwave plasma. Average electron energies in a
microwave plasma at 2450 MHz and 1 torr pressure average about
10 ev [63,64] which is enough energy (8.5ev) to dissociate hydrogen.
On the other hand, average electron energies in an RF discharge at
13.56 MHz at 1 torr are about 4 ev [65] which is insufficient to
dissociate hydrogen. In addition, electron densities are higher in
microwave discharges[66].

Nevertheless, low-pressure electrodeless radiofrequency
discharges have also been used to grow CVD diamond [56-62].
Depending on the pressure, atomic hydrogen concentrations of 10 to
65% can be produced in a RF discharge[7]. These discharges are less
stable than microwave discharges and Ar sometimes has to be added
to the hydrogen-hydrocarbon mixture to stabilize the discharge.
Similar to the microwave discharge, deposits of carbon on the walls
of the reactor can be a problem with an RF discharge. In addition,
the RF can electromagnetically couple with any electrically
conductive body in the reactor chamber and heat it. Finally, RF
power sources are more expensive than microwave sources per watt
of delivered power.

Diamond made by RF discharges has been of poorer quality
than diamond made by microwave discharge[56]. In addition, large
well faceted diamond crystals are usually not obtained.

RF generators are more expensive and less efficient in
generating atomic hydrogen than microwave generators. The quality
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of diamond produced by the RF technique has been generally poor.
Because of the RF has a much lower frequency than microwaves, the
penetration length problem discussed above with microwaves is
absent with an RF discharge. Thus, larger areas of diamond could be
made with an RF discharge than with a microwave discharge.
Attempts to make remote RF discharges(where the atomic hydrogen
is generated at one place and transported by gas flow to the
substrate) work have been unsuccessful although they were one of
the first techniques tried. The maximum thickness of a diamond film
that can be produced by an RF discharge is low because of the very
low diamond growth rate in RF reactors. The low diamond growth
rate puts the capital costs per unit of diamond in the higher range of
the various CVD techniques. RF system operating costs as far as gas
consumption and energy are relatively low. Finally, labor costs for a
RF system not expected to be as low as for a microwave system
because the RF discharge is not as stable as a microwave discharge.

IIC4. High-Pressure DC Discharge

High-pressure DC discharges between fixed electrodes at
atmospheric pressure have been used to grow CVD diamond from
hydrogen-hydrocarbon mixtures at very high rates of up to 200
microns/hour and thickness greater than 1 mm (Fig 11) [67-71].
Because of technology developments over the years to make plasma
torches, these DC discharges are now very stable. The substrate is
biased positively in all cases. One disadvantage of this prucess is that
the substrate must be directly cooled with running water 1o prevent
it from melting because large amounts of power per unit of substrate
area are used. Other disadvantages include the high power
consumption, the erosion of the electrodes, the nonuniformity of the
discharge and the small deposition area and the need for constant
attention because of the large amount of power being used. Because
of electrode erosion and the consequential contamination of the
diamond film, it is expected that the diamond may not be suitable for
applications in electronics. Also, with such high energy processes,
overheating and degradation of the diamond film is a constant
concern. Finally, all high intensity energy processes tend to be less
reproducible from run to run. Because of the high rates of diamond
growth, the capital cost per unit of diamond are expected to be
moderate. Labor and operating costs for gases and energy will be
relatively high.
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IICS. High-Pressure Microwave Discharge Jets

A high-pressure microwave discharge jet has also been used to
grow CVD diamond at moaecrately high rates of 30 microns/hour at
atmospheric pressure over a square inch of area[72]. A gas mixture
of Ar-Hz-CHg4 is used with a CH4/H2 ratio as high as 10%. Sustained
operation is difficult because of plasma instabilities and the need to
vigorously cool the substrate. The plasma is initially ignited by
electric breakdown around the central electrode and then sustained
by microwave electromagnetic waves generated between the central
electrode and chamber walls. One advantage of low-pressure
microwave discharges is that they are electrodeless. However, with
high-pressure microwave jets, this advantage has been lost by using
electrodes that are immersed in the plasma and that therefore can
erode. Operating costs tend to be very high with this process
because of the large amounts and types of gases, particularly, argon
that are required. Labor costs also are large as skilled personnel
must keep a constant watch over the process.

IIC6. High-Pressure RF Discharge

High-pressure radiofrequency discharges have also been used
to grow CVD diamond (Fig 12) [73]. These discharges are very
unstable and  large amounts of Ar are routinely added to the
bydrogen-hydrocarbon mixture to increase the stability of the
discharge. Nevertheless, the discharge must be monitored
continuously and is typically only run for short period: of time. The
danger associated with this arc instability has restricted high-
pressure RF discharge growth of diamonds to a few scientific
laboratories. High rates of diamond deposition are possible during
these short runs. As with other high-pressure discharges, the high
power input requires that the substrates be cooled directly with
running water.

IIC7. High and Low-Pressure Flames

Hydrogen atoms are created during the burning of hydrogen or
hydrocarbons in an oxygen flame (Fig 13) [74-76]. With a suitable
ratio of carbon, hydrogen and oxygen, Hirose[77] discovered that CVD
diamonds can be grown with a simple plumbers torch at atmospheric
pressures in the “feather” of the flame just downstream of the flame
front [77-86]. High temperatures (2800-3400 C) in common flames

134



cause a plasma to form and atomic species to be generated at the
flame front[87]. The flames are operated under fuel-rich conditions
so atomic hydrogen and hydrocarbon radicals are abundant in the
feather of the flame where the substrate is placed. = Growth rates of
30 microns/hr are attained.

Hydrogen atoms can also be generated in low-pressure
hydrogen and hydrocarbon flames.[75,76] Advantages of low-
pressure flames may be a higher carbon-to-diamond conversion rate,
a wider spatial zone in the flame where diamond will grow and a
much lower heat input to the substrate. Although work is underway
at several laboratories, no successful CVD diamond growth has been
reported yet in a low-pressure flame.

So ‘ar, work has been limited to hydrogen-hydrocarbon-oxygen
flames. Flames with other chemical reactants may also generate CVD
diamond growth. For example, hydrogen-hydrocarbon-fluorine,
kydrogen-hydrocarbon-chlorine, hydrocarbon-fluorine,
hydrocarbon-chlorine, halocarbon-fluorine and halocarbon-chlorine
flames »re promising candidates among many possibilities.

The capital cost of a flame system, particularly at atmospheric
pressure, are very low. Its simplicity would also allow low labor
costs. Furthermore, diamond is produced at high rates. However,
deposition is only successful over a relatively small area. The
restriction in arer is a result of the structure of the flame. There is
only a limited zone in the flame where conditions are favorable for
diamond formation. Qutside of this zone, diamond either will not be
formed or will burn in the flame.  These restrictions combined with
the gas flow required to flow around the substrate produces an
uneven and inhomogeneous diamond deposit on the substrate unless
the substrate is very small in area. Scanning the flame may help but
it also may smear out the problem and produce diamond of a
uniformly poor quality. The high energy intensity of the flame
method requires vigorous cooling of the substrate. The principal
problem with the flame technique is its very low conversion rates of
carbon to diamond (of the order of 0.01%). The very low conversion
rate is not surprising as most of the carbon must be burned in the
flame to produce the high temperatures necessary to generate a
plasma and atomic hydrogen. At these low carbon-to-diamond
conversion rates, the flame technique is the most expensive way to
make diamond of the popular CVD diamond methods because of gas
costs. If these low conversion rates can not be increased, the torch
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method will only be economical in producing gem stones for the
jewelry trade.

III OTHER LOW-PRESSURE DIAMOND PROCESSES
IINIA COMBINATION PROCESSES

Some investigators have used combinations of processes to see
if any advantages would ensue.  For example, a direct-current spiral
hollow cathode combines features of the hot filament, electron beam
and plasma process. Such a hollow cathode was used to grow CVD
diamond in an Ar-H-CHg4 gas at a disappointing rate of one
micron/hour(19,88,89].  The results of these experiments indicate
that this particular combination of processes has no technical or
economic advantage over a simple hot filament process.

IIIB THERMAL PROCESSES-SUBSTRATE ONLY

The thermal activated[90-92] growth of CVD diamond in
various halogen-hydrocarbon or fluorchlorohydrocarbon-hydrogen-
helium mixtures without the assistance of any external excitation
such as a plasma or hot filament has been reported. In one case{92],
only heating of the diamond substrate was required. In the other
case[91,92], the gases at atmospheric pressure were preheated in a
furnace tube at about 800-900 C and passed over a substrate at a
temperature between 250-750 C (Fig 14). Diamond formed on the
substrate at rates of 0.5-2 mic-ons/hour.

Although halogens such as iluorine can stabilize the diamond
surface in the same way that hydrogen does, the carbon-fluorine
bond (108 kcal/mol) is much stronger than the fluorine-fluorine
bond (38 kcal/mol). Thus, molecular or atomic fluorine can not
produce vacant sites on a diamond surface covered with fluorine in
the same manner[93,94] that atomic hydrogen produces vacant sites
on a diamond surface covered with hydrogen. Without vacant sites,
carbon deposition would cease. However, all of the gas mixtures
used successfully contain hydrogen whose bond strength with
fluorine (136 kcal/mol) exceeds the carbon-fluorine bond strength
(108 kcal/mol). Thus atomic hydrogen can react with a monolayer of
fluorine on the surface of diamond to form HF, thereby forming the
vacant sites needed for additional carbon deposition and diamond
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growth. This is an exothermic reaction with an energy release 28
kcal/mol and there would be no shortage of vacant sites. Starting
from molecular hydrogen with a bond strength of 104 kcal/mol, a
net expenditure of 24 kcal/mol must be spent to produce a mole of
vacant surface sites on a surface of diamond covered with fluorine.
Generation of vacant sites by molecular hydrogen would give a
relatively low concentration of vacant sites but they may be
sufficient to allow diamond growth if the kinetics of vacant site
formation were rapid, ie as vacant sites were filled, new ones would
form rapidly to maintain their equilibrium concentration.

There are potentially many chemical systems like the halogen
based one discussed above that may produce diamond.[90,93,94].
Generally, one looks for a reaction scheme where carbon can be
deposited in a series of exothermic reactions in the presence of
chemical species that can form a single sp3 bond to the diamond
surface. The exothermic chemistry drives the reaction while the sp3
bonding species stabilizes the diamond surface and prevents its
reconstruction to a graphite-like surface.

There may also be reactions that are not quite exothermic but
require a slight boost from an external energy source. Recently,
Rudder and his coworkers at RTI have recently reported making
diamond from a mixture of alcohol:acetic acid: water mixture of
20:20:60 in the presence of a graphite body. This gas mixture was
subjected to RF excitation at a power level of 1/8 that required in
conventional RF methane:hydrogen CVD system.[95]. Diamond was
deposited on a silicon substrate at 300 Centigrade.

Most of capital costs of a thermally-activated process would be
very modest, particularly for the systems[90] running at atmospheric
pressure.  For a fluorine-based system as discussed above, the
reactivity of fluorine would require monel piping and tubing for the
apparatus. For the other halogens, quartz or vicor would suffice.
Expensive gas cabinets and safety systems are also be required with
any system using the elemental halogens. In addition, because of
environmental concerns about the ozone layer, the exhaust from this
system could not be vented directly to the atmosphere as is now
done for hydrogen-hydrocarbon systems but would have to be
inactivated. Labor costs would be very low for a thermally activated
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process as it is simple and does not require much attention once it is
running.  Energy costs would be the lowest of any current CVD
diamond  process. Depending on the halogen or
fluorochlorohydrocarbon chosen, gas costs would range form low to
high.  Some fluorocholorohydrocarbons are expensive with prices
ranging from $10 to $130 per kilogram. Halogens are even more
expensive with fluorine costing almost $1000 per kilogram.
However, the more common dicholordifluorocarbon with which some
of the best experimental resuits were obtained[90] sells for only $2
per kilogram. These prices compare with hydrogen at less than $1
per kilogram and methane from a natural gas tap. With current
synthetic diamond prices of a few dollars/carat or $10,000/kilogram,
the conversion efficiency of nutrient gas to diamond could be very
small before high gas costs would be a problem.

IIIC LASER EXCITATION

There have been some reports[96,97] of the deposition of CVD
diamond using laser excitation. One of these reports was later
withdrawn[97]. More recently, a group in India has been reported
that diamond was made by subjecting an organic fluid to a laser
pulse. Also, diamond has been made by directing a laser pulse onto a
graphite layer on a copper slab[98]. Although these reports have
generated wide-spread scientific interest, laser excitation does not
seem to be a technologically viable method of diamond growth.
Economically, lasers would be a poor choice for diamond production
because of their high capital cost, their low rate of conversion of
electrical power to laser light (typically, 3-10%) and low efficiency in
converting nutrient carbon to Jjiamond.



IIID. ALTERNATING CHEMICAL REACTIONS

Recently, reports have circulated that diamond can be grown
layer by layer by alternating exposures of diamond to different
gases. No details are available about these experiments. However,
the type of paired reactions that should work are shown in Equations
6 and Figs 15a and 15b for CF4 and CHy:

CH4 + Diamond-F ----- > Diamond-C-H + HF (6a)

CF4 + Diamond-H ----- > Diamond-C-F + HF (6b)

where Diamond-F and Diamond-H represent, respectively, diamond
covered with a monolayer of fluorine and hydrogen. This idea is an
extension of the alternating reaction work of Eversole[5] shown in
Equations 1 and 2. This reaction works because the bond strength of
H-F exceeds the bond strengths of C-F and C-H. Both reactions are
exothermic with an enthalpy of reaction of about 8 kcal/mole.

One can generalize this type of reaction in a number of ways.
One way is to use compounds of the type CNXMm and CLZp:

CnXm + Diamond-Z  ------ > Diamond-C-X + ZX (7 a)

CrLZp + Diamond-X ------ > Diamond-C-Z + ZX (7b)

where Diamond-Z and Diamond-X represent, respectively, diamond

covered with a monolayer of Z and X. If the Z-X bond is stronger
than the C-X and C-Z bonds, then alternate exposures of diamond to
the respective gases will cause alternate exothermic chemical
reactions where carbon is placed down during each exposure. These
types of reactions inherently prevent the generation of double or sp2
carbon bonds and thus stop graphite formation. Examples of gases
that can be used in such reactions pairs are all of the
fluorochlorocarbons, fiuorochlorohydrocarbons, alcohols, halogens
and hydrogen.

If CN\XM and CLZp do not react in the gas phase, then a gas

mixture of them can be used to grow diamond instead of the
alternating exposure of one and then the other depicted in Reactions
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7. In this latter case, the reactions still alternate between (a) and (b)
on a microscale but not on a macroscopic scale:

CnXMm + CLZp + X-Diamond-Z ------ > Diamond + ZX (8)

where X-Diamond-Z is diamond covered with a monolayer of a
mixture of X and Z. A process like this may be what is actually
taking place in the thermally activated diamond deposition
experiments discussed above[90-92].

ITIIE. DEPOSITION FROM LIQUID SALT BATHS

Patel and Cherian [99,100] reported evidence of diamond
growth on a diamond crystal that was placed in a small amount of
liquid sodium hydroxide contained in a nickel crucible at 600 C.
When the NaOH which is volatile and unstable at this temperature
evaporated[101], a small deposit less than 1/2 micron thick was left
on portions of the diamond crystals. Independent analysis of this
deposit has not disproven that the deposit is @@ diamond[101]. All
of the test that can be performed with such a small volume of
material are consistent with the deposition of very thin and small
particles of diamond. If this experiment is valid, we can speculate
as to why it may have worked by using a NaOH bath as an example.
There is an analogy between conventional CVD diamond growth from
an acetyline-hydrogen gas mixture in the presence of atomic
hydrogen and diamond growth from a NaOH salt bath containing
sodium acetylide.  Atomic hydrogen, sodium and hydroxyl form
single bonds with carbon and prevent the formation of carbon double
bonds which might lead to graphite growth. The stabilization of the
diamond surface by atomic hydrogen is analogous to the
stabilization by either sodium or hydroxl ion in a liquid salt solution.
The main difference between the two cases is that the bonding with
diamond is predominantly covalent in the case of hydrogen and
predominantly ionic in the case of sodium and hydroxyl ions. A
simple extension of this method of diamond growth would involve a
temperature gradient in a molten alkali salt bath containing graphite
and a diamond seed. Alternatively, the graphite could be replaced
with an alkali acetylide.

The amount of diamond produced by this process was
extremely small and at present is not economically viable. Until the
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process is modified and improved, it will remain a scientific curiosity
somewhat like the early work of Eversole with CVD diamond.

IIIF. DEPOSITION FROM LIQUID METAL SOLUTIONS

Over the years, a number of patents have been issued claiming
to have grown diamond from a liquid metal solution at low
pressures. Many of these patents stemmed from the success of using
metal catalysts in high-pressure, high-temperature diamond
synthesis. Some of these patents are undoubtedly "paper” patents
which were never really tried but which sounded logical and
reasonable to a patent examiner. The success of using atomic
hydrogen to stabilize diamond, however, reintroduces the question
of whether a liquid metal bath can be used to grow diamond at low
pressures. Diamond in a liquid metal bath may have its surface
stabilized by metal atoms reacting with the diamond to form a
carbide monolayer. If a metal with a metal-carbide bond energy
equal to the hydrogen-carbon bond energy were used, one can argue
that a low-pressure liquid-metal processes analogous to
conventional CVD diamond deposition should be possible.

IV SUMMARY

Many innovative means of making diamond at low pressures
have been developed in recent years. A number of these methods
are only of scientific interest at the present time because of their
high costs or impracticality. Even after these processes are
eliminated from consideration, there remains a number of processes
that are currently being used to make diamonds and which appear to
be economically viable. Some applications are most easily addressed
by a particular process and this is the reason for the choice of the
process in such cases. In other cases, the previous background and
experience of an individual or group of workers has dictated what
diamond process was selected. People with no applicable experience
have tended to select the filament process because of its simplicity or
the microwave process because commercial equipment was available
for purchase. After gaining experience with these techniques, they
have graduated to other techniques which they find more suitable
for their particular uses and applications. Currently, there are over
30 companies in the world actively pursuing CVD diamond research
and trying to develop a diamond business from their research. Many
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different methods of diamond making are being used by these
companies which will be eventually sorted out by the marketplace.
Currently, the advantages, disadvantages and economics of these
various processes are closely guarded proprietary secrets. The
determinatica of the "best” CVD diamond process, if one really exists,
is not possible at this time from information available in the
literature, Much more process research and development must be
done before this determination will be possible.
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Hydrogen-Hydrocarbon Plasma Used for CVD Diamond Growth

Figure 6. Molecular, Neutral Radical and Ion Densities in a Gas

Plasma. Condensable Species that can contribute to CVD Diamond
Growth are Noted.

Figure 7. Low-Pressure Glow Discharge Method of Making CVD
Diamond

Figure 8. Low-Pressure Microwave Discharge Method of Making
CVD Diamond.

Figure 9. ECR Microwave Low-Pressure Discharge Method of Making
CVD Diamond.

Figure 10. RF Low-Pressure Discharge Method of Making CVD
Diamond.

Figure 11. High-Pressure DC Discharge Method of Making CVD
Diamond.

Figure 12. High-Pressure RF Discharge Method of Making CVD
Diamond.

Figure 13. The Combustion Flame Method of Making CVD Diamond.
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Figure 14. Atmospheric-Pressure Thermal Halogen Method of
Making CVD Diamond.

Figures 15a. Addition of Carbon onto a Fluorinated Diamond Surface
by Methane.

Figure 15b. Addition of Carbon onto a Hydronated Diamond Surface

by Carbon Tetrafluoride. Figs 15a and 15b are the Two Steps of a
Cyclic Method of CVD Diamond Growth.
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ELECTRON ASSISTED CVD
lGAS
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PLASMA COMPOSITION

SPECIES RELATIVE CONCENTRATION | CONDENSABLE
MOLECULES 10,000 NO
(H,,CH,)
NEUTRAL RADICALS 100 YES
(H,CH3,CH,,CH, )
IONS 1 YES

(H3.CHEH )
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DC PLASMA CVD
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RF THERMAL PLASMA
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FLAME DIAMONDS

9.0, 0002000,
20RICXRAA
PO 0L0L050 50500
potesesesecededs

| .04

.’.’ : %’.
OC (A
@, . é
¢.0.0.¢

0.9.0.9.9.9%
0,0,9.0.0.9.9.9,

'00.0.0’0.0.0‘.
AVAYA %Q‘AAA.A

Vg -

C,‘HY+02 —

DIAMONDS

FLAME
FRONT

/////////J/J WATER—-COOLED
SUBSTRATE

HYDROCARBON
FEATHER

OUTSIDE FLAME

FLAME FRONT: C+ 30, —CO (3000°C)
HYDROCARBON:  C+ 7 O, (EXTERNAL) —= CO
OUTSIDE FLAME: CO+% O, (EXTERNAL) — CO,

161



HALOGEN-ASSISTED THERMAL GROWTH
OF CVD DIAMOND

CvD, DIAMONDS

(22222l

Furnace 2

SUBSTRATE

ATMOSPHERIC PRESSURE
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lon-Beam Technologies

by

George R. Fenske

Materials and Components
Technology Division

Argonne National Laboratory

Presented at the DOE Tribology Program Workshop on
Diamond and Diamond-Like—Carbon Films, Argonne
National Laboratory, Argonne, IL, Feb. 4-5, 1992

— DOE OTM Tribologyv Program
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Diamond/DLC Films

Why?
 High hardness
»  High thermal conductivity
 Low thermal expansion coefficient
e  Chemical stability (<500-1300°C)

. Low friction coefficient

\— DOE OTM Tribology Program
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Outline

«  Review/description of deposition processes

.« CVD
. PVD ‘
.«  IBD/IAD

«  Properties of IBD/IAD
»  Tribological performance of IBD/IAD Coatings

. Issues

\— DOE OTM Tribology Program
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Deposition Techniques

. CVD (e.g., HFCVD, PACVD, etc.)

*  PVD (plasma sputtering, ion beam sputtering,
evaporation, etc.)

« |BD (low-energy ion implantation)

«  Hybrid processes (biased sputtering, IBAD,
biased HFCVD, etc.)

\— DOE OTM Tribology Program
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PVD Deposition Processes
«  Evaporation (e.g., electron beam evaporation)
« Cathodic arc discharge
«  Sputtering
« lon beam sputtering

« Laser evaporation

\— DOE OTM Tribology Program
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| (\EXPE;LANT SuPPL
| |

(Ar or TH,)

CATHODE \ 1 ANODE
ION .J ‘ /
o2 BN
~

RING MAGNETS

kSCREEN GRID  nzzoizoooi

—NEUTRALIZER
[ELECTRCN EMITTING
FILAMENT)

ACCEL GRID

T SAMPLE (IN POSITION
——J  FCR CLEANING OR
% CARBON COATING)

y ;  WATER OR'LN; COOLED
s 77 : | SAMPLE HIOLDER

ION BEAM ENVELOPE
S i

SILICCON SPUTTER
TARGET

Paul Wilbur:
Colorado State University

\— DOE OTM Tribology Program
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Hybrid Process
« Simultaneous
» lon Beam Assisted Deposition
+ e—beam evaporation
« jon—-beam sputtering
« Biased Sputtering

« Biased PECVD (Chang)

« lon Plating (hollow cathode, laser)

« Sequential

« Laser/HFCVD
« |BS/IBD

— DOE OTM Tribology Program
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Comparison of Typical Deposition

Conditions
Process Carbon Particle Substrate Film
Source Energy (eV) |Temperature |Characteris—
°C tics
CvD Dilute hydro— |0.1-1 eV Typlical Poly-
carbon gas in 800-1100°C | crystalline
hydrogen (<500°C diamond &
possible) DLC/DLHC
PVD Solid carbon |0.1-10 eV R.T. and DLC/DLHC
higher
IBD Gas (CHg, 0.1-100 keV | R.T. and DLC/DLHC
Ho, etc.) higher
(solid carbon)
Hybrid Gas solid 0.1-10 keV R.T. and DLC/DLHC
higher

\— DOE OTM Tribology Program

1741




Process

Ceposition

Parameters

\
\
N

Chemical
Bonding Structure

Hydrogen Content

Thermo-Mechanical
Properties

(p, Hv, k¢, etc.)

|

Tribological

Performance

~— DOE OTM Tribology Program

175




Effect of Process Process Parameters
on DLHC Properties

(o)}
]
(@)
O
1

Substrate
Yemperature

4000

2000}

@

Vickers Hardness (kgf/mm?)

0 -500 -1000
Substrate Potential (V)

40t

20

Hydrogen Content (at.%)

RN

1 1 1
0 200 400 600
Substrate Temperature (°C)

Okada et al.
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IBD/IAD processes typically produce amorphous carbon
films with <1% hydrogen (denoted as a—c or DLC), or,
amorphous hydrogenated carbon films with 20-60%
hydrogen

— amorphous (small crystallites)

—  hydrogen content — p, sp® bonding

~— DOE OTM Tribology Program
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\

Structure of Amorphous Carbon

—— DOE OTM Tribology Program

Films (Angus et al.)

3

Short range sp2/sp bonding

No long-range order
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Friction

Friction Coefficient of DLHC Films on
Ceramics (Erdemir, Wei, and Wilbur)

L— DOE OTM Tribology Program
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Friction Coefficient of DLHC Films on
Ceramics (Erdemir, Wei, and Wilbur)

Friction
Coefficient
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- o
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\— DOE OTM Tribology Program
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Friction and Wear of DLHC Films on
Ceramics (Erdemir, Wei, and Wilbur)
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Coefficient
/ 0.82

f - NN&‘- \
.
i MR
0.8 h}\\\\s
MR
0.6 1 \{\\\\\\\1\\{
.
0.4 - \\\\ \ \
AN AN A
0.2 £004 7003 ,
N/ ? S
0 ; . ‘ ; <
Argon Nitrogen Dry Air Normal Air Humid Air
Bl sian4/DLC-SIC Si3N4/SiC
(a)
Wear Rate
(168mm3/N.m)/ 1200 1151
ST s -
L g 1
1400 NN R
T W i
1200 - ras 539 \\\\ tl v |
1000 - g :
800 ] \§§555"‘ \\\ 1 .
n RS N — \\“\‘\'\"A ‘
600 - X&\\X\ \&\\ ' Q\%\\\V\\ \§\§§ | —
AR S0 RN S
| 0:046—— 009192 —— L6:64— - 7.24——
B e L T Ty
200 » — ~ / V4
0 - , v _

Argon Nitrogen Dry Air Normal Air Humid Air

I sisng/oLc-sic DN siaN4ssic

(b)

\— DOE OTM Tribology Program
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Issues

«  Film Stability
e environment
» temperature
e mechanical loading
«  Surface Finish
«  Film Adhesion
« Deposition Rates
« Geometries
«  Competing Processes
«  mature processes — TiN

« emerging processes — c—BN
— superlattices

J Cost

\— DOE OTM Tribology Program
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Materials Sci. & Eng.
North Carolina State Univ.
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I. Identification of the Diamond Phase

A.

Composition (Carbon)

Auger Electron Spectroscooy
X-ray Photoelectron Spectroscopy
Secondary Ion Mass Spectrometry
Rutherford Backscattering
Infrared Spectroscopy

Structure (Diamond, Fd3m space group)

X-ray Diffraction
Electron Difraction

Bonding (sp3, tetrahedral)

Raman Spectroscopy

Auger Electron Spectroscopy
Electron Energy Loss Spectroscopy
X-ray Photoelectron Spectroscopy

II. Defects in Diamond Films

A.

Scanning Electron Microscopy
Grain Boundaries

Particle Morphology
Secondary Nucleation

Transmission Electron Microscopy
Dislocations

Stacking Faults

Twins

Grain Boundaries

Electrical Measurements

Impurities
Electrically Active Cefects

188



Firsx
Ocde

Se.guvu&
O cdel

10

a) DIAMOND

x 250

i A A

/A
8l 7
6l b) GRAPHITE ]
s ag 4
2t . _ J‘ i
hA“ L A Iy A L A :

N

INTENSITY (ARB UNITS)
o

c) MICROCRYSTALLINE 7
GRAPHITE ]

0 560 1 0:30 1 5'00 20.00 25.00 3;00 35‘00
RAMAN SHIFT (cm“)
( Nemawicw &% o&.ﬁ\"\%%\%
'_3351 e - ﬁbf'\w\o..vv\ \*Y order dlowmond Q&&\‘\
g0 c o b o 9(“\“*\&*‘\\ Wt ac AV .56‘\0\?\'\:\& e&o&iﬁ.
13%% e Y owd 1820 cw Y - PP'\M_Q\J\-»\ V4Y or daan
. ™\ NCJ'\-L? ga‘\'am»-&_ CK\C\‘;M ?—Q.D&W

Ko - omee %X\M

t

N ote |

A dun a?&,m'
Norm %S\ SV~ e \own

AV )

- O\MQF\&)/\M S 5?_Q_<"_'\-vu.m I)ng.n.& o
d\o\mm\&. gttcwv\o% ‘o vg\\,,u_u_vgx o\mor?\«owo

ik qaadas
LY R
dia

"3 3-5AX coordicokedl § 5p7 mevded
oedan

Cﬁ(‘o‘

Hmov‘;)vxm T dlaemoendt D 4o S\ coord 591 vowded C

189




RAMAN INTENSITY
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First-order Raman spectra of ‘diamond thin films. (a) "diamond-like" film with
features similar to microcrystalline graphite (b),(c) the sharp feature at 1322cm-1 is
indicative of crystalline diamond while features between 1350 and 1600cm-1 are attributed
to sp2 bonded carbon. { ®wrodec (\ABBY).
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Raman spectra of diamond thin films grown under different biasing

conditions. Appl. Phys. Lett. 56 (7), 12 February 1990.
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Diamond Deposition and Analysis Laboratory

Electron Spectroscopies

A. Auger Electron Spectroscopy

B. ;X-_,r:ay Photoelectron Spectroscppy

C Elelétro,n Energy Loss SpectrpScopy
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Electron Microscopies

A. Scanning Electron Microscopy
B. Transmission Electron Microscopy

Scanning Tunnelling -Microscopy)
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Sample preparation for transmission electron microscopy (TEM): (a) Prep-
aration of standard planar samples involves polishing and a final etch or ion mill to thin
the sample: (b} samples for cross section TEM involve (1) and (2) slicing sections sbout 1
mm thick. (3) using epoxy to hold two sections together and then polishing to about 50

#m lkickness. and then (4) ion milling to produce the final sample thickness of about
300 A. .
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Comparative Sensitivities
of AES, XPS-EELS,
and Raman to sp2:sp3

Goal: Provide a cbmparison between techniques
used by different researchers to evaluate the
quality of diamond films.

Approach:

. Vary the methane concentration in the feedgas
(1 to 50% in hydrogen) to increase/decrease the
sp2 component in the deposited films.

-« Apply known correction factors (in the case of
Raman) and qualitatively determine the
amounts of phases.
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Surface Morphology: SEM]

SEM micrograph of diamond film grown with 1%
methane in hydrogen. .

B AT
s

j;..;'.‘é".;‘f:{ ‘7(;“"

(g f’ 2o B A N

SEM micrograph of diamond film grown with 50%
methane in hydrogen.
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[AES Spectra from|
Diamond Films
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Auger spectra of diamond films grown with CH4
?)oné:entrations of a) 1%, b)3%, ¢)5%,d)10%, e) 20%,
50%. ‘
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Intensity (Arbitrary Units)
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Raman Spectra of Diamond Films }
Grown with Different Methane |
Concentrations in the Feedgas
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Fraction of Diamond (sp3) Determined by
Deconvolution of AES, XPS-EELS, and Raman
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IN-VACUO CVD/ANALYTICAL CHAMBER

A CUD Chamber
B Analytical

C Transfer Tube
D Load Lock
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Nucl. Density vs. Bias Time

Nucleation Density (/ cm 2)
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Surface Analysis During Biasing
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Calculated Film Thicknesses
From XPS Peak Area Ratios

A:  During Biasing Pretreatment
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Amorphous
Oxygen Hydrocarbons

Adsorbed oxygen and amorphous hydrocarbons

on the substrate prior to biasing

Before Bias

Si-C Si-0 ccC
k < { -Adsorbed carbon is either etched away or
2 converted to Si-C.
- -Esisorbed oxygen is converted into Si-O.,
-C-C bonding is found on the surface of the Si-C.

-As biasing continues the oxide is etched away.
-Si-C islands continue to grow

-As local carbide islands reach critical thickness,
excess carbon forms stable clusters.

-Some of the cluster become favorable for
diamond nucleation.

-As the rest of the carbide reaches critical thickness,
more carbon becomes available to form diamond
“nucleation sites.

-As biasing continues, etching occurs, which allows
diamomlint% nueate closer to the Si surface.
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MICROWAVE PLASMA CVD SYSTEM

Wavegulde

Tantalum
Substrate Substrate Heater
Holder Heater Enclosure

\ / \

____________
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LRI Theory

Substrate

Growth Rate = (A/2n)/T
Where A =laser wavelength

n = film refractive index

T = Period between interference cycles
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Growth Rate vs CHs Concentration
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Department of Materials Science & Engineering e
Diamond Deposition and Analysis Laboratory

SUMMARY

® SEM & Raman Spectrdscopy are the minimum techniques
necessary (easy sample prep and relatively inexpensive)

® Strong correlations between surface morphology, defect
density and Raman signal exist

® Various surface analysis techniques can be utilized and
allow in-vacuo characterization of the growth process

® Quantification of noridiamond component is currently very
difficult and needs further development

® True in-situ techniques are limited due to growth
environment but are currently under development (LRI,
Ellipsometry, ATR...)
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SELECTED MECHANICAL PROPERTIES OF DIAMOND

Property Value Units Note Table Ref.
Elastic (Young's) modulus 1050. GPa 1
965. GPa Type Ia (nat.) 2
Bulk modulus 440. GPa 1(p.8)
440.-590. GPa  Typella 3
Poisson's ratio 02 ---  Typela(na) 2
02 --. synth. polyxl. 2
0.1-029 ---  dep. on orient. |
Tensile strength (theoretical) 190. GPa (<l11>dir.) 1 (p. 285)
294 GPa (best value) 1
Shear strength (theor., <110> (111) system) 121. GPa 1 (p. 285)
Compressibility 1.7x10-7 cm2/kg Typelia 3
Cleavage velocity 72 km/s 1 (p. 289)
References:

1. J.E. Field, ed., The Propenies of Diamond. Academic Press, New York (1979).

2. R. M. Chrenko and H. M. Strong, "Physical Properties of Diamond," Gen. Electric Repont #75

CRD 089, (1975).
3. W.G. Ebersol, U. S. Patents 3,030,187 and 3,030,188 (1962).
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Figure 7. Scanning electron micrograph of a steel cutting chip removed as a
steel ball slid against a diamond film with sharp facets.
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CAN BE A FUNCTION OF THICKNESS WHEN THE

STRUCTURE CHANGES WITH THICKNESS

DISTANCE FROM BOTTOM (um)

400

300

200

100

(e adA1) Kimenb-q8rg msAo-3dus 10) pauodu Ammonpuos eadl
S STEAPWT 3UN] paysep [muozwoy Ayl (¢ b sidares ay w uonmisod jo
uonoanj € se ™'y AJOONPUOI [30] F3AUIP 31 N IAINI PAYSEP Y] BRP 3N
01 paug s:.mnbs-an (z ‘b3) rrwoudjod cun-¢ ¢t 51 mep “°x ap qnanp aum

aqL 's9jand prios £q amogs 0 ¢ b3 o1 Jurpioase paausp se AaRonpuos exo)

syl ‘(srenbs) ssjdares 34g 10} J,67 1T O Atandnpudd [eaudp paunsedpy

v 314

|

KLocAL .

J—_
— - a—— o . w—v - w— - —

-
-
>

SINGLE CRYSTAL ______

200 300

FILM THICKNESS (um)

100

30

272

GO% 1102230) wC



‘puoaretp (v adA1) Aurenb-ysty isAud-3(3wns 10) pantodss

fanonpuos [eardK 3@ SACIPUL UM PaysTp [MLOZUOY YL P ‘§14 ut se

SULTISTOW SWES Sy} SABY SAIND PIYSEP A pue S PrIOS YL ¢ PUE € s81g

¢ 813

WOJJ PIUTAIQO ‘STWG PUOITIP QAD WY 321s uTesd 'sa DoST e A11AnoNpuod [B307]

(wr) @ 3ZIS NIVHD

0] 0¢ Ol 0

I | |

STOP6 VO "Ped O[WIN
-au] ‘2umeiskr)

123u1pave) o ) puv QI YV I
p26L0 KosIof MON *ITTH Avami

souoizIoqe] 1og LWLV W
uojwwvy ‘M "D U °S ‘«42uq701D J T \\
swyy§ puomei( uj AJJARINPUO) [BULIAY], q3ryg Apensnu() \
o \\
7
\\
ST 52734H ] a2'dd 4/ oL Quiiygl SW\\
) 7
7
7
7
\\
7 ]
i 7
L
IIIIIIIIII VNllllllllllllllllllll

rad IVLISAHO ITONIS

ALIAILONANOD TVINHIHL
NO 3ZIS NivdD 40 103441

Ol

0€

(O,WQ/M)1V001 b

M oLt NOD

\
¥
W

273



iapio awes ay} ui AjaaReljenb mojjoj 0} swass Buiyolg ewse|q uabAxg

swii4 @AD ueyj Jeised sawil O} oq O} pajewysy -
D 00v anoqy sasodwoosag pue uabolpAH saso H:)-B -

O-e pue H:D-e ylog -

jelajew ds uiejuon

Ajiensn) Ajpidey aiop yonp azipixQ swiji4 auljjeisAidooioy -
swji4 Ayjenp pooy 10}

ejeq jeishAi) a|buis Y jua)sisuo) -- ainjonays uo spuadaqg -

SWIid PUCWEIG AAD

sopd pIoId Ul ww, 01x 610 (BLE)
LUl ww, 0ix 80 (0LL)

ulw ww, 0Lx S1°0  (001)
uabAxQ 10 Jte ur D 00Z 1e wesiiubis aq o} suibag -

SW1Id ANOWVId |
40 NOILVAIXO NO SNOILVYAH3ISEO0 3INO0S

274



saiJ4adoid pue ainjoniis jo jo4uo)
uonisoduio) pue a3InNjonils Jo aouepoduwi

(piepuels ayl) puowei( ej| jeinieN
uoiljonpoJuj

swi|i4 9jif-puoweiq pue puoweid
jo saiuadouid pue ainpnis

275



(sia19WwosoiW) HIDNITIAVM

or 0e O0¢ oL6 L S £ 4 b 20 G0 €0 <0
1T N R T _ — 11 T T 1 0
. _.AEE: .
- ! s 1VIl GNOWvIG—| 0
! (wuwg) |} ..\\ |
. ! . 3AIHJSOHd WNITTVO | ¢ +z0
s : I mi
... __ N xm
- ! | i €0 m
1 " §fwwy) 1 2
_ L i § ppaNaas] —Hvo =
! " S Joniz i
- F i A 50 ®
3 4 S
y ' wwg) _ & I %
- _ A ) mvaadns oNz } -90 =
e e o = = OOOD?AIIIIIf lVl\.“‘l'lhhlll' - ”“
20 =
G
- 80 "
(wwe)
150
- —160
| I | |- I ] ] l ] | 0L

96691-W06 OMA-INHO

STVIHILYIN TVDILdO a3dV4NI ANVE AvOoHg 40 vH103dS NOISSINSNVHL

276



sajjadoid pue ainjonais Jo [0Jju0)
uolisodwo) pue ainjonJ)s jo asuepoduly
(piepuels ayl) puowel(q ej| jeinjeN
uonoNpPoJIU|

Suiji4 |yi7-puoweiq pue puouweiq
Jo saiadoud pue ainjonis

277



joluo) Aljery pue Apwsiopun -
jeojueyoey; -
ebuntulg -
Buizeug -
uoisuedx3 jo U380 |ewLay] -
wajqoid ijeqoo -
Buipuog jediwayy -
leuejd -
saljadoud _m_omtﬁ:_\:o_mmc?q -
sjeisAi1y |eixe}daolala
sjeisA1n [eixeyldoowoHy -
HuQg 19p uep -
ainjondis palnixa] Jeuwnjoy -
suiely paxeinbg azig pexiny -
éleldley pauiels auld palnixal-uoN wlojiun -
jeliajely SnNolod - UMOIY) U24o]
auljieisA1204101N
snoydsowy -
S9iNJONJISOIOIN JO UOIINjOAT -

saiadold pue ainjoniiS Jo [043U0)

278



68-806% OLOHd-INYO

(q9)

HOW W4 ONOWVIQ

(2)

279



o

YOO SIHL GHYMOL SS3IHO0Hd AOOD 3Avid IAVH AM
"Paj|041U0D 3q Ued pue SuolIpuod
ymmouab jo suoiounj aie Abojoydiow pue uonoouad jeishiy -

soijadoud
ay} o} juepioduwl osje ase ABojoydiow pue uonejusuo [elsiiy -

‘sa1lJadoud o) Juenodwl ale s)oajap/uondaad jeishly -

"SNOILLYII1ddV 2I4i03dS
HOd4 3HNLONYLS HIdH1 3ZINILdO Ol d3T10HLNOD
38 1SNN STTVIHILVIN ANOWVIG 40 HLMOHO 3HL

SiSayl

280



"JOV4HNS TVLISAHO

ONIMOYD FHL 40 3IHNLONHLS IHL OL d3ivi3dH 3JHV
SS3O0Hd HLMOHD IHL DNIHNA 3IJHNLONHLS TTVLSAHO
JHL OLNI GILVHO4HOSNI S1O343A/NOILO3IdHId 3HL

I# SiSoyiodAH

281



"IN220 |IM YmouB yosiym uo sasepns
3y} pue sainixa} pajosjes Buimoib 10} apinb e se sanlas

"s|eilddjew
painixa)} jo jusawdojanap 8y} ujejdxa ued pue ,uol}93|9S
Aleuonnjon3 jo ejdiounid,, s, yuQ J9p uea si syl

w SALITIVLSAHO HDNIMOHD
1S31SVd 3HL 4O TVYAIAHNS 3HL. 40 1LINS3H 3IHL SI
SIWTId ANOWVIA NI S:HNLX3L 40 LNIWdOT13IAIA IHL

c# SISayjodAH

282



'31VH1SaNS IHL Ol HVINOIAN3dH3d
NOILDO3HId DNIMOYHYD 1S31ISV4 FHL HLIM
(NOILVLNIIHO ILITIVLISAHD) JHNIX3AL V Ol SAv31 SIHL

‘souo pajualio AjqeloAne} ssa] ayl moib-i1ano pue dojaaud
ajeljsqns a3y} o} Jejnojpuadiad uondAMIP

uonosalip sydesbojeishio Buimolsb 1saise} ayl Yum I9jONN
. yimosb aannadwon -

uoljes|onu wopuey

,uol}99|ag Aseuoiinjon3y jo a|diauid,,
s, 1jlig 19p UBeA

283



"o1e8)sqns 31 0} sepnnipuddiad Appeau (smorse) uonIRNP-{[1) BIYI Yum spriskn
2Y1 SIARI| UO11I3]as AIRUOIINIOAI JUY) MOY UMOYS §{ 1] "P2IINIISUOCD I (JIYJOUR U0 193w 0}
PPNu Aunoqyfou om) 10J pa1nbds dwiy 1S3110YS YN SY 1|7 YIIYM UL £)7 §T == pue Jp- ¢
Y1 =) IB) sawi} Ui

~

-1
ALp 1B Ol [RISAID IY) SN [ITM SB (SAUI] PIYSBP) SIURPUNOQ |riskid
-121u8 34} ‘3JeNISqNS Y} FUO|B UIAD UOCISRYIP InJIns nuyul Juiunsse pue ddeds jruoisudiup
-om) ® Ul sjrIsA1d  31qnd,, papunod-(0f) ueisipinba p2jrjuatio-wopues wosj Ruieig oy Ny

by

\
\ ., \ ! m ’ _ \ ! \
T T U Y. VoV sy jor
/
—. \ / // / \ — - / ~ []
l _. \ /A \ _ __ / _‘ .\
| \ / \ - | v L/ ! N
U . A S
\ \ / /
| ! \ ! ! /
i \ \ f ! !
| _. t \ ] !
\ \ \ } ! !
[ \ ) | /
| \ | ]
_. \ ] !
\
I \
| \
| \
|
i
\
|
\
|

284



'

e
o
T
>
w
%)
=
—
1

+ Cubo-

285




"UAAID sI anjeA <L|1>/<Q0L> dYLl "SUOIIJANP<|LL> pue <QQL>
9y} ul sajes yimoub jo oner ayl [eeaas sadeys [eipayeldso-oqn)



saJejIns

B —:ocEw u...«.%u& 5:5 ,
pajadej-ondiw y3nox daey sadey [ITT1]

287






Ypro1go

ainjonais utelb leuwnjod 8yl pue aJelnsS pojade}
ybnos ay} smoys wiji Buipuels 9aJ) e 0 abpa paimdel} syl

289



| _ﬂ.nw;e..f / . /\«.. . W‘.”ﬁ
3 .ﬂ..v.\ ? .

idb | BN S .
' ) N : ; ) E .
i ] . :
S e X L i . o P .
. ..\ B - R ) kL ) .
v p N L. - . . .
. . . R . .. it - )
| . . ..
- - b '

& 2 r M

SalINJonl}S pauuim} w:oz_._—u_n: SMOYSs N3IL

290



Clo | R

V)
\

291



1AIIEN

292



Q618

dojenap sieded [00L] alenbs HoGe ieau abues mouleu e Uuj

293



NCINYRTY

sjiney Bupjoels 10 suim} ou

EENEE -
AR —r.. -

uiejuod suielsb ayj

294



‘|eldojew aAlo9ep AlaA papnjoul suoifai Asepunoquield

295



-eIpaYL}00-0qnNd pajuaIo Ajwopues ale 1ajonu [eniul Ayl

o

296



"UBAID sI anjeA <|LL1>/<00}> @Yl "SUOHI3IP<|LLL> pue <QQ}>
ay} ul sajel yimolb jo onesr ayj) jeanas sadeys |eipayejdo-oqn)

297



" -pedojenep. >=um_o s} 2:!..3 <00 wv

oY) sinoy 0Z JeuV

Q)
(3]



£9-13439

X-RAY TEXTURE DIAGRAM FOR DIAMOND

FILM GROWN AT 930-950°C USING
1% CH4 IN HYDROGEN
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Growth Conditions Determine the Internal and External Morphology of
Diamond Films
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4.0 REPORTS FROM WORKING PANELS
Panel 1 - Comparative Evaluation of Deposition Technologies
Panel Members:

Chairman: George R. Fenske, Argonne National Laboratory

David K. Benson National Renewable Energy Laboratory
Deepak Govind Bhat GTE Valenite Corporation

Yu-Lin Chen Allison Gas Turbine Division, GM

Roy Gat Case Western Reserve University

Mike Kelly Stanford University

James E. Lawler University of Wisconsin

Dennis C. Nagle Martin Marietta Labs.

Duane Outka Sandia National Laboratories

Roland J. Pitts Naticral Renewable Energy Laboratory
Gopal Subray Revankar Deere & Co.

Frank Stodolsky Argonne National Laboratory

Vish V. Subramaniam Ohio State University

Mahendra Kumar Sunkara Case Western Reserve University

Paul J. Wilbur Colorado State University

Ming-Show Wong Northwestern University

William E. Woolam Southwest Research Institute

This working group attempted to evaluate/compare the different types of deposition
techniques currently under investigation for depositing diamond and diamond-like carbon
films. Table I lists the broad types of techniques that were considered for depositing
diamond and diamond-like carbon films. After some discussion, it was agreed that any
evaluation of the various techniques would be dependent on the end application. Thus the
next action was to list the different areas where diamond and DLC films could find
applications in transportation. These application areas are listed in Table II. Table II
intentionally does not go into great detail on applications because that subject is dealt with
specifically by Panel #4 - APPLICATIONS TO TRANSPORTATION. The next action
concentrated on identifying critical issues or limitations (see Table III) that need to be
considered in evaluating the different processes. An attempt was then made to rank
different broad categories of deposition techniques currently available or under
development based on the four application areas (Table II) and the limitations (Table III).
These rankings/evaluations are given in Tables IV and V for diamond and DLC techniques,
respectively. Finally, the working group tried to identify critical development and research
issues that need to be incorporated into developing a long-term program that focuses on
diamond/DLC coatings for transportation needs.
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Deposition Technologies

Techniques for depositing diamond and diamond-like-carbon films are listed in Table I.
For diamond films, CVD processes that were considered include: laser-assisted, hot-
filament, plasma-assisted (microwave), and halogen-based CVD. Two other techniques
considered were combustion-flame processes and plasma (arc)-jet processes. While this is
not a complete list of all of the techniques/processes (and variants thereof) known to be
under investigation for depositing diamond films, the working group felt that these were
the more prominent ones and that techniques/processes not listed (e.g. biased hot-
filament, low- or high-pressure rf-discharge, etc.) would be similar to those listed. For
example, the LANL proces-. currently under development to combine hydrogen and carbon
at elevated temperatures ii: a fluidized-bed reactor to deposit diamond coatings would come
under the combustion-flame process in Table I.

Techniques for producing DLCs are also listed in Table II. Again, not all processes are
listed. The DLC processes are primarily based on PVD and energetic-beam technology (or
combinations of both).

Application Areas

The first action was to list the different areas where diamond and DLC films could find
applications in transportation. These application areas are listed in Table II. Table II
intentionally does not go into great detail on applications because that subject is dealt with
specifically by Panel #4 - APPLICATIONS TO TRANSPORTATION. The first application area
on thermal management takes advantage of the high thermal conductivity of diamond films
to help dissipate heat generated either by mechanical means (e.g. brakes or cutting
operations), or chmic heating (high-power-density electronic components}. It was also
noted that diamond/DLC films could be used to control the thermal loading of the inicrior
compartment by controlling the amount of light transmitted.

The second application area identified, Optics, is concerned with the use of diamond
(and perhaps DLC]) films as optical coatings for windows.

The third area deals not only with the use of diamond/DLC films in end-use tribological
applications (e.g. cylinder liners, fuel injectors, etc.), but also with manufacturing practices

(e.g. machining, etc. of components)

The fourth application area deals with using diamond/DLC coatings in fabricating
sensors used in transportation, e.g., pressure, temperature, and emission sensors.
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Comparative Limitations

The discussion in this section focused on determining the critical factors that need
consideration in ranking/evaluating the different processes listed in Table I for the
application areas listed in Table II. Substrate preparation refers to special pre-deposition
treatments (such as scratching the surface with diamond or some other abrasive material)
to enhance the nucleation of diamond crystals during the initial stages of film growth.
While these steps may be required for diamond films, they are not required for DLCs.
Growth rates may also be a limiting factor for some of the processes (e.g. PA-CVD) but not
for others (Arc-Jet). The size of the component for currently available diamond techniques
may be an issue depending on the application, but not necessarily for many of the DLC
processes which are more mature.

Substrate deposition temperature is currently a major limiting factor for most diamond
deposition processes (depending on what one would consider as being an acceptable
growth rate). Deposition temperatures below the annealing temperature of steel
components are highly desirable. Cost is always a critical factor particularly if these
techniques will be used in treating components produced in large quantities. Surface finish
is another critical factor particularly for tribological applications that demand smooth
surfaces to prevent severe wear of the mating surface. In some instances (e.g. material
cutting, grinding, etc.), however, a smooth surface may not be as critical.

The maximum thickness that can be deposited may be critical depending on the
process and type of film (diamond or DLC). Thick diamond coatings (in excess of 3-4 mm
thickness) are commercially available today. For DLCs, the thickness is usually less than
several micrometers.

Adhesion is another critical factor that limits applications. If the coating does not
adhere to the surface under typical operating conditions, the coating is useless. Adhesion
appears to be more of an issue for diamond coatings than for DLCs. Diamond films are often
difficult to nucleate and grow on all but a few materials (typically strong carbide formers),
while DLCs can be applied on a wider range of materials particularly if an intermediate
bond-coat is employed.

Thermal conductivity is not a limiting factor for diamond films; in fact the thermal
conductivity of diamond films is one of its outstanding properties. DLCs on the other hand,
because of their amorphous nature, have very poor thermal conductivities, and thus are
inappropriate for thermal-management applications.

The geometry limitation in Table III refers to the capability of the different techniques
to coat components with complicated shapes. Line-of-sight processes such as the ion-beam
techniques wouid have difficulty coating interior surfaces. CVD processes on the other hand
may be more appropriate for interior surfaces provided activated species can be transported
to the interiors.

Finally, thermal oxidation of the coatings needs to be considered. Diamond films are

stable up to temperatures of approximately 800°C (depending on the environment) while
DLCs start to crystallize (to graphite) at temperatures above 300-400°C .
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Ranking/Evaluations

Tables IV and V summarize the ranking of the different techniques tdentified in Table I
for the 4 application areas listed in Table II. The critical limiting factors that the working-
group members felt were crucial in evaluating the different techniques are listed for each
application area. For thermal-management applications, the limiting factors include:
growth rates, substrate temperatures, cost, thermal conductivity, and thermal oxidation.
Based on these factors, the group felt that the Arc-Jet technology is most promising as a
proven technology for thermal-management applications. Plasma-assisted CVD (microwave)
and hot-filament CVD processes were rated as the next two most promising proven
technologies. {ae columns denoted by "Pot" denote technologies (PA-CVD, halide-assisted
CVD, and Arc-Jet) that the group felt had significant potential for thermal-management
applications.

For optics applications, the more promising, proven technologies include PA-CVD, Arc-
Jet, and HF-CVD), while halide-CVD and combustion-flame processes offer potential.

Under tribological applications, PA-CVD, Arc-Jet, and HF-CVD were noted as most
promising techniques (these three techniques are the most mature of the different
techniques listed, and thus it is not surprising to see them listed in the top of the "Proven"
processes). PA-CVD was listed as having potential because it may be possible to form cubic-
BN films. Halide-based CVD techniques were also listed as having potential because of their
potential ability to deposit films at low substrate temperatures.

For sensor applications, the PA-CVD and HF-CVD were noted as being the most
promising proven technologies. Arc-Jet technologies were not considered because of high
deposition temperatures. Laser-assisted CVD techniques have potential because of their
ability to develop complex diamond patterns that may be incorporated into the sensors.

The results of the ranking exercise for DLC processes are given in Table V. Because of
the poor thermal conductivity and thermal oxidation properties of DLCs, it was felt that
these types of films (and hence their deposition processes) should not be considered at all
for thermal management and sensor applications. Consequently, all of the processes listed
in Table V received a "0", signifying that they should not be considered. For optical
coatings, sputter-deposition techniques were considered to be very mature, and thus were
rated as most promising of the proven technologies. Ion-assisted techniques and PA-CVD
were also noted as being promising "proven" processes.

For tribological applications, all of the processes, with the exception of laser-ablation-
PVD appeared to be equally promising as proven technologies.

Recommendations:

After evaluating the different processes for depositing diamond and DLC coatings, the
working group attempted to identify key issues that need to be addressed in furthering the
utilization of diamond and DLC films in transportation applications. These issues fell into
one of two categories: one dealing with research issues and the other dealing with
technology-development issues.
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The research issues that need to be addressed in bringing diamond and DLC coating
technologies to the point where they can solve the thermal-management, optic, tribological,
and sensor needs of advanced transportation systems are as follows:

1) Growth Rates: The growth rates of the current processes used to produce
diamond and DLC films are not sufficiently high to make them
economically attractive for transportation applications. Growth rates are
typically on the order of several micrometers per hour (with the exception
of plasma arc-jet processes). Increases in the range of two to three orders
of magnitude are needed.

In order to increase the overall growth rates of the deposition processes,
research is needed to understand the nucleation and growth of diamond
and DLC films and how the multitude of process parameters influence
these processes.

2) Substrate Temperature: The substrate temperatures required for
diamond-film growth are too high for many materials. Typical deposition
temperatures for diamond films are in the 800 to 1000°C range.
Deposition temperatures (without reduced growth rates) below 400 to
500°C are desirable for use on heat-treated steel components (assuming
adherent diamond coatings can be deposited on steels).

Research on nucleation and growth at low substrate temperatures is
needed to address this issue.

3) Adhesion: Adhesion is a critical factor that limits the application of
diamond films. A general (but not necessarily sufficient) criterion for good
adhesion s to use a material that is a strong carbide former (iron and
steels are an exception).

Research is needed to identify the properties that determine the adhesion
of diamond films and how the different deposition processes can be
modified to improve the adhesion of diamond and DLC films.

4) Surface Finish: Polycrystalline films deposited by many of the techniques
listed in Table I are comprised of faceted crystals. The resulting surfaces
can be rough and thus unacceptable for some applications. Research on
the nucleation and growth mechanisms of diamond films would provide
information on controlling the surface roughness. Post-deposition surface-
finishing procedures may offer an alternative approach to obtain the
desired surface morphology.

Once the technological barriers have been overcome, a number of process—
development issues need to be addressed. These issues include:
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1)  Scalability: Can the desired process be scaled up in size to coat not only
prototypic components, but also eventually be adapted for long-term and
potentially high-volume manufacturing runs?

2) Controllability: Is the desired process controllable, and if so what are the
critical process parameters that need to be monitored and controlled?

3)  Cost/Marketability: Can the cost be brought down to reasonable levels
acceptable to industry? Precisely what are the markets for these
diamond/DLC film processes?

Summary:

Within the time allotted, a number of practical deposition processes that currently
exist for forming diamond and DLC coatings were evaluated with respect to 4 application
areas (thermal management, optics, tribology, and sensors). The group identified a number
of promising technologies that currently exist for diamond-film deposition. These include
processes based on hot-filament and microwave-plasma CVD and arc-discharge. For DLC
coatings, it was noted that this is a relatively more mature field in terms of processes than
the deposition of diamond films. There are a number of applications where DLCs are
routinely used. particularly in the magnetic recording field. It was also noted that although
the group considered 4 application categories in assessing the different processes, a more
thorough assessment needs to be performed for each specific application once it has been
identified.

The group also noted that there are a number of significant differences between
diamond and DLC coatings that place limitations on the end-use of these coatings. Notable
are the low thermal-conductivity and thermal-oxidation properties of DLCs compared to
diamond films that limits the applicability of DLCs for sensors and thermal management.
The surface roughness of DLCs make them very attractive for tribological applications
compared to diamond filins.

It was further noted that new/novel processes and deposition chemistries (e.g.
halogen-assisted CVD) need to be explored particularly for diamond-film deposition.

Specific development and research goals were identified. Research and development
effort is strongly needed to obtain higher growth rates, to lower the deposition
temperature, improve the surface roughness, and the adhesion of diamond and DLC films.



TABLE I: Deposition Techniques
Diamond Films
Chemical Vapor Deposition Processes

- laser assisted CVD (LA-CVD}

- hot filament CVD (HF-CVD)

- plasma-assisted (micro-wave) CVD (PA-CVD)
- halogen activated CVD (hal-CVD)

Combustion Flame (FLAME)

Plasma (Arc-Jet)
Diamond-Like Carbon Films

Physical Vapor Deposition

- electron-beam evaporation (EB-PVD)
- sputtering (SPT-PVD)

- CVD (CVD-PVD)

- laser ablation (LA-PVD)

Ion-Beam Deposition (IBD)
Ion-Assisted Deposition (IAD)

Plasma-Assisted CVD (PA-CVD)
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1)

2)
3)

4)

TABLE II: Transportation Application Areas
Thermal Management

heat dissipation (hot spots)

electronic components (high power density)
heat loading through windows
manufacturing (cutting tools)

Optics
Tribology

Sensors (e.g.. mechanical devices to measure pressures and temperatures)
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TABLE III: Comparative Limitations

PCDs DLCs
substrate X
preparation
(nucleation)
growth rates X X
component X
size
substrate X
temperature
cost X ?
surface finish x
maximum X
coating
thickness
adhesion X ?
grain-size, X N/A
crystallites,
heteroepit.
thermal X
conductivity
geometry X X
thermal X
oxidation




TABLE IV: Ranking of Diamond-Deposition Processes

Thrml-
Mngmnt Optics Tribology* Sensors
(B,D.E J 1) (F.G. H 1 (C.D. F. H KL (H J, L)
Prvn®* Pot** Prvn Pot Prvn Pot Prvn Pot
IA_ - — — - - - - L ]
CVD
HF- 3 - 3 - 3 - 2 -
CVD
PA- 2 + 1,2 - 1 c-BN 1 -
CVD
hal- - + - + - low-Tg - -
CVD
FLAME - - - + - + _ N
Arc- 1 + 1,2 - 2 - - -
Jet

*Also includes wear-resistant coatings for optics.

**“*Prvn” - refers to proven technologies for specified field.
“Pot™ - refers to technologies that have significant potential in specified field.

*Denotes techr-:logies that have potential.



ATRL

TABLE V: Ranking of DLC-Deposition Processes

Thrml-
Mngmnt Optics Tribology Sensors
(B,D. E J L) (F, G. H. 1) (C.D.F.H K1 (H, J, 1)
Prvn Pot Prvn Pot Prvn Pot Prvn Pot
EB- o* o} - - 1 - 0 0
PVD
SPT- 0 0 1 - 1 - 0 0
PVD
CVD - - 1 -
LA- - — _ s
PVD
IBD 0 0 -~ - 1 - 0 0
IA 0 0 2, a 1 - 0 0
D 3
PA- 0 (0] 2,3b - 1 - 0 0
PVD

*A ‘0’ denotes these techniques should not be considered.
s*Refers to technologies that have potential.

aprotective coatings for low-heat-load windows.

bIR windows.
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Panel 2 - Properties of Diamond and Diamond-Like-Carbon Films

Panel Members:

Chaimman: P. J. Blau, Oak Ridge National Laboratory

0. O. Ajayl Argonne National Laboratory
P. F. Bartelt Deere & Co.

R. H. Baughman Allied Signal

B. Bhushan Ohio State University

R. E. Clausing Oak Ridge National Laboratory
C. V. Cooper United Technologies Research Center
M. T. Dugger Sandia National Laboratories
A. Freedman Aerodyne Research, Inc.

J. Larsen-Basse National Science Foundation
Y. Y. Liu Argonne National Laboratory
N. R. McGuire Caterpillar

R. F. Messier Penn State University

G. L. Noble John Crane, Inc.

M. H. Ostrowski John Crane, Inc.

A. Purohit Argonne National Laboratory
B. D. Sartwell Naval Research Laboratory

R. Wei Colorado State University

Goals of this Panel

This panel attempted to identify and prioritize research and development needs in
determining the physical, mechanical and chemical properties of diamond and diamond-
like-carbon films (D/DLCF). Three specific goals were established. They were:

1. To identify problem areas which produce concern and require a better
knowledge of D/DLCF properties.

2. To identify and prioritize key properties of D/DLCF to promote transportation
applications.

3. To identify needs for improvement in properties-measurement methods.
Each of these goals is addressed subsequently.

Problem Areas

Problem areas delineated by the panel were identified as being either short-term (ST)
issues (urgent needs), long-term (LT) issues (requiring significant times for effective
solution), or as having elements of both (S/LT). These problem areas are summarized as
follows:
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J There was general agreement that there is a need for specific guidance from
the transportation industry (i.e., engine manufacturers, parts manufacturers,
materials suppliers) as to which specific properties need to be improved. This
guidance is critical for those developing new methods to produce D/DLCF. [ST)

2. A need was expressed for a comprehensive data base for the properties of
D/DLCF. This activity should begin at once and be continued as the technology
matures. [S/LT]

3. There is a lack of standard tests (e.g., ASTM test methods) for use to determine
the properties of D/DLCF. [S/LT]

4. Standard reference materials on whick: (o validate D/DLCF property-
measurement methods are not available but should be developed. [ST]

5. There is a need for better quality~control (QC) methods which can use one or
two key properties to qualify products for use. Often it is not possible,
economically and/or technically, to perform a large number of tests on each lot
of material. Key QC tests, which are well-correlated to performance, should be
developed. [S/LT]

Considerations Bearing on Problem Ar

There was a sense that certain factors affect the degree to which government
laboratories should be involved with industrial efforts to promote and develop D/DLCF
technology. There considerations included the following:

1. There is no question that property requirements will be driven by end use.

Applications information arising from the other panels should be considered in
setting priorities.

2. Pending the identification of specific target applications, R&D should be
directed at generic technical issues.

3. Research is needed to link D/DLCF properties with their microstructures and
the underlying mechanisms of material behavior.

4. Combinations of key properties may be more important than individual
properties alone.

5. The properties of D/DLCF must be taken in the context of a total materials
system which contains the substrate-material properties as well.

Prioritization of Needs for D/DLCF Properties

A poll of the panel members indicated the following order (1=highest) of importance in
properties determination for D/DLCF used in transportation applications:
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1. tribological properties

2. mechanical properties

3. thermal properties

4, chemical properties

5. electro/optical properties.

It is recognized that the above priorities may be different for specific applications (for
example, thermal management for circuit chips may rank much higher in regard to
automotive microcomputer-system needs). Therefore, the list resulted from a consensus
on applicability to the gencral area of transportation technology.

There was an attempt to further break down the top two properties needs on the above

list into more specific areas. Those tribology areas receiving at least three votes from panel
members were the fxllowing:

Subject No. of Votes
1. friction 13
2. wear 13
3. better surface-morphology characterization 10
4. rolling—contact-fatigue characterization 5
5. lubrication of D/DLCF 4
6. scuffing-reduction properties 3

Similarly, mechanical-properties areas recetving the most votes were as follows:

Subject No. of Votes
1. adhesion 15
2. hardness 8
3. residual stress 4
4. fracture toughness 3
5. elastic properties 2

Prioritization in Needs for Better Properties-Measurement Methods

There were five areas in which better D/DLCF properties-measurement methods were
felt to be needed. These are:



1)

2)

3)

4)

5)

Better methods for reporting (i.e., improved completeness of methodology) are
needed for friction and wear data, including the more consistent use of units.

Several areas of adhesion testing were identified as being significant. These
included development of standard reference materials for adhesion testing,
better means to develop quantitative rankings, more repeatable and
reproducible methods for adhesion testing, better methods to discriminate
between shear and tensile properties of D/DLCF, and better tests for scratch,
pull, bend, bulge and indentation.

Thermal-conductivity test methods should be developed aimed at specific
applications (as ASTM test methods). Special test methods are needed for films
under 0.1 micrometer in thickness.

The hardness of thin films is very difficult to measure. New methods to prepare
surface for hardness tests without altering properties should be developed.

Indentation fracture-toughness testing methods have serious drawbacks.
Improved methods for D/DLCF are needed.

Recommendations

In summary, Panel #2 on Properties had the following recommendations:

1.

Properties data for D/DLCF cannot stand alone. Data must be accompanied by an
understanding of materials fundamentals.

Special techniques, tailored for measuring the properties of D/DLCF, are
urgently needed. Some of these techniques should be standardized, for
example, as ASTM test methods, and reference materials to validate new
standard test methods are needed as well.

The panel recommended establishing an initial round-robin program to develop
a D/DLCF properties data base.

Tribological behavior, mechanical properties, and thermal properties have high

priority for D/DLCF in transportation applications. A series of specific property
rankings were developed.
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Panel 3 - Characterization
Panel Members:

Chairperson: Robert A. Erck, Argonne National Laboratory

All Erdemir Argonne National Laboratory
Albert Feldman Natl. Inst. of Standards and Technology
Jeffrey T. Glass North Carolina State University
Jang-Hsing Hsieh Argonne National Laboratory
Rick Kleimer Coors Ceramics

Emil A. Lawton JPL/Caltech

Richard H. Lee Argonne National Laboratory
Carl J. McHargue Univ. of Tennessee-Knoxville
Xian Zheng Pan Argonne National Laboratory
Diane E. Peebles Sandia National Laboratory
Deming Shu Argonne National Laboratory

This task of this panel was to identify and prioritize needs in the area of
characterization of diamond and diamond-like-carbon (DLC) films for use in the
transportation industry. Diamond has been extensively studied for many years, and DLC has
been known and studied for two decades. Until recent advances in producing diamond and
DLC films that were both inexpensive and suitable for covering large areas, it was not
considered feasible that these materials could be mass-produced.

The physical properties of diamond have been well characterized. However, because
diamond and DLCs have been extremely expensive and difficult to produce, especially in
large quantities or over large areas, little work has been done to apply these materials to
non-traditional applications. Thus, little work was done (aside from diamonds for abrasive
applications) on investigating and determining how best to apply diamond and DLCs to
solving protlems in transportation technology. The deposition technologies (e.g., CVD
diamond) are themselves very new, and much more work needs to be done on
understanding how the processes operate on the molecular scale.

After some discussion, il was agreed that the Characterization panel should restrict
itself to identifying needs in areas that would be of most use to manufacturers and users in
producing and utilizing diamond and DLC coatings in industry. These characterization
needs include:

1) in-situ monitoring during growth
2) relation of structure to performance
3) standards and definitions
The performance of any diamond or DLC surface depends critically on the properties of

the surface of the film, the film itself (bulk), any interfaces that are contained in the film or
between fllm and substrate, and the substrate. The Panel addressed three questions. What
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were some of these general systems that needed to be characterized, why is the information
needed, and how will this information be obtained? Table I is a summary list of items
identified by the Panel.

The Panel intentionally avoided discussing specific properties of diamond and DLC
films; that topic is dealt with by Panel #2, Properties of Diamond and Diamond-Like Carbon.
Nor did the Panel enumerate the various techniques for deposition; these are addressed by
Panel #1, Comparative Evaluation of Deposition Technologies.

For any successful commercial utilization of diamond and DLC f{ilms, it was thought vital
to be able to know which parameters are critical for the maintenance of quality and
reproducibility during deposition. In addition, any practical production process will require
in-situ monitoring of the deposition process. Without real-time "feedback," quality during
manufacturing is put in jeopardy. Thus, the Panel placed emphasis on process control, and
on determining the relation between measured parameters, structure and performance.
The following section lists some of the concerns expressed by panel members.

o It was felt that the characterization question should span the range from
fundamental to applied. Fundamental research was needed to determine which
parameters (and thus which techniques) would give the most useful (significant)
information about the control of a particular technique. Applied research was
needed to relate properties to performance during use.

¢  Characterization methods should be developed which allow monitoring the
growing film during deposition. Because practical CVD methods of growing
diamond and DLC films have only recently been discovered, the kinetics of these
interactions, especially gas-gas and gas-solid interactions, is just beginning to be
understood. It became clear that any practical deposition technology involves
understanding and controlling reactions between molecular and atomic species
existing in the gas phase and between the gas phase and the surface. Thus, the
characterization task requires a means of measuring properties of molecular,
atomic or excited species, and characterizing the interactions between these
species and the growing surface.

*  Any practical use of diamond and DLC coatings under mechanically loaded
conditions will require good adhesion of the film to the substrate. A film that
detaches will be worthless. Diamond's thermal-expansion coefficient is a poor
match to many common engineering materials, and good adhesion is necessary
for film integrity under thermal cycling. At present, good bonding of diamond can
be obtained to only a few classes of materials. Thus a means of assuring
film/substrate bonding is needed, as well as a way of controlling film stresses
during growth.

* It was emphasized that characterization techniques can be classified as de-

structive or non-destructive. For process monitoring, suitable non-destructive
tests need to be developed.
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A suitable characterization technique must be sensitive to the parameter or
parameters that critically affect the performance of the product. Much work is
still needed to clearly understand which characterization techniques would be
most appropriate to study the particular film property to be measured. For
example, Raman spectroscopy is highly sensitive to graphite impurities that are
sometimes found in diamond films grown by CVD techniques. Thus, Raman spec-
troscopy would be extremely useful as a characterization tool if knowledge or
control of the presence or absence of graphite were critical. However, if film
properties were found to be critically related to grain size, for example, and the
presence of graphite was immaterial, then Raman would be unsuitable. A
characterization technique sensitive to grain size would need to be found.

A clear need was felt for the development of basic and applied understandings of
the chemistry and structure of diamond and DLC films in order to engineer
specific (desirable) properties. Many of the basic physical properties of these
materials are well-measured and understood. However, because diamond and
DLCs have been very expensive and difficult to produce, especially in large
quantities or over large areas, it was never thought practical to apply these
materials on a large scale to manufactured parts. Thus, little work has been done
on understanding diamond and DLC films in terms of those specific properties
useful for application to transportation. Thus, a gap in knowledge was seen in the
relation of chemistry and structure to properties such as wear resistance, friction
or compatibility with other materials.

For any production of diamond and DLC films on a commercial scale, some
reliable and robust means of monitoring and feedback will need to be developed
for use during production. At the present time, we lack knowledge and tools to
monitor and characterize the production of films of diamond and DLC in-situ. This
includes both monitoring of film nucleation and monitoring of growth. The initial
nucleation of the film will be a critical step, so that characterization and feedback
may be necessary to attain acceptable yields. It was thought that deposition rates
would probably be slow and that some means of assuring film quality in-situ would
be necessary to avoid lengthy deposition of a fatally flawed film.

Much additional work and understanding are needed to relate structure to
performance. The term structure was not restricted to physical structure, but also
includes chemical composition and impurities. The panel included in the
"performance” category not only tribological aspects such as wear, environmental
and high-temperature properties, but also radiation resistance and electrical
properties. Information is needed about not only the film itself, but also about the
surface, interfaces and substrate, as shown in Table I.

An experimental means of adhesion testing that is reproducible is needed for
diamond and DLC films. However, no widely accepted direct means of testing
thin films in general exists, making this challenge more difficult. A non-
destructive means of ascertaining film adhesion would be ideal. An indirect test,
in which a particular property that is related to adhesion is measured may be one
way of approaching the problem, but much work needs to be done in this area.
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The extent of the information database for diamond, and especially DLC, is still
very limited. It was speculated that some of the data published to date may have
been obtained under poorly controlled conditions as researchers initially strove to
understand the new deposition processes. A strong desire was expressed by panel
members representing industry for a study and compilation of a database
concerning critical process parameters and performance. It was felt that a
published database, perhaps similar to the ACTIS tribology database, would be
useful.

A strong need for standards and standardized characterization procedures was
felt. At present, no industry-wide specifications or procedures seem to have been
developed for diamond or DLC that were designed for use by the transportation
industry. A need exists for specifications that are practical and useful and that
facilitate meaningful communication between all parties. Materials standards for
microelectronic and thermal-management application were known to be available,
but these were thought to be unsuitable as standards for tribological use. There
was no consensus, though, as to which organization or organizations should be
responsible for producing the standards.

In addition to standards, it was felt that a round-robin testing program should be
initiated, similar to the programs developed to characterize other materials. The
results would be compared and potential problems identified. This would aid in
assuring high standards and consistency.

The topics of surface roughness, its effect on wear and friction, its means of
measurement, and ways to polish diamond, were raised. It was felt that this topic
was more properly addressed by Panel #2, Properties of Diamond and Diamond-Like
Carbon.

A film of high "quality" is always desirable. However, a goo:: working definition of
quality for various applications does not exist, although this term is often used in
the area of diamond and DLC films. This lack of a good definition is particularly
evident for DLCs, which, because very little is known about their atomic structure,
poses greater challenges for understanding the relationship of structure to
properties. It was felt that any definition of quality of a film must take intc account
not only bulk properties such as structure, composition, phase distribution,
residual stresses, and so on, but also adhesion of the film to the substrate.

Another parameter that affects film performance is the relative amount of sp? and
sp3 bonding and the hydrogen content of a DLC film. The performance :.f DLC
films is poorly known in relation to these quantities, and means to measure these
properties are not readily available,

Because no transportation industry can afford to invest in all possible
characterization tools, panel members felt a need for more information on the
strengths and weaknesses of various characterization methods for different tasks.
Because tight control on process parameters is difficult and expensive, it is
necessary to know which parameters are most vital for growing reproducible
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films. The desire was also expressed for information concerning which kinds of
characterization techniques could be relied upon to maintain tight process
control.

Although there is much interest in diamond films for microelectronic
applications, good mechanical or tribological properties may not require high-
purity diamond. Indeed. DLC or hydrogenated DLC films can be grown which are
very smooth and hard, and which can exhibit low friction. DLC films can be
deposited at low temperatures. Thus, there is great need to find useful char-
acterization techniques for these amorphous materials, of which very little is
known at present of the structure. Progress is needed for defining nomenclature
for evaluating and describing amorphous carbonaceous phases, whether they be
DLC or hydrogenated DLC.

The Panel summarized and prioritized these concerns according to the following

criteria:

ot

N

3.

4.

Identify areas for characterization
Identify critical needs
Rank needs by priority

Recommendation

The following items are a prioritized summary listing of critical characterization needs:

1.

3.

»

N

Development of in-situ surtace/near-surface characterization (and quality control)
techniques.

Determine the relation of structure, impurities, etc. to performance, tribobehavior,
environmental, high-temperature, etc. properties.

Understanding of nucleation/adhesion mechanisms.

Establish criteria for evaluating amorphous carbonaceous phases.
- nomenclature for non-crystalline materials.

-  relationship between hydrogen content and sp2/sp3 bonding.

Determine the nature of diamond/DLC interaction with other surfaces
{(wear/polishing).

A working definition of "quality" for various uses.

A correlation of various characterization techniques.
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A final recommendation was given by members of the Panel:

"Diamond and diamond-like materials have been identified as enabling
tecanologies for increasing U.S. competitiveness in the transportation sector.
Critical issues in characterization must be addressed to enable the transfer of
these materials from research labs to end-users in manufacturing. The
successful use of diamond and diamond-like materials in the transportation
sector will require solutions of critical issues identified by this panel for
characterizing the production of these materials, the materials themselves, the
interactions of these materials with other materials and the development of
suitable standards."
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Table 1

a) What properties/regions can be characterized?

-structure
bonding surface
SRO, LRO, IRO
orientation/texture
defects film

-composition
hydrogen content interfaces
impurities
phase distribution

substrate

-morphology

b) Why is characterization needed?

- need to develop basic and applied understanding of chemistry and structure to
engineer specific properties

- need for specifications useful to manufacturers and users
¢) How can properties be characterized?

- stylus

- Interferometer

- STM
- SFM
- light scattering
- SEM
- TEM
- Raman
other existing techniques

- other future techniques
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Panel 4 - Applications to Transportation

Joseph Au

Rabi Bhattacharya
Bharat Bhushan
Dennis Blunier
Bruce Boardman
Larry Brombolich
Jim Davidson
Mike Graham
Nabil Hakim
Keith Harris

Rob Hay

Leonard Herk
Henry Hojnacki
Roy Kamo

Bill Nieman

Dave O'Neill
Marshall B. Peterson
Gene Pfaffenberger
Roger W. Pryor
Dave Rourk

Jim Russell
Walter Syniuta
Mike Tamor

Ted Vojnovich
Wally Yarbrough
Charles S. Yust

Chaimman: Fred Nichols, Argonne National Laboratory

Sundstrand Aerospace

Universal Energy Systems, Inc.
Ohio State University

Caterpillar, Inc.

Deere & Co.

Compu-Tec Engineering
Vanderbilt University
Northwestern University

Detroit Diesel Corporation
Dubbeldee Harris Diamond Corp.
Norton Diamond Film

Southwest Research Institute
Intelligent Structures Incorporated
Adiabatics, Inc.

Allied-Signal Inc., R&T

3M

Wear Sciences

Allison Gas Turbine

Wayne State University

Intelligent Structures Incorporated
Superconductivity Publications, Inc.
Advanced Mechanical Technology, Inc.
Ford Motor Co.

USDOE

Penn State University

Oak Ridge National Laboratory

After considerable discussion, it was decided that the most effective manner in which
this working group could serve the aims of the workshop was to compile a listing of current
and anticipated future problem areas in the transportation industry where the properties of
diamond and DLC films make them especially attractive and where the group as a whole
could strongly endorse the establishment of DOE/Transportation Industry cooperative
research efforts. It was further decided that it would not be fruitful at this time to attempt
to create a prioritized ranking.

The problem areas identified for possible applications of diamond/DLC technology are
compiled in the following pages, together with indications of current approaches. Also we
have given brief indications of specific needs and the type of research program envisioned.
We have attempted to give some idea of time scale required for the various efforts. Finally,
we have Indicated foreseeable payoffs if the technologies are successfully implemented.

They should demonstrate cost-effectiveness and transferability to production. Finally,
successful processes should be sufficiently robust for day-to-day production-line variations.
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Area #1

1. Problem

Valve guide/stem wear at high temperatures in advanced diesel and developmental low-
heat-rejection engine.

2. Current Approach
4140 Steel valves/cast iron guides at 300-350°C

3. Needed

Diamond or DLC coating on either or both surfaces to extend operating temperature to
300-500°C and to reduce liquid lubricant requirement.

4. R&D Program Envisioned

Investigation of coating/material combinations with high-temperature, 20,000-hour
capabillity; should provide lubricious interface.

5. Time - Scale

5-7 years.

6. Payoffl

Maintain international competitive advantage, betier fuel efficiency, reduced emissions.
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Area #2

1. Problem

Piston ring/bore tribosystem needs improvement to decrease wear, oil consumption and
emissions for gasoline, diesel and alternative fuels.

2. Current Approach

Coated piston skirts and rings/cast-iron or Al bores at =150°C for 500,000 miles (diesel),
100.000 miles (automobile).

3. Needed

Heavy-Duty Diesel: Serviceable ring/bore combination at =300°C for approximately
1,000,000 miles, 20% increase in cylinder pressure, reduced friction.

Automotive: Friction reduction at current temperatures for 200,000 miles.

4. R&D Program Envisioned

Identify/develop diamond/DLC materials (coatings)/processes for high-temperature
(~300°C) tribological interfaces, e.g., plasma deposition, cvd/pvd. Develop improved piston
ring/cylinder wall tribological computer models to guide research.

5. Time - Scale

5-7 years.

6. Payoff

Maintain international competitive advantage, better fuel efficiency, reduced emissions.
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Area #3

1. Problem

Need increased load-carrying capacity for gears, power train and bearings in spark-
ignited/diesel engines and vehicular drive trains, as well as in manufacturing.

2. Current Approach

Gears: Steel {various) with some type of wear-life-.enhancement process.

Bearings: Typically lead-tin bronze bushings cast or sintered onto steel backs, with Pb-Sn
overlay. Oil-lubricated.

3. Needed

Improvements in power-throughput capability to allow components with lower cost or
smaller size to be used. Increase oil temperatures from ~120°C to ~150°C.

4. R&D Program Envisioned

Investigate diamond/DLC coatings or new surface treatments that offer reduced
pitting/contact fatigue/abrasion, scoring or galling in comparison with conventional
materials. Improved computer modeling of gears and bearings.

5. Time - Scale
8-10 years.

6. Payofl

Enhanced international competitiveness, improved reliability and design flexibility.
Improved fuel economy/emissions due to higher cylinder pressure, injection pressure.
Reduced friction from (possibly) higher sump temperatures. Decrease Pb in environment.
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Area #4

1. Problem

Electric fuel pumps and fuel pump gears operate immersed in fuel. Potential wear areas
include the commutator/brush interface. Concerns include potential abrasion and arcing.
The effect of methanol fuel on these phenomena has not been established. Other rubbing
contacts are potential concerns because of the poor lubricating ability of these (low-
viscosity) fuels.

2. Current Approach

Issues are in the early stages of investigation.

3. Needed

Identification of materials/coatings (diamond/DLC) appropriate for commutator, brush and
other applications with gasoline, methanol and admixtures.

4. Payoff
Improved reliability and design flexibility.
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Area #3

1. Problem

Accelerated or bench tests used for selection of tribological materials do not always
accurately model the effects of actual service. This deficiency may lead to unrealistic failure
modes during testing, or conversely to unexpected failures during service. No widely
accepted, quantitative adhesjon evaluation method is presently available for bond strengths
in excess of 69 MPa (10 ksi).

2. Current Approach

Test simulation: varies widely from case to case, ranging from well-defined and verified
accelerated wear tests to arbitrary screening tests for wear and/or adhesion.

Modeling: Empirical experimental methods are used, unreliable for predicting wear under
typical operating conditions.

3. Needed

Systernatic procedures for defining appropriate tests, especially for adhesion. Accurate
modeling methods and properties of coatings, especially adhesion.

4. Payoff

Rapid material screening and validation, reduced costs and improved performance, shorter
cycle time. Ability to predict component life and forestall premature failures.



Area #6

1. Problem

Injector plunger-barrel scuffing (adhesive wear) with diesel fuel, but especially with
alternative (low-lubricity) fuels. Potentially also a problem with spark-ignition engines
utilizing alternative fuels.

2. Current Approach

Typically, electroplated hard-chromium plunger with hardened steel bore, or nitrided
plunger and bore. Very tight clearances required, e.g., 2.5 um (100 pin) diametral. Fuel-
lubricated, approximately 93°C (200°F). Axial load to 12 kN (2600 1bf), injection pressure
=172 MPa (25 ksi). Required life >500,000 miles. Typically, tool-steel plunger, carburized
steel injector cup with multiple holes formed by electro-discharge machining (EDM). Hole
diameter approximately 200 um (0.008 in). Diesel fuel contaminated with sulfuric
acid/organic acids/combustion products, 150-315°C (300-600°F). Required life >10,000
hrs or 700,000,000 cycles.

3. Needed

Injection pressure =207 MPa (30 ksi), up to 1,000,000 miles for heavy-duty engines.
Greater tolerance to low-lubricity fuels (e.g., low-S, low-aromatics fuel, arctic fuel,
methanol, etc.). Reduce corrosion/erosion rates of spray holes by factor of 5.

4. Payofl

a) Develop scuffing- and wear-resistant coatings, as well as those for corrosion/erosion
resistance.

b) Develop solid lubricating coatings.
c) Evaluate diamond-iike-carbon coatings — need improved adhesion to steel.

d) Develop coating process for long, narrow bores (1/d >3), e.g., conformal-plasma ion
implantation.

e) Bench/screening tests and engine tests required.

5. Time - Scale

3-5 year R&D program to develop and evaluate processes.

6. Payoff

a) Improved emissions/fuel economy (higher injection pressure).
b) Improved durability & reliability with low-lubricity fuels.

c¢) Improved international competitiveness.



Area #7

1. Problem

Improved rolling-contact-fatigue (RCF) life of valve and injector cams and cam-roller
followers is needed, for gasoline, diesel and gas-turbine engines.

2. Current Approach

Induction-hardened steel, powder-metallurgy and cast-iron cams, steel or ceramic rollers.
Required life >500,000 miles (heavy duty) and 100,000 miles (automotive); oil-lubricated.
Hertz stress approximately 1.4-2 GPa (200-300 ksi).

3. Needed

Increase injection pressure 20% without reducing RCF life. Improve lifetime for ceramic
rollers.

4. R&D Program Envisioned

a) Evaluate thin-film ceramic PVD coatings on cam lobes.

b) Evaluate thin-film solid lubricating coatings on roller pin to reduce roller-pin friction,
hence cam-roller traction.

5. Time - Scale

3 yr. R&D program.

6. Payoff

Increased fuel-injection pressure capability (improved emissions/fuel economy). Improved
international competitiveness.



Area #8

1. Problem

Surfacing of light-weight materials for self-lubrication and resistance to scuffing.

Examples: Aluminum-block engine ~ cylinder-bore surface
Valvetrain components {valves, tappets, etc.)
Transmission case “hot spots”

Light-weight brake rotors
Air conditioning (A/C) compressor hardware

2. Current Approach

Use of inserts - e.g., bore liners (cast iron), valve seats, etc.
Use of heavier, wear-resistant (usually ferrous) alloys

3. Needed

Understanding of adhesion of surfacing layers, e.g., dlamond/DLC to metals such as
aluminum; modeling for mechanical surface behavior of bi-material couples; understanding
of methodologies for selecting composite surfaces.

4. Time - Scale

3-5 years

5. Payoff

Reduced friction and energy consumption; manufacturing simplification (in some cases).
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Area #9

1. Problem

The wear life of non-ferrous die materials is insufficient for medium-volume applications.

2. Current Approach

Hard-chromium plating is being evaluated for non-ferrous dies; for ferrous dies ion
(plasma) nitriding mid-chrome coating and flame-hardening are used.

3. Needed

A wear-life-enhancement process that can be easily applied, give increased tool life, be
repaired, stripped and retreated if needed.

4. R&D Program Envisioned

Hard-chromium plating and plasma-source ion implantation appear to be potential
solutions. Could also employ diamond/DLC films.

5. Time - Scale

Process could be used immediately. R&D program could require 2--3 years.

6. Payoff

Benefits to U.S. auto-makers and other U.S. manufacturers.
Would obtain:
* cheaper tooling

¢ faster time to market; reduced lead time
e enhanced competition with foreign companies
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Area #10

1. Problem

Develop diamond and/or DLC sensors and associated packaging systems, for harsh,
transportation-related environments, for sensing temperature, force and various chemical
conditions.

2. Current Approach

Usual approach has been simply to push silicon devices harder and harder; at present, we
are up against the limits for Si sensors and further progress to more severe conditions
requires a new material.

& Needed

Operation at 500 to 800°C in exhaust environments. Many barriers to progress exist at
=300°C, e.g., coolant, lubricant, air, fuel inlet.

4. R&ID Program Envisioned

Integration of fragmented R&D in diamond electronics and sensors, as active and passive
devices for on-board diagnostics.

5. Time - Scale

4-5 years

6. Payoff

Essential for selling automobiles in California with new emission/environmental
requirements; enhance U.S. competitiveness in international markets.



Area #11

1. Problem

Abrasion/erosion of compressor blades, stator vanes in gas turbines, turbochargers, etc.,
where small amounts of wear can have drastic, deleterious effects. (Trouble in Saudi Arabia)

2. Current Approach

Replacement of components. This results in very costly loss in effective utilization.

3. Needed

Increase in abrasion resistance. Elimination of heavier materials which are now required
for adequate abrasion resistance.

4. R&D Program Envisioned

Identify/develop diamond/DLC technology/processes for surfaces subject to highly abrasive
conditions.

5. Time - Scale

4-5 years

6. Payoff

Reduced maintenance costs. Reduced down-time. Increased efficiency.
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Area #12

1. Problem

Abrasion of windows on aircraft and automobiles.

2. Current Approach

Mostly uncoated windows are used.

3. Needed

Enhanced abrasion resistance, possibly combined with optical improvements, e.g., low heat
transmission.

4. R&D Program Envisioned

Should include investigation of feasibility of float-line or post-line processes. Should also
include possibility of non-glass windows.

5. Time - Scale
2-3 years

6. Payoff

Improvements in product, durability and safety.
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Area #13

1. Problem

Efficient utilization of electrical power/power transmission (power management) for
electric vehicles and communications equipment.

2. Current Approach
Si is used, with its low power capability.

3. Needed

Higher-power switching and management.

4. R&D Program Envisioned

Develop mosaic diamond, diamond-base sample and switch devices.

5. Time - Scale

6-7 years

6. Payoff
Extended vehicular range; improved safety, reliability and performance.
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Area #14

1. Problem

Thermal fatigue from hot spots in combustion chamber, especially cylinder head.

2. Current Approach

Increase back-side (coolant side) flow rates and heat transfer. Increase material strength
and thermal-fatigue resistance. Limit specific power.

3. Needed

Thin layer on top of firedeck surface to serve as heat distributor/spreader.

4. R&D Program Envisioned

Develop methodologies for practical applicatinns of durable diamond coatings with very high
thermal conductivity to eliminate “hot spots” within the combustion chamber. Validate
same.

5. Time - Scale

2-4 years

6. Payofl

Enabling technology for increased specific power output for current and future-generation
products. Improved emissions through elimination of radical sites.
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Area #15

1. Problem

Machine/cutting tools for advanced materials, e.g., composites, ceramics.

2. Current Approach

Current programs on diamond-coated tools exist but are imited to non-ferrous substrates.

3. Needed

Diamond-coated tools for various substrates.

4. R&D Program Envisioned

Fill in gaps of current programs to cover all needs. Coordinate with National Center for
Machining Sciences (NCMS).

5. Time - Scale

4-5 years

6. Payoff

Instantaneous productivily increase. Enabling technology for ceramics industry.
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Area #16

1. Problem

Brake heating is critical problem for heavy-duty trucks and aircraft.

2. Current Approach

Fins, radiators, water cooling, etc.

3. Needed

More efficient thermal management to eliminate overheating/failures.

4. R&D Program Envisioned

Diamond heat pipes and/or spreaders would be developed.

5. Time - Scale

4-5 years

6. Payofl

Improvement in safety and durability; weight reduction.
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Area #17

1. Problem

Surfaces coated with diamond or DLC in the engine may not be compatible with the
(conventionally) formulated engine oils. Also true for transmissions, gears, etc.

2. Current Approach

Diamond and DLC coatings are avoided in these systems.

3. Needed

Lubricants compatible with diamond and DLC that will not drastically alter other systems,
materials, functions, etc.

4. R&D Program Envisioned

Develop practical lubricant (base-stock and additives) in the context of diamond/DLC
coatings, applicable for tribological interfaces of real-life, near-term and advanced systems.
Coordinate with current work on lubricants for ceramics.

5. Time - Scale

3-7 years

6. Payoff

Enabling technology lor the utilization of dlamond/DLC coatings in engine and power-
transmission systems.
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Area #18

1. Problem

Seals in many areas.

Note: Time did not permit elaboration on this area.
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