
SAND--91-0758

DE93 004386

SAND 91-0758

. The Use of Sequential Indicator Simulation

to Characterize Geostatistical Uncertainty

Katherine M. Hansen

Department 323

Statistics and Human Factors

Sandia National Laboratories

Albuquerque, NM 87185

Abstract

Sequential indicator simulation (SLS) is a geostatistical technique designed to aid in the

characterization of uncertainty about the structure or behavior of natural systems. This

report discusses a simulation experiment designed to study the quality of uncertainty

bounds generated using SIS. The results indicate that, while SIS may produce reason-

able uncertainty bounds in many situations, factors like the number and location of

available sample data, the quality of variogram models produced by the user, and the
O

characteristics of the geologic region to be modeled, can "ali have substantial effects on

., the accuracy and precision of estimated confidence limits, lt is recommended that

users of SIS conduct validation studies for the technique on their particular regions of

interest before accepting the output uncertainty bounds. MA_TE_ _"
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1.0 INTRODUCTION

Many studies in hydrology, petroleum geology, and the environmental sciences

involve modeling the behavior ,.,i complex, three-dimensional systems. The hydrologic

. characterization of Yucca Mountain, a potential site for a nuclear waste repository, is

such a project. Often the goal is the evaluation of a particular transfer function (such

as a volume of recoverable oil or, in the case of Yucca Mountain, minimum ground

water travel-time) over a region of interest. The availability of adequate data is usu-

ally a problem: most transfer functions require complete information on a number of

variables (or attributes) over an entire region. In practice, such exhaustive data are

rarely available, and the investigator must use limited data from a few sampled loca-

tions to infer reasonable attribute values over the entire region. The data and inferred

values are then input to a transfer code, and the output is an approximation to the true

value of the transfer function (the v',due obtained with perfect data over the entire

region.)

Attribute values at unsampled locations may be assigned by estimation or by

simulation. Estimation involves using the available data to identify a single value (for

each attribute and each unsampled location) that is thought to lie close to the true but

unknown value at that location. Simulation u_,_ the available data to construct a pro-

bability distribution for each attribute at each location. A full realization of ali attri-

butes over the region of interest is then created by sampling from the constructed dis-

taibutions. In both estimation and simulation, it is important to characterize the uncer-

tainty associated with the use of less-than-perfect data to evaluate the transfer function.

Estimation techniques, like !_','iging(Oleo. 1974; Journel and Huijbregts, I978;

Cressie, 1989), often come with built-in error estimates that are simple to compute but

depend heavily on the validity of a number of parametric assumptions that can be quite

difficult to verify in practice. In addition, it is often unclear how errors in the estima-

tion of attribute values are propagated through different transfer functions.

When simulation is used, the variability associated with the output of transfer

., codes is characterized in a Monte Carlo fashion by repeatedly simulating new attribute

values at the unsampled locations, and evaluating the transfer function over many such

realizations. Simulation can be quite computer-intensive, and may require different
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types of parametric assumptions than are required for estimation. In addition, it is not

clear that the variance of the set of functional evaluations (over many simulations) will

necessarily be a good approximation of the uncertainty associated with the use of

simulated (rather than exact) data; or that a response distribution based on multiple

simulations will be unbiased. These issues are taken up, for one simulation technique,

in this report.

This work was completed under WBS number 1.2.3.2.2.2.2.

1.1 Purpose

The unsaturated tufts at Yucca Mountain in southern Nevada are being investi-

gated as a host for a potential radioactive waste repository. Licensing the repository

will require that performance-assessment calculations show that a repository at Yucca

Mountain will meet or exceed a series of federal requirements set forth in 40 CFR 191

(EPA, 1986) and 10 CFR 60 (NRC, 1986). These requirements include a probabilistic

assessment of the movement of radionuclides from the repository to the accessible

environment; as well as restrictions on the transport rate of radionuclides into rock sur-

rounding the repository, and the preemplacement ground water travel time. In order to

address these requirements, analysts must be able to model the hydrologic system at

Yucca Mountain, and to quantify the uncertainty associated with the chosen models.

Over the last few years, geostatisticians at the Stanford Center for Reservoir Fore-

casting (SCRF) have developed a flexible simulation technique, known as sequential

indicator simulation (SLS), that may be used for characterizing the uncertainty associ-

ated with the pIediction of the performance of three-dimensional systems from limited,

spatially-correlated data (Journel, 1986 and 1988; Journel and Alabert, 1989). This

technique may provide a reasonable approach for the analysis of the data available for

characterization of the Yucca Mountain site.

While SIS appears promising, a number of statistical properties of the method

remain unstudied. For example, the effects of sample size and location, imperfectly

known spatial correlation structure, and modeling errors are unknown. The reliability

of performance models will depend on the influence that each of these factors has on

simulations, and on the output of transfer functions. In order to make sense of sequen-

tial indicator simulations of actual field data from Yucca Mountain and other relevant
-
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sites, it is important to characterize these influences.

Through the use of synthetic data in a controlled, statistical investigation, it is

possible to isolate the effect of each relevant factor on sequential indicator simulations

of models that are completely known to the investigator (but not to the simulation pro-

gram.) For example, when the true value of a transfer function over a particular data

set is known, it is possible to determine whether confidence intervals estimated by SIS

accurately reflect the uncertainty associated with output values.

This report describes an extensive simulation study designed to address some of

the statistical issues related to the SIS technique. A large number of simulations were

carried out on a variety of synthetic data sets, and the performance of the SIS tech-

nique in different experimental situations was characterized both qualitatively and

quantitatively.

This type of methodological study can be quite valuable in the regulatory

environment within which the Yucca Mountain Site Characterization Project exists.

SIS is a new technique, not yet well established in the literature or practice of geos-

tatistics or risk assessment. Without knowledge of the statistical properties of the tech-

nique, regulators should be skeptical of failure probability estimates based on multiple

sequential indicator simulations. (This is true of other untested simulation algorithms

as weil.) This study attempts to anticipate and respond to some of the concerns that

they may express. The study has identified a number of experimental situations that

can cause the SIS technique to produce inaccurate or imprecise results, and the report

discusses precautions that may help users to avoid (or at least to be aware of) such

situations in a practical study.
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2.0 SEQUENTIAL INDICATOR SIMULATION

• 2.1 Motivation; Outline of the Method

- Many of the classical geostatistical simulation techniques are based on an

assumption of multivariate Gaussianity (or normality), which can be exceedingly

difficult to verify in practice. By contrast, the SIS technique is designed to provide a

nonparametric statistical framework for studying geological systems. The approach

may be more flexible than the classical techniques, in that an assumption of multi-

Gaussianity, with the resulting tendency towards maximum-entropy solutions, is not

implicit in the SIS model. (For a discussion of the nonconservative implications of

maximum-entropy solutions for performan,:e assessment calculations, see Journel and

Alabert, 1989.) Nonparametric variance and confidence interval estimates are found by

repeated SIS sampling from a distribution oi realizations that are equiprobable with

respect to the available data and the specified covariance models. In addition, the SIS

framework allows for the inclusion of inequality-t,'pe soft data (Joumel, 1986) in the

analysis, a feature not present in most other geostatistical techniques, lt should be

noted that strict stationarity, which is not assumed for parametric methods, is required

for SlS.

The principle underlying SIS is that it is possible to completely specify the joint

probability of a collection of N dependent events, {A j, j = 1, .... N } as the product

of N conditional probabilities:

P(A i, j = 1.... , N ) = P(AN IAj, j =1,... ,N-I) x (1)

xP(AN_ l lAj, j = l, . . . , N-2) x ...

"'" ×P(AzlAI) ×P(AI).

In order to demonstrate how this principle is applied to the simulation problem, we

introduce the following notation:
,d
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S space of interest (/R 2, the space of two-dimensional real numbers, in this report)

u point in S

Z (u) attribute measured at u (for convenience, Z is one-dimensional)

(n) { Z (u a), or- 1..... n }; the available data, at n locations u s _ S

¥ transfer function (or "response function"); defined on Z (S)

For example, a simplified model might have S representing a vertical cross-

section of rock, Z representing porosity, (n) representing available porosity data at n

locations in S, and _(L (S)) representing a minimum water travel-time through the

slice S, as a function of porosity only.

Suppose that we wish to characterize the behavior of q,, over S. The space S is

divided up into N nodes. Data (the value of the attribute Z) are available at n of

these nodes. SIS is used to simulate values for the remaining N - n nodes, ant_ _:,_

result is referred to as a realization. The transfer function _ is evaluated over the real-

ization_ and the outcome is recorded. The process is repeated many times, yielding a

suite of measurements of _F, which can be used to estimate the value of the transfer

function over the field S, and to assess the uncertainty associated with this estimate.

A single realization is carried out as follows:

1. Start at a randomly-selected node, u I. Derive the conditional distribution of

Z(u 1), given (n):

P[Z(Ul)<<.z I(n)l=P[Z(ul)<z IZ(ua)=zot, ot_ (n)].

2. Draw a realization of Z(ul). Add this to the data set, which is now denoted

(n+I).

3. Move to a second randomly-selected node, u 2. Derive the distribution of

[Z(u2)l(n+l)],

4. Draw a realizatio_'_f/om this distribution, and add it to the data set.
b

tw.

Repeat steps 3 and 4 for ali N - n nodes to be simulated.
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2.2 Deriving Conditional Distributions

Of course, the difficult part of the SIS procedure involves the derivation of the
I,

conditional distribation of Z at one node, given the available data at other nodes.

. Joumel and Alabert (1989) discuss how this can be done using binary indicator ran-

dom variables:

The eve,at {Z (u) < z } can be characterized by an indicator variable:

I, ifZ(u) < z,I (u ; z) = O, otherwise. (2)

Then any conditional probability for Z (u) can be written as a conditional expectation:

e[z(u ) _<z I (n)] = E[l(u;z ) I (n)]. (3)

Now consider K threshold values, { zk, k = 1, ..., K }, over the range of the attribute

Z. Each conditioning data point Z (u a) = z cxis coded into an indicator column with

K members, each zero or one:

{Z(uot) =za} ---> {i(uo_;z k),k=l,...,K }

Next, the conditional probability distribution for Z (u) is expressed as conditional to

the n indicator columns:

P[Z(u ) < ZkoI Z(ua) = zot, ot _ (n)] (4)

= E[l(u;zk o) I I(uot;zk)=i(uo6zl,),k=l,...,K; tx¢ (n)],

with Zkobeing one of the K threshold values, {zk }. Note that there is a loss of infor-

mation involved with discretizing the conditioning data, so that Equation (4) is only an

approximation to the distribution in Equation (3). Journel and Alabert (1989) argue

that it is reasonable to assume that 1 (u;Zko) is more correlated with I (ua; Zko) than

with any of the other indicator data I (ua; zk ) with zk , zko, and simplify Equation (4)

to:

e[Z(u)<z/c olZ(ua) =zcx,ot_ (n)] (5)
,,

v

= E[l(u;zk o) I I(ua;Zko) = i(utx;Zko), Ot_ (n)].

This approximation ignores cross-correlations between indicators at different

..
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thresholds.

In order to compute the conditional expectation in Equation (5), Journel and Ala-

bert (1989) propose the first-order approximation:

e [Z ( u ) _ ZkoI (n) 1= a o + ]_ a l(ot) × i ( u a, Zko). (6)

The weights a o and a _(a) are found using simple or ordinary kriging, versions of

weighted least squares regression where the weights are determined by the covariance

structure of the data. (For details, see Journel and Huijbregts, 1978.) The covariance

slructure is specified in terms of the indicator covariance j'anction, Ct ( h ; z ):

Cl(h;z)=F(h;z)-F2(z ), (7)

w?:,ere:

F(h;z)=e[Z(u ) < z,Z(u+h ) < z ],

and:

F(z ) = F(0;z) = e[z(u ) < z l; (8)

or the indicator variogram, 2_/( h ;z ):

2qt(h; z)= 2×[Ct(O;z) --Cl(h;z)]. (9)

Note that the indicator covariance and variegram functions may vary as a function of

z. Thus it is possible to model different degrees of spatial correlation at different lev-

els of the attribute Z; this is one of the features that makes SIS a very flexible tech-

nique. Journel (1988) discusses the importance of this feature for flow modeling.

Once the K indicator covariance functions (one for each threshold value zk) have

been specified, kriging (simple or ordinary) is used to estimate the conditional proba-

bility that the value at a specific node will exceed each threshold, given the observed

indicator columns. This is done using Equation (6), and provides the user with an

approximate conditional distribution for the node. A single sample is taken from this

distribution, and, as outlined earlier, this simulated value is added to the data set and

attention shifts to the next randomly-chosen node.
,le

Joumel and Alabert (1989) state that realizations constructed in this manner honor

the observed data and the specified covariance structures; we have checked this
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assertion and our findings are discussed in section 4.5.

2.3 Application

. As discussed earlier in this section, the SlS technique can be used to simulate a

large number of equiprobable realizations of' Z(S ). Journel (1988) states that the

differences between the realizations themselves "should provide a measure of spatial

uncertainty about the input" [to a transfer function, response function or flow simulator

(used synonymously)]. Journel (1988) continues: "That input uncertainty cml then be

processed through the flow sinmlator to yield the corresponding measure of uncertainty

on the response function..." The procedure is illustrated in Figure 2-1. Although SIS

has other applications, the ability to gauge the uncertainty associated with estimates of

the response function _g(Z (S)) is the focus of this report.

2.4 Mechanical Issues

A number of mechanical problems exist related to the coding of the SIS algo-

rithm. Some of these, related to the use of kriging to estimate probabilities, may be

corrected in a straightforward, if not theoretically-pleasing, fashion. In other situations,

the SIS literature gives the user very little guidance in making decisions that may have

a large influence on the resulting simulations.

The order-relations problem is the first of two correctable situations. For two

threshold values, zk, and zk,, with z_, < zk2, the estimated conditional probability of a

node exceeding zk_ may be greater than the estimated conditional probability of that

same node exceeding zk,, when the actual probabilities must be in the opposite order.

This problem can occur when the indicator variograms for the two thresholds differ. A

simple correction, discussed in Hohn (1988), involves reducing the probability of

exceeding the higher threshold to the probability of exceeding the lower threshold.

•, This correction assigns zero probability to the interval between the two thresholds.

Other techniques may also be used. Appendix A describes the correction applied in

" the software issued by SCRF.

The second problem associated with kriging for probabilities is that it is not

uncommon for kriged estimates to lie outside of the range [ 0, 1 ]. This situation, which



MultipleRealizations TransferFunction ResponseDistribution

ConfidenceInterval

Figure 2-1 (After Journcl, 1988.) Schematic diagram of the use of sequential indicator simulation to

generate a response distribution for the transfer function _.
,wr
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results from negative kriging weights, is easily corrected by setting negative probabili-

ties equal to zero and probabilities exceeding one equal to one. However, the need for

such adjustment calls into question the meaning of kriged probabilities.
Ii,

The other issues involve the simulatioo ,_f an attribute value Z (u), once the indi-

cator distribution for the node u has been constructed. Figure 2-2 shows how a bin4

(the region between two threshold values) is chosen. Once the bin is selected, how-

ever, it is unclear how to best simulate a value within that bin. The user can generate

a value from a uniform (or any other) distribution across the bin. Unfortunately, any

such decision involves completely specifying a within-bin distribution, which runs

somewhat counter to the nonparametric philosophy of SIS. Further, the simulation of

values in the outer two bins can be problematic. Suppose that uniform within-bin dis-

tributions are called for. The user needs to specify minimum and maximum allowable

values, which serve as the end limits of the lower and upper bins, respectively. The

choice of these values will have a large and direct influence on the tails of the simu-

lated distribution, and yet the user may have little prior knowledge or sample data to

act as a guide in selecting appropriate extreme values. Because many relevant transfer

functions (e.g., groundwater travel-times) are sensitive to the behavior of extreme

values, this situation can become particularly troublesome.

2.5 Modeling Indicator Variograms

Because SIS uses either simple or ordinary kriging in the construction of condi-

tional distributions, it is necessary for the user to specify a covariance model at each

indicator threshold used in the kriging. The use of different indicator variograms at

different levels of the variable of interest provide the user with a great deal of flexibil-

ity in modeling spatial dependency; however, the user may be forced to estimate a

large number of indicator variograms from a relatively small data set. As Figure 2-3

shows, fitting reasonable variograms, given only a sparse sample, is often extremely

difficult. This problem is by no means unique to SIS, though; it applies to virtually ali

kriging-related geostatistical simulation and estimation procedures. In some cases, the

- lack of sample information may be overcome if a geologic aimlog of the area to be

simulated exists, and can be sampled extensively. This borrowing of information from

related regions is recommended by the SCRF group. Of course, this method is only
..
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Threshold Exceedence

Probability

rain 1.00
4

z I .93

z 2 .84

z 3 .61

r =.57

z 4 .40

z 5 .13

max 0.00

Figure 2-2 Illustration of how a bin is selected for an unsampled node. In this example, there are

K=5 indicator thresholds, in addition to the minimum and maximum values set by the

user. The probability of exceeding the minimum is set equal to unity, and the probability

of exceeding the maximum is set equal to zero. The probabilities of exceeding the indica-

tor thresholds at the node are estimated by kriging. Next, a random number, r, between

zero and one is generated. The selected bin is determined by comparing the generated
V

value with the kriged exceedence probabilities. In the example above, the generated

value, r=0.57, lies between the exceedence probabilities of the third and fourth thresholds.

The simulated value at this node will thus be between z3 and z4.

o.
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Figure 2-3 Graphical illustration of the difficulty encountered in attempting
O<z<.l

to model a variogram using sampled data. The left-hand panel

.1,,<.0 shows an exhaustive 30 x 30 data set, and the vadogram of

- -_<,<..1 these data. The right-hand panel shows a randomly-selected

ii!iiii!iiiiii z<.._ sample of 45 values from the exhaustive data _t, and the sam-

pie variogram computed from these 45 points. Even with a re-

latively high sampling rate of 5%, it would be difficult to

correctly model the exhaustive variogram from the sample data.

.,
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appropriate when the spatial relationships among locations in the related region are

similar to those found in the actual region to be modeled. In cases where a geologic

analog site is not available, a combination of sample data, geologic intuition, and other

available information, must be used to develop plausible variogram models. The

influence of the chosen indicator variogram models on the results of SIS is examined

in the simulation study.
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3.0 DESIGN OF THE SIMULATION EXPERIMENT

A two-part simulation experiment was carried out to examine the effects of the

various factors discussed above on the results of SIS. Interest was focused on the dual

• issues of the accuracy and precision of transfer function predictions based on multiple

simulations. To illustrate the concepts of accuracy and precision, suppose that we

have used SIS to construct a 95% confidence interval for the minimum groundwater

travel time through a region. (The construction of confidence intervals will be dis-

cussed shortly.) A confidence interval is accurate if it does contain the true value, and

it is precise if it is provides enough information to constrain the true value. The preci-

sion of a confidence interval is directly related to its width: a confidence interval for

minimum water travel-time that runs from 3000 to 3050 years is precise, while one

that runs from 1 to 10,000 years may not be. The concepts of accuracy and precision

are illustrated in Figure 3-1.

The first phase of the experiment was designed to study the effect of a large

number of combinations of the chosen experimental factors over multiple simulations.

Data obtained from this phase were useful primarily in quantifying the precision of SIS

realizations. The second phase of the experiment was a more in-depth examination of

a subset of the factor combinations used in the first phase. These latter experiments

involved a larger number of simulations, and provided us with information about both

accuracy and precision.

3.1 Experimental Factors

The two phases of the experiment were designed to study the effect of changes in

•a number of factors that may influence the accuracy and precision of SIS simulations.

The factors considered were the number and location of the available samples, the

variogram information input to the SIS code, and the statistical properties of the

exhaustive data sets themselves. The levels at which these factors were set are listed in

Table 3-1. Table 3-2 is a design matrix for the two phases of the experiment, showing
t,

the factor combinations used in each run. A brief discussion of the factors follows.
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Figure 3-1 Illustration of the concepts of accuracy and precision, as applied to confidence intervals.

In this example, suppose that the transfer function may only take on values within the
,,m

range from 0 to 100, and let Y0 represent its true value. The information gained from the

imprecise simulation distributions, (b) and (d), is minimal. Ideally, we would like to be

in situation (a).
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TABLE 3-1

+ FACTORS USED IN THE SYNTHETIC STUDY OF SEQUENTIAL INDICATOR SIMULATION

Factor Name Abbreviation Levels

sample size n 5, 15, 30, 45

sample location sl (1) random uniform

(2) random clustered
,,

SIS input variogram iv (1) correct theoretical

information source (2) incorrect theoretical**

(3) correct exhaustive

(4) rented exhaustive

method of generating gm (1) SIS

exhaustive data sets (2) Choleski

(2a) 2:1 preferential sampling in the first and third quadrants, (2b) 1.33:1 preferential

sampling in first quadrant, (2c) 2.67:1 preferential sampling in the first quadrant.

(2a) SIS input variogram information and correct theoretical differs in only in terms

of the marginal cumulative distribution function (cdf) specified, (2b) SIS and correct

theoretical variogram information differs in min/max thresholds only, (2c) SIS and

correct theoretical variogram information differs both in marginal cdf and in max/rain
thresholds.
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TABLE 3-2

DESIGN MATIRX FOR THE SYNTI_TIC EXPERIMENT
"4

Run Phase Phase n sl iv gm

I II

A y y 5 1 1 1

B y y 15 1 1 1

C y y 30 1 1 1

D y y 45 1 1 1

E y 30 2a 1 1

F y 45 2a 1 1

G y 45 2b 1 1

H y y 45 2c 1 1

I y 15 1 2a 1

J y y 30 1 2a 1

K y 30 1 2b 1

L y 30 1 2c 1

M y y 30 1 3 1

N y y 30 1 4 1

P y y 45 1 4 1

Q y y 30 1 3 2

R y 45 1 3 2

S y 15 1 4 2

T y 30 1 4 2

U y 45 1 4 2

ii,

A y in column 2 indicates thai the variable combination was run in the first phase, and

a y in column 3 indicates that the combination was run in the second phase.
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3.1.1 Sample Size: n

The first factor, n, is the number of sample data points (out of 30 x 30 = 900 in

an exhaustive data set) that were included as input to the simulation program. Simula-

• tions were run with n set at 5, 15, 30, and 45 points. By including this factor, we

hope to be able to determine whether (and the extent to which) changing the sample

size affects accuracy and precision.

3.1.2 _le Location: sl

The factor sl, for sample location, specifies the way in which the n sample points

were chosen. This factor is included to provide a comparison between the statistical

properties of simulations conditioned on clustered data, and simulations conditioned on

unclustered data.

For sl=l, the sample points were randomly selected from the 30 x 30 grid, with

each point having an equal probability of selection. For sl = 2a, 2b, and 2c, sampling

was done preferentially in certain quadrants of the grid, to examine the effect of

clustered data. When sl = 2a, points in the first and third quadrants were twice as

likely to be chosen as points in the second and fourth quadrants. When sl = 2b, the

points in the first quadrant were 1.33 times as likely to be chosen as points in the other

three quadrants, and when sl = 2c points in the first quadrant were 2.67 times as

likely to be chosen as points in the other quadrants. Thus, for sl = 2a, we expect

about 67% of the samples to lie in the first or third quadrants; for sl = 2b, we expect

about 57% of the samples to lie in the first quadrant; and for sl = 2c, we expect about

73% of the s._nples to lie in the first quadrant. Figure 3-2 shows typical samples

taken using each of the four clustering schemes.

3.1.3 Input Variogram Information: iv

a.

In an actual field study, an investigator will not have access to perfect variogram

• information about the region of interest. He or she must model indicator variograms

from geologic intuition, available samples, and data from nearby regions thought to

have similar properties. Will this affect the accuracy and precision of uncertainty
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Figure 3-2 Examplesof samplesdrawn usingeach of the,four clustering schemes. (a) sl= 1; random

samplingfrom a uniform distribution. (b) sl=2a; mildly clusteredrandomsamplingwith

a 2:1 ratio of points in the first and third quadrants (QI and Q3) to points in the second

and fourth quadrants. (c) sl=2b; clustered random sampling with a 1.33:1 ratio of points

in the first quadrant to points in the other three quadrants. (d) sl=2c; clustered random

sampling with a 1.67:1 ratio of points in the first quadrant to points in the other three qua-

drants. In ali of the clustered sampling schemes, the within-quadrant sampling distribu-

lions are uniform.
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estimates computed by sequential indicator simulations? In order to examine this

issue, we included runs of the simulation experiment that used variogram information

- from a variety of sources.

The first step in specifying an indicator variogram for a particular cutoff value,
t

zk, is providing F (z k ), the (unconditional) value of the cumulative distribution func-

tion of the variable Z (u) at cutoff value zk (See Equation 8). The next step is choos-

ing nugget and shape parameters for the indicator variogram. A set of indicator

variograms, at different levels of a variable of interest, will specify a marginal distribu-

tion for that variable, and will also dictate the extent of the correlation to be seen at

each level of the variable. Thus, in order to test the influence of input indicator

variogram information on simulated results, we study the effects of both the marginal

distributions (also referred to as proportions), and the correlation structures specified.

These factors are referenced by iv and gm ; iv specifies the type and source of indica-

tor variogram information input to the SIS program, and gm specifies the simulation

method used to generate the exhaustive data sets, and thus whether the different

degrees of correlation are present at different indicator levels in the exhaustive data

sets. The exact variogram parameters used in each run are discussed in detail in

Appendix B; the input given to computer codes is specified in Appendix C.

For runs with iv = 1, the exhaustive data sets were generated using SIS itself, and

the same theoretical indicator variograms used to generate the exhaustive data set were

also used to generate the multiple realizations. These variograms were spherical in

shape, with ranges of 7, 5, 3, 2, and 2, at the 0.20, 0.35, 0.50, 0.65, and 0.80 quantiles,

respectively. (See Appendix B for details.)

When iv = 2a, 2b, or 2c, the exhaustive data sets were again generated using

SlS, but using input indicator variogram information that differed from the theoretical.

For iv = 2a, the variogram information used to generate the realizations differed in

proportions only from those used to generate the exhaustive data set: that is, the thres-

• hold -2 might be the 0.20 quantile of the theoretical distribution for the exhaustive data

set, and the 0.25 quantile of the theoretical distribution for the realizations. For

iv = 2b, the theoretical distributions differed only in the specified minimum and max-

imum values. For iv = 2c, the theoretical distributions of the exhaustive data sets and

the realizations differed in the specified minimum and maximum values, as well as in
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the proportions.

When iv = 3, the input variogram information was computed directly from the

exhaustive data set. No functional form was fit to the raw variograrn of the exhaustive "

data set, since evaluation was required only at the distances at which information was
D

available. When iv = 4, the input variograms were taken from a data set that is

related to the exhaustive data set, as discussed in the previous section. The related

data set used for variogram estimation was the same size as the exhaustive data set,

and had the same theoretical variograms. Due to the unreliability of variograms

modeled from a sparse sample, and the time involved in plotting and examining sam-

ple characteristics, no simulations were run using variograms extracted from sample

data.

3.1.4 Method of Generating Exhaustive Data Sets: gm

Of course, the properties of real geologic regions come about as a result of

natural processes, and are not created by sequential indicator simulation. Thus, it is

important that we study the behavior of SIS-based confidence intervals on data sets

that have not themselves been generated using SlS. The factor gm specifies whether or

not SIS itself was used to generate exhaustive data sets. When gm = 1, the exhaustive

data sets were generated using SlS, and were conditional on the same two fixed data

points (see Appendix C, Table C.2, for details). When gm = 2, the exhaustive data

sets were not generated using SlS. They were created by first generating a vector of

900 independent random numbers that are each uniformly distributed with a mean of

zero and unit variance. This vector is then multiplied by one-half of the Choleski

decomposition of a chosen theoretical covariance matrix (see Anderson, 1984), and the

elements of the resulting product are associated with locations on the 30 × 30 study

grid. (The theoretical covariance matrix chosen corresponds to a spherical variogram

with a range of ten and a sill of five.) Because they are weighted sums of independent

random variables, the transformed values have a univariate histogram that tends to

appear normal in shape. Note, however, that this is :'.ota directly Gaussian simulation a.

technique. As discussed in Appendix D, for this technique, with the indicator levels

used in this report (the 0.20, 0.35, 0.50, 0.65, and 0.80 quantiles), the same range of

correlation is observed at the different indicator levels.
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3.1.5 Soft Information

. The use of soft information to supplement the available hard data at sample loca-

tions was not considered in the simulation study, lt is reasonable to suppose that the

" use of such additional information could be quite valuable in actual field studies.

3.2TransferFunctions

Table 3-3 lists the seven transfer functions that were evaluated for each complete

realization.

3.2.1 Reproducing the Univariate Distribution: W1 - Us

The first five transfer functions represent the percent of the data that exceeds five

fixed thresholds, corresponding to the indicator thresholds used by SIS in the control

runs of the experiment. These functions were used simply to determine how well

simulated data sets reproduce the univariate distribution of an exhaustive data set.

While this is an important characteristic of the simulations, it is not a sufficient basis

on which to judge the simulation technique. The issue of the spatial relationships

among variables is extremely important in real-world hydrologic studies, and must be

incorporated into the simulation study. For this reason, the sixth and seventh transfer

functions were added. Both V6, a simplified rrfinimum path-finder, and V7, a relative

of the spatial covariance, are sensitive to extreme values, and depend on the spatial

structure of a realization, in addition to its univariate distribution.

3.2.2 A Simplified Minimum Path Finder: W_

The sixth transfer function, I]/6, represents a simplified minimum path finder

. through a two-dimensional grid. The original plan was to consider ali paths through

the simulated region that start in any grid point on the left-hand side of the simulated

" area, and at each step move one node to the right and either one node upwards, one

node downwards, or horizontally. The path that has the minimum summed node values

upon reaching the right-hand edge of the simulated area is considered to be the
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TABLE 3-3

THE SEVEN TRANSFER FUNCTIONS USED IN THE SYNTHETIC STUDY lp

b

Transfer Functions

Wt % of data exceeding -2

_1/2 % of data exceeding -1

_3 % of data exceeding 0
lit,

_4 % of data exceeding 1

Us % of data exceeding 2

_6 "minimum path finder"; details in text

_7 related to spatial covariance; details in text
L

** The values 1-2,-1,0,1,2} are the indicator thresholds used for sequential indicator simulation.
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minimum path, and the sum of the node values is the value of the transfer function.

Let us denote this transfer function by _/6a" Figure 3-3(a) illustrates a _/6a minimum

, path through a small grid. The problem with this transft:-" function is that it is very

difficult to compute for a grid of 30 × 30 nodes. The number of paths that need to t_

" tested for different grid sizes is listed in Table 3-4. The computer time required to

compute Usa for a large number of realizations is prohibitive.

For this reason, gttb was proposed. This is a simplification of V6a, allowing can-

didate paths that move one node to the right on each step (as before), but can only

move horizontally or one node downwards. In other words, paths that move in the

upwards direction at any step are no longer acceptable. The _6b minimum path

through the small grid is drawn in Figure 3-3(b); note that the starting position has

moved up one node from the starting position of the less restrictive _q/6a path. Table

3-4 shows that the use of/]/6b leads to a considerable reduction in the number of can-

didate paths to be tested. However, the computing time for repeated realizations of a

30 x 30 grid is still unacceptably high.

The transfer function ultimately chosen, _6, is a further simplification of 'qttb. At

each step, the path must move over two nodes to the right and either zero or one

nodes downward; the _6 path through the grid is shown in Figure 3-3(c). These cri-

teria lead to a large reduction in the number of paths to be tested, as shown in Table

3-4. Run times for lq/6 are short enough to allow for its use on a large number of

simulated data sets.

The function _/6 is sensitive to spatial connectivity among extreme values (partic-

ularly low values) of the simulated variable, lt is designed to test one of the assumed

strengths of the SIS technique - namely, that realizations may be generated that have a

different correlation extent at different levels of the variable of interest.

It is important to note here that li/6 is not being proposed for use in actual hydro-

logic flow codes. Rather, it is simply a tool to help us to study the extent to which

" sequential indicator simulations can be used to gauge the uncertainty in non-linear,

spatially-dependent functions evaluated over sparsely sampled regions. If the SlS tech-
ql,

nique has difficulty characterizing the uncertainty in relatively simple functions like

gt6, it is reasonable to expect that these problems will persist for more complex and

realistic codes.
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Figure 3-3 "Minimum flow pmhs" for a 10 x 10 dam set using the transfer funclions _,,,, _6_,, and

_,. (a) Fqow path lor _, allowing movement tx_lh upwards and downwards, has a value

of 4. (b) The transfer function _-._, allows only horizontal or downwmd movement, ;rod

has a value ot 5. (c) The most restrictive transfer function, _6 requires h()riz()n_tal move-

ment at every even-numbered step. The value of the minimum flow path using this

definition increases to 8.
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TABLE 3-4

THE NUMBER OF CANDIDATE PATHS FOR TRANSFER FUNCTIONS _6o,_6b,and_6

Grid Size Number of CandidatePaths

4 x 4 68 20 7

10 x 10 136,946 2,816 128

12 x 12 1,515,296 13,312 160

18 x 18 -- 1,245,184 3,584

30 x 30 .... 376,832
e

......

Illllt

Computation for multiple simulationsbecomes unfeasible at around 500,000 tested paths.
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3.2.3 A Relative of the Spatial Covariance: V7

The last transfer function, _7, is the average of the lag-1 spatial products in the

vertical and horizontal directions. The equation for V7 is as follows:

1 30 29 29 30

V7 = 2×29×30 [ E _-,Zr,c Zr,c+l + E EZr,c Zr+l,c ]' (10)r=lc=l r=lc=l

where Zr,c is the simulated value for the node at row r and column c. As is true with

• 6, this function is sensitive to spatial patterns among the data. Note however, that V7

is a close relative of the spatial covariance function. Thus, its variability might be

better characterized by simulations that use a single z-covariance function than by SIS

simulations that use multiple indicator covariance functions. When evaluating results

for V7, we should recognize that the SlS algorithm is not optimal for this type of

transfer function.

3.3 Experimental Phase I

In the first phase, every run used 10 separate exhaustive data sets, each made up

of 900 data points in two dimensions, and each generated with the same theoretical

indicator variograms. The nodes in the data sets were equally spaced along a 30 × 30

grid. The seven transfer functions were evaluated over each exhaustive data set; this

provides true values of the seven transfer functions. Next, a sample was taken from

each data set, and SIS was used to generate 100 separate realizations of the full 30 x

30 grid from this sample. The transfer functions were evaluated over each realization,

and from the 100 realizations, 95% confidence intervals for each transfer function were

computed. The confidence intervals were constructed using the percem'ile method

(Efron and Gong, 1983): the interval between the 0.025 and 0.975 percentiles of the

collection of evaluations of the transfer function was taken to be a 95% confidence

interval for the value of the transfer function evaluated on the true (exhaustive) attri-

bute values over the region of interest. A single run in this part of the experiment

yields ten separate confidence intervals for each transfer function, one for each data

set. Figure 3-4 is a schematic outline of the procedures constituting a run. Figure 3-5

shows an example of a single exhaustive data set and several SIS realizations.
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(1) Set values of variables a, sl. iv, and gin. I

!

-1

" ._.._ (2) Generate an exhaustive data set consistent with the values chosen in (1); evaluate each of the /

transfer functions {V_, V2..... VT) over the exhaustive data seL Select of sizeL /a single sample /1.

(3) Use SIS to generate 100 full realizations from tile sample. Use the 100 realizations to calculate

seven 95% confidence intervals, one for each transfer function. Note whether the confidence

intervals contain the true V-values found in step (2).

(4) Determine the number (out of R) of confidence intervals for each transfer function which contains

the true Wvalues. Compute summary statistics (letter-values, mean) for confidence interval
widths.

Figure 3-4 Outline of the procedures constituting a single mn in the synthetic experiment. For Phase

- L R=I0, and for Phase IL R=50 repetitions, lt follows that each run in Phase I requir_

1,010 CIS simulations: 10 exhaustive data sets, plus I00 realizations for each of the

exhaustive data sets. Each run in Phase II requires 5,050 simulations.
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Figure 3-5 An exttaustive data set and three different SIS realL,.ations, on a 30 x 30 grid. The reali-

zatio_t,; were generated using the theoretical indicator variograms of the exhaustive data

set, and data at 30 randomly-chosen sample nodes. Note the variability _ccn among the

different realizations.
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If the assumptions used for SIS are valid, and the implementation is sensible, we

would expect about 95%, or 9.5, of these confidence intervals to contain the true value

of the transfer function over the appropriate data set. As discussed in Appendix E,

when the number of inaccurate confidence intervals is equal to three or more (out of

ten), the null hypothesis that the intervals are valid 95% confidence intervals may be

rejected at a level less than 5%. The actual number of confidence intervals containing

the true value, and the widths of the confidence intervals, were recorded for each

transfer function on each run. Clearly, narrow confidence intervals (precise) that con-

tain tile true _t-values (accurate) are evidence of a well-behaved simulation algorithm,

while very wide confidence intervals, or those not containing the true value of _ with

the expected frequency, indicate problems with the SIS technique. Note that with only

ten confidence intervals per run in the first phase, it is difficult to come to any

definitive conclusions regarding accuracy: as discussed in Appendix E, the relevant

statistical tests lack sufficient power. Thus, the issue of accuracy is largely deferred

until the second phase of the experiment.

3.4 Experimental Phase II

Of the 20 factor combinations studied in Phase [, 10 were chosen for further

experimentation in Phase IT. These combinations are identified with a "y" in the third

column of Table 3-2. In this phase, a run used 50 different exhaustive data sets, each

on a 30 x 30 grid. As before, the exhaustive data sets were independently generated,

each with the same theoretical indicator variograms. A sample was taken from each,

and was used to generate 100 realizations. (That is, there were a total of 5,000 reali-

zations generated: 100 realizations for each of 50 exhaustive data sets.) The large

number of runs conducted in Phase II of the experiment allows us to determine, with

more power, whether confidence intervals constructed from SIS realizations are accu-

rate. When inaccuracies are found, we attempt to identify probable causes for the

failure of SIS distributions.
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3.5 Difficulties With Available SlS Computer Code

The simulation study was carried out using version 1.1 of the C language com-
Ib

purer program isim3d.c (Gomez-Hemandez, Srivastava, and Serikiotou, 1989) to per-

form sequential indicator simulation. After the study had been in progress for several tj

months, a bug was discovered in this version of the code. The bug involved the esti-

mation of conditional probability distribution functions (PDFs) using shnple or ordi-

nary kriging: with version 1.1, it is possible to generate PDFs that are not monotone

increasing. This is a clear violation of one of the most basic tenets of probability

theory.

Later versions of the C program corrected the problem, but the time involved in

re-running the entire simulation study using new software was prohibitive. Instead, a

few important runs were repeated using version 2.21 of isim3d.c, in order to determine

whether the accuracy and precision figures obtained using the newer version of the

computer program were consistent with those seen for the earlier version. The results

were quite similar for the two versions of the software, lt does not appear that the bug

in version 1.1 of isim3d.c has had a large impact on the simulation study.

Appendix A provides a complete description of the bug in version 1.1, the correc-

tion taken in version 2.21, and a comparison made between the results from the two

programs.
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4.0 RESULTS

Tables 4-1 through 4-7 summarize the results for each of the experimental runs
lt

on the seven transfer functions. In the sections that follow, these results are discussed

and analyzed in detail.

4.1 Sample Size

4.1.1 Precision in Control Situations

Runs A, B, C, and D of the experiment ali represent control situations. In each

of these runs, SIS was used to generate the exhaustive data sets, and was used again,

with the same theoretical indicator variovams, to generate the multiple realizations.

The sampling was done without preferential clustering in any one region of the grid.

The four runs differed from one another in sample size only: n was set equal to 5 for

,'un A, 15 for run B, 30 for run C, and 45 for run D. Changing n led to substantial

differences in accuracy and precision.

By examining Table 4-8, which groups the results from runs A - D, we can see

that increasing the sample size increased the precision of confidence intervals gen-

erated using SlS. For the first transfer function, the mexiian confidence interval width

decreased by about 8%* as n increased from 5 to 15; by about 38% as n increased

from 15 to 30; and bv another 19% as n increased from 30 to 45. The sixth transfer

function had corresponding changes of an 22% decrease, a 15% decrease, and a small

3% decrease. For _7, the changes in median confidence interval widths were again ali

decreases, of 3%, 26%, and 24%, respectively. These types of findings, which are evi-

dent in the boxplots ** of Figure 4-1, are not surprising: we would expect that, as

more information was given to the simulation program, the variability of the output

* Ali percentagesreportedare fractionsof the largerof the two numbersbeingcompared.
** Boxl_:OtSare describedin Tukey (1977). For ali boxplotspresentedin this report, the

z.entralbox runs from the lower quartile of the data to the upper quartile,and the line within
the box repreznts the medianobservation. The "whiskers"extend to the nearest value within

, a slmldardrange of the quartiles. Observationslying more than a standardrange away from
the quartiles are plotted singly. [A standardrange is equal to 1.5 × (upper quartile -
lower quartile )].
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TABLE 4-1

RESULTS FOR _l, FOR PHASES I AND II OF THE SYNTHETIC EXPERIMENT

PHASE I PHASE II

Run # iqa medb uqc # outside d # outs';de

A 0.36 0.37 0.44 1 2

B 0.32 0.34 0.36 0 0

C 0.16 0.21 0.25 1 0

D 0.11 0.17 0.19 1 3

E 0.21 0.25 0.25 0

F 0.17 0.20 0.22 2

G 0.19 0.21 0.21 0

H 0.20 0.23 0.25 2 2

I 0.25 0.30 0.32 1

J 0.18 0.22 0.27 0 3

K 0.21 0.23 0.25 1

L 0.20 0.25 0.26 0

M 0.22 0.24 0.28 2 10

N 0.18 0.22 0.28 3 15

P 0.14 0.17 0.20 4 20

Q 0.20 0.23 0.24 1 10

R 0.18 0.19 0.19 2

S 0.27 0.28 0.30 0

T 0.21 0.22 0.22 l

U 0.13 0.18 0.19 3

Ik.

a lq = lower quartile of the l0 Phase I confidence interval widths.

b meal = median of the l0 Phase I confidence interval widths.
9

c uq = upper quartile of the 10 Phase I confidence interval widths.

d # outside = number of inaccurate confidence intervals counted (out of 10 for Phase

I, and out of 50 for Phase II).
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TABLE 4-2

RESULTS FOR _g2,FOR PHASES I AND II OF THE SYNTHETIC EXPERIMENT

8

PHASE I PHASE II

B

Run # lqa med b uqc # outside d # outside

A 0.42 0.47 0.51 0 2

B 0.32 0.34 0.36 0 0

C 0.27 0.30 0.30 1 2

D 0.20 0.23 0.25 0 6

E 0.28 0.29 0.32 0

F 0.23 0.25 0.25 2

G 0.23 0.25 0.27 0

H 0.27 0.29 0.31 l 2

I 0.35 0.36 0.41 2

J 0.23 0.26 0.29 2 3

K 0.29 0.32 0.36 0

L 0.26 0.29 0.31 0

M 0.28 0.29 0.30 1 6

N 0.23 0.26 0.28 2 8

P 0.18 0.22 0.24 5 14

Q 0.2.4 0.25 0.29 0 8

R 0.19 0.20 0.22 1

S 0.30 0.34 0.38 1

T 0.23 0.24 0.26 2

U 0.17 0.19 0.22 1

., a lq -- lower quartile of the 10 Phase I confidence interval widths.

b med = median of the 10 Phase I confidence interval widths.

• c
uq = upper quartile of the 10 Phase I confidence interval widths.

d # outside = number of inaccurate confidence intervals counted (out of 10 for Phase

I, and out of 50 for Phase II).
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TABLE 4-3

RESULTS FOR _1/3.FOR PHASES l AND II OF THE SYNTHETIC EXPERIMENT

&

PHASE I PHASE II

Run # iqa mealb uqc # outside d # outside

A 0.44 0.49 0.51 2 3

B 0.35 0.39 0.42 0 6

C 0.28 0.31 0.32 3 2

D 0.21 0.22 0.25 2 I l

E 0.28 0.31 0.31 4

F 0.22 0.25 0.26 3

G 0.23 0.26 0.28 1

H 0.26 0.29 0.30 0 8

I 0.35 0.37 0.43 2

J 0.25 0.28 0.31 2 5

K 0.29 0.30 0.31 0

L 0.27 0.30 0.33 3

M 0.22 0.26 0.31 2 10

N 0.24 0.28 0.29 0 14

P 0.21 0.23 0.24 3 16

Q 0.24 0.25 0.28 2 10

R 0.17 0.20 0.21 1

S 0.34 0.36 0.38 0

T 0.23 0.25 0.26 0

U 0. !8 0.20 0.20 1

Ik.

a iq = lower quartile of the 10 Phase I confidence interval widths.

b reed = median of the 10 Phase I confidence interval widths.
v

c uq = upper quartile of the 10 Phase I confidence interval widths.

d # outside = number of inaccurate confidence intervals counted (out of 10 for Phase

I, and out of 50 for Phase II).
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TABLE 4-4

RESULTS FOR V4, FOR PHASES I AND II OF THE SYNTHETIC EXPERIMENT

al

PHASE 1 PHASE II
A

Run # lqa reed b uqc # outside d # outside

A 0.39 0.41 0.44 0 2

B 0.29 0.34 0.38 0 3

C 0.27 0.29 0.29 1 4

D 0.18 0.19 0.22 3 10

E 0.7, 0.255 0.27 3

F 0.18 0.21 0.25 2

G 0.19 0.235 0.25 0

H 0.22 0.245 0.26 0 4

I 0.31 0.31 0.37 1

J 0.22 0.24 0.26 1 4

K 0.23 0.245 0.29 0

L 0.22 0.25 0.27 1

M 0.21 0.22 0.25 2 10

N 0.21 0.23 0.24 2 11

P 0.16 0.19 0.23 1 7
• .

Q 0.23 0.25 0.25 0 4

R 0.14 0.17 0.20 2

S 0.30 0.35 0.37 0

T 0.21 0.24 0.25 3

U 0.17 0.17 0.20 0

• a lq = lower quartile of the 10 Phase I confidence interval widths.

b med = median of the 10 Phase I confidence interval widths.
• c

uq = upper quartile of the 10 Phase I confidence interval widths.
d

# outside = number of inaccurate confidence intervals counted (out of 10 for Phase

I, and out of 50 for Phase II).
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TABLE 4-5

RESULTS FOR _5, FOR PHASES I AND II OF THE SYNTHETIC EXPERIMENT

PHASE l PHASE II
b

Run # Iqa reed b uqc # outside d # outside

A 0.32 0.35 0.36 0 0

B 0.24 0.29 0.31 0 1

C 0.22 0.23 0.26 0 2

D 0.15 0.17 0.20 1 7

E 0.16 0.18 0.22 0

F 0.11 0.14 0.19 0

(3 0.15 0.18 0.21 0

H 0.14 0.19 0.22 0 2

I 0.26 0.28 0.31 1

J 0.15 0.22 0.26 0 2

K 0.18 0.20 0.22 0

L 0.16 0.20 0.26 1

M 0.17 0.18 0.19 3 14

N 0.16 0.18 0.20 4 10

P 0.12 0.15 0.19 2 16

Q 0.19 0.20 0.23 1 8

R 0.12 0.15 0.17 2

S 0.22 0.29 0.33 1

T 0.17 0.19 0.22 0

U 0.12 0.15 0.16 2

a lq - lower quartile of the 10 Phase I confidence interval widths.

b med = median of the I0 Phase I confidence interval widths.
'w

C
uq = upper quartile of the 10 Phase I confidence interval widths.

d
# outside = number of inaccurate confidence intervals counted (out of 10 for Phase

I, and out of 50 for Phase II).
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TABLE 4-6

RESULTS FOR _6, FOR PHASES I AND II OF THE SYNTHETIC EXPERIMENT

8

PHASE I PHASE II
4

Run # iqa med b uqc # ou_ide d # ou_ide

A 80 87 91 l 2

B 54 68 81 0 3

C 55 58 59 0 2

D 48 56 63 0 6

E 50 59 61 0

F 50 52 58 1

G 51 55 73 0

H 42 49 70 1 2

I 75 78 84 1

J 59 68 75 0 6

K 32 38 45 10

L 49 69 82 1

M 46 52 57 0 6

N 47 59 67 1 8

P 44 52 61 2 6

Q 69 79 85 4 13

R 47 61 66 2

S 74 88 116 0

T 65 70 80 4

U 61 64 73 5
, ,.

, a lq -- lower quartile of the 10 Phase I confidence interval widths.

b reed = median of the 10 Phase I confidence interval widths.

C

uq = upper quartile of the 10 Phase I confidence interval widths.

d # outside = number of inaccurate confidence intervals counted (out of 10 for Phase

I, and out of 50 for Phase II).
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TABLE 4-7

RF.,SULTS FOR Uv, FOR PHASES 1 AND I1 OF THE SYNTHETIC EXPERIMENT

&

PHASE I PHASE II

Run # iqa med b uqc # outside d # outside

A 3.4 3.5 4.1 0 2

B 3.1 3.4 3.6 1 0

C 2.2 2.5 2.7 0 1

D 1.6 1.9 2.1 2 4

E 2.2 2.5 2.9 0

F 2.0 2.1 2.4 2

G 2.1 2.2 2.4 0

H 2.2 2.4 2.8 0 2

I 2.6 3.0 3.6 2

J 2.4 2.7 3.1 0 2

K 1.1 1.2 1.4 7

L 3.1 3.4 3.7 4

M 2.2 2.7 3.2 2 4

N 1.9 2.5 3.2 2 4

P 1.8 2.0 2.2 0 13

Q 3.0 3.6 5.0 8 37

R 2.4 2.9 3.9 3

S 4.2 5.2 6.0 2

T 3.0 3.7 4.6 8

U 2.8 3.1 3.6 7

a Iq = lower quartile of the 10 Phase I confidence interval widths.

b med ---median of the 10 Phase I confidence interval widths.
II

c uq = upper quartile of the 10 Phase I confidence interval widths.

d # outside = number of inaccurate confidence intervals counted (out of 10 for Phase

I, and out of 50 for Phase II).
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TABLE 4-8

, E_ OF SAMPLE SIZE ON ACCURACY AND PRECISION FOR THE CONTROL RUNS

Medmn Confidence Interval Wid_s - Phase I

,

Run n _l _2 _3 _4 _5 _6 ¥7
b .....

A 5 .37 .47 .49 .41 .35 87 3.5

B 15 .34 .34 .39 .34 .29 68 3.4

C 30 .21 .30 .31 .29 .23 58 2.5

D 45 .17 .23 .22 .19 .17 56 1.9
....

Number Inaccurate Confidence Intervals - Phase II

Run n _l _2 _3 _4 Us _6 ¥7

A 5 2 2 3 2 0 2 2

B 15 0 0 6 3 1 3 0

C 30 0 2 2 4 2 2 1

D 45 3 6 I l 10 7 6 4

..

Runs for which the number of inaccurate confidence intervals is statistically

significant at a level of less than 5%.
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would decrease.

4.1.2 Accuracy in Control Situations

. The findings regarding the effect of sample size on accuracy, for control situa-

tions, are somewhat counterintuitive. When n was as large as 45 (5% of the 900 total

nodes), the accuracy of SIS predictions decreased significantly. For transfer functions

• 2, _3, _4, _5, and _,, six or more confidence intervals in Phase II did not contain

the true value. (As discussed in Appendix E, when six or more out of 50 intervals fail

to contain the true value, the null hypothesis that the intervals are valid 95%
t

confidence intervals for the true value cml be rejected at a level less than 5%.) As n

increased from 5 to 15 and from 15 to 30, the precision of the simulation distribution

increased, as was seen in the decreasing confidence interval widths; these improve-

ments in precision came without a decline in accuracy. However, when the sample

size increased from 30 to 45, the resulting decrease in confidence interval widths was

often too drastic, and accuracy was lost. Figure 4-2 shows a fairly typical case of at_

inaccurate confidence interval from run D: the true value of the transfer function lies

just outside of the extremes of the simulated distribution.

4.1.3 Nonrepresentative Samples

One possible cause of confidence interval inaccuracy is a skewed, or nonrepresen-

tative sample: the histogram of the sample might be quite different from that of the

exhaustive data set from which the sample was drawn. Even when sampling is ran-

dom, as it is for the control runs, substantial differences in the histograms may exist.

These differences, in turn, could influence the histogram of the multiple realizations

conditioned on the sample, and thus the values of other transfer functions evaluated

over the realizations. For example, if an unusually large percentage of the data were

, contained in the left-most bin (corresponding to a small value of _1), we would intui-

tively expect that W6, the minimum-path finder, would also tend to have a small value.

' This relationship is illustrated in Figure 4-3, a plot of the value of _/6 versus that of

• l, for 100 realizations of a run D data set. Realizations that are extreme in _/6 tend to

be extreme in W1, and the two transfer functions are positively correlated.
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Figure 4-2 Histogramof simulated distributionof _6,for D-3.3, one of the exhaustive dam setsin

run D. The shaded area represents the values of the transfer function seen in 100 in-

dependent realizationsgenerated from the same sample of size n---45. The true value of

V6 for this data se_ was -37.142. The simulated distribution ranged from -81.453 to

-39.044, while the 95% confidence interval ranged from -79.284 to -40.112. Note that the

true value is very close to one of the extremes of the simulated distribution; this was gen-

erally the case with the inaccurate simulations. "

4- 12



0

e

co -20 ",', ;" "
• e eee_e euc :. ...o

C • e: e,_ ao

LE -40- " " ,." • ..
• o. -

e-,

-60 - " "

I

-80 -
correlation = .66

-- I ' ! I I I '1

0.90 0.92 0.94 0.96 0.98 1.00

TransferFunction1

Figuae4-3 Plot of the relationshipbetweenYt and ¥6, for the 100 realizationsof dataset D-I.2.

4- 13



In order to determine whether nonrepresentative samples may have been a factor

in the inaccuracy of run D confidence intervals for the higher-level transfer function

• 6, we recorded the percentage of data exceeding the lowest threshold (-2) for exhaus- .,

tive data sets, samples, and realizations, for each of the six run D cases giving inaccu-

rate confidence intervals for _6. (Note that this percentage is equal to the value of _l, "

which can be evaluated on samples, as well as on exhaustive data sets.) The results are

shown in Figure 4-4. Note that, in five of the six cases (ali except for the case denoted

D-4.4) the mean value of _1 over 100 realizations was closer to the sample value than

to the exhaustive value; this is not surprising, given that the realizations were condi-

tional on the sample. For four of these five cases (denoted D-1.2, D-1.8, D-2.4, and

D-3.3), the realizations of _/6 departed from the true value in the direction of the sam-

ple value of _l. That is, for D-1.2, D-2.4, and D-3.3, the upper limit of the con-

structed confidence intervals was less than the true value of _6. For D-1.8, the lower

limit of the _6 confidence interval exceeded the true value, lt is thus plausible to sup-

pose that the differences in the sample histogram and the exhaustive histogram

influenced the minimum flow-paths seen in these conditional realizations.

Case D-4.5 was an interesting exception; the sample value of _1 (.578) was less

than the true value (.624); the mean value seen over the hundred conditional realiza-

tions (.532) was even smaller. However, the true value of _1/6(-125.24) was smaller

than the lower limit of the confidence interval (-122.46) and even the minimum value

seen over ali of the realizations (-123.07). Figure 4-5 shows the exhaustive data set,

and three realizations generated from 45 sample data points. On each image, the _/6

minimum flow path is shown with a dashed line. Note that the exhaustive data set

and one of the realizations have flow paths that pass only through nodes with values in

the lowest bin (less than or equal to -2). The fact that the exhaustive data set has a

value lower than those of the realizations is simply due to bad luck: the values within

the lower bin that were assigned by SIS to the nodes in the exhaustive data set hap-

pened to be smaller than those assigned to the nodes in the realizations. The SIS pro-

cedure, by default, uses a uniform within-bin distribution, and the exhaustive data set

contained a large number of nodes along the flow path having values close to the

specified minimum of-5. (The mean node value along the minimum path was equal

to -125/30 = -4.17, while the mean of the uniform distribution on the interval between
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Figure 4-4 Illustration of the relationship between e, the exhaustice (or "true")value of yt, s, the

samplevalue, and r, the mean value seen over 100 SIS realizations, for six data sets giv-

ing inaccurate¥6 confidenceintervals.(Thetheoreticalvalueof _l isequalto .80.)

Notethatinfiveofthesixcases,themeanvalueof_¢_overtherealizationsdepartsfrom

filetruevalueinthedirectionofthesamplevalue.ForcasesD-I.2,D-I.8,D-2.4,and

D-3.3, the mean value of W6over the realizations departs from the true value of W6 in the

direction of the sample value of W_. This suggests that inaccuracies in SIS confidence

intervals for _6 may be due, in part, to differences in exhaustive and sample cumulative
&

distribution functions.
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Figure 4-5 Exhaustive data set D-4.5, and three realizations that are conditional on 45 sample values.

(The sample data are displayed in the upper right-hand panel of Figure 2-3.) The true

value of _6 is -125.24; the realizations #1, #2, and #3 _6 values of -101.43.-108.88, and

-116.50, respectively. The SIS confidence interval for _6 was inaccurate in this case.
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-5 and -2 is equal to -3.5.) Thus, the exhaustive data set itself seems to lie in a "tail"

of the distribution of Z (S), and most simulation techniques would be expected to

have difficulty generating such an extreme pattern in only 100 realizations. The inac-

curacy of the SIS-generated _6 confidence interval for this particular exhaustive data

" set is not surprising, lt is reasonable to expect that, if a larger number of realizations

were carded out from the same sample data, more extreme values of _6 would be

found.

4.1.4 The Effect of Simple vs. Ordinary Kriging

In addition to possibly nonrepresentative samples, another cause for inaccurate

confidence intervals for run D might be that the confidence intervals are simply too

narrow. In conventional independent and identically distributed sampling, confidence

interval widths decrease proportionally with 1/'4n"n. The SlS confidence interval widths

seen for runs A through D decrease at a slew, _ rate, because they are influenced by

several factors: the sample size, the assumed variograms, and the parameters of the SIS

code itself. Some of the inaccuracies observed in run D may be caused by confidence

intervals that are overly narrow due to these code parameters.

In version 1.1 of the SIS code used for this study, isim3d.c, the determination of

the appropriate bin for a new node is done by simple kriging or ordinary kriging,

depending on the number of data points (sample points or nodes already simulated)

that are in the neighborhood of the new node. Specifically, simple kriging is used if

fewer than five data points are in the neighborhood, whose width is chosen by the

user. If five or more data points are in the neighborhood, then ordinary kriging is

used. Because ordinary kriging will fit a local mean in the region being simulated, the

newly-simulated node will have a stronger tendency to lake on a value similar to those

of the neighboring points than would be the case if simple kriging were used. As a

result, a smaller degree of variability is seen once ordinary kriging is invoked.
4

When the initial sample size is as large as n = 45, the nodes to be simulated are

, more likely to start out with at least five sample points in their neighborhood than

would be the case with smaller initial ,samples. Thus, ordinary kriging, with its

tendency to reduce variability, is invoked early in the simulation process. The result-

ing set of realizations may not exhibit enough variability to cover the true values of
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the transfer functions. Later versions of the SIS code allow the user to reset the value

at which the switch from simple kriging to ordinary kriging takes place. However, it

may be difficult for the user to choose an appropriate value for a particular study. This _

issue is discussed in more depth, and is illustrated graphically, in Appendix A.

4.1.5 Non-Control Runs

Ali of the above discussion relates to the control runs. Several more comparisons

may be made to determine if the effects of n on accuracy and precision are consistent

over different experimental situations.

Runs I (n=15) and J (n=30) can be compared to examine the effect of changing

sample size on simulations for which the indicator variograms used to generate the

exhaustive data sets and the realizations differed in terms of the marginal distributions

that they specified. Results for each transfer function aregiven in Tables 4-1 through

4-7 and Table 4-9. The decreasing confidence interval widths seen with increasing the

sample size from 15 to 30 are consistent with the decreases seen in the control situa-

tion (runs B and C).

Runs S (n =15), T (n =30), and U (n--45) each used exhaustive data sets that were

generated using the Choleski (non-SIS) method. Results are sumnlarized in Table 4-

10. None of tile runs were included in Phase II, but some accuracy problems were

severe enough to be detected during Phase I: run T had a statistically significant

number of inaccurate confidence intervals for _g4, _g6, and _7; and run U had a

significant number for _gl, _g6, and _gT. These results follow the pattern of the number

of inaccuracies increasing with the sample size suggested by run D. Other factors con-

tributing to run T and U inaccuracies will be discussed in the section on the effect of

different methods of generating exhaustive data sets. Figure 4-6 shows boxplots of the

confidence interval widths for runs S, T, and U. The general trend of precision increas-

ing with sample size is evident.
m.

Runs E and F can be compared to study the effect of changing n on the precision

of simulation distributions generated from clustered samples. The runs were not .

included in Phase II, and it is not possible to come to any conclusions regarding

accuracy. Both of the runs used the correct theoretical indicator variogram information

to generate the multiple realizations, and both used sampling plans which clustered the
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TABLE 4-9

EFFECT OF SAMPLE SIZE ON PRECISION FOR RUNS I AND J

4

MedianConfidencelntexvflWid_s-Phasel

Run n Yt ¥2 _3 _4 Us W6 _7

I 15 .30 .36 .37 .31 .28 78 3.0

J 30 .22 .26 .28 .24 .22 68 2.7

I
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TABLE 4-10

EFFECT OF SAMPLE SIZE ON ACCURACY AND PRECISION FOR THREE RUNS _.

THAT USED EXHAUSTIVE DATA SETS GENERATED BY THE CHOLESKI METHOD

ttr,

Median Confidence Interval Widths - Phase I

Run n Wt W2 W3 W4 Ws W6 V7

S 15 .28 .34 .36 .35 .29 88 5.2

T 30 .22 .24 .25 .24 .19 70 3.7

U 45 .18 .19 .20 .17 .15 64 3.1
,,.

Number Inaccurate Confidence Intervals - Phase I

Run n Wt W2 W3 W4 W5 _/6 W7

S 15 0 1 0 O 1 0 2

T 30 1 2 0 3 0 4 8
le le

U 45 3 1 1 0 2 5 7
,.

Runs for which the number of inaccurate confidence intervals is statistically significant at a level of

less than 5%.
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samples preferentially in the first and third quadrants. The sample size was 30 for run

E, and 45 for run F. The chP,nges in confidence interval widths seen with changing n

for these runs are consistent with the results of control simulations.

Runs N (n=30) and P (n=45) were included in both phases of the experiment.
Ib

Increasing the sample size from 30 to 45 provided improved precision, consistent with

trends seen previously. Accuracy problems were severe at both n =30 and n--45; this

situation will be discussed in the sectien on input variogram information.

Runs Q and R both used exhaustive data sets that were generated using the

Choleski method, and, for each of these runs, the indicator variogram information

input to the SIS program was computed from the exhaustive data sets themselves.

Run R (n--45) gave confidence intervals that were more precise than those given by

run Q (n=30). The median confidence interval widths foc VI, V6, and _7 in run Q

were respectively, 17%, 23%, and 19% larger than those for run R. Run Q was

included in Phase II of the experiment and the accuracy problems that were encoun-

tered will be discussed in the section on different generation methods.

4.2 Sample Location

We now discuss the effect of clustered data samples on the accuracy and preci-

sion of simulated distributions. Clustered samples were taken in four different runs, ali

generated using SIS (gm=l) and ali of which used the correct theoretical indicator

variograms to generate realizations (iv=l). The clustering was carded out at four

different levels: 2:1 clustering in the first and third quadrants of the grid space (runs E

and F); 1.33:1 clustering in the first quadrant (run G); and 1.67:1 clustering in the first

quadrant (run H). These runs may be compared to the appropriate control runs to

study the effect of clustering.

Run E used n =30 samples, and may be compared to run C, which had the same

sample size but used a nonclustered sampling scheme. The data of Tables 4-1 through

4-7 and Table 4-11, and the boxplots of Figure 4-7 show that the mild clustering used

for run E did not have a large impact on the precision of simulated transfer function

distributions, particularly for the two spatially-sensitive transfer functions.
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TABLE 4-lI

IIWb'LUENCEOF CLUSTERING ON PRECISION FOR SIX RUNS USING
b

EXHAUSTIVE DATA SETS GENERATEDBY SIS

,,4

Median Confidence IntervalWidths - Phase I

Run n Clustering VI ¥2 V3 _4 Ys _6 V7

C 30 none .21 .30 .31 .29 .23 58 2.5

E 30 2:1 (2 quads) .25 .29 .31 .26 .18 59 2.5

D 45 none .17 .23 .22 .19 .17 56 1.9

F: 45 2:1 (2 quads) .20 .25 .25 .21 .14 52 2.1

G 45 1.33:1 (1 quad) .21 .25 .26 .24 .18 55 2.2

H 45 2.67:1 (1 quad) .23 .29 .29 .25 .19 49 2.4

Number Inaccurate Confidence Intervals - Phase H

Run n Clustering _t _t2 W3 W4 _s _ V?

D 45 none 3 6 11 10 7 6 4

H 45 2.67:1 (1 quad) 2 2 8 4 2 2 2

Runs for which the number of inaccurate confidence intervals is statisticaly significant at a level less
" than 5%.

)
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Runs F, G, and H each used n--45 samples, and the degree of clustering among

samples increased progressively through these runs. The boxplots of Figure 4-8 show

" that confidence interval widths increase, and precision decreases, from the nonclustered

run D through the clustered runs. lt is interesting to note that this effect was evident
_t

even for run F, which had the same mild clustering pattern as that of run E, discussed

above, lt appears that clustering of samples had a greater impact for large sample

sizes than for small sample sizes. This is known in statistics as an interraction effect:

the factor sl has a different effect on precision for different levels of the factor n. This

can probably be explained by observing that for fairly large sample sizes, clustered

sampling provides a lot of redundant data, which does little to constrain the values of

the transfer functions. For small samples, the redundancy is less pronounced, and a

loss of precision due to clustering was not evident. Note that the precision of run F

was better than that of run C (Tables 4-1 through 4-7, Table 4-11), showing that more

information was provided by 45 mildly-clustered samples than by 30 uniformly-

distributed samples. In fact, even for the 45 severely-clustered samples of run H, more

precision was obtained than for the 30 samples of run C.

Recall that accuracy problems were encountered for five of the seven transfer

functions in run D. Run H was included in Phase II, in order to determine whether

this pattern would persist for clustered sampling. Tables 4-1 through 4-7 (last column)

show that accuracy renlained a problem only for a single transfer function, V3. For

the other transfer functions, including the spatially-sensitive _6 and V7, it appears that

the loss of accuracy was avoided. This result is consistent with some of the observa-

tions made earlier: by sacrificing some precision, clustered sampling plans were able to

avoid inaccuracy in simulated distributions.

4.3 In__putVariogram Information

The results below demonstrate the various effects that may follow from different
,B

types and sources of input variogram information.

• Runs C, J, K, L, M, and N each had n=30 samples taken in a nonclustered

fashion. For these runs, the exhaustive data sets were generated in an identical

manner, as described in Appendix B. The rvns differed only in terms of the indicator

variogram information input to the SIS code for generating realizations. Results for
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the latter five runs will be compared to those for run C, the control run. Figure 4-9 is

a series of boxplots illustrating precision differences for these runs on transfer func-

, tions qt 1, q/6, and _7.

, 4.3.1 Indicator Class Proportions

In run J, the indicator variogram information used to generate realizations differed

from that used to generate exhaustive data sets in proportions only. As stated in

Appendix B, when generating the exhaustive data sets, the cumulative distribution

function (CDF) at five indicator thresholds, (-2, -1, 0, 1, and 2)_ was set at (0.20, 0.35,

0.50, 0.65, and 0.80), respectively. For generating the realizations, the CDF at the five

indicator thresholds was set to (0.25, 0.40, 0.50, 0.60, and 0.75). Thus, the tails of the

distribution were heavier for the realizations than they were for the exhaustive data

sets. This change in the marginal distribution of the data values did not lead to sub-

stantial changes in either the accuracy or the precision of SIS confidence intervals for

• l -_5, the transfer functions related to the histogram of a data set. However, the

sixth transfer function gave inaccurate confidence intervals six out of fifty times in

Phase II (see Table 4-12). One explanation for this inaccuracy is that the higher

expected number of values lying in the lower bin leads to smaller values of V6 in the

realizations than in the exhaustive data set. This factor alone did not cause ali of the

inaccuracies, since the lower limit of the SIS confidence intervals exceeded the true

value in two of the six cases. However, for ali six of these data sets, the deviations in

• 6 were consistent with those in the sample value of xi/1. When the sample had a

smaller proportion of values in the lowest bin than the exhaustive data set, the true

value of _6 was less than the lower limit of the SIS confidence intervals; and when the

sample had a larger proportion of values in the lowest bin, the true value of _6

exceeded the upper limit of the confidence intervals. This suggests that nonrepresenta-

tive sampling may again have played a role in the inaccuracies. Note that the preci-

" sion of run J confidence intervals for _6 and V7 also decreased relative to the precision

seen in run C. This was probably caused by the larger tails in the CDF specified by

the input variogram information.
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TABLE 4-12

INFLUENCE OF THE INPUT VARIOGRAM INFORMATION, AND THE METHOD OF

" GENERATING EXHAUSTIVE DATA SETS, ON ACCURACY AND PRECISION

o

Median Confidence Interval Widths - Phase I

Run n iv, gm _/I ¥2 _13 ¥4 _15 _16 _17

C 30 iv=l, gm=l .21 .30 .31 .29 .23 58 2.5

J 30 iv =2a, gm = 1 .22 .26 .28 .24 .22 68 2.7

M 30 iv=3, gm=l .24 .29 .26 .22 .18 52 2.7

N 30 iv--4, gm=l .22 .26 .28 .23 .18 59 2.5

Q 30 iv =3, gm =2 .23 .25 .25 .25 .20 79 3.6

D 45 iv=l, gm=l .17 .23 .22 .19 .17 56 1.9

P 45 iv=4, gm=l .17 .22 .23 .19 .15 52 2.0
.....

Number Inaccurate Confidence Intervals - Phase II

Run n iv, gm u/l ¥2 _F3 _4 u/5 _6 _7

C 30 iv=l, gm=l 0 2 2 4 2 2 1

J 30 iv =2a, gm = 1 3 3 5 4 2 6 2

M 30 iv=3, gm=l 10 6 10 10 14 6 4

N 30 iv=4, gm=l 15 8 14 11 10 8 4
I1_ lit lit _ lit lit

Q 30 iv=3, gin=2 10 8 10 4 8 13 37
,,,

D 45 iv=l, gm=l 3 6 li 10 7 6 4

P 45 iv--4, gm=l 20 14 16 7 16 6 13
.,,

Runs for which the number of inaccurate confidence intervals is statistically significant at a level less

than 5%.
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4.3.2 Extreme Values

Run K used indicator variogram information for the exhaustive data sets and the Q

realizations that differed only in the sPecified minimum and maximum values. The

exhaustive data sets had a minimum value of-5 and a maximum of 5; in the realiza-

tions, the minimum and maximum were -3 and 3, respectively. Thus, the end bins

used for realizations were restricted to the inner one-third of the bins used for the

exhaustive data sets. lt is logical to expect that the confidence intervals seen for

• t - _5 would not be affected by this change, but that the confidence intervals for V6

and _7 would increase in precision (due to the smaller range of possible values) and

decrease in accuracy. As is seen in Figure 4-9 and Tables 4-1 through 4-7, the data

were consistent with this expectation. Ali ten run K confidence intervals for _1/6 and

seven of the ten for _7 were inaccurate, and the confidence interval widths decreased

by 34% for V6 and by 52% for VT. These results demonstrate that misspecification of

the minimum and maximum values for SIS can have a drastic effect when transfer

functions are sensitive to tail values, lt should be noted, however, that the parameters

chosen for run K were quite extreme, reducing the tail area by 67%. lt may be

unlikely that such a gross misestimation of the minimum and maximum values of a

distribution would occur in an actual field study, where external information about the

range of a variable may be available.

4.3.3 Indicator Class Proportions and Extreme Values

In run L, the indicator variograms used to generate the realizations differed from

those used to generate the exhaustive data sets both in the specified cumulative distri-

bution functions, and in the minimum and maximum values. Realizations were gen-

erated using the CDFs used in realizations for run J, with the minimum and maximum

values changed from -5 and 5, to -6 and 6. Thus, the tails for the realizations were

both longer and heavier than those for the exhaustive data sets. As Tables 4-1 through

4-7 show, the accuracy and precision of confidence intervals for VI - V5 were not sub-

stantially different in runs L and C. However, the median confidence interval width

seen for V6 and V7 increased by 16% and 26%, respectively, from the control run to

run K. In addition, four of the ten confidence intervals for _7 were inaccurate; this is
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a statistically significant result at a level less than 1%. The loss of accuracy and the

changes in precision were evidently caused by the simulation of larger (in absolute

, value) numbers in both of the end bins. This led to increased values for V7, which is.°

particularly sensitive to the magnitude of simulated values.

4.3.4 Indicator Thresholds from Exhaustive Data

In run M, the percentiles of the exhaustive data set were used as thresholds for

sequential indicator simulation, as outlined in Appendix B. Results from Phase I

showed relatively small effects on precision for ali seven transfer functions: over _l

through _5, there was an average 10% decrease in median confidence interval width

from run C to run M; V6 had a 10% decrease; and _/7 had 7% increase. Table 4-12

shows that, in Phase II, ali transfer functions, with the exception of Vr, gave a statisti-

caUy significant number of inaccurate confidence intervals. This was unexpected, since

SIS actually had more information about the exhaustive data sets in run M than in run

C.

The six run M data sets giving inaccurate confidence intervals for _6 were exam-

ined individually. Five of the six gave inaccurate confidence intervals for V1, and for

each of these five, the inaccuracies in V6 were consistent with those in V1 (i.e., the

exhaustive values of V1 and V6 both exceeded the upper limit of their respective

confidence intervals). This suggests that random bad luck, in the form of nonrepresen-

tative sampling, may have played a role in the inaccuracies, but further investigation

showed that this factor was not solely responsible. Ali six of the exhaustive data sets,

with the same samples and the same random numbers (seeds), were used to generate

100 more SIS realizations. The new realizations used the same sequence of random

numbers as the original realizations, but had the correct theoretical indicator thresholds

input to SIS. That is, the parameters of the control run, C, were used. None of the

six new confidence intervals were inaccurate. In addition, the two run C data sets giv-
qP

ing inaccurate _6 confidence intervals were also re-run, again using the original sample

• and random numbers, but with the parameters of run M (i.e., the indicator thresholds

were based on percentiles of the exhaustive data sets). Both of the newly-generated

confidence intervals were inaccurate. This strongly suggests that the accuracy prob-

lems seen in run M can be attributed to the use of exhaustive (rather than theoretical)
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indicator variograrn information, and are not simply due to nonrepresentative samples.

A possible explanation for these results is that, when the same variogram infor-

mation is used to generate both an exhaustive data set and a collection of realizations,

the realizations may be seen as being drawn from the same random functions distribu-

tion from which the exhaustive data set was drawn. Thus, there is a good chance that

the exhaustive data set will be covered by the collection of realizations. When the

realizations are generated using variogram information modeled from the exhaustive

data set itself, additional information about the exhaustive data set is available, but this

may be counter-balanced by the fact that the realizations are no longer being drawn

from the same distribution as the exhaustive data set. This observation is consistent

with a number of results seen throughout the study, and will be considered in more

detail in the discussion section.

4.3.5 Indicator Thresholds From Related Data

Run N was similar to run M in that the indicator thresholds used for generating

realizations were different from those used in generating the exhaustive data sets.

Here, the percentiles of a related data set, generated using the same input parameters

as those used to generate the exhaustive data set, were used for input to the realiza-

tions. As with run M, precision differences with the control run were small. Accu-

racy problems persisted: transfer functions V1 through _6 ali gave a statistically

significant number of inaccurate confidznce intervals, ranging from 8 out of 50 inaccu-

rate for _2 and _6, to 15 out of 50 inaccurate for _1. Given the results of run M,

these inaccuracies should not be surprising: if the use of indicator variogram informa-

•tion based on the correct exhaustive data set leads to accuracy problems, we would

expect that the use of indicator variogram information based on a different exhaustive

data set would also have difficulties.

Like run N, run P used indicator variogram information modeled after a related

exhaustive data set; the two runs differ in that a larger sample, of size 45, was used fbr

run P. Thus, run D is the appropriate control run for comparison with run P. Preci- •

sion differences between runs D and P were minimal. Run D had accuracy problems

for five of the seven transfer functions, and these were generally worsened in run P,

where ali seven transfer functions gave a significant number of inaccurate confidence
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intervals. The most extreme result was seen for VI, where twenty out of fifty Phase II

confidence intervals failed to contain the true value of the function. The combination
j,

of a relatively large sample size, and the use of indicator variograms based on a

related data set, caused the SlS technique to provide output that is useless in practical

terms. The implications of these results will be discussed further shortly.

From the results of this section, it is clear that the source of the indicator

variograms used to generate SlS realizations can have profound effects on the accuracy

and precision of the generated confidence intervals. This is cause for concern since, in

practice, a user of SIS will not have the luxury, as here, of knowing the true

variograms; and even with truth, the results for n = 45 suggest a problem.

4.4 Method of Generating Exhaustive Data Sets

Most of the runs in the synthetic experiment used exhaustive data sets that were

themselves generated by the SIS computer code. Because actual geologic regions of

interest are not created in this manner, it is important to test the simulation technique

on synthetic data sets that were generated using different algorithms. In order to meet

this need, runs Q, R, S, T, and U used exhaustive data sets that were generated using a

single z-variogram (the Choleski method) without the presence of different indicator

thresholds (see section 3.1.4 for details). The realizations for run Q were generated

using indicator variogram thresholds based on the exhaustive data sets, and the realiza-

tions for the other three runs used thresholds based on the statistics of a related data

set.

Inaccuracy was a problem in all of these runs, except for run S, which had a

small sample size and relatively imprecise confidence intervals. Run Q was included

in Phase U, and had a significant number of inaccuracies for ali transfer functions

except for qt4 (see Table 4-12). Runs T and U had a significant inaccuracy rate in

Phase I for three transfer functions each, including, for both runs, the spatially-...

sensitive functions _6 and q/7. These problems are quite disturbing, because good

, information was input to the SIS progTam. For example, the five indicator thresholds =

used for simulation of realizations were the appropriate (for the variogram sill)

percentiles of the exhaustive or related data sets, and the range specified for the indica-

tor variograms was the same as the range specified for the z-variogram used to
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generate the exhaustive data sets. (As discussed in Appendix D, the indicator

variogram models specified provide an excellent fit to the indicator variograms

obtained in practice from data sets generated using the Choleski method.) In a practical a

study with actual field data, we would not expect to have access to this type of

knowledge. Even with a lot of information, the sequential indicator simulation tech- '"

nique has produced a large number of inaccurate confidence intervals, and it is impor-

tant to try to understand these failures.

The extreme difficulty that SlS encountered in accurately constraining _7 for

these runs (37 out of 50 confidence intervals were inaccurate for run Q) was not unex-

pected. This transfer function is closely related to the z-covariance, and is not sensi-

tive to the type of differing extents of correlation for which SIS is designed. A simu-

lation technique based solely on the z-covariance would be more appropriate than SlS

for constraining such functions. SlS was not intended for use with functions similar to

_7, and the results demonstrate that it is not useful for this type of function.

The inaccuracies seen for the sixth transfer function are less numerous than those

seen for _7, yet they are more disturbing. In run Q, 13 out of 50 (26%) of the Phase

II confidence intervals for _1/6 were inaccurate. The problem reflected by these results

cannot be explained simply by skewed samples, since the inaccuracy rate for run C,

with the same sample size, was only 4%. lt seems likely that a more fundarnental

difficulty has been encountered: the distribution from which SIS has sampled is simply

not representative of the distribution from which the exhaustive data sets were drawn.

Inaccurate confidence intervals for _l through _5 demonstrate that the two distribu-

tions produce output realizations with different histograms, and inaccurate confidence

intervals for _t_/6indicate that the differences can affect higher-order properties.

Figures 4-10 and 4-11 show the histograms of an exhaustive data set generated by

the Choleski method, and of several SIS realizations generated using a sample from

this exhaustive data set. By examining the differences in these histograms, we can

better understand the problems that lead to inaccurate confidence intervals. In Figure

4-10, the bins used in constructing the histograms have endpoints corresponding to the

extrema and quantiles of the exhaustive data set. Specifically, the extrema and the

0.20, 0.35, 0.50, 0.65, and 0.80 quantiles of the exhaustive data set are used as end-

points. Thus, in the upper left-hand panel, the four middle bins each contain 15% of
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Figure 4-10 Histograms of an exhaustive data set, and three different realizations. The exhaustive

data set was generated using the Choleski method, and the realizations were generated by

,, SIS, using a sample of size 30 from the exhaustive data set, in the manner of run Q. The

endpoints of the histogram bins are equal to the quantiles of the exhaustive data set, as

input to SlS. At this scale, the histograms of the realizations closely resemble that of the

exhaustive data set.
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Figure 4-11 A second set of histogramsfor the same fourdatasets used in Figure 4-10. Here, the his-

tograms use a finer binning scale, which allows us to see the differences in the way the

two simulation techniques (Choleski and SlS) model the distribution of values within a

particular indicator bin. Due to the heavier tails seen for SIS-generated distributions,

values of _6 and _7 tend to be more extreme for SIS realizations than for the exhaustive

data sets, and inaccurate confidence intervals result.
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the values in the exhaustive data set, and the two end bins each contain 20%. These

quantiles are the same ones provided as indicator thresholds to SlS in generating the

realizations. We can see from the other three panels that, at this scale, the characteris-

tics of the exhaustive data set have been re-captured reasonably well in the SlS realiza-

tions.

Figure 4-11 shows the histograms of the same four data sets, here plotted at a

finer scale than in Figure 4-10. lt is evident that the exhaustive data set has a distribu-

tion that is thinner in the tails than those of the three realizations. This difference is

due to the differing nature of the Choleski and SIS simulation procedures. The SIS

method, with the parameters chosen here, models a uniform distribution within indica-

tor thresholds bins. Conversely, the Choleksi method gives final values that are a

weighted sum of independent random variables, and thus have a histogram that is

roughly Gaussian in shape.

lt is likely that this difference in histogram shapes is responsible for many of the

inaccuracies seen for runs Q, R, S, T, and U. For example, ten inaccurate confidence

intervals constructed for _6 in run Q were examined. In every case, the true value of

q/6 (a negative number) exceeded the upper limit of the confidence interval. The

heavy tails of the realizations resulted in values of _/6 that were ali smaller than the

true value. This situation again points out the importance of accurately modeling the

tails of a distribution to be simulated, a task that can be extremely difficult when data

are sparse.

4.5 Indicator VariPgrams of SIS Realizations

One of the appealing features of sequential indicator simulation is that it is based

on an indicator kriging estimator that "honors ali the indicator covariance model

values" (Journel, 1988). In attempting to understand the behavior of the SIS method,

it is important to clarify the meaning of this statement. Specifically, what "covariance

model values" are referred to, and how closely are they reproduced?

• There are several different sets of indicator variograms, corresponding to covari-

ance models, associated with the use of sequential indicator simulation. First, there is

the set of what we will call input variograms, which are specified by the user in

advance of simulation. There are also sample variograms, which are usually modeled
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from available sample data, and perhaps from additional geological data and/or insight.

The exhaustive variograms, are calculated from the true, but generally unknown,

exhaustive data set from which the sample is taken; and, finally, the theoretical

variograms describe the spatial continuity seen over the full random functions distribu-

tion of which the exhaustive data set is a single element. Note that these different °

types of indicator variograms are interrelated. For example, the exhaustive variograms

represent the mean(s) of the distribution of sample variograms from a particular

exhaustive data set; and for large samples, the sample variograms will resemble the

exhaustive variograms. Similarly, the theoretical variograms represent the mean(s) of

the exhaustive variograms over the random functions distribution. In practice, the

input variograms would usually be based on the sample variograms; in this study,

input variograms based on the exhaustive and theoretical variograms are used. So -

which covariance structures are reproduced in the realizations?

The answer to this question turns out to depend strongly on the size of the sam-

ple. Figure 4-12(a) shows the indicator variograms (at a threshold of-2, the theoreti-

cal 20 th percentile) of five different 30 x 30 SIS realizations, ali generated with the

same input = theoretical indicator variograms, and constrained by only two sample

points. The results are extremely variable, and none of the realizations has a vaziogram

that resembles the input variogram, but the mean of the five is quite close to the input

function. This is encouraging: we would not want to restrict the simulator to produc-

ing only output data sets that exactly match the specified variogram models, yet we

would like the realizations, on average, to conform to these models.

Next, an exhaustive data set was generated, with the same input indicator

variograms used to generate the realizations in the previous step. A random sample of

45 points was taken from this data set. Five realizations were generated using the

same input = theoretical variograms, and constrained at the 45 sample points. Figure

4-12(b) shows the indicator variograms of the exhaustive data set, the five realizations,

and the mean of the realizations. The random seeds used for the realizations were the

same as those used for part (a) of the figure, so that the difference in the two sets of

variograms is due solely to the sample data. In this step, the variability seen among

the different realizations has decreased, and the variograms no longer seem to be

centered around the input variogram. Rather, the mean variogram over the realizations

lies close to the exhaustive variogram, which was not known to the simulation
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INDICATOR VARIOGRAMS, THRESHOLD = -2
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Figure 4-12 Indicator variograms for different SIS realizations. In the left-hand panel, five realizations

wereindependentlygeneratedusingthe theoreticalindicatorvariogramshownby thesolid

line as input. Eachrealizationwas constrainedat only two sample points. None of the

individual realizations has an indicator variogram resembling the theoretical function, yet

the mean over the five (dashed line) shows good agreement. In the fight-hand panel, an

initial exhaustivedata set was generatedin the mannerthat ali realizationsin the previous

step were generated. From this data set, 45 points were sampled. The five dashed lines

are indicator variograms from realizations Obtained by re-running SIS, using the same

" theoretical indicator variogram as input, now with the 45 sample points given. (The two

sets of realizations used the same five random seeds.) Note that, in the right-hand panel,
41,

the mean of the five re,,alization variograms lies close to the variogram (solid dots) of the

exhaustive data set from which the samples were taken.
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program. Presumably, this was caused by the relatively large sample taken from the

exhaustive data set. This is another encouraging result, for it implies that as more

information about the exhaustive data is made available, the input variogram becomes

less important, and the realizations are less variable and take on the character of the

exhaustive data set.

The potential for problems arises when a sample is large enough to influence the

variograms of the realizations, yet has properties that differ substantially from those of

the underlying exhaustive data. For example, z_user could be aware that a particular

sample is skewed (e.g., contains a disproportionate number of low values), and might

attempt to correct for this by using input variograms that specify an appropriate data

histogram. But the characteristics of the sample data could still force the realizations

away from the desired properties. Figure 4-13 illustrates the issue. This type of

difficulty can never be avoided: when data and a model are both used, and are in any

way inconsistent, one must be favored over the other. With relatively large samples,

SIS tends to favor data. In some instances in this study (for example in run D), this

characteristic has resulted in inaccurate confidence intervals. Note, however, that the

models used in this run were good, i.e., they were the theoretical variograms used to

generate the exhaustive data set. In actual practice, we would never have access to

such good models, so that a preference for data over models seems desirable, and

should not be viewed as a weakness of SlS. This preference should be understood as

an important property of the simulator, which can have either positive or negative

consequences, depending on the representativeness of the sample and on the quality of

the models.
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Figure 4-13 Indicator variograms of different SIS realizadons, showing the effect thai non-representative sam-

piing can have on output variograms. Exhaustive data set D-I.8 was generated, using the theoreti-

cal indicator variogram shown by the solid line; the solid dots represent the variogram of this data

set. Next, samples drawn from the exhaustive data set and the theoretical variogram were used to

generate five differentrealizations. (a) First, a sample size of five was used. The five resulting

realizationsare shownby dotted lines. Note that most of the realization variogramslie between

the theoretical and exhaustive functions. (b) An additional 40 sample points were provided as

• input to the realizations, bringing the total sample size to 45. The indicator variograms of the

realizations are now quite similar to one another, but they are unlike either the theoretical or

• exhaustive variograms. A 95% confidence interval for _6, constructed from 100 realizations using

this sample, is inaccurate. (c) When another 105 sample points are added, 16.7% of the data

points are known to the simulator, and the variograms of the realizations are ali close to the

exhaustive variogram. (The same five random seeds were used lo generate the realizations for...

each sample size.)
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5.0 DISCUSSION AND CONCLUSIONS

The results of this study have illustrated a number of problems that can occur

" when sequential indicator simulation is used to characterize uncertainty. A few gen-

,, eral patterns that persist over the various experimental runs may help to identify situa-

tions that lead to difficulties with the simulated response distributions.

Several of the runs giving inac,.urate Phase II confidence intervals for various

transfer functions were related in that a considerable amount of information about the

true, exhaustive data set was provided as input to the SIS program generating the reali-

zations. Specifically: in run D, fairly large samples (5% of the full data sets) were

taken; and in run M, the percentiles of the exhaustive data sets, in the form of indica-

tor thresholds, were provided to the simulator. Why would additional information

about the exhaustive data result in inaccurate confidence intervals? One possible

explanation can best be understood in terms of sampling distributions.

Recall that the goal of SIS is to draw a number of realizations from an underlying

distribution that characterizes the state of uncertainty about a particular region of

interest. In the control runs (A, B, C, and D) of the experiment, exhaustive data sets

were generated by assuming that the value of the random variable Z was known at

two locations, and by providing SIS with indicator variograms for five different thres-

holds. Now suppose that we were to generate realizations by repeating this process

one hundred more times, (without sampling from the exhaustive data set that we have

just generated). In this case, our realizations would truly be draw,l from the distribu-

tion that generated the exhaustive data sets, and we would expect that, in almost ali

cases, the value of a specific transfer function evaluated over the exhaustive data set

would lie between the extremes of that transfer function evaluated over the realiza-

tions. (On average, the value for the exhaustive data set would lie outside of the range

of the values over the realizations only 2 out of 101 times.)

The situation just described is similar to a control run with a low value of n'

when the sample drawn from the exhaustive data set is small, and SIS is used to gen-

. erate both the exhaustive data sets and the realizations, the realizations are essentially

drawn from the distribution from which the exhaustive data set was drawn. The

resulting confidence intervals for various transfer functions are not very precise, but
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they are accurate. This changes when the sample size increases: the distribution used

to generate the realizations is conditional on a large number of available data, and is

no longer equivalent to the distribution used to generate the exhaustive data. The

s:snulated distributions for various transfer functions become more precise, due to the

constraints imposed by the large sample, but accuracy rra,decrease, as was observed ,_

in run D.

Now consider what happens when the indicator variograms used to generate the

realizations contain specific information about the exhaustive data set, as was the case

in run M. Here again, the realizations are drawn from a distribution different from the

one from which the exhaustive data set was drawn. One would hope that, since infor-

mation about the exhaustive data set was incorporated into the distribution from which

SIS realizations are drawn, this distribution would be approximately centered on the

exhaustive data set. The number of inaccurate confidence intervals seen in run M

demonstrates that this is often not the case.

The problems become more pronounced when the exhaustive data set is not gen-

erated using SIS. The results of runs Q, R, S, T, and U were disappointing, and sug-

gest that accuracy problems may be likely to occur when the region of interest has sta-

tistical properties that depart from the SIS model of specific dependency relationships

, at a number of known indicator thresholds. Although the SIS models appear to be

more flexible than the familiar, Gaussian-based models, they have had difficulty ade-

quately representing data sets with a fairly simple spatial structure, even when

appropriate range and sill information is provided. This is particularly discouraging,

since the available data from any target region is likely to be limited, and it will be

difficult to check the validity of the indicator models. Accurate modeling of the tails

of the exhaustive distribution is necessary, yet not always possible in practice.

:t should be clear that qualitative judgments that SIS realizations look to be con-

sistent with one's concepts about an underlying geologic process are not, by them-

selves, sufficient to justify the use of SIS-generated response distributions to quantify

uncertainty. It is necessary that SIS be carefully (and quantitatively) tested in situa-

tions close to those that will be encountered in any practical case study. Validation

studies must be carried out, for the relevant transfer functions, and for the data and

models to be used in practice. In particular, users should attempt to deternfine the
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influence that sample size, input variograms, sample locations, and other factors

deemed relevant, have on their output.

Throughout this report, we have seen that SIS can be useful, but may give inac-

curate results in a variety of situations. Users of SIS should be aware of its limita-

" dons, and should ensure that they are not applying the method, or attaching too much

importance to the output, in cases where inaccuracies are likely to occur. One can have

confidence in SIS results only by having information that is generally not available -

like the theoretical indicator variograms associated with a particular region. In addi-

tion, tuning parameters of the SIS algorithm, that are unrelated to either data or geol-

ogy, can have a major effect on the output. We strongly recommend that when SIS is

used in practice to characterize uncertainty, users conduct sensitivity and validation

studies for their own transfer functions and data sets.

i
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APPENDIX A - ISSUES RELATED TO UPDATED SIS SOFTWARE

While the simulation study was in progress, an updated version of the SIS

software was released by SCRF. In this appendix, we discuss two issues that were

,_ raised by the updated program.

A.I Correcting Order Relations Problems

The simulation study described in the main body of this report was carried out

using version 1.1 of the computer program isim3d.c to perform sequential indicator

simulation. After the study had been in progress for several months, a bug was

discovered in this version of the code. The bug involved the correction procedures for

the so-called "order relations problem," discussed in section 2.4. This problem can

occur when indicator kriging is used to estimate the probability that the z-value at a

particular node will be less than various thresholds: it is theoretically possible that the

cumulative distribution function (cdf) specified by a sequence of kriged probabilities

might not be a monotone non-decreasing function. For example, indicator kriging

might estimate the probability that a node would be less than 0 as 0.50, and the proba-

bility that the same node would be less than 2 as .25. Clearly, such a situation violates

the basic principles of probability. In an attempt to correct this problem, version 1.1 of

SCRF's SIS computer code incorporates the following fix. If there are two or more

cutoffs (indicator thresholds), then each pair of consecutive cutoffs is checked, in order

from lowest to highest, to see if the estimated cumulative probability of the higher

cutoff is less than that for the lower cutoff. When this condition is detected, the two

estimated cumulative probabilities are averaged, and this average is assigned to both
cutoffs in the pah'.

This fix fails to ensure a correct solution, as can be seen in the following exam-

ple. Suppose that a simulation uses 3 indicator tlu'esholds, zk,, zk2, and zk3, with

1 zk_ < zk2 < zk3. For a particular node, o_, suppose that the initial estimated cumulative

probabilities for the three thresholds are as follows:
P

P(zo_<zl)=0.7, P(zoL<-z2)=0.5, and P(zo_<z3)=0.3.

When the first pair has been checked and corrected, both the first and second values
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will be set to 0.6:

P (z _ < z l) = 0.6, P (za < z 2) = 0.6, and P (z_ < z 3) = 0.3.

When the second pair is checked, both the second and third values will be set equal to

.45:

P(za<_zl)=0.6, P(za<z2)=0.45, and P(za<zl)=0.45.

The correction subroutine is now complete, but the order relations problem

remains: the resulting cdf is not a non-decreasing function. This is the bug that was

present in the original implementation (version 1.1) of the software, and was not

discovered until the present study was well under way. In December 1990, version

2.21, a debugged update of the program isim3d.c was released by SCRF. In this ver-

sion, a new subroutine for correcting order relations problems is introduced. The pro-

gram documentation describes the new correction algorithm as follows:

After the conditional cdf has been estimated an order relation correction is carried

out. This correction consists of performing two passes, one from the lowest

threshold to the largest and the other in the opposite direction. In each pass a

new estimate of the cdf without order relations is obtained. One of these esti-

mates tends to overestimate the final cdf values and the other tends to underesti-

mate the final cdf values. The arithmetic average of the two estimates is chosen

as a better approximation.

The time required to rerun the entire study using version 2.21 was prohibitive. It

was decided that a few key runs could be duplicated on the newer, debugged code. If

the results did not differ substantially from the original results, it would be reasonable

to conclude that the problems occurring in the original implementatio,_ were not solely

due to the bug in the method of correcting the order relations problem.

Runs D and M were chosen for duplication. The runs carried out on debugged

code will be referred to as D' and M', respectively. In the original implementation,

runs D and M each gave a significant number of inaccurate Phase II confidence inter-

vals for the majority of the transfer functions. Results for the duplicated runs are

summarized in Figure A- 1 and Table A- 1.
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TABLE A-I

ACCURACY AND PRECISION IN ORIGINAL RUNS D AND M,

COMPARED TO RUNS D' AND M'

.,_

Median Confidence Interval Widths - Phase I

Run n Wt Yz ¥3 ¥4 Ys W6 _7

D 45 0.17 0.23 0.22 0.19 0.17 56 1.9

D' 45 0.13 0.21 0.25 0.23 0.17 50 1.9

M 30 0.24 0.29 0.26 0.22 0.18 52 2.7

M' 30 0.21 0.25 0.27 0.26 0.22 62 2.2

Number Inaccurate Confidence In_rvals - Phase II
,, ,,

Run n _t _2 _3 _F4 _5 _6 _7

D 45 3 6* 11' 10" 7* 6* 4

D' 45 6* 5 6* 3 3 5 7*

M 30 10" 6* 10" 10" 14" 6* 4

M' 30 10" 8* 1 4 8* 7* 8*
,,,

*Runs for which the number of inaccurate confidence intervals is stalistically
P

significant at a level less Sat 5%.

i
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Runs D and D' gave comparable degrees of precision, as measured by the median

confidence interval widths seen over ten Phase I replications. Accuracy improved in

run D', where three out of seven transfer functions gave a significant number of inac-

curate confidence intervals, (as compared to five out of seven for run D). Note how-

,. ever, that this improvement came largely in the simplest transfer functions, _1 through

• 5. The performance for the two complex and spatially-sensitive transfer functions (_6

and _7) did not improve. For _6 in run D', five out of fifty confidence intervals were

inaccurate; although not a statistically significant count, this was just one fewer than

was observed for run D. And for _t7, a statistically significant seven out of fifty

confidence intervals were inaccurate in run D'.

Runs M and M' also had comparable degrees of precision, and, as with runs D

and D', accuracy in _1 through Us seemed to be improved by the use of the debugged

version of the simulation code. However, accuracy problems persisted, and actually

worsened, for the spatially-sensitive transfer functions.

From these results, it appears that use of the debugged code may lead to an

enhanced ability to accurately reproduce the marginal distribution of the z variable

over the region of interest. This is seen in the improved accuracy of the confidence

intervals for _1 through _5. However, this improvement does not seem to carry over

into the higher-order properties of the realizations, as evidenced in the poor perfor-

mances seen for the spatially-sensitive transfer functio',.s, lt is clear that the accuracy

problems observed for many runs in the main body of this report cannot be attributed

solely to incorrect solution of the order relations problem.

A.2 The Importance of the SK/OK Flag

When sequential indicator simulation is carried out, kriging is used to estimate the

conditional cdf of the z variable at each unsampled node. Either simple or ordinary

kriging may be used in this step. In general, if a considerable amount of data are

available in th_ neighborhood of the node, ordinary kriging, with its capacity to fit a

• local mean, is used. If the information available in the neighborhood of the node is

sparse, simple kriging is used. When this is the case, the mean of the conditional cdf

is specified solely by the input indicator variograms, and is not fit locally.



The issue of when there are ample data to warrant the use of ordinary kriging

turns out to be important to the performance of sequential indicator simulation. In ver-

sion 1.1 of the program isim3d.c, simple kriging is used whenever five or fewer data

points (samples or nodes already simulated) are in the neighborhood of the node to be

simulated. (The neighborhood size is specified by the user.) In version 2.21 of the 4,

program, a simulation parameter called "OK flag" is introduced. The user sets OK flag

equal to an integral value, and whenever more than this number of data points are in a

neighborhood, ordinary kriging is used. (Setting OK flag = 5 is equivalent to the algo-

rithm used in version 1.1.)

A brief experiment was carried out to demonstrate the effect of changing the OK

flag oil output simulations. The experiment followed an approach taken by Lucien

Verrezen of Genmin during his visit to SCRF in the spring of 1990. An exhaustive

data set was generated using version 2.21 of isim3d.c, with the same indicator

variograms used in the control runs (A through D) of the simulation study, and with

the OK flag set equal to five. A sample of 15 data points was taken from this exhaus-

tive data set. The sample was then input as conditioning data to version 2.21 of the

simulation code four different times. The same random seed and input indicator

variograms were used each time, but different values of the OK flag were chosen. The

first realization used OK flag = 0, corresponding to the case when ordinary kriging is

invoked at ali times, and simple kriging is never used. The second realization used OK

flag = 5, the value used in version 1.1 of the computer code, (and in the simulation

study). The third realization used OK flag = 10, and the last realization used OK flag

= 900. Because there are only 900 nodes in the full data set, the latter case implies

that simple kriging is used at ali times, and ordinary kriging is never invoked.

Figure A-2 shows the exhaustive data set, the sample, and the four realizations.

It is clear from this display that the value of the OK flag can have a large impact on

the realizations. Note that when the OK flag is set equal to zero and ordinary kriging

is used for ali nodes, the realization is characterized by large patches of nodes falliag
lb

within the same bin. This tendency, which is caused by the fitting of local means in

ali regions of the plane, becomes less evident in subsequent realizations that rely more

on simple kriging. The opposite extreme is the realization with OK flag = 900, which

demonstrates very little consistency among neighboring nodes.
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EXHAUSTIVE DATA SAMPLE
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Figure A-2 Plot illustrating the influence of the OKflag on SIS

rexdiT.ations. The exhaustive data set was generated with OK

2 <z flag = 5. A sample of size 15 was then taken, and used to gen-

_, 1 < z <,,2

o< z<=_ crate four realizations. The same random seed was used for

-_<z<-o each realization, but the value of the OK flag varied. The first

" .2,z<--, realization, which used only ordinary kriging, contains largeii_::ili::iz,:=.2
::::::5:::'

patches of neighboring nodes with similar values. By contrast,

the last realization, which used only simple kriging, exhibits

very little spatial connectivity.
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It is evident that the effect of the OK flag on the continuity of SIS realizations

can be as large as the effect of the input indicator variograms. Unfortunately, no

theory has been developed to help users to choose an appropriate value. The SCRF

documentation suggests setting the OK flag equal to twice the maximum number of

nodes per octant to be retained for kriging. This rule would give a value of 8 in the ,

above example. It is not clear whether or why this formula is appropriate; it is clear

that the user's choice of the OK flag can have a large impact on the output of SlS, and

must be considered carefully.
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APPENDIX B - SIMULATION METHODS AND PARAMETERS

This appendix describes, in detail, the simulation methods and parameters used to

generate exhaustive data sets and realizations for the simulation study. Ali of the indi-

cator variograms used in the study were spherical in shape and had zero nugget. Ino

the notation used below, "cdf" refers to cumulative distribution function, "anis" refers

to the ratio of the range in the x direction to the range in the y direction, and "a"

represents the ,range in the x direction.

Runs A, B, C, D, E, F, G, H

The exhaustive data sets were generatedusing sequential indicatorsimulation. Five indicatorthresholds

were used: -2, -1, 0, 1, and 2. The parametersof the indicatorvariograms used for each threshold were

as follows:

minimum v',due=-5,maximumvalue=5

threshold=-2, cdf=.20, anis=3, a=7, sill=.16

threshold=-1, cdf=.35, anis=3, a=5, si11=.2275

threshold=0, cdf=.50, anis=l, a=3, sill=.25

threshold=l, cdf=.65, anis=l, a=2, si!1=.2275

threshold-2, cdf=.80 anis=1, a=2 sill=.16

The realizations were also generated using SIS with the indicatorvariograms specified above.

Runs I, J

The exhaustive data sets were generated exactly as in run A. The realizations were generatedusing SIS

with the follo_,,,,g indicator variogram parameters:

minimum value-5, maximum value=5

threshold=-2, cdf=.25, anis=3, a=7, sill=.1875

threshold----I,cdf=A0, anis=3, a=5, sill=.24

threshold=0, cdf=.50, anis=l, a=3, si11=.25

threshold=l, cdf=.60, anis=l, a=2, sill=.24

threshold=2, cdf=.75 anis=1, a=2 sill=. 18'75
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Run K

The exhaustive data sets were generated exactly as in run A. The realizations were generated using SIS

with the following indicator variogram parameters: ,,

minimum value=-3, maximum value3

(Ali thresholds and variograms as in run A.)

Run L

The exhaustive data sets were generated exactly as in run A. The realizations were generated using SIS

with the following indicator variogram parameters:

minimum value=-6, maximum value=6

(Ali thresholds and variograms as in run I.)

Run M

The exhaustive data sets were generated as in run A. Realizations were generated using SIS, with the

following parameters:

minimum valu_po, maximum value=p 10o

threshold-p2o, cdf-.20, anis-3, a=7, sill-.16

threshold=p 35, cdf=.35, anis=3, a=5,si11=.2275

threshold=pso, cdf=.50, anis=l, a=3, si11=.25

threshola-, _5,cdf=.65, anis=l, a=2, si11=.2275

thresho:d=pso, cdf=.80 anis=l, a=2 sill=.16,

where p a refers to the o_perceatile of the exhaustive data set.

Runs N, P

The exhaustive data sets were generated as in run A. Realizations were generated using SIS, with the

following parameters:

minimum valu_qo, maximum value=q loo

threshold=q_, cdf=.20, anis=3, a=7, sill---.16

threshold=q35, cdf=.35, anis=3, a=5, sill=.2275 "

threshold=qso, cdf=.50, anis=l, a=3, si11=.25

threshold=q65, cdf=.65, anis=l, a=2, sill=.2275

threshold=qso, cdf=.80 anis=l,a=2 sill=.16,
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where q I_refers to the [_ percentile of the related data set.

Runs Q, R

The exhaustive data sets were generated as follows: (1) Independently sample 900 values from a uni-

form distribution with mean 0, variance 1. Assign each value to a point on the 30 x 30 grid. (2) Use

the Chol_ld decomposition of a theoretical covariance matrix lo transform the data so that they exhibit

the desired covanance structure (Anderson, 1984). T_ c_wariaa_ce matrix chosen represents a spherical

variogram with a sill of 5 and a range of 10. Realizations were generated using SlS, with the following

parameters:

minimum valu_po, maximum value=ploo

threshold=P2o, cdf=.20, anis=l, a=10, sill=.16

threshold=p35, cdf=.35, anis=l, a=10, siU=.2275

threshold=pso, cdf=.50, anis=l, a=10, si11=.25

threshold=p65, cdf=.65, anis= Iv a= 10, si11=.2275

threshold=pso, cdf=.80 anis=l, a=10 sill=.16

where p a refers to the cxpercentile of the exhaustive data set.

Runs S, T, U

The exhaustive and related data sets were generated in the same manner as the exhaustive data sets in

run Q. Realizations were generated using SIS, with the following parameters:

minimum value=q0, maximum value=q 1o0

threshold=q2o, cdf=.20, anis=l, a=10, sill=.16

threshold=q35, cdf=.35, anis=l, a=10, si11=.2275

threshold=q5o, cdf=.50, anis= 1, a= 10, si11=.25

threshold=q65, cdf=.65, anis=l, a=10, si11=.2275

threshold=qso, cdf=.80 anis---1, a=10 sill=.16,

where ql_ refers to the [_percentile of the related data set.

4t
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APPENDIX C - INPUT. S TO isim3d.c

This section describes, in detail, the simulation parameters used to generate the

various exhaustive and realization data _ets used in the study. The C language pro-

. gram isim3d.c (Gomez-Hernandez et al., 1989) provided to Sandia National Labora-

tories by the Stanford Center for Reservoir Forecasting, was used to generate ali

sequential indicator simulations. This program requires information from a number of

input files. For ali of the sequential indicator simulations carried out in this study, the

input files isim3d.spec, and isim3d.layer appeared as shown in Table C-3 and Table

C-4, respectively. The other two input files, isim3d.var and isim3d.dat, were varied

over the different runs.

Runs A, B, C, D

Exhaustive Data Sets:

Generated using isim3d.c, with the following input flies:

isim3d.var, isim3d.dat: as shown in Tables C-l, and C-2.

Realizations:

Generatedusing isim3d.c, with the following input files:

isim3d.var: as shown in Table C-1.

isim3d.dat: randomsamples from the exhaustive dataset.

Runs E, F

Exhaustive Data Sets:

Generated using isim3d.c, with the following input files:

isim3d.var, isim3d.dat: as shown in Tables C-1 and C-2.

Realizations:

• Generated using isim3d.c, with the following input files:

isim3d.var: as shown in Table C-1.
.,.,.

isim3d.dat: clustered random samples from exhaustive data sets. Clustered such that, on average, 67%

of samples will lie within the first and third quadrants of grid square (upper right and lower left).
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TABLE C- 1

INPUT FILE isim3d.var*

isim3d.var 1 isim3d.var, cont'd 2 isim3d.var, cont'd 3 ii,

1.1 rand 5 3.3 threshold 0 5.3 Ou'eshoid 2

1.2 z_mm, z_max -5 5 3.4 p cdf .5 5.4 p cdf .80 "

1.3 threshold -2 _3"5 nugget 0 5.5 nugget 0

1.4 pcdf .2 3.6 cmax l 5.6 cmax l

1.5 nugget 0 3.7 num_struct l 5.7 num struct l

1.6 cmax l 3.8 type 2 5.8 type 2

1.7 num_struct l 3.9 sill .25 5.9 sill .16

1.8 type 2 3.10 a 3 5.10 a 2

1.9 sill .16 3.11 anis.x 1 5.11 anis.x 1_

1.10 a 7 3.12 ains.y 1 5.12 ams.y 1

1.11 anis.x 1 3.13 anis.z 1 5.13 aais.z 1

1.12 ains.y 3 3.14 1 0 0 5.14 1 0 0

1.13 anis.z 1 3.15 cos 0 1 0 5.15 cos 0 1 0

3.16 0 0 1 5.16 0 0 11.14 1 0 0

1.15 cos 0 1 0 4.3 threshold 1

1.16 0 0 1 4.4 p_cdf .65

2.3 threshold -1 4.5 nugget 0

2.4 p_cdf .35 4.6 cmax 1q

2.5 nugget 0 4.7 num struct 1

2.6 cmax 1 4.8 type 2

27 ntun_struct 1 4.9 sill .2275
_.

_

2.8 type 2 4.10 a 2
__

2.9 sill .2275 4.11 anis.x 1

2.10 a 5 4.12 ains.y I--- !

2.11 anis.x 1 4.13 aras.z 1
i

2.12 airts.y 3 4.14 1 0 0 --
r

2.13 / aras.z 1 4.15 cos 0 1 0

I 4.16 0 0 1 ,,

t
2.14 ! 1 0 0 -

121/ cos
L 1 00 ,

i

The table is in the format of the worksheets recommended by Gomez-Hernandez et al. (1989). The actual input

file contains only the numerical entries in column 3.
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TABLE C-2

INPUT FILE isim3d.dat*

isim3d.dat
i

" ndata 2

(x,y,z,value) in order: "y faster-than x faster-than z"

1 3 3 0 1.201

2 12 12 0 0.672

The table is in the format of the worksheets recommended by Gomez-Hernandez et al. (1989). The actual input

file contains only the numerical entries in column 2.
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, LJllL,_ _, ,, , , ,bJL

TABLE C-3

INPUT FILE isim3d.spec

#
isim3d.spec

....

1 g_delta.x, g_delta.y, g_deita.z 1 1 2

2 g_origin.x, g_origin.y, g_origin.z 0 0 0
....... ,,

3 g_nodes.x, g_nocles.y, g_nodes.z 30 30 1

4 cdf 1

5 out_dummy, in_dummy -1 I

6 seed I (varies)

7 from.x, from.y, fi'om.z 1 1 1

8 to.x, to.y, to.z 30 30 1

9 radius.x, radius.y, radius.z 10 l0 1

l0 1 00

11 direction cosines 010

12 001
-

13 rotation flag 0

14 max_per_octant 4
.... , ....

15 dbg 0

16 out_fig 2

* The table is in the format of the work.sheets recommended by Gomez-Hernsndez et al. (1989). The actual input

file contains only the numerical entries in column 3.
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TABLE C-4

INPUT FILE isim3d.layer*

w

isim3d.layer
,

, top, thickness, in order: "y faster-than x axis"

1 0 1
,,

2 0 1

3 0 1

m,

9OO 0 1

The table is in the formal of the worksheets recommended by Gomez-Hernandez et al. (1989). The actual input
file contains only the numerical entries in column 2.
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Runs G, H

Exhaustive Data Sets:

Generated using isim3d.c, with the following input flies:

isim3d.var, isim3d.dat." as shown in Tables c-i and C-2.

Realizations:

Generated using isim3d.c, with the following input files:

isim3d.var: as shown in Table C-I.

isim3d.dat: clustered random samples from exhaustive data sets. Clustered such that, on average, 57%

(run G) or 73% (run H) of samples will lie within the first quadrant of grid square (upper right).

Runs I, J

Exhaustive Data Sets:

Generated using isim3d.c, with the followiag input files:

isim3d.var, isirrdd.dat: as shown in Tables C-I and C-2.

Realizations:

Generated using isim3d.c, with the following input files:

isim3d.var: as shown in Table C-I, with the following changes:

(line 1.4).25

(line 1.9).1875

(line 2.4) .40

(line 2.9) .24

(line 4.4) .60

(line 4.9) .24

(line 5.4) .75

(line 5.9) .1875

isim3d.dat: random samples from the exhaustive data set.
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Run K

Exhaustive Data Sets:

Generatedusing isim3d.¢, with the following input flies:

isim3d.var, isim3d.dat: as shown in Tables C-I and C-2,

Realizations:

Generated using isim3d.c, with the following input files:

isim3d.var: as shown in Table C-I, with the following change:

(line 1.2)-3 3

isim3d.dat: random samples from exhaustive data sets.

Run L

Exhaustive Data Sets:

Generated using isim3d.c, with the following input files:

isim3d.var, isim3d.dat: as shown in Tables C-1 and C-2.

Realizations:

Generated using isim3d.c, with the following input flies:

isim3d.var: as shown in Table C-l, with the following changes:

(line 1.2)-6 6

(line 1.4).25

(line 1.9).1875

(line 2.4) .40

(line 2.9) .24

(line 4.4) .60

(line 4.9) .24

(line 5.4) .75

• (line 5.9). 1875

isim3d.dat: random samples from exhaustive data sets.
,a
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Run M

Exhaustive Data Sets:

Generated using isim3d.c, with the following input files:

isim3d.var, isint3d.dat." as shown in Tables C-I and C-2.

Realizations:

The quantiles of the exhaustive data set were used to compute indicator variograms for the realizations,

which were generated using isim3d.c, with the following input flies:

isindd.var: as shown in Table C-l, with the following changes:

(line 1.2) rain and max values of exhaustive data set

(line 1.3) 20_hpercentile of exhaustive data set

(line 2.3) 35th percentile of exhaustive data set

(line 3.3) 50 'h percentile of exhaustive data set

(line 4.3) 65 th percentile of exhaustive data set

(line 4.3) 8ffh percentile of exhaustive data set

isim3d.dat: random samples from the exhaustive data set.

Runs N, P

Exhaustive Data Sets:

Generated using isim3d.c, with the following input files:

isim3d.var, isim3d.dat: as shown in Tables C-1 and C-2.

Realizations:

For each exhaustive data set generated, a second, related data set was generated by isim3d.c, using the

same input files. The quantiles of the related data set were used to model indicator variograms for the

realizations, which were generated using isim3d.c, with the following input files:

isim3d.var: as shown in Table C-l, with the following changes:
j.

(line 1.2) rain and max values of related data set

(line 1.3) 20 th percentile of related data set

(line 2.3) 35 'h percentile of related data set

(line 3.3) 50_hpercentile of related data set

(line 4.3) 65th percentile of related data set
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(line 4.3) 80 'h percentile of related data set

isim3d.dat: random samples from the exhaustive data set.

e,

Runs Q, R
lt

Exhaustive Data Sets:

Generated as follows: (1) Independently sample 900 values from a uniform distribution with mean 0,

variance 1. Assign each value to a point on the 30 x 30 grid. (2) Use the Choleski decomposition of

a theoretical covariance matrix to transform the data so that they exhibit the desired covariance struc-

ture (Anderson, 1984). The covariance matrix chosen represents a spherical variogram with a sill of

five and a range of ten; this is the same shape as that of the indicator variograms specified in Table C-

1.

Real_ations:

Generated using isim3d.c, with the following input files:

isim3d.var." 'as shown m Table C-I, with the following changes:

(line 1.2) min and max values of exhaustive data set

(line 1.3) 20 'h percentile of exhaustive data set

(line 1.10) 10

(line 1.12) I

(line 2.3) 35_ percentile of exhaustive data set

(line 2.10) 10

(line 2.12) 1

(line 3.3) 50 `h percentile of exhaustive data set

(line 3.10) 10

(line 4.3) 65 'h percentile of exhaustive data set

(line 4.10) 10

(line 5.3) 80zh percentile of exhaustive data set

(line 5.10) 10

isim3d.dat: random samples from the exhaustive data set.

4"
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Runs S, T, U

Exhaustive Data Sets:

_t

Generated as in run Q.

Realizations:
l

For each exhaustive data set, a second complete data set was generated using the same theoretical

variogram as that of the exhaustive. This second data set is referred to as a "related" data set. The

quantiles of the "related" data set were used to compute indicator va.flog,rams of the realizations. The

realizations were generated using isim3d, with the following i.,.,put files:

isim3d.var: as shown in Table C-I, with the following changes:

(line 1.2) min and max values of related data set

(line 1.3) 200" percentile of related data set

(line 1.10) 10

(line 1.12) 1

(line 2.3) 350' percentile of related data set

(line 2.10) 10

(line 2.12) 1

(line 3.3) 500" percentile of related data set

(line 3.10) 10 /
/

(line 4.3) 650" percentile of related data set

(line 4.10) 10

(line 5.3) 800" percentile of related data set

(line 5.10) 10

isitrt3d.dat: random samples from the exhaustive data set.
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APPENDIX D - INDICATOR VARIOGRAMS FOR EXHAUSTIVE DATA SETS

GENERATED BY THE CHOLESKI METHOD

Runs Q, R, S, T, and U of the .experiment used exhaustive data sets that were

,, generated using the Choleski method. (For details of the method, see section 3.1.4.)

Each of these exhaustive data sets had a theoretical z-variogram that was spherical in

shape, with a range of ten and a sill of five. In generating the 100 realizations for

these runs, five indicator thresholds were given to SIS, specifying the 0.20, 0.35, 0.50,

0.65 and 0.80 quantiles of the desired cumulative distribution function (cdf). At each

threshold, SIS was told that the theoretical indicator variogram should be spherical,

with a range of ten (the sill is determined solely by the cdf). In order to demonstrate

that this was appropriate, i.e., that, for the exhaustive data sets, the shape of the indica-

tor variograms at each of the five thresholds was well-modeled by the shape of the

theoretical z-variogram, we present Figures D-1 through D-5.

The dashed lines of the left-hand panel of Figure D-1 show the observed indicator

variograms (at the 0.20 quantile) for ten independent exhaustive data sets generated

using the Choleski method. The solid line represents the corresponding indicator

va.flog,ram model provided to SIS. Although none of the individual indicator

variograms appear to be particularly close to the solid line, they do tend to cluster

around it, and ali have ranges approximately equal to ten. The right-hand panel of the

figure shows (solid dots) the mean of the ten obselwed variograms; here, the correspon-

dence with the indicator variogram model is excellent.

Figures D-2 through D-5 depict the individual and mean indicator variograms, for

the same ten exhaustive data sets, for the other four thresholds. In each case, the indi-

cator variogram models provided to SIS closely resemble the means of the individual

indicator variograms. Based on this small simulation experiment, we conclude that the

indicator variogram models provided to the SIS simulator for runs Q, R, S, T, and U

were appropriate.

i
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INDICATOR VARIOGRAMS: 20th PERCENTILE
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Figure D-I The left-hand panel of the figure shows the exhaustive indicator variograms, at the 20th

percentile, for ten 30 x 30 data sets, independently generated using the Choleski method.

The solid line represents the theoretical indicator variogram model that was provided to

SIS for genexating realizations from such exhaustive data sets. The right-hand panel
$.

shows the mean of the ten individual indicator variograms, along with the theoretical

model input to SlS. Agreement between the mean and theoretical indicator variograms is lit

excellent.
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INDICATOR VARIOGRAMS" 35th PERCENTILE
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Figure D-2 lnd/cator variograms, ai the 35[h percentile, for ten data sets generated using the Choleski

method.
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INDICATOR VARIOGRAMS" 50th PERCENTILE
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Figure D-3 Indicator variograms, at the 50th percentile, for ten data sets generated using the Choleski

method.
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INDICATOR VARIOGRAMS" 65th PERCENTILE
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method.
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INDICATOR VARIOGRAMS: 80th PERCENTILE
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APPENDIX E- ItYPOTHESIS TESTS FOR CONFIDENCE INTERVAL ACCURACY

Each run in the first phase of the experiment used ten different exhaustive data
1

sets, and generated 100 realizations of each. As the boxplots in Figure 9 (and others)

show, ten exhaustive data sets are often sufficient to demonstrate changes in precision,

from one run to the next, as characterized by confidence interval widths. However, the

calculations below show that ten exhaustive data sets are not enough to determine

whether or not the bootstrap confidence intervals obtained by multiple simulations are

accurate.

Suppose that the distribution of the multiple simulations perfectly characterizes

the uncertainty resulting from the use of simulated (rather than exact) data at a large

percentage of nodes in the region of interest. In this case, we would expect that, for

any single transfer function, approximately 5% of bootstrap 95% confidence intervals

would fail to contain the true value of the transfer function, lt follows that if ten

confidence intervals are constructed, on average, 0.50 intervals will not contain the true

value. Thus, in our simulation experiment, if ali ten intervals contain the true value, we

are likely to conclude that the simulation results are accurate. However, if at least one

confidence interval does not contain the true value, we need to decide whether the

results indicate that the simulations are inaccurate. To make this decision, we will use

a statistical hypothesis test.

The appropriate null and alternative hypotheses for our test of accuracy are as fol-

lows:

Ho: p -<0.05

Hl" p >0.05,

where p represents the percentage of confidence intervals not containing the true value

of the transfer function. We will reject H0 if the number of confidence intervals not

containing the true value exceeds some threshold value x'. The appropriate value for

x ° is chosen by considering the level and power desired for the test. In statistical

terms, the level of a hypothesis test, denoted a, is the probability that H0 will be

rejected when no is, in fact, true. The power of a test, denoted 1-13,is the probability

that H0 will be rejected when 1tl is true. Ideally, we would like a test with level a--0

and power 1-6 = 1. This is usually a practical impossibility, so t.hat we Lvpicn__!l!ychoose

E-1



a test that has a reasonably low level (0.05 is a common value) and as high a power as

possible. For a thorough discussion of the theory of statistical hypothesis testing, see

Silvey (1975). t

For our tests of confidence interval accuracy, the binomial distribution (Feller,

1950) is used for level and power calculations. If H0 is true, then the probability that a _"

single confidence interval will not contain the true value is given by p = 0.05. The pro-

bability that, out of n confidence intervals, exactly x will not contain the true value is

given by

;].05* .95n-x, (E.1)

and the probability that x or fewer intervals will not contain the true value is given by

P(n,x,.05)=_[:].05'.95 '_-' . (E.2)

In order to test at the 5% level, we will choose x° such that e(n, x*, 0.05) exceeds 0.95.

In this way, there is at most a 5% chance that tto will be rejected when H0 is actually

true. In order to ensure that the test has maximum power for the specified level, x° is

taken to be the smallest value of x such that e (n, x, 0.05) exceeds 0.95.

For n = 10, P(10, 1,0.05)=0.914 and P(10,2,0.05)=0.989, so that x" =2 is the

appropriate critical value for testing at a level of at most 5%. (Note that the actual

!evel of the test is not exactly equal to 0.05; it is 1-0.989 = 0.011 which is somewhat

conservative.) If ten confidence intervals are constructed using multiple simulations,

and more than two fail to contain the true value of the transfer function, then we will

reject the null hypothesis, and conclude that the confidence intervals are not accurate.

How powerful is the test? To answer this question, we can evaluate the probabil-

ity that more than two (out of ten) confidence intervals will not contain the true value,

as a function of p. This is the same as the probability that the null hypothesis will be

rejected, and is given by:
lr

rio1

Tab_,e E-1 shows the power of the test for selected values of p, and Figure E-1 (solid

line) graphically illustrates the relationship between p and the probability that H0 will

E-2



TABLE E-1

POWER OF THE STATISTICAl., TESTS FOR DETECTING

° INACCURATE CONFIDENCE INTERVALS

p I - P(lO, 2, p) 1 - P(5O,5, p)

0 0.000 0.000

0.05 0.012 0.038

0.10 0.070 0.384

0.20 0.322 0.952

0.25 0.474 0.993

0.30 0.617 0.999

0.40 0.833 1.0

0.50 0.945 1.0

0.60 0.988 1.0

0.70 0.998 1.0

0.75+ 1.0 1.0
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be rejected. It is clear that departures from Ho have to be quite substantial before the

test has a good chance of detecting inaccuracy in the simulated confidence intervals:

for example, even when the actual percent of confidence intervals failing to contain the
a,

true value is as high as 25%, there is still less than a 50% chance that the test will

, detect the departure from H0. lt is for this reason that Phase II of the experiment is

necessary. Phase I, with only ten confidence intervals per run, does not provide

enough information about the accuracy of inferences made from multiple conditional

indicator simulations.

Each run in Phase II uses 50 different exhaustive data sets; thus 50 different

bootstrap 95% confidence intervals are constructed for each run. In order to develop a

hypothesis test for the accuracy of the confidence intervals, we begin by determining

the critical number (out of 50) confidence intervals failing to contain the true value.

Using expression (A.2), we find that P(50, 4, 0.05) = 0.896, and P(50, 5, 0.05)= 0.962.

Thus, the appropriate critical value for a test of level at most 5% is x" = 5, the smallest

integer such that P (50, 5, 0.05) exceeds 0.95. Here again, the true level of the test is not

exactly 0.05; it is equal to 1-0.962 = 0.038. The second data column of "Fable E-1

shows some values of the power of the test, 1 -- 13= 1 - P (50, 5, p), for various values of

p. Note that the Phase II test is considerably more powerft2 than Phase I in detecting

inaccuracy in the bootstrap confidence intervals. This can also be seen by comparing

the solid and dashed lines on Figure E-1.
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APPENDIX F

Information from the Reference Information Base

Used in this Report

This report contains no information from the Reference Information Base.

Candidate Information
for the

Reference Information Base

This report contains no candidate information for the Reference Information Base.

Candidate Information
for the

Site & Engineering Properties Data Base

This report contains no candidate information for the Site and Engineering Properties
Data Base.
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