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Abstract |

Sequential indicator simulation (SIS) is a geostatistical technique designed to aid in the
characterization of uncertainty about the structure or behavior of natural systems. This
report discusses a simulation experiment designed to study the quality of uncertainty
bounds generated using SIS. The results indicate that, while SIS may produce reason-
able uncertainty bounds in many situations, factors like the number and location of
available sample data, the quality of variogram models produced by the user, and the
characteristics of the geologic region to be modeled, can all have substantial effects on
the accuracy and precision of estimated confidence limits. 1t is recommended that
users of SIS conduct validation studies for the technique on their particular regions of
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interest before accepting the output uncertainty bounds.
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1.0 INTRODUCTION

Many studies in hydrology, petroleum geology, and the environmental sciences
involve modeling the behavior wi complex, three-dimensional systems. The hydrologic
characterization of Yucca Mountain, a potential site for a nuclear waste repository, is
such a project. Often the goal is the evaluation of a particular transfer function (such
as a volume of recoverable oil or, in the case of Yucca Mountain, minimum ground
water travel-time) over a region of interest. The availability of adequate data is usu-
ally a problem: most transfer functions require complete information on a number of
variables (or attributes) over an entire region. In practice, such exhaustive data are
rarely available, and the investigator must use limited data from a few sampled loca-
tions to infer reasonable attribute values over the entire region. The data and inferred
values are then input to a transfer code, and the output is an approximation to the true
value of the transfer function (the value obtained with perfect data over the entire
region.)

Attribute values at unsampled locations may be assigned by estimation or by
simulation. Estimation involves using the available data to identify a single value (for
each attmibute and each unsampled location) that is thought to lie close to the true but
unknown value at that location. Simulation uses the available data to construct a pro-
bability distribution for each attribute at each location. A full realization of all attri-
butes over the region of interest is then created by sampling from the constructed dis-
tributions. In both estimation and simulation, it is important to characterize the uncer-

tainty associated with the use of less-than-perfect data to evaluate the transfer function.

Estimation techniques, like kriging (Olea. 1974; Journel and Huijbregts, 1978;
Cressie, 1989), often come with built-in error estimates that are simple to compute but
depend heavily on the validity of a number of parametric assumptions that can be quite
difficult to verify in practice. In addition, it is often unclear how errors in the estima-

tion of attribute values are propagated through different transfer functions.

When simulation is used, the variability associated with the output of transfer
codes is characterized in a Monte Carlo fashion by repeatedly simulating new attribute
values at the unsampled locations, and evaluating the transfer function over many such

realizations. Simulation can be quite computer-intensive, and may require different



types of parametric assumptions than are required for estimation. In addition, it is not
clear that the variance of the set of functional evaluations (over many simulations) will
necessarily be a good approximation of the uncertainty associated with the use of
simulated (rather than exact) data; or that a response distribution based on multiple
simulations will be unbiased. These issues are taken up, for one simulation technique,

in this report.

This work was completed under WBS number 1.2.3.2.2.2.2.

1.1 Purpose

The unsaturated tuffs at Yucca Mountain in southern Nevada are being investi-
gated as a host for a potential radioactive waste repository. Licensing the repository
will require that performance-assessment calculations show that a repository at Yucca
Mountain will meet or exceed a series of federal requirements set forth in 40 CFR 191
(EPA, 1986) and 10 CFR 60 (NRC, 1986). These requirements include a probabilistic
assessment of the movement of radionuclides from the repository to the accessible
environment; as well as restrictions on the transport rate of radionuclides into rock sur-
rounding the repository, and the preemplacement ground water travel time. In order to
address these requirements, analysts must be able to model the hydrologic system at

Yucca Mountain, and to quantify the uncertainty associated with the chosen models.

Over the last few years, geostatisticians at the Stanford Center for Reservoir Fore-
casting (SCRF) have developed a flexible simulation technique, known as sequential
indicator simulation (SIS), that may be used for characterizing the uncertainty associ-
ated with the prediction of the performance of three-dimensional systems from limited,
spatially-correlated data (Journel, 1986 and 1988; Journel and Alabert, 1989). This
technique may provide a reasonable approach for the analysis of the data available for

characterization of the Yucca Mountain site.

While SIS appears promising, a number of statistical properties of the method
remain unstudied. For example, the effects of sample size and location, imperfectly
known spatial correlation structure, and modeling errers are unknown. The reliability
of perforrnance models will depend on the influence that each of these factors has on
simulations, and on the output of transfer functions. In order to make sense of sequen-

tial indicator simulations of actual field data from Yucca Mountain and other relevant
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sites, it is important to characterize these influences.

Through the use of synthetic data in a controlled, statistical investigation, it is
possible to isolate the effect of each relevant factor on sequential indicator simulations
of models that are completely known to the investigator (but not to the simulation pro-
gram.) For example, when the true value of a transfer function over a particular data
set is known, it is possible to determine whether confidence intervals estimated by SIS

accurately reflect the uncertainty associated with output values.

This report describes an extensive simulation study designed to address some of
the statistical issues related to the SIS technique. A large number of simulations were
carried out on a variety of synthetic data sets, and the performance of the SIS tech-
nique in different experimental situations was characterized both qualitatively and
quantitatively.

This type of methodological study can be quite valuable in the regulatory
environment within which the Yucca Mountain Site Characterization Project exists.
SIS is a new technique, not yet well established in the literature or practice of geos-
tatistics or risk assessment. Without knowledge of the statistical properties of the tech-
nique, regulators should be skeptical of failure probability estimates based on multiple
sequential indicator simulations. (This is true of other untested simulation algorithms
as well.) This study atiempts to anticipate and respond to seme of the concerns that
they may express. The study has identified a number of experimental situations that
can cause the SIS technique to produce inaccurate or imprecise results, and the report
discusses precautions that may help users to avoid (or at least to be aware of) such

situations in a practical study.



2.0 SEQUENTIAL INDICATOR SIMULATION

2.1 Motivation; Outline of the Method

Many of the classical geostatistical simulation techniques are based on an
assumption of multivariate Gaussianity (or normality), which can be exceedingly
difficult to verify in practice. By contrast, the SIS technique is designed to provide a
nonparametric statistical framework for studying geological systems. The approach
may be more flexible than the classical techniques, in that an assumption of muiti-
Gaussianity, with the resulting tendency towards maximum-entropy solutions, is not
implicit in the SIS model. (For a discussion of the nonconservative implications of
maximum-entropy solutions for performance assessment calculations, see Journel and
Alabert, 1989.) Nonparametric variance and confidence interval estimates are found by
repeated SIS sampling from a distribution oi realizations that are equiprobable with
respect to the available data and the specified covariance models. In addition, the SIS
frarnework allows for the inclusion of inequality-tpe soft data (Journel, 1986) in the
analysis, a feature not present in most other geostatistical techniques. It should be

noted that strict stationarity, which is not assumed for parametric methods, is required
for SIS.

The principle underlying SIS is that it is possible to completely specify the joint
probability of a collection of N dependent events, {A;, j=1,..., N } as the product
of N conditional probabilities:

P(A]"j=1""N)=P(ANIAJ’_,=11'-.,N"l)x (1)
XP(Ay lAj, j=1,...  ,N=2)x --
- xP(AylA))XP(A}).

In order to demonstrate how this principle is applied to the simulation problem, we

introduce the following notation:



S space of interest (IR2, the space of two-dimensional real numbers, in this report)
u point in S
Z(u) atiribute measured at ¥ (for convenience, Z is one-dimensional)

(n) {Zuy), a=1, ..., n}; the available data, at n locations u, € §

v transfer function (or "response function"); defined on Z (S )

For example, a simplified model might have S representing a vertical cross-
section of rock, Z representing porosity, (n) representing available porosity data at n
locations in §, and y(Z (S )) representing a minimum water travel-time through the
slice S, as a function of porosity only.

Suppose that we wish to characterize the behavior of y over S. The space S is
divided up into N nodes. Data (the value of the attribute Z) are available at n of
these nodes. SIS is used to simulate values for the remaining N — n nodes, and '
result is referred to as a realization. The transfer function y is evaluated over the real-
ization, and the outcome is recorded. The process is repeated many times, yielding a
suite of measurements of W, which can be used to estimate the value of the transfer
function over the field S, and to assess the uncertainty associated with this estimate,
A single realization is carried out as follows:

1. Start at a randomly-selected node, u,. Derive the conditional distribution of

Z(uy), given (n):

PlZu))<Sz |l )]1=P[Zu))<S2|Z(ug)=z24 € (n)]

2. Draw a realization of Z(u,). Add this to the data set, which is now denoted
(n+1).

3. Move to a second randomly-selected node, u,. Derive the distribution of
[Z(uz) | (n+1)]. |

4. Draw a realizatioi: from this distribution, and add it to the data set.

Repeat steps 3 and 4 for all N — n nodes to be simulated.



2.2 Deriving Conditional Distributions

Of course, the difficult part of the SIS procedure involves the derivation of the
conditional distribation of Z at one node, given the available data at other nodes.
Journel and Alabert (1989) discuss how this can be done using binary indicator ran-

dom variables:

The event {Z(u ) < z } can be characterized by an indicator variable:

1, ifZ(u) <z,
I(u;z) = 0, otherwise. @

Then any conditional probability for Z(u ) can be written as a conditional expectation:
PlZ(u)<z 1 (n)]1=E[I(u;z) | (n)]. 3

Now consider K threshold values, {z,, k=1, ..., K }, over the range of the attribute
Z. Each conditioning data point Z(uy) =z is coded into an indicator column with

K members, each zero or one:
{(Z(uy) =24} — {i(ugszg ) k=1,...,K}

Next, the conditional probability distribution for Z(u ) is expressed as conditional to

the n indicator columns:
PlZ(u)<sz, | Z(ug) =24, 0 € (n)] @)
=E[I(u;2,) 1 I(ugs ) =i(ugsze ) k=1,...,K; e (n)],

with z; being one of the K threshold values, {z, }. Note that there is a loss of infor-

mation involved with discretizing the conditioning data, so that Equation (4) is only an
approximation to the distribution in Equation (3). Journel and Alabert (1989) argue

that it is reasonable to assume that /(u;z, ) is more correlated with J(u; z,) than
with any of the other indicator data / (uy;z; ) with z, # z; ., and simplify Equation (4)

to:
PIZ(u)<z, 1 Z(ug) =24, € (n)] | (5)
= E[I(u;z,) |l(ua;zk0)=i(ua;zko),ae m)].

This approximation ignores cross-correlations between indicators at different



thresholds.

In order to compute the conditional expectation in Equation (5), Journel and Ala-

bert (1989) propose the first-order approximation:

PIZ(u)<Sz, | (M1 =ag+ Y ay(@) X i(ug,z,). 6)

e (n)

The weights ao and a;(c) are found using simple or ordinary kriging, versions of
weighted least squares regression where the weights are determined by the covariance
structure of the data. (For details, see Journel and Huijbregts, 1978.) The covariance

structure is specified in terms of the indicator covariance junction, C;(h;z):
Ci(h;z) =F(h;2) - FXz), )
v.gre:
F(h;z)=P[Z(u)<z,Z(u+h)<z],

and:

F(z)=F(0;z)=P[Z(u)<sz]; @®
or the indicator variogram, 2y(h;z):

2y(h;z) = 2x[C(0;2) - Cy(h;2)]. €))

Note that the indicator covariance and varicgram functions may vary as a function of
z. Thus it is possible to model different degrees of spatial correlation at different lev-
els of the attribute Z: this is one of the features that makes SIS a very flexible tech-

nique. Journel (1988) discusses the importance of this feature for flow modeling.

Once the K indicator covariance functions (one for each threshold value z; ) have
been specified, kriging (simple or ordinary) is used to estimate the conditional proba-
bility that the value at a specific node will exceed each threshold, given the observed
indicator columns. This is done using Equation (6), and provides the user with an
approximate conditional distribution for the node. A single sample is taken from this
distribution, and, as outlined earlier, this simulated value is added to the data set and

attention shifts to the next randomly-chosen node.

Journel and Alabert (1989) state that realizations constructed in this manner honor

the observed data and the specified covariance structures; we have checked this



assertion and our findings are discussed in section 4.5.
2.3 Application

As discussed earlier in this sectien, the SIS technique can be used to simulate a
large number of equiprobable realizations of Z(S ). Journel (1988) states that the
differences between the realizations themselves "should provide a measure of spatial
uncertainty about the input" [to a transfer function, response function or flow simulator
(used synonymously)]. Journel (1988) continues: "That input uncertainty can then be
processed through the flow simulator to yield the corresponding measure of uncertainty
on the response function. . ." The procedure is illustrated in Figure 2-1. Although SIS
has other applications, the ability to gauge the uncertainty associated with estimates of

the response function y(Z (S )) is the focus of this report.

2.4 Mechanical Issues

A number of mechanical problems exist related to the coding of the SIS algo-
rithm. Some of these, related to the use of kriging to estimate probabilities, may be
corrected in a straightforward, if not theoretically-pleasing, fashion. In other situations,
the SIS literature gives the user very little guidance in making decisions that may have

a large influence on the resulting simulations.

The order-relations problem is the first of two correctable situations. For two
threshold values, z; and z;, with z; <z , the estimated conditional probability of a
node exceeding z;,, may be greater than the estimated conditional probability of that
same node exceeding z;,, when the actual probabilities must be in the opposite order.

This problem can occur when the indicator variograms for the two thresholds differ. A
simple correction, discussed in Hohn (1988), involves reducing the probability of
exceeding the higher threshold to the probability of exceeding the lower threshold.
This correction assigns zero probability to the interval between the two thresholds.
Other techniques may also be used. Appendix A describes the correction applied in
the software issued by SCRF.

The second problem associated with kriging for probabilities is that it is not

uncommon for kriged estimates to lie outside of the range {0, 1]. This situation, which
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Figure 2-1

Muitiple Realizations Transter Function Response Distribution

A4
<
\2

Confidence Interval

(After Journel, 1988.) Schematic diagram of the use of sequential indicator simulation to
generate a response distribution for the transfer function .



results from negative kriging weights, is easily corrected by setting negative probabili-
ties equal to zero and probabilities exceeding one equal to one. However, the need for

such adjustment calls into question the meaning of kriged probabilities.

The other issues involve the simulatior -f an attribute value Z (u ), once the indi-
cator distribution for the node u has been constructed. Figure 2-2 shows how a bin
(the region between two threshold values) is chosen. Once the bin is selected, how-
ever, it is unclear how to best simulate a value within that bin. The user can generate
a value from a uniform (or any other) distribution across the bin. Unfortunately, any
such decision involves completely specifying a within-bin distribution, which runs
somewhat counter to the nonparametric philosophy of SIS. Further, the simulation of
values in the outer two bins can be problematic. Suppose that uniform within-bin dis-
tributions are called for. The user needs to specify minimum and maximum allowable
values, which serve as the end limits of the lower and upper bins, respectively. The
choice of these values will have a large and direct influence on the tails of the simu-
lated distribution, and yet the user may have little prior knowledge or sample data to
act as a guide in selecting appropriate extreme values. Because many relevant transfer
functions (e.g., groundwater travel-times) are sensitive to the behavior of extreme

values, this situation can become particularly troublesome.

2.5 Modeling Indicator Variograms

Because SIS uses either simple or ordinary kriging in the construction of condi-
tional distributions, it is necessary for the user to specify a covariance model at each
indicator threshold used in the kriging. The use of different indicator variograms at
different levels of the variable of interest provide the user with a great deal of flexibil-
ity in modeling spatial dependency; however, the user may be forced to estimate a
large number of indicator variograms from a relatively small data set. As Figure 2-3
shows, fitting reasonable variograms, given only a sparse sample, is often extremely
difficult. This problem is by no means unique to SIS, though; it applies to virtually all
kriging-related geostatistical simulation and estimation procedures. In some cases, the
lack of sample information may be overcome if a geologic analog of the area to be
simulated exists, and can be sampled extensively. This borrowing of information from

related regions is recommended by the SCRF group. Of course, this method is only
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Threshold Exceedence

Probability
min 1.00
V4 1 . 93
V4 2 84
Y4 3 61
« r=.57
Z4 .40
25 . 13
max 0.00

Figure 2-2  Illustration of how a bin is selected for an unsampled node. In this example, there are
K =5 indicator thresholds, in addition to the minimum and maximum values set by the
user. The probability of exceeding the minimum is set equal to unity, and the probability

| of exceeding the maximum is set equal to zero. The probabilities of exceeding the indica-
tor thresholds at the node are estimated by kriging. Next, a random number, r, between
zero and one is generated. The selected bin is determined by comparing the generated
value with the kriged exceedence probabilities. In the example above, the generated
value, r=0.57, lies between the exceedence probabilities of the third and fourth thresholds.
The simulated value at this node will thus be between z5 and z,,.
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appropriate when the spatial relationships among locations in the related region are
similar to those found in the actual region to be modeled. In cases where a geologic
analog site is not available, a combination of sample data, geologic intuition, and other
available information, must be used to develop plausible variogram models. The
influence of the chosen indicator varicgram models on the results of SIS is examined

in the simulation study.
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3.0 DESIGN OF THE SIMULATION EXPERIMENT

A two-part simulation experiment was carried out to examine the effects of the
various factors discussed above on the results of SIS. Interest was focused on the dual
issues of the accuracy and precision of transfer function predictions based on multiple
simulations. To illustrate the concepts of accuracy and precision, suppose that we
have used SIS to construct a 95% confidence interval for the minimum groundwater
travel time through a region. (The construction of confidence intervals will be dis-
cussed shortly.) A confidence interval is accurate if it does contain the true value, and
it is precise if it is provides enough information to constrain the true value. The preci-
sion of a confidence interval is directly related to its width: a confidence interval for
minimum water travel-time that runs from 3000 to 3050 years is precise, while one
that runs from 1 to 10,000 years may not be. The concepts of accuracy and precision

are illustrated in Figure 3-1.

The first phase of the experiment was designed to study the effect of a large
number of combinations of the chosen experimental factors over multiple simulations.
Data obtained from this phase were useful primarily in quantifying the precision of SIS
realizations. The second phase of the experiment was a more in-depth examination of
a subset of the factor combinations used in the first phase. These latter experiments
involved a larger number of simulations, and provided us with information about both

accuracy and precision.

3.1 Experimental Factors

The two phases of the experiment were designed to study the effect of changes in
a number of factors that may influence the accuracy and precision of SIS simulations.
The factors considered were the number and location of the available samples, the
variogram information input to the SIS code, and the statistical properties of the
exhaustive data sets themselves. The levels at which these factors were set are listed in
Table 3-1. Table 3-2 is a design matrix for the two phases of the experiment, showing

the factor combinations used in each run. A brief discussion of the factors follows.
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Figure 3-1  Illustration of the concepts of accuracy and precision, as applied to confidence intervals.

In this example, suppose that the transfer function may only take on values within the

range from 0 to 100, and let y, represent its true value. The information gained from the

imprecise simulation distributions, (b) and (d), is minimal. Ideally, we would like to be

in situation (a).



TABLE 3-1

FACTORS USED IN THE SYNTHETIC STUDY OF SEQUENTIAL INDICATOR SIMULATION

Factor Name Abbreviation Levels
sample size n 5. 18, 30, 45
sample location sl (1) random uniform

(2) random cluslered*

SIS input variogram iv (1) correct theoretical

kK
information source (2) incorrect theoretical
(3) correct exhaustive

(4) related exhaustive

method of generating gm (1) SIS

exhaustive data sets (2) Choleski

*(Za) 2:1 preferential sampling in the first and third quadrants, (2b) 1.33:1 preferential
sampling in first quadrant, (2¢) 2.67:1 preferential sampling in the first quadrant.

“(Za) SIS input variogram information and correct theoretical differs in only in terms
of the marginal cumulative distribution function (cdf) specified, (2b) SIS and correct
theoretical variogram information differs in min/max thresholds only, (2¢) SIS and

correct theoretical variogram information differs both in marginal cdf and in max/min
thresholds.



TABLE 3-2

DESIGN MATIRX FOR THE SYNTHETIC EXPERIMENT

Run Phase Phase n sl v gm
I 11
A y y 5 1 1 1
B y y 15 1 1 1
C y y 30 1 1 1
D y y 45 1 1 1
E y 30 2a I 1
F y 45 2a 1 1
G y 45 2b 1 1
H y y |45 2 1 1
I y 15 1 2a 1
J y y 30 1 2a 1
K y 30 1 2b 1
L y 30 1 2 1
M y y |30 1 3 1
N y y 30 1 4 1
P y y 45 1 4 1
Q y y 30 1 3 2
R y 45 1 3 2
N y 15 1 4 2
T y 30 1 4 2
U y 45 1 4 2

A y in column 2 indicates that the variable combination was run in the first phase, and

a y in column 3 indicates that the combination was run in the second phase.

3-4



3.1.1 Sample Size: n

The first factor, n, is the number of sample data points (out of 30 x 30 = 900 in
an exhaustive data set) that were included as input to the simulation program. Simula-
tions were run with n set at 5, 15, 30, and 45 points. By including this factor, we
hope to be able to determine whether (and the extent to which) changing the sample

size affects accuracy and precision.

3.1.2 Sample Location: s/

The factor s/, for sample location, specifies the way in which the n sample points
were chosen. This factor is included to provide a comparison between the statistical
properties of simulations conditioned on clustered data, and simulations conditioned on

unclustered data.

For s/=1, the sample points were randomly selected from the 30 x 30 grid, with
each point having an equal probability of selection. For s/ = 24, 2b, and 2c, sampling
was done preferentially in certain quadrants of the grid, to examine the effect of
clustered data. When s/ = 2a, points in the first and third quadrants were twice as
likely to be chosen as points in the second and fourth quadrants. When s/ = 2b, the
points in the first quadrant were 1.33 times as likely to be chosen as points in the other
three quadrants, and when s/ = 2c¢ points in the first quadrant were 2.67 times as
likely to be chosen as points in the other quadrants. Thus, for s/ = 2a, we expect
about 67% of the samples to lie in the first or third quadrants; for s/ = 2b, we expect
about 57% of the samples to lie in the first quadrant; and for s/ = 2¢, we expect about
73% of the samples to lie in the first quadrant. Figure 3-2 shows typical samples

taken using each of the four clustering schemes.

3.1.3 Input Variogram Information: iv

In an actual field study, an investigator will not have access to perfect variogram
information about the region of interest. He or she must model indicator variograms
from geologic intuition, available samples, and data from nearby regions thought to

have similar properties. Will this affect the accuracy and precision of uncertainty
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estimates computed by sequential indicator simulations? In order to examine this

issue, we included runs of the simulation experiment that used variogram information

from a variety of sources.

The first step in specifying an indicator variogram for a particular cutoff value,
z;, is providing F (z, ), the (unconditivonal) value of the cumulative distribution func-
tion of the variable Z(u) at cutoff value z; (See Equation 8). The next step is choos-
ing nugget and shape parameters for the indicator variogram. A set of indicator
variograms, at different levels of a variable of interest, will specify a marginal distribu-
tion for that variable, and will also dictate the extent of the correlation to be seen at
each level of the variable. Thus, in order to test the influence of input indicator
variogram information on simulated results, we study the effects of both the marginal
distributions (also referred to as proportions), and the correlation structures specified.
These factors are referenced by iv and gm; iv specifies the type and source of indica-
tor variogram information input to the SIS program, and gm specifies the simulation
method used to generate the exhaustive data sets, and thus whether the different
degrees of correlation are present at different indicator levels in the exhaustive data
sets. The exact variogram parameters used in each run are discussed in detail in

Appendix B; the input given to computer codes is specified in Appendix C.

For runs with iv = 1, the exhaustive data sets were generated using SIS itself, and
the same theoretical indicator variograms used to generate the exhaustive data set were
also used to generate the multiple realizations. These variograms were spherical in
shape, with ranges of 7, 5, 3, 2, and 2, at the 0.20, 0.35, 0.50, 0.65, and 0.80 quantiles,
respectively. (See Appendix B for details.)

When iv = 2a, 2b, or 2c, the exhaustive data sets were again generated using
SIS, but using input indicator variogram information that differed from the theoretical.
For iv =2a, the variogram information used to generate the realizations differed in
proportions only from those used to generate the exhaustive data set: that is, the thres-
hold -2 might be the 0.20 quantile of the theoretical distribution for the exhaustive data
set, and the 0.25 quantile of the theoretical distribution for the realizations. For
iv = 2b, the theoretical distributions differed only in the specified minimum and max-
imum values. For iv = 2c, the theoretical distributions of the exhaustive data sets and

the realizations differed in the specified minimum and maximum values, as well as in



the proportions.

When iv = 3, the input variogram information was computed directly from the
exhaustive data set. No functional form was fit to the raw variogram of the exhaustive
data set, since evaluation was required only at the distances at which information was
available. When iv =4, the input vériograms were taken from a data set that is
related to the exhaustive data set, as discussed in the previous section. The related
data set used for variogram estimation was the same size as the exhaustive data set,
and had the same theoretical variograms. Due to the unreliability of variograms
modeled from a sparse sample, and the time involved in plotting and examining sam-
ple characteristics, no simulations were run using variograms extracted from sample

data.

3.1.4 Method of Generating Exhaustive Data Sets: gm

Of course, the properties of real geologic regions come about as a result of
natural processes, and are not created by sequential indicator simulation. Thus, it is
important that we study the behavior of SIS-based confidence intervals on data sets
that have not themselves been generated using SIS. The factor gm specifies whether or
not SIS itself was used to generate exhaustive data sets. When gm = 1, the exhaustive
data sets were generated using SIS, and were conditional on the same two fixed data
points (see Appendix C, Table C.2, for details). When gm = 2, the exhaustive data
sets were not generated using SIS. They were created by first generating a vector of
900 independent random numbers that are each uniformly distributed with a mean of
zero and unit variance. This vector is then multiplied by one-half of the Choleski
decomposition of a chosen theoretical covariance matrix (see Anderson, 1984), and the
elements of the resulting product are associated with locations on the 30 x 30 study
grid. (The theoretical covariance matrix chosen corresponds to a spherical variogram
with a range of ten and a sill of five.) Because they are weighted sums of independent
random variables, the transformed values have a univariate histogram that tends to
appear normal in shape. Note, however, that this is rot a directly Gaussian simulation
technique. As discussed in Appendix D, for this technique, with the indicator levels
used in this report (the 0.20, 0.35, 0.50, 0.65, and 0.80 quantiles), the same range of

correlation is observed at the different indicator levels.



3.1.5 Soft Information

The use of soft information to supplement the available hard data at sample loca-
tions was not considered in the simulation study. It is reasonable to suppose that the

use of such additional information could be quite valuable in actual field studies.

3.2 Transfer Functions

Table 3-3 lists the seven transfer functions that were evaluated for each complete

realization.

3.2.1 Reproducing the Univariate Distribution: y; - ys

The first five transfer functions represent the percent of the data that exceeds five
fixed thresholds, corresponding to the indicator thresholds used by SIS in the control
runs of the experiment. These functions were used simply to determine how well
simulated data sets reproduce the univariate distribution of an exhaustive data set.
While this is an important characteristic of the simulations, it is not a sufficient basis
on which to judge the simulation technique. The issue of the spatial relationships
among variables is extremely important in real-world hydrologic studies, and must be
incorporated into the simulation study. For this reason, the sixth and seventh transfer
functions were added. Both g, a simplified minimum path-finder, and -, a relative
of the spatial covariance, are sensitive to extreme values, and depend on the spatial

structure of a realization, in addition to its univariate distribution.

3.2.2 A Simplified Minimum Path Finder: y,

The sixth transfer function, \yg, represents a simplified minimum path finder
through a two-dimensional grid. The original plan was to consider all paths through
the simulated region that start in any grid point on the left-hand side of the simulated
area, and at each step move one node to the right and either one node upwards, one
node downwards, or horizontally. The path that has the minimum summed node values

upon reaching the right-hand edge of the simulated area is considered to be the



TABLE 3-3

THE SEVEN TRANSFER FUNCTIONS USED IN THE SYNTHETIC STUDY

Transfer Functions

v, % of data exceeding -2
Vs % of data exceeding -l"
Vs % of data exceeding 0“
Vs % of data exceeding 1
ws % of data exceeding 2
77 "minimum path finder"; details in text

72 related to spatial covariance; details in text

** The values (-2,-1,0,1,2) are the indicator thresholds used for sequential indicator simulation.
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minimum path, and the sum of the node values is the value of the transfer function.
Let us denote this transfer function by yg,. Figure 3-3(a) illustrates a g, minimum
path through a srnall grid. The problem with this transfc: function is that it is very
difficult to compute for a grid of 30 x 30 nodes. The number of paths that need to be
tested for different grid sizes is listed in Table 3-4. The computer time required to

compute ¢, for a large number of realizations is prohibitive.

For this reason, ¢, was proposed. This is a simplification of y,, allowing can-
didate paths that move one node to the right on each step (as before), but can only
move horizontally or one node downwards. In other words, paths that move in the
upwards direction at any step are no longer acceptable. The yg, minimum path
through the small grid is drawn in Figure 3-3(b); note that the starting position has
moved up one node from the starting position of the less restrictive yq, path. Table
3-4 shows that the use of ¢, leads to a considerable reduction in the number of can-
didate paths to be tested. However, the computing time for repeated realizations of a
30 x 30 grid is still unacceptably high.

The transfer function ultimately chosen, g, is a further simplification of ;. At
each step, the path must move over two nodes to the right and either zero or one
nodes downward; the g path through the grid is shown in Figure 3-3(c). These cri-
teria lead to a large reduction in the number of paths to be tested, as shown in Table
3-4. Run times for g are short enough to allow for its use on a large number of

simulated data sets.

The function \, is sensitive to spatial connectivity among extreme values (partic-
ularly low values) of the simulated variable. It is designed to test one of the assumed
strengths of the SIS technique - namely, that realizations may be generated that have a

different correlation extent at different levels of the variable of interest.

It is important to note here that y is not being proposed for use in actual hydro-
logic flow codes. Rather, it is simply a tool to help us to study the extent to which
sequential indicator simulations can be used to gauge the uncertainty in non-linear,
spatially-dependent functions evaluated over sparsely sampled regions. If the SIS tech-
nique has difficulty characterizing the uncertainty in relatively simple functions like
Ve, it is reasonable to expect that these problems will persist for more complex and

realistic codes.
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Figure 3-3  "Minimum flow paths” for a 10 x 10 data set using the transfer functions e, . Wes, and
Ve (a) Flow path tor ye, ., allowing movement both upwards and downwards. has a value
of 4. (b) The transfer function g, allows only honizontal or downward movement, and
has a value of 5. (c) The most restrictive transfer function, g requires horizontal move-
ment at every even-numbered step. The value of the minimum flow path using this

definition increases to 8.




TABLE 34

THE NUMBER OF CANDIDATE PATHS FOR TRANSFER FUNCTIONS wq,, Ws,. and g

Grid Size Number of Candidate Paths "~
Vsa Veb Y
4x4 68 20 7
10 x 10 136,946 2,816 128
2x12 | 1515296 13312 160
18 x 18 . 1245184 3,584
30 x 30 - - 376,832

“Computation for multiple simulations becomes unfeasible at around 500,000 tested paths.
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3.2.3 A Relative of the Spatial Covariance: -

The last transfer function, -, is the average of the lag-1 spatial products in the

vertical and horizontal directions. The equation for 5 is as follows:

Vi = (332 .20+ 337020, (10)
2)(29)(30 r=le=1 roe e r=lc=1 et

where Z, . is the simulated value for the node at row r and column c. As is true with
Y, this function is sensitive to spatial patterns among the data. Note however, that y,
is a close relative of the spatial covariance function. Thus, its variability might be
better characterized by simulations that use a single z-covariance function than by SIS
simulations that use multiple indicator covariance functions. When evaluating results
for y;, we should recognize that the SIS algorithm is not optimal for this type of

transfer function.

3.3 Experimental Phase 1

In the first phase, every run used 10 separate exhaustive data sets, each made up
of 900 data points in two dimensions, and each generated with the same theoretical
indicator variograms. The nodes in the data sets were equally spaced along a 30 x 30
grid. The seven transfer functions were evaluated over each exhaustive data set; this
provides true values of the seven transfer functions. Next, a sample was taken from
each data set, and SIS was used to generate 100 separate realizations of the full 30 X
30 grid from this sample. The transfer functions were evaluated over each realization,
and from the 100 realizations, 95% confidence intervals for each transfer function were
computed. The confidence intervals were constructed using the percentile method
(Efron and Gong, 1983): the interval between the 0.025 and 0.975 percentiles of the
collection of evaluations of the transfer function was taken to be a 95% confidence
interval for the value of the transfer function evaluated on the true (exhaustive) attri-
bute values over the region of interest. A single run in this part of the experiment
yields ten separate confidence intervals for each transfer function, one for each data
set. Figure 3-4 is a schematic outline of the procedures constituting a run. Figure 3-5

shows an example of a single exhaustive data set and several SIS realizations.
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REPEAT R TIMES

(1)

Set values of variables n, s/, iv,and gm.

(2)

Generate an exhaustive data set consistent with the values chosen in (1); cvaluate cach of the

transfer functions (|, y;, ... , ;) over the exhaustive data set. Select a single sample of size n.

|
J

(3)

T
Use SIS to generate 100 full realizations from v sample. Use the 100 realizations to calculate
seven 95% confidence intervals, one for each transfer function. Note whether the confidence
intervals contain the true y-values found in step (2).

)

Determine the number (out of R) of confidence intervals for each transfer function which contains

the true y-values. Compute summary statistics (letter-values, mean) for confidence interval
widths.

Figure 3-4  Outline of the procedures constituting a single run in the synthetic experiment. For Phase

L, R=10, and for Phase II, R=50 repetitions. It follows that cach run in Phase I requires
1,010 CIS simulations: 10 exhaustive data sets, plus 100 realizations for each of the
exhaustive data sets. Each run in Phase II requires 5,050 simulations.
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EXHAUSTIVE DATA REALIZATION #1

2<2

1<2<=2

O<2<m1

1<2<=0

R2<l<=-\ '

Z<e-2

Figure 3-5  An exhaustive data set and three different SIS realizations, on a 30 x 30 grid. The reali-
zations were generated using the theoretical indicator variograms of the exhaustive data
set, and data at 30 randomly-chosen sample nodes. Note the variability seen among the

different realizations.



If the assumptions used for SIS are valid, and the implementation is sensible, we
would expect about 95%, or 9.5, of these confidence intervals to contain the true value
of the transfer function over the appropriate data set. As discussed in Appendix E,
when the number of inaccurate confidence intervals is equal to three or more (out of
ten), the null hypothesis that the intervals are valid 95% confidence intervals may be
rejected at a level less than 5%. The actual number of confidence intervals containing
the true value, and the widths of the confidence intervals, were recorded for each
transfer function on each run. Clearly, narrow confidence intervals (precise) that con-
tain the true y-values (accurate) are evidence of a well-behaved simulation algorithm,
while very wide confidence intervals, or those not containing the true vaiue of y with
the expected frequency, indicate problems with the SIS technique. Note that with only
ten confidence intervals per run in the first phase, it is difficult to come to any
definitive conclusions regarding accuracy: as discussed in Appendix E, the relevant
statistical tests lack sufficient power. Thus, the issue of accuracy is largely deferred

until the second phase of the experiment.

3.4 Experimental Phase 11

Of the 20 factor combinations studied in Phase I, 10 were chosen for further
experimentation in Phase II. These combinations are identified with a "y" in the third
column of Table 3-2. In this phase, a run used 50 different exhaustive data sets, each
on a 30 x 30 grid. As before, the exhaustive data sets were independently generated,
each with the same theoretical indicator variograms. A sample was taken from each,
and was used to generate 100 realizations. (That is, there were a total of 5,000 reali-
zations generated: 100 realizations for each of 50 exhaustive data sets.) The large
number of runs conducted in Phase II of the experiment allows us to determine, with
more power, whether confidence intervals constructed from SIS realizations are accu-
rate. When inaccuracies are found, we attempt to identify probable causes for the

failure of SIS distributions.
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3.5 Difficulties With Available SIS Computer Code

The simulation study was carried out using version 1.1 of the C language com-
puter program isim3d.c (Gomez-Hemandez, Srivastava, and Serikiotou, 1989) to per-
form sequential indicator simulation. After the study had been in progress for several
months, a bug was discovered in this version of the code. The bug involved the esti-
mation of conditional probability distribution functions (PDFs) using simple or ordi-
nary kriging: with version 1.1, it is possible to generate PDFs that are not monotone
increasing. This is a clear violation of one of the most basic tenets of probability

theory.

Later versions of the C program corrected the problem, but the time involved in
re-running the entire simulation study using new software was prohibitive. Instead, a
few important runs were repeated using version 2.21 of isim3d.c, in order to determine
whether the accuracy and precision figures obtained using the newer version of the
computer program were consistent with those seen for the earlier version. The results
were quite similar for the two versions of the software. It does not appear that the bug

in version 1.1 of isim3d.c has had a large impact on the simulation study.

Appendix A provides a complete description of the bug in version 1.1, the correc-
tion taken in version 2.21, and a comparison made between the results from the two

programs.
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4.0 RESULTS

Tables 4-1 through 4-7 summarize the results for each of the experimental runs
on the seven transfer functions. In the sections that follow, these results are discussed

and analyzed in detail.

4.1 Sample Size

4.1.1 Precision in Control Situations

Runs A, B, C, and D of the experiment all represent control situations. In each
of these runs, SIS was used to generate the exhaustive data sets, and was used again,
with the same theoretical indicator variograms, to generate the multiple realizations.
The sampling was done without preferential clustering in any one region of the grid.
The four runs differed from one another in sample size only: n was set equal to 5 for
aun A, 15 for run B, 30 for run C, and 45 for run D. Changing n led to substantial

differences in accuracy and precision.

By examining Table 4-8, whick groups the results from runs A - D, we can see
that increasing the sample size increased the precision of confidence intervals gen-
erated using SIS. For the first transfer function, the median confidence interval width
decreased by about 8%* as n increased from 5 to 15; by about 38% as n increased
from 15 to 30; and by another 19% as n increased from 30 to 45. The sixth transfer
function had corresponding changes of an 22% decrease, a 15% decrease, and a small
3% decrease. For y,, the changes in median confidence interval widths were again all
decreases, of 3%, 26%, and 24%, respectively. These types of findings, which are evi-
dent in the boxplots ** of Figure 4-1, are not surprising: we would expect that, as

more information was given to the simulation program, the variability of the output

* All percentages reported are fractions of tiwe larger of the two numbers being compared.

** Boxp.ots are described in Tukey (1977). For all boxplots presented in this report, the
central box runs from the lower quartile of the data to the upper quartile, and the line within
the box represents the median observation. The "whiskers" extend to the nearest value within
a standard range of the quartiles. Chservations lying more than a standard range away from
the quartiles are plotted singly. (A siandard range is equal to 1.5 X (upper quartile -
lower quartile)).



TABLE 4-1

RESULTS FOR v, FOR PHASES I AND II OF THE SYNTHETIC EXPERIMENT

PHASE I PHASE Il
Run# | Ig? medb uqc # outsided # outside
A | 036 037 044 1 2
B |032 034 036 0 0
¢ |o016 021 025 1 0
D |01l 017 0.19 1 3
E |021 025 025 0
F |017 020 022 2
G |019 o021 021 0
H | 020 023 025 2 2
I 025 030 032 1
;018 022 027 0 3
K | 021 023 025 1
L 020 025 026 0
M | 022 024 028 2 10
N |018 022 028 3 15
P |04 017 020 4 20
Q |020 023 024 1 10
R |018 019 0.19 2
S 027 028 030 0
T |021 022 022 1
U |013 018 0.19 3

2 |q = lower quartile of the 10 Phase I confidence interval widths.

b med = median of the 10 Phase I confidence interval widths.

¢ uq = upper quartile of the 10 Phase I confidence interval widths.

d # outside = number of inaccurate confidence intervals counted (out of 10 for Phase
I, and out of 50 for Phase II).



TABLE 4-2

RESULTS FOR vy, FOR PHASES I AND Il OF THE SYNTHETIC EXPERIMENT

PHASE I PHASE II
Run# | 1¢® med® uq® #outsided | #outside
A |042 047 o051 0 2
B |032 034 036 0 0
c lo027 030 030 1 2
D |020 023 025 0 6

E |028 029 032 0
F | 023 025 025 2
G |023 025 027 0
H |027 029 031 1 2
I |035 036 041 2
7023 026 029 2 3
K |[029 032 o036 0
L |026 029 031 0
M | 028 029 030 1 6
N |023 026 028 2 8
P |o018 022 024 5 14
Q |024 o025 029 0 8
R (019 020 022 1
s |03 034 o038 1
T 023 024 026 2
U |017 019 022 1

a Iq = lower quartile of the 10 Phase I confidence interval widths.
b med = median of the 10 Phase I confidence interval widths.

¢ uq = upper quartile of the 10 Phase I confidence interval widths.

d # outside = number of inaccurate confidence intervals counted (out of 10 for Phase

I, and out of 50 for Phase II).



TABLE 4-3

RESULTS FOR vy, FOR PHASES 1 AND Il OF THE SYNTHETIC EXPERIMENT

PHASE | PHASE 11
Run # | Iq® med®  uq®  # outsided | # outside

A 0.44 049 0.51 2 3
B 0.35 039 042 0 6
C 028 031 032 3 2
D 0.21 022 025 2 11
E 028 031 031 4

F 022 025 026 3

G 023 026 0.28 1

H 026 029 030 0 8
I 035 037 043 2

J 025 028 031 2 5
K 029 030 031 0

L 027 030 033 3
M 022 026 031 2 10
N 0.24 028 029 0 14
P 021 023 024 3 16
Q 024 025 028 2 10
R 0.17 020 021 1

S 034 036 038 0

T 023 025 026 0

U 018 020 020 1

3 1q = lower quartile of the 10 Phase I confidence interval widths.

Y med = median of the 10 Phase I confidence interval widths.

€ uq = upper quartile of the 10 Phase I confidence interval widths.

d g outside = number of inaccurate confidence intervals counted (out of 10 for Phase
I, and out of 50 for Phase II).



TABLE 4-4

RESULTS FOR w,, FOR PHASES 1 AND II OF THE SYNTHETIC EXPERIMENT

PHASE I PHASE 11
Run # | Ig® med?® ug®  # outsided | # outside
A 0.39 041 0.44 0 2
B 029 034 038 0 3
C 027 029 0.29 1 4
D 018 0.19 022 3 10
E 07, 0255 027 3
F 0.18 0.1 0.25 2
G 0.19 0235 025 0
H 022 0245 0.26 0 4
I 031 0.31 0.37 1
J 022 024 026 1 4
K 023 0245 029 0
L 022 025 027 1
M 021 022 025 2 10
N 021 023 024 2 11
P 016 019 023 1 7
Q |023 025 025 0 4
R 014 017 020 2
S 030 035 037 0
T 021 024 025 3
U 017 017 020 0

a 1q = lower quartile of the 10 Phase I confidence interval widths.
b med = median of the 10 Phase I confidence interval widths.

¢ uq = upper quartile of the 10 Phase I confidence interval widths,

d # outside = number of inaccurate confidence intervals counted (out of 10 for Phase

I, and out of 50 for Phase II).



TABLE 4-5

RESULTS FOR ys, FOR PHASES I AND II OF THE SYNTHETIC EXPERIMENT

PHASE 1 PHASE II
Run # lqa medb ug®  # ou(sided # outside
A 032 035 036 0 0
B 024 029 03t 0 1
C 022 023 026 0 2
D 0.15 0.17 0.20 1 7
E 016 0.18 022 0
F 011 014 019 0
G 0.15 0.18 021 0
H 0.14 0.19 022 0 2
I 026 028 031 1
J 015 022 026 0 2
K 018 020 022 0
L 016 020 026 1
M 0.17 0.18 0.19 3 14
N 0.16 0.18 020 4 10
P 012 015 019 2 16
Q 019 020 023 1 8
R 012 015 0.7 2
S 022 029 033 1
T 017 019 022 0
U 012 015 0.6 2

3 1q = lower quartile of the 10 Phase I confidence interval widths.
b med = median of the 10 Phase I confidence interval widths.

¢ uq = upper quartile of the 10 Phase I confidence interval widths.

d # outside = number of inaccurate confidence intervals counted (out of 10 for Phase

1, and out of 50 for Phase II).



TABLE 4-6

RESULTS FOR v, FOR PHASES I AND II OF THE SYNTHETIC EXPERIMENT

PHASE I PHASE 11
Run # lqa med?® uq® 4 outsided | # outside
A 80 87 91 1 2
B 54 68 81 0 3
C 55 58 59 0 2
D 48 56 63 0 6
E 50 59 61 0
F 50 52 58 1
G 51 55 73 0
H 42 49 70 1 2
I 75 78 84 1
J 59 68 75 0 6
K 32 38 45 10
L 49 69 82 1
M 46 52 57 0 6
N 47 59 67 1 8
P 44 52 61 2 6
Q 69 79 85 4 13
R 47 61 66 2
S 74 88 116 0
T 65 70 80 4
U 61 64 73 5

a Iqg = lower quartile of the 10 Phase I confidence interval widths.

b med = median of the 10 Phase I confidence interval widths.

¢ uq = upper quartile of the 10 Phase I confidence interval widths.

d # outside = number of inaccurate confidence intervals counted (out of 10 for Phase
I, and out of 50 for Phase II).



TABLE 4-7

RESULTS FOR y;, FOR PHASES I AND Il OF THE SYNTHETIC EXPERIMENT

PHASE I PHASE II
Run # | 1g° mcdb ug®  # outsidcd # outside
A 34 3.5 4.1 0 2
B 3.1 34 3.6 1 0
C 22 25 2.7 0 1
D 1.6 19 2.1 2 4
E 22 2.5 29 0
F 20 21 24 2
G 2.1 22 24 0
H 22 24 2.8 0 2
I 2.6 3.0 36 2
J 24 2.7 31 0 2
K 1.1 1.2 14 7
L 31 34 3.7 4
M 22 27 32 2 4
N 1.9 25 32 2 4
P 1.8 2.0 2.2 0 13
Q 3.0 3.6 50 8 37
R 24 29 39 3
S 42 5.2 6.0 2
T 3.0 3.7 4.6 8
8} 2.8 31 3.6 7

a Iq = lower quartile of the 10 Phase I confidence interval widths.

b med = median of the 10 Phase I confidence interval widths.

€ uq = upper quartile of the 10 Phase I confidence interval widths.

d # outside = number of inaccurate confidence intervals counted (out of 10 for Phase
I, and out of SO for Phase II).



TABLE 4-8

EFFECT OF SAMPLE SIZE ON ACCURACY AND PRECISION FOR THE CONTROL RUNS

Median Confidence Interval Widths - Phase 1

Run  n W, W¥; W3 Vs VW5 VY Vg

51.37 47 49 41 35 87 35
15134 34 39 34 29 68 34
30} .2t 30 3t 29 23 58 25

T O w o>

45 | 17 23 22 19 .17 56 19

Number Inaccurate Confidence Intervals - Phase 11

Run »n vy v, Wi Ws Vs VY W

A S|2 2 3 2 0o 2 2

B 1500 0 6 3 1 3 0

c 0]0 2 2 4 2 2 1
* * * L 3 *

D 4|3 6 nt 1w 1 & 4

Runs for which the number of inaccurate confidence intervals is statistically
significant at a level of less than 5%.
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would decrease.

4.1.2 Accuracy in Control Situations

The findings regarding the effect of sample size on accuracy, for contro!l situa-
tions, are somewhat counterintuitive. When n was as large as 45 (5% of the 900 total
nodes), the accuracy of SIS predictions decreased significantly. For transfer functions
V2, V3, Wy, Ys, and ., six or more confidence intervals in Phase II did not contain
the true value. (As discussed in Appendix E, when six or more out of 50 intervals fail
to contain the true value, the null hypothesis that the intervals are valid 95%
confidence intervals for the true value can be rejected at a level less than 5%.) As n
increased from 5 to 15 and from 15 to 30, the precision of the simulation distribution
increased, as was seen in the decreasing confidence interval widths; these improve-
ments in precision came without a decline in accuracy. However, when the sample
size increased from 30 to 45, the resulting decrease in confidence interval widths was
often too drastic, and accuracy was lost. Figure 4-2 shows a fairly typical case of an
inaccurate confidence interval from run D: the true value of the transfer function lies

Just outside of the extremes of the simulated distribution.

4.1.3 Nonrepresentative Samples

One possible cause of confidence interval inaccuracy is a skewed, or nonrepresen-
tative sample: the histogram of the sample might be quite different from that of the
exhaustive data set from which the sample was drawn. Even when sampling is ran-
dom, as it is for the control runs, substantial differences in the histograms may exist.
These differences, in turn, could influence the histogram of the multiple realizations
conditioned on the sample, and thus the values of other transfer functions evaluated
over the realizations. For example, if an unusually large percentage of the data were
contained in the left-most bin (corresponding to a small value of ), we would intui-
tively expect that g, the minimum-path finder, would also tend to have a small value,
This relationship is illustrated in Figure 4-3, a plot of the value of g versus that of
¥y, for 100 realizations of a run D data set. Realizations that are extreme in W tend to

be extreme in y,, and the two transfer functions are positively correlated.
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10

Figure 4-2

Histogram of simulated distribution of g, for D-3.3, one of the exhaustive data sets in

run D. The shaded area represents the values of the transfer function seen in 100 in-
dependent realizations generated from the same sample of size n=45. The true value of
W for this data set was -37.142. The simulated distribution ranged from -81.453 to
-39.044, while the 95% confidence interval ranged from -79.284 to -40.112. Note that the
true value is very close to one of the extremes of the simulated distribution; this was gen-

erally the case with the inaccurate simulations.
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In order to determine whether nonrepresentative samples may have been a factor
in the inaccuracy of run D confidence intervals for the higher-level transfer function
We, we recorded the percentage of data exceeding the lowest threshold (-2) for exhaus-
tive data sets, samples, and realizations, for each of the six run D cases giving inaccu-
rate confidence intervals for g (Note that this percentage is equal to the value of vy,
which can be evaluated on samples, as well as on exhaustive data sets.) The results are
shown in Figure 4-4. Note that, in five of the six cases (all except for the case denoted
D-4.4) the mean value of y; over 100 realizations was closer to the sample value than
to the exhaustive value; this is not surprising, given that the realizations were condi-
tional on the sample. For four of these five cases (denoted D-1.2, D-1.8, D-2.4, and
D-3.3), the realizations of ¢ departed from the true value in the direction of the sam-
ple value of y,. That is, for D-1.2, D-2.4, and D-3.3, the upper limit of the con-
structed confidence intervals was less than the true value of y,. For D-1.8, the lower
limit of the y, confidence interval exceeded the true value. It is thus plausible to sup-
pose that the differences in the sample histogram and the exhaustive histogram

influenced the minimum flow-paths seen in these conditional realizations.

Case D-4.5 was an interesting exception; the sample value of y; (.578) was less
than the true value (.624); the mean value seen over the hundred conditional realiza-
tions (.532) was even smaller. However, the true value of ¢ (-125.24) was smaller
than the lower limit of the confidence interval (-122.46) and even the minimum value
seen over all of the realizations (-123.07). Figure 4-5 shows the exhaustive data set,
and three realizations generated from 45 sample data points. On each image, the g
minimum flow path is shown with a dashed line. Note that the exhaustive data set
and one of the realizations have flow paths that pass only through nodes with values in
the lowest bin (less than or equal to -2). The fact that the exhaustive data set has a
value lower than those of the realizations is simply due to bad luck: the values within
the lower bin that were assigned by SIS to the nodes in the exhaustive data set hap-
pened to be smaller than those assigned to the nodes in the realizations. The SIS pro-
cedure, by default, uses a uniform within-bin distribution, and the exhaustive data set
contained a large number of nodes along the flow path having values close to the
specified minimum of -5. (The mean node value along the minimum path was equal

to -125/30 = -4.17, while the mean of the uniform distribution on the interval between
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Figure 44
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Illustration of the relationship between e, the exhaustive (or "true") value of ¥, s, the
sample value, and r, the mean value seen over 100 SIS realizations, for six data sets giv-
ing inaccurate y¢ confidence intervals. (The theoretical value of vy, is equal to .80.)
Note that in five of the six cases, the mean value of y, over the realizations departs from
the true value in the direction of the sample value. For cases D-1.2, D-1.8, D-2.4, and
D-3.3, the mean value of g over the realizations departs from the true value of g ir the
direction of the sample value of y,. This suggests that inaccuracies in SIS confidence

intervals for y¢ may be due, in part, to differences in exhaustive and sample cumulative
distribution functions.

4-15



EXHAUSTIVE DATA:D-4.5 REALIZATION #1

Figure 4-5
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Exhaustive data set D-4.5, and three realizations that are conditional on 45 sample values,
(The sample data are displayed in the upper right-hand panel of Figure 2-3.) The true
value of g is -125.24; the realizations #1, #2, and #3 e values of -101.43, -108.88, and

-116.50, respectively. The SIS confidence interval for ys was inaccurale in this case.
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-5 and -2 is equal to -3.5.) Thus, the exhaustive data set itself seems to lie in a "tail"
of the distribution of Z (§ ), and most simulation techniques would be expected to
have difficulty generating such an extreme pattern in only 100 realizations. The inac-
curacy of the SIS-generated Wy, confidence interval for this particular exhaustive data
set is not surprising. It is reasonable to expect that, if a larger number of realizations
were carried out from the same sample data, more extreme values of Wy, would be

found.

4.1.4 The Effect of Simple vs. Ordinary Kriging

In addition to possibly nonrepresentative samples, another cause for inaccurate
confidence intervals for run D might be that the confidence intervals are simply too
narrow. In conventional independent and identically distributed sampling, confidence
interval widths decrease proportionally with 1/Vn . The SIS confidence interval widths
seen for runs A through D decrease at a slowr - rate, because they are influenced by
several factors: the sample size, the assumed variograms, and the parameters of the SIS
code itself. Some of the inaccuracies observed in run D may be caused by confidence

intervals that are overly narrow due to these code parameters.

In version 1.1 of the SIS code used for this study, isim3d.c, the determination of
the appropriate bin for a new node is done by simple kriging or ordinary kriging,
depending on the number of data points (sample points or nodes already simulated)
that are in the neighborhood of the new node. Specifically, simple kriging is used if
fewer than five data points are in the neighborhood, whose width is chosen by the
user. If five or more data points are in the neighborhood, then ordinary kriging is
used. Because ordinary kriging will fit a local mean in the region being simulated, the
newly-simulated node will have a stronger tendency to take on a value similar to those
of the neighboring points than would be the case if simple kriging were used. As a

result, a smaller degree of variability is seen once ordinary kriging is invoked.

When the initial sample size is as large as n = 45, the nodes to be simulated are
more likely to start out with at least five sample points in their neighborhood than
would be the case with smaller initial samples. Thus, ordinary kriging, with its
tendency to reduce variability, is invoked early in the simulation process. The result-

ing set of realizations may not exhibit enough variability to cover the true values of
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the transfer functions. Later versions of the SIS code allow the user to reset the value
at which the switch from simple kriging to ordinary kriging takes place. However, it
may be difficult for the user to choose an appropriate value for a particular study. This

issue is discussed in more depth, and is illustrated graphically, in Appendix A.

4.1.5 Non-Control Runs

All of the above discussion relates to the control runs. Several more comparisons
may be made to determine if the effects of n on accuracy and precision are consistent

over different experimental situations.

Runs I (n=15) and J (n=30) can be compared to examine the effect of changing
sample size on simulations for which the indicator variograms used to generate the
exhaustive data sets and the realizations differed in terms of the marginal distributions
that they specified. Results for each transfer function are given in Tables 4-1 through
4-7 and Table 4-9. The decreasing confidence interval widths seen with increasing the
sample size from 15 to 30 are consistent with the decreases seen in the control situa-

tion (runs B and C).

Runs S (n=15), T (n=30), and U (n=45) each used exhaustive data sets that were
generated using the Choleski (non-SIS) method. Results are summarized in Table 4-
10. None of the runs were included in Phase II, but some accuracy problems were
severe enough to be detected during Phase I: run T had a statistically significant
number of inaccurate confidence intervals for W, ¢ and y5; and run U had a
significant number for y;, Y, and ;. These results follow the pattern of the number
of inaccuracies increasing with the sarnple size suggested by run D. Other factors con-
tributing to run T and U inaccuracies will be discussed in the section on the effect of
different methods of generating exhaustive data sets. Figure 4-6 shows boxplots of the
confidence interval widths for runs S, T, and U. The general trend of precision increas-

ing with sample size is evident.

Runs E and F can be compared to study the effect of changing n on the precision
of simulation distributions generated from clustered samples. The runs were not
included in Phase II, and it is not possible to come to any conclusions regarding
accuracy. Both of the runs used the correct theoretical indicator variogram information

to generate the multiple realizations, and both used sampling plans which clustered the
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TABLE 4-9

EFFECT OF SAMPLE SIZE ON PRECISION FOR RUNS I AND J

Median Confidence Interval Widths - Phase |

Run n yi v v v ws v Wy,

I 1513 36 37 31 28 78 30
J 30|22 26 28 24 22 68 27
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TABLE 4-10

EFFECT OF SAMPLE SIZE ON ACCURACY AND PRECISION FOR THREE RUNS
THAT USED EXHAUSTIVE DATA SETS GENERATED BY THE CHOLESKI METHOD

Median Confidence Interval Widths - Phase 1

Run n Vi Y2 W3 Wi VWs Ve Wg

15].28 34 36 35 29 88 52
T 3022 24 25 24 19 70 37
45 1.8 .19 20 .17 .15 64 3.1

Number Inaccurate Confidence Intervals - Phase [

Run n vy, v Vi Wy Vs Vs Wy

S 15]0 1 0 o 1 0 2
* * *

T 301 2 0 3 0 4 8
* * *

U 453 1 1 O 2 5 7

-t Runs for which the number of inaccurate confidence intervals is statistically significant at a level of
less than 5%.
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samples preferentially in the first and third quadrants. The sample size was 30 for run
E, and 45 for run F. The changes in confidence interval widths seen with changing n

for these runs are consistent with the results of control simulations.

Runs N (n=30) and P (n=45) were included in both phases of the experiment.
Increasing the sample size from 30 to 45 provided improved precision, consistent with
trends seen previously. Accuracy problems were severe at both n=30 and n=4%; this

situation will be discussed in the secticn on input variogram informatior.

Runs Q and R both used exhaustive data sets that were generated using the
Choleski method, and, for each of these runs, the indicator variogram information
input to the SIS program was computed from the exhaustive data sets themselves.
Run R (n=45) gave confidence intervals that were more precise than those given by
run Q (n=30). The median confidence interval widths for y,;, ys, and Wy, in run Q
were respectively, 17%, 23%, and 19% larger than those for run R. Run Q was
included in Phase II of the experiment and the accuracy problems that were encoun-

tered will be discussed in the section on ditferent generation methods.

4.2 Sample Location

We now discuss the effect of clustered data samples on the accuracy and preci-
sion of simulated distributions. Clustered samples were taken in four different runs, all
generated using SIS (gm=1) and all of which used the correct theoretical indicator
variograms to generate realizations (iv=1). The clustering was carried out at four
different levels: 2:1 clustering in the first and third quadrants of the grid space (runs E
and F); 1.33:1 clustering in the first quadrant (run G); and 1.67:1 clustering in the first
quadrant (run H). These runs may be compared to the appropriate control runs to
study the effect of clustering.

Run E used n=30 samples, and may be compared to run C, which had the same
sample size but used a nonclustered sampling scheme. The data of Tables 4-1 through
4-7 and Table 4-11, and the boxplots of Figure 4-7 show that the mild clustering used
for run E did not have a large impact on the precision of simulated transfer function

distributions, particularly for the two spatially-sensitive transfer functions.



TABLE 4-11

INFLUENCE OF CLUSTERING ON PRECISION FOR SIX RUNS USING
EXHAUSTIVE DATA SETS GENERATED BY SIS

Median Confidence Interval Widths - Phase 1

Run » Clustering Vi W2 W3 We Vs We Wy

30 none 21 30 31 29 23 58 25
30 21 (2quads) | .25 29 31 26 .18 59 25

D 45 none A7 0023 022 19 17 56 1.9

45  2:1 (2 quads) 20 25 25 21 14 52 21
G 45 1331(lquad) | .21 25 126 24 .18 55 22
1 45 267:1(lquad) [ 23 29 29 25 .19 49 24

Number Inaccurate Confidence Intervals - Phase II

Run n Clustering Vi V2 Vi Wa Vs W5y

D 45 none 3 6 1u 10 1T 6 4
H 45 26T:0(lquad) | 2 2 8 4 2 2 2

*
Runs for which the number of inaccurate confidence intervals is statisticaly significant at a level less
than 5%.
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Runs F, G, and H each used n=45 samples, and the degree of clustering among
samples increased progressively through these runs. The boxplots of Figure 4-8 show
that confidence interval widths increase, and precision decreases, from the nonclustered
run D through the clustered runs. It is interesting to note that this effect was evident
even for run F, which had the same mild clustering pattern as that of run E, discussed
above. It appears that clustering of samples had a greater impact for large sample
sizes than for small sample sizes. This is known in statistics as an interraction effect:
the factor s/ has a different effect on precision for different levels of the factor n. This
can probably be explained by observing that for fairly large sample sizes, clustered
sampling provides a lot of redundant data, which does little to constrain the values of
the transfer functions. For small samples, the redundancy is less pronounced, and a
loss of precision due to clustering was not evident. Note that the precision of run F
was better than that of run C (Tables 4-1 through 4-7, Table 4-11), showing that more
information was provided by 45 mildly-clustered samples than by 30 uniformly-
distributed samples. In fact, even for the 45 severely-clustered samples of run H, more

precision was obtained than for the 30 samples of run C.

Recall that accuracy problems were encountered for five of the seven transfer
functions in run D. Run H was included in Phase I, in order to determine whether
this pattern would persist for clustered sampling. Tables 4-1 through 4-7 (last column)
show that accuracy remained a problem only for a single transfer function, 3. For
the other transfer functions, including the spatially-sensitive g and 5, it appears that
the loss of accuracy was avoided. This result is consistent with some of the observa-
tions made earlier: by sacrificing some precision, clustered sampling plans were able to

avoid inaccuracy in simulated distributions.

4.3 Input Variogram Information

The results below demonstrate the various effects that may follow from different

types and sources of input variogram information.

Runs C, J, K, L, M, and N each had n=30 samples taken in a nonclustered
fashion. For these runs, the exhaustive data sets were generated in an identical
manner, as described in Appendix B. The runs differed only in terms of the indicator

variogram information input to the SIS code for generating realizations. Results for
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ol on

the latter five runs will be compared to those for run C, the control run. Figure 4-9 is
a series of boxplots illustrating precision differences for these runs on transfer func-
tions Wy, Y, and .

4.3.1 Indicator Class Proportions

In run J, the indicator variogram information used to generate realizations differed
from that used to generate exhaustive data sets in proportions only. As stated in
Appendix B, when generating the exhaustive data sets, the cumulative distribution
function (CDF) at five indicator thresholds, (-2, -1, 0, 1, and 2), was set at (0.20, 0.35,
0.50, 0.65, and 0.80), respectively. For generating the realizations, the CDF at the five
indicator thresholds was set to (0.25, 0.40, 0.50, 0.60, and 0.75). Thus, the tails of the
distribution were heavier for the realizations than they were for the exhaustive data
sets. This change in the marginal distribution of the data values did not lead to sub-
stantial changes in either the accuracy or the precision of SIS confidence intervals for
V1 — Vs, the transfer functions related to the histogram of a data set. However, the
sixth transfer function gave inaccurate confidence intervals six out of fifty times in
Phase II (see Table 4-12). One explanation for this inaccuracy is that the higher
expected number of values lying in the lower bin leads to smaller values of Ve in the
realizations than in the exhaustive data set. This factor alone did not cause all of the
inaccuracies, since the lower limit of the SIS confidence intervals exceeded the true
value in two of the six cases. However, for all six of these data sets, the deviations in
Y were consistent with those in the sample value of y;. When the sample had a

smaller proportion of values in the lowest bin than the exhaustive data set, the true

‘value of Y, was less than the lower limit of the SIS confidence intervals; and when the

sample had a larger proportion of values in the lowest bin, the true value of W
exceeded the upper limit of the confidence intervals. This suggests that 'nonrepresema-
tive sampling may again have played a role in the inaccuracies. Note that the preci-
sion of run J confidence intervals for g and y, also decreased relative to the precision
seen in run C. This was probably caused by the larger tails in the CDF specified by

the input variogram information.
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TABLE 4-12

INFLUENCE OF THE INPUT VARIOGRAM INFORMATION, AND THE METHOD OF
GENERATING EXHAUSTIVE DATA SETS, ON ACCURACY AND PRECISION

LT

* Runs for which the number of inaccurate confidence intervals is statistically significant at a level less

than 5%.

Median Confidence Interval Widths - Phase I
Run n iv, gm Vi W2 W3 Wa Ws Vs Yy
C 30 iv=l, gm=1 21 30 31 29 23 58 25
J 30 iv=2a,gm=1| 22 26 28 24 22 68 27
M 30 jv=3 gm=I 24 29 26 22 .18 52 27
N 30 iv=4, gm=I 22 26 28 23 .18 59 25
Q 30 iv=3,gm=2 23 25 25 25 20 79 36
D 45 iv=1, gm=1 A7 023 22 19 17 56 19
P 45 iv=4, gm=1 70022 023 19 15 52 20
Number Inaccurate Confidence Intervals - Phase II
Run n iv, gm Vi V2 Wi Ws s We W
C 30 iv=l, gm=1 0 2 2 4 2 2 1
J 30 iv=2a,gm=1|3 3 S 4 2 6 2
* * * * * *
M 30 iv=3, gm=1 10 6 10 10 14 6 4
* * * % * *
N 30 iv=4, gm=1 15 8 14 11 10 8 4
* *® * * * *
Q 30 iv=3, gm=2 10 8 10 4 8 13 .37
* * * * *
D 45 iv=1, gm=1 3 6 1 10 7 6 4
*x *  J * * * *
45  iv=4,gm=1 | 20 14 16 7 16 6 13




4.3.2 Extreme Values

Run K used indicator variogram information for the exhaustive data sets and the
realizations that differed only in the specified minimum and maximum values. The
exhaustive data sets had a minimum value of -5 and a maximum of S; in the realiza-
tions, the minimum and maximum were -3 and 3, respectively. Thus, the end bins
used for realizations were restricted to the inner one-third of the bins used for the
exhaustive data sets. It is logical to expect that the ccnfidence intervals seen for
Yy, — s would not be affected by this change, but that the confidence intervals for yg
and y; would increase in precision (due to the smaller range of possible values) and
decrease in accuracy. As is seen in Figure 4-9 and Tables 4-1 through 4-7, the data
were consistent with this expectation. All ten run K confidence intervals for yg and
seven of the ter for y, were inaccurate, and the confidence interval widths decreased
by 34% for yg and by 52% for y;. These resulis demonstrate that misspecification of
the minimum and maximum values for SIS can have a drastic effect when transfer
functions are sensitive to tail values. It should be noted, however, that the parameters
chosen for run K were quite extreme, reducing the tail area by 67%. It may be
unlikely that such a gross misestimation of the minimum and maximum values of a
distribution would occur in an actual field study, where external information about the

range of a variable may be available.

4.3.3 Indicator Class Proportions and Extreme Values

In run L, the indicator variograms used to generate the realizations differed from
‘those used to generate the exhaustive data sets both in the specified cumulative distri-
bution functions, and in the minimum and maximum values. Realizations were gen-
erated using the CDFs used in realizations for run J, with the minimum and maximum
values changed from -5 and S, to -6 and 6. Thus, the tails for the realizations were
both longer and heavier than those for the exhaustive data sets. As Tables 4-1 through
4-7 show, the accuracy and precision of confidence intervals for y; — Y5 were not sub-
stantially different in runs L and C. However, the median confidence interval width
seen for yg and y; increased by 16% and 26%, respectively, from the control run to

run K. In addition, four of the ten confidence intervals for y; were inaccurate; this is



a statistically significant result at a level less than 1%. The loss of accuracy and the
changes in precision were evidently caused by the simulation of larger (in absolute
value) numbers in both of the end bins. This led to increased values for V,, which is

particularly sensitive to the magnitude .of simulated values.

4.3.4 Indicator Thresholds from Exhaustive Data

In run M, the percentiles of the exhaustive data set were used as thresholds for
sequential indicator simulation, as outlined in Appendix B. Results from Phase I
showed relatively small effects on precision for all seven transfer functions: over Vi
through ys, there was an average 10% decrease in median confidence interval width
from run C to run M; yg had a 10% decrease; and 5 had 7% increase. Table 4-12
shows that, in Phase II, all transfer functions, with the exception of -, gave a statisti-
cally significant number of inaccurate confidence intervals. This was unexpected, since

SIS actually had more information about the exhaustive data sets in run M than in run
C.

The six run M data sets giving inaccurate confidence intervals for w4 were exam-
ined individually. Five of the six gave inaccurate confidence intervals for v, and for
each of these five, the inaccuracies in g were consistent with those in ¥, (i.e., the
exhaustive values of y; and g both exceeded the upper limit of their respective
confidence intervals). This suggests that random bad luck, in the form of nonrepresen-
tative sampling, may have played a role in the inaccuracies, but further investigation
showed that this factor was not solely responsible. All six of the exhaustive data sets,
with the same samples and the same random numbers (seeds), were used to generate
- 100 more SIS realizations. The new realizations used the same sequence of random
numbers as the original realizations, but had the correct theoretical indicator thresholds
input to SIS. That is, the parameters of the control run, C, were used. None of the
six new confidence intervals were inaccurate. In addition, the two run C data sets giv-
ing inaccurate W, confidence intervals were also re-run, again using the original sample
and random numbers, but with the parameters of run M (i.e., the indicator thresholds
were based on percentiles of the exhaustive data sets). Both of the newly-generated
confidence intervals were inaccurate. This strongly suggests that the accuracy prob-

lems seen in run M can be atiributed to the use of exhaustive (rather than theoretical)



indicator variogram information, and are not simply due to nonrepresentative samples.

A possible explanation for these results is that, when the same variogram infor-
mation is used to generate both an exhaustive data set and a collection of realizations,
the realizations may be seen as being drawn from the same random functions distribu-
tion from which the exhaustive data set was drawn. Thus, there is a good chance that
the exhaustive data set will be covered by the collection of realizations. When the
realizations are generated using variogram information modeled from the exhaustive
data set itself, additional information about the exhaustive data set is available, but this
may be counter-balanced by the fact that the realizations are no longer being drawn
from the same distribution as the exhaustive data set. This observation is consistent
with a number of results seen throughout the study, and will be considered in more

detail in the discussion section.

4.3.5 Indicator Thresholds From Related Data

Run N was similar to run M in that the indicator thresholds used for generating
realizations were different from those used in generating the exhaustive data sets.
Here, the percentiles of a related data set, generated using the same input parameters
as those used to generate the exhaustive data set, were used for input to the realiza-
tions. As with run M, precision differences with the control run were small. Accu-
racy problems persisted: transfer functions ; through yg all gave a statistically
significant number of inaccurate conficznce intervals, ranging from 8 out of S0 inaccu-
rate for Y, and g, to 15 out of 50 inaccurate for y,. Given the results of run M,
these inaccuracies should not be surprising: if the use of indicator variogram informa-
_tion based on the correct exhaustive data set leads to accuracy problems, we would
expect that the use of indicator variogram information based on a different exhaustive

data set would also have difficulties.

Like run N, run P used indicator variogram information modeled after a related
exhaustive data set; the two runs differ in that a larger sample, of size 45, was used for
run P. Thus, run D is the appropriate control run for comparison with run P. Preci-
sion differences between runs D and P were minimal. Run D had accuracy problems
for five of the seven transfer functions, and these were generally worsened in run P,

where ail seven transfer functions gave a significant number of inaccurate confidence
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intervals. The most extreme result was seen for y,;, where twenty out of fifty Phase II
confidence intervals failed to contain the true value of the function. The combination
of a relatively large sample size, and the use of indicator variograms based on a
related data set, caused the SIS technique to provide output that is useless in practical
terms. The implications of these results will be discussed further shortly.

From the results of this section, it is clear that the source of the indicator
variograms used to generate SIS realizations can have profound effects on the accuracy
and precision of the generated confidence intervals. This is cause for concern since, in
practice, a user of SIS will not have the luxury, as here, of knowing the true

variograms; and even with truth, the results for n = 45 suggest a problem.

4.4 Method of Generating Exhaustive Data Sets

Most of the runs in the synthetic experiment used exhaustive data sets that were
themselves generated by the SIS computer code. Because actual geologic regions of
interest are not created in this manner, it is important to test the simulation technique
on synthetic data sets that were generated using different algorithms. In order to meet
this need, runs Q, R, S, T, and U used exhaustive data scts that were generated using a
single z-variogram (the Choleski method). without the presence of different indicator
thresholds (see section 3.1.4 for details). The realizations for run Q were generated
using indicator variogram thresholds based on the exhaustive data sets, and the realiza-
tions for the other three runs used thresholds based on the statistics of a related data
set.

Inaccuracy was a problem in all of these runs, except for run S, which had a
-small sample size and relatively imprecise confidence intervals. Run Q was included
in Phase II, and had a significant number of inaccuracies for all transfer functions
except for y, (see Table 4-12). Runs T and U had a significant inacémacy rate in
Phase I for three transfer functions each, including, for both runs, the spatially-
sensitive functions yg and ;. These problems are quite disturbing, because good
infonmation was input to the SIS program. For example, the five indicator thresholds
used for simulation of realizations were the appropriate (for the variogramn sill)
percentiles of the exhaustive or related data sets, and the range specified for the indica-

tor variograms was the same as the range specified for the z-variogram used to
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generate the exhaustive data sets. (As discussed in Appendix D, the indicator
variogram models specified provide an excellent fit to the indicator variograms
obtained in practice from data sets generated using the Choleski method.) In a practical
study with actual field data, we would not expect to have access to this type of
knowledge. Even with a lot of information, the sequential indicator simulation tech-
nique has produced a large number of inaccurate confidence intervals, and it is impor-
tant to try to understand these failures.

The extreme difficulty that SIS encountered in accurately constraining y; for
these runs (37 out of 50 confidence intervals were inaccurate for run Q) was not unex-
pected. This transfer function is closely related to the z-covariance, and is not sensi-
tive to the type of differing extents of correlation for which SIS is designed. A simu-
lation technique based solely on the z-covariance would be more appropriate than SIS
for constraining such functions. SIS was not intended for use with functions similar to

V7, and the results demonstrate that it is not useful for this type of function.

The inaccuracies seen for the sixth transfer function are less numerous than those
seen for -, yet they are more disturbing. In run Q, 13 out of 50 (26%) of the Phase
II confidence intervals for Yy, were inaccurate. The problem reflected by these results
cannot be explained simply by skewed samples, since the inaccuracy rate for run C,
with the same sample size, was only 4%. It seems likely that a more fundamental
difficulty has been encountered: the distribution from which SIS has sampled is simply
not representative of the distribution from which the exhaustive data sets were drawn.
Inaccurate confidence intervals for y,; through ys demonstrate that the two distribu-
tions produce output realizations with different histograms, and inaccurate confidence

intervals for ¢ indicate that the differences can affect higher-order properties.

Figures 4-10 and 4-11 show the histograms of an exhaustive data set generated by
the Choleski method, and of several SIS realizations generated using a sample from
this exhaustive data set. By examining the differences in these histograms, we can
better understand the problems that lead to inaccurate confidence intervals. In Figure
4-10, the bins used in constructing the histograms have endpoints corresponding to the
extrema and quantiles of the exhaustive data set. Specifically, the extrema and the
0.20, 0.35, 0.50, 0.65, and 0.80 quantiles of the exhaustive data set are used as end-
points. Thus, in the upper left-hand panel, the four middie bins each contain 15% of
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Figure 4-10 Histograms of an exhaustive data set, and three different realizations. The exhaustive

data set was generated using the Choleski method, and the realizations were generated by
SIS, using a sample of size 30 from the exhaustive data set, in the manner of run Q. The
endpoints of the histogram bins are equal to the quantiles of the exhaustive data set, as
input to SIS. At this scale, the histograms of the realizations closely resemble that of the

exhaustive data set.
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Figure 4-11 A second set of histograms for the same four data sets used in Figure 4-10. Here, the his-
tograms use a finer binning scale, which allows us to see the differences in the way the
two simulation techniques (Choleski and SIS) model the distribution of values within a
particular indicator bin. Due to the heavier tails seen for SIS-generated distributions,
values of g and - tend to be more extreme for SIS realizations than for the exhaustive

data sets, and inaccurate confidence intervals result.



the values in the exhaustive data set, and the two end bins each contain 20%. These
quantiles are the same ones provided as indicator thresholds to SIS in generating the
realizations. We can see from the other three panels that, at this scale, the characteris-
tics of the exhaustive data set have been re-captured reasonably well in the SIS realiza-
tions. '

Figure 4-11 shows the histograms of the same four data sets, here plotted at a
finer scale than in Figure 4-10. It is evident that the exhaustive data set has a distribu-
tion that is thinner in the tails than those of the three realizations. This difference is
due to the differing nature of the Choleski and SIS simulation procedures. The SIS
method, with the parameters chosen here, models a uniform distribution within indica-
tor thresholds bins. Conversely, the Choleksi method gives final values that are a
weighted sum of independent random variables, and thus have a histogram that is

roughly Gaussian in shape.

It is likely that this difference in histogram shapes is responsible for many of the
inaccuracies seen for runs Q, R, S, T, and U. For example, ten inaccurate confidence
intervals constructed for y¢ in run Q were examined. In every case, the true value of
Y (a negative number) exceeded the upper limit of the confidence interval. The
heavy tails of the realizations resulted in values of g that were all smaller than the
true value. This situation again points out the importance of accurately modeling the
tails of a distribution to be simulated, a task that can be extremely difficult when data

are sparse.

4.5 Indicator Variograms of SIS Realizations

One of the appealing features of sequential indicator simulation is that it is based
on an indicator kriging estimator that "honors all the indicator covariance model
values" (Journel, 1988). In attempting to understand the behavior of the SIS method,
it is important to clarify the meaning of this statement. Specifically, what "covariance

model values" are referred to, and how closely are they reproduced?

There are several different sets of indicator variograms, corresponding to covari-
ance models, associated with the use of sequential indicator simulation. First, there is
the set of what we will call input variograms, which are specified by the user in

advance of simulation. There are also sample variograms, which are usually modeled
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from available sample data, and perhaps from additional geological data and/or insight.
The exhaustive variograms, are calculated from the true, but generally unknown,
exhaustive data set from which the sample is taken; and, finally, the rheoretical
variograms describe the spatial continuity seen over the full random functions distribu-
tion of which the exhaustive data set is a single element. Note that these different
types of indicator variograms are interrelated. For example, the exhaustive variograms
represent the mean(s) of the distribution of sample variograms from a particular
exhaustive data set; and for large samples, the sample variograms will resemble the
exhaustive variograms. Similarly, the theoretical variograms represent the mean(s) of
the exhaustive variograms over the random functions distribution. In practice, the
input variograms would usually be based on the sample variograms; in this study,
input variograms based on the exhaustive and theoretical variograms are used. So -

which covariance structures are reproduced in the realizations?

The answer to this question turns out to depend strongly on the size of the sam-
ple. Figure 4-12(a) shows the indicator variograms (at a threshold of -2, the theoreti-
cal 20" percentile) of five different 30 x 30 SIS realizations, all generated with the
same input = theoretical indicator variograms, and constrained by only two sample
points. The results are extremely variable, and none of the realizations has a variogram
that resembles the input variogram, but the mean of the five is quite close to the input
function. This is encouraging: we would not want to restrict the simulator to produc-
ing only output data sets that exactly match the specified variogram models, yet we

would like the realizations, on average, to conform to these models.

Next, an exhaustive data set was generated, with the same input indicator
variograms used to generate the realizations in the previous step. A random sample of
45 points was taken from this data set. Five realizations were generated using the
same input = theoretical variograms, and constrained at the 45 sample points. Figure
4-12(b) shows the indicator variograms of the exhaustive data set, the five realizations,
and the mean of the realizations. The random seeds used for the realizations were the
same as those used for part (a) of the figure, so that the difference in the two sets of
variograms is due solely to the sample data. In this step, the variability seen among
the different realizations has decreased, and the variograms no longer seem to be
centered around the input variogram. Rather, the mean variogram over the realizations

lies close to the exhaustive variogram, which was not known to the simulation
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INDICATOR VARIOGRAMS, THRESHOLD = -2

0.6

0.5

0.4

03

0.2

2.1

0.0

—————  Theoretical
° . ° Exhaustive
--------------- Realizations
———— . Mean of Realizations

Figure 4-12 Indicator variograms for different SIS realizations. In the left-hand panel, five realizations
were independently generated using the theoretical indicator variogram shown by the solid
line as input. Each realization was constrained at only two sample points. None of the
individual realizations has an indicator variogram resembling the theoretical function, yet
the mean over the five (dashed line) shows good agreement. In the right-hand panel, an
initial exhaustive data set was generated in the manner that all realizations in the previous
step were generated. From this data set, 45 points were sampled. The five dashed lines
are indicator variograms from realizations obtained by re-running SIS, using the same
theoretical indicator variogram as input, now with the 45 sample points given. (The two
sets of realizations used the same five random sceds.) Note that, in the right-hand panel,
the mean of the five realization variograms lies close to the variogram (solid dots) of the

exhaustive data set from which the samples were taken,



program. Presumably, this was caused by the relatively large sample taken from the
exhaustive data set. This is another encouraging result, for it implies that as more
information about the exhaustive data is made available, the input variogram becomes
less important, and the realizations are less variable and take on the character of the

exhaustive data set.

The potential for problems arises when a sample is large enough to influence the
variograms of the realizations, yet has properties that differ substantially from those of
the underlying exhaustive data. For example, ¢ user could be aware that a particular
sample is skewed (e.g., contains a disproportionate number of low values), and might
attempt to correct for this by using input variograms that specify an appropriate data
histogram. But the characteristics of the sample data could still force the realizations
away from the desired properties. Figure 4-13 illustrates the issue. This type of
difficulty can never be avoided: when data and a model are both used, and are in any
way inconsistent, one must be favored over the other. With relatively large samples,
SIS tends to favor data. In some instances in this study (for example in run D), this
characteristic has resulted in inaccurate confidence intervals. Note, however, that the
models used in this run were good, i.e., they were the theoretical variograms used to
generate the exhaustive data set. In actual practice, we would never have access to
such good models, so that a preference for data over models seems desirable, and
should not be viewed as a weakness of SIS. This preference should be understood as
an important property of the simulator, which can have either positive or negative
consequences, depending on the representativeness of the sample and on the quality of
the models.
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Figure 4-13 Indicator variograms of different SIS realizations, showing the effect that non-representative sam-

pling can have on output variograms. Exhaustive data set D-1.8 was generated, using the theoreti-
cal indicator variogram shown by the solid line; the solid dots represent the variogram of this data
set. Next, samples drawn from the exhaustive data set and the theoretical variogram were used to
generate five different realizations. (a) First, a sample size of five was used. The five resuliing
realizations are shown by dotted lines. Note that most of the realization variograms lie between

_ the theoretical and exhaustive functions. (b) An additional 40 sample points were provided as

input to the realizations, bringing the total sample size to 45. The indicator variograms of the
realizations are now quite similar to one another, but they are unlike either the theoretical or
exhaustive variograms. A 95% confidence interval for g, constructed from 100 realizations using
this sample, is inaccurate. (c) When another 105 sample points are added, 16.7% of the data
points are known (o the simulator, and the variograms of the realizations are all close to the

exhaustive variogram. (The same five random seeds were used to generate the realizations for
each sample size.)
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5.0 DISCUSSION AND CONCLUSIONS

The results of this study have illustrated a number of problems that can occur
when sequential indicator simulation is used to characterize uncertainty. A few gen-
eral patterns that persist over the various experimental runs may help to identify situa-

tions that lead to difficulties with the simulated response distributions.

Several of the runs giving inac.urate Phase II confidence intervals for various
transfer functions were related in that a considerable amount of information about the
true, exhaustive data set was provided as input to the SIS program generating the reali-
zations. Specifically: in run D, fairly large samples (5% of the full data sets) were
taken; and in run M, the percentiles of the exhaustive data sets, in the form of indica-
tor thresholds, were provided to the simulator. Why would additional information
about the exhaustive data result in inaccurate confidence intervals? One possible

explanation can best be understood in terms of sampling distributions.

Recall that the goal of SIS is to draw a number of realizations from an underlying
distribution that characterizes the state of uncertainty about a particular region of
interest. In the control runs (A, B, C, and D) of the experiment, exhaustive data sets
were generated by assuming that the value of the random variable Z was known at
two locations, and by providing SIS with indicator variograms for five different thres-
holds. Now suppose that we were to generate realizations by repeating this process
one hundred more times, (without sampling from the exhaustive data set that we have
just generated). In this case, our realizations would truly be drawa from the distribu-
tion that generated the exhaustive data sets, and we would expect that, in almost all
cases, the value of a specific transfer function evaluated over the exhaustive data set
‘would lie between the extremes of that transfer function evaluated over the realiza-
tions. (On average, the value for the exhaustive data set would lie outside of the range

of the values over the realizations only 2 out of 101 times.)

The situation just described is similar to a control run with a low value of a:
when the sample drawn from the exhaustive data set is small, and SIS is used to gen-
erate both the exhaustive data sets and the realizations, the realizations are essentially
drawn from the distribution from which the exhaustive data set was drawn. The

resulting confidence intervals for various transfer functions are not very precise, but



they are accurate. This changes when the sample size increases: the distribution used
to generate the realizations is conditional on a large number of available data, and is
no longer equivalent to the distribution used to generate the exhaustive data. The
s'mulated distribviions for various transfer functions become more precise, due to the
constraints imposed by the large sample, but accuracy m.  decrease, as was observed

in run D.

Now consider what happens when the indicator variograms used to generate the
realizations contair specific information about the exhaustive data set, as was the case
in run M. Here again, the realizations are drawn from a distribution different from the
one from which the exhaustive data set was drawn. One would hope that, since infor-
mation about the exhaustive data set was incorporated into the distribution from which
SIS realizations are drawn, this distribution would be approximately centered on the
exhaustive data set. The number of inaccurate confidence intervals seen in run M

demonstrates that this is often not the case.

The problems become more pronounced when the exhaustive data set is not gen-
erated using SIS. The results of runs Q, R, S, T, and U were disappointing, and sug-
gest that accuracy problems may be likely to occur when the region of interest has sta-
tistical properties that depart from the SIS model of specific dependency relationships
at a number of known indicator thresholds. Although the SIS models appear to be
more fiexible than the familiar, Gaussian-based mcdels, they have had difficulty ade-
quately representing data sets with a fairly simple spatial structure, even when
appropriate range and sill information is provided. This is particularly discouraging,
since the available data from any target region is likely to be limited, and it will be
difficult to check the validity of the indicator models. Accurate modeling of the tails

“of the exhaustive distribution is necessary, yet not always possible in practice.

't should be clear that qualitative judgments that SIS realizations look to be con-
sistent with one’s concepts about an underlying geologic process are not, by them-
selves, sufficient to justify the use of SIS-generated response distributions to quantify
uncertainty. It is necessary that SIS be carefully (and quantitatively) tested in situa-
tions close to those that will be encountered in any practical case study. Validation
studies must be carried out, for the relevant transfer functions, and for the data and

models to be used in practice. In particular, users should attempt to determine the



influence that sample size, input variograms, sample locations, and other factors

deemed relevant, have on their output.

Throughout this report, we have seen that SIS can be useful, but may give inac-
curate results in a variety of situations. Users of SIS should be aware of its limita-
tions, and should ensure that they are not applying the method, or attaching too much
importance to the output, in cases where inaccuracies are likely to occur. One can have
confidence in SIS results only by having information that is generally not available -
like the theoretical indicator variograms associated with a particular region. In addi-
tion, tuning parameters of the SIS algorithm, that are unrelated to either data or geol-
ogy, can have a major effect on the output. We strongly recommend that when SIS is
used in practice to characterize uncertainty, users conduct sensitivity and validation

studies for their own transfer functions and data sets.
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APPENDIX A - ISSUES RELATED TO UPDATED SIS SOFTWARE
While the simulation study was in progress, an updated version of the SIS
software was released by SCRF. In this appendix, we discuss two issues that were

raised by the updated program.

A.1 Correcting Order Relations Problems

The simulation study described in the main body of this report was carried out
using version 1.1 of the computer program isim3d.c to perform sequential indicator
simulation. After the study had been in progress for several months, a bug was
discovered in this version of the code. The bug involved the correction procedures for
the so-called "order relations problem," discussed in section 2.4. This problem can
occur when indicator kriging is used to estimate the probability that the z-value at a
particular node will be less than various thresholds: it is theoretically possible that the
cumulative distribution function (cdf) specified by a sequence of kriged probabilities
might not be a monotone non-decreasing function. For example, indicator kriging
might estimate the probability that a node would be less than 0 as 0.50, and the proba-
bility that the same node would be less than 2 as .25. Clearly, such a situation violates
the basic principles of probability. In an attempt to correct this problem, version 1.1 of
SCRF’s SIS computer code incorporates the following fix. If there are two or more
cutoffs (indicator thresholds), then each pair of consecutive cutoffs is checked, in order
from lowest to highest, to see if the estimated cumulative probability of the higher
cutoff is less than that for the lower cutoff. When this condition is detected, the two

esumated curulative probabilities are averaged, and this average is assigned to both

cutoffs in the pair.

This fix fails to ensure a correct solution, as can be seen in the following exam-

ple. Suppose that a simulation uses 3 indicator thresholds, z; , 2, and z,, with

Zk, < 2, < z;,. For a particular node, o, suppose that the initial estimated cumulative

probabilities for the three thresholds are as follows:
P(zy<2))=0.7, P(zy <2,)=0.5, and P(zy <z3)=03.

When the first pair has been checked and corrected, both the first and second values



will be set to 0.6:
P(Zu521)=0.6, P(23522)=0.6, and P(ZaSZ3)=O.3.

When the second pair is checked, both the second and third values will be set equal to
45:

P(zy<2z,)=06, P(zq<12,) =045, and P(zy <z;) = 045.

The correction subroutine is now complete, but the order relations problem
remains: the resulting cdf is not a non-decreasing function. This is the bug that was
present in the original implementation (version 1.1) of the software, and was not
discovered until the present study was well under way. In December 1990, version
2.21, a debugged update of the program isim3d.c was released by SCRF. In this ver-
sion, a new subroutine for correcting order relations problems is introduced. The pro-

gram documentation describes the new correction algorithm as follows:

After the conditional cdf has been estimated an order relation correction is carried
out. This correction consists of performing two passes, one from the lowest
threshold to the largest and the other in the opposite direction. In each pass a
new estimate of the cdf without order relations is obtained. One of these esti-
mates tends to overestimate the final cdf values and the other tends to underesti-
mate the final cdf values. The arithmetic average of the two estimates is chosen

as a better approximation.

The time required to rerun the entire study using version 2.21 was prohibitive. It
was decided that a few key runs could be duplicated on the newer, debugged code. If
the results did not differ substantially from the original results, it would be reasonable
to conclude that the problems occurring in the original implementation were not solely

due to the bug in the method of correcting the order relations problem.

Runs D and M were chosen for duplication. The runs carried out on debugged
code will be referred to as D’ and M’, respectively. In the original implementation,
runs D and M each gave a significant number of inaccurate Phase II confidence inter-
vals for the majority of the transfer functions. Results for the duplicated runs are

summarized in Figure A-1 and Table A-1.
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Figure A-1 Boxplots showing precision for
two runs duplicated using version 2.21 of
the simulation code. There does not
appear to be any systematic increase or
decrease in precision seen from run D to

run D, or from run M to run M".




TABLE A-1

ACCURACY AND PRECISION IN ORIGINAL RUNS D AND M,
COMPARED TO RUNS D’ AND M’

Median Confidence Interval Widths - Phase I

Run n Vi V2 Vs Ya Vs V¢ V7

D 45 | 017 023 022 0.19 017 56 19
D’ 45 | 613 021 025 023 017 50 19

M 30 | 024 029 026 022 018 52 27
M’ 30 | 021 025 027 026 022 62 22

Number Inaccurate Confidence Intervals - Phase II

Run n Y V2 Vs Va Vs We W

* H * * *

D 45 3 6 11 10 7 6 4

* * *

D’ 45 6 5 6 3 3 5 7

* * * * * *

M 30|10 6 10 10 14 6 4

* * * * *

M’ 30 ({10 8 1 4 8 7 8

*Runs for which the number of inaccurate confidence intervals is statistically

significant at a level less that 5%.



Runs D and D’ gave comparable degrees of precision, as measured by the median
confidence interval widths seen over ten Phase I replications. Accuracy improved in
run D’, where three out of seven transfer functions gave a significant number of inac-
curate confidence intervals, (as compared to five out of seven for run D). Note how-
ever, that this improvement came largely in the simplest transfer functions, v, through
Vs. The performance for the two complex and spatially-sensitive transfer functions (g
and ) did not improve. For yg in run D’, five out of fifty confidence intervals were
inaccurate; although not a statistically significant count, this was just one fewer than
was observed for run D. And for -, a statistically significant seven out of fifty

confidence intervals were inaccurate in run D’.

Runs M and M’ also had comparable degrees of precision, and, as with runs D
and D’, accuracy in y, through W5 seemed to be improved by the use of the debugged
version of the simulation code. However, accuracy problems persisted, and actually

worsened, for the spatially-sensitive transfer functions.

From these results, it appears that use of the debugged code may lead to an
enhanced ability to accurately reproduce the marginal distribution of the z variable
over the region of interest. This is seen in the improved accuracy of the confidence
intervals for y; through ys. However, this improvement does not seem to carry over
into the higher-order properties of the realizations, as evidenced in the poor perfor-
mances seen for the spatially-sensitive transfer functions. It is clear that the accuracy
problems observed for many runs in the main body of this report cannot be attributed

solely to incorrect solution of the order relations problem.

A.2 The Importance of the SK/OK Flag

When sequential indicator simulation is carried out, kriging is used to estimate the
conditional cdf of the z variable at each unsampled node. Either simple or ordinary
kriging may be used in this step. In general, if a considerable amount of data are
availabie in the nicighborhood of the node, ordinary kriging, with its capacity to fit a
local mean, is used. If the information available in the neighborhood of the node is
sparse, simple kriging is used. When this is the case, the mean of the conditional cdf

is specified solely by the input indicator variograms, and is not fit locally.

A-5



The issue of when there are ample data to warrant the use of ordinary kriging
turns out to be important to the performance of sequential indicator simulation. In ver-
sion 1.1 of the program isim3d.c, simple kriging is used whenever five or fewer data
points (samples or nodes already simulated) are in the neighborhood of the node to be
simulated. (The neighborhood size is specified by the user.) In version 2.21 of the
program, a simulation parameter called "OK flag" is introduced. The user sets OK flag
equal to an integral value, and whenever more than this number of data points are in a
neighborhood, ordinary kriging is used. (Setting OK flag =5 is equivalent to the algo-
rithm used in version 1.1.)

A brief experiment was carried out to demonstrate the effect of changing the OK
flag on output simulations. The experiment followed an approach taken by Lucien
Verrezen of Genmin during his visit to SCRF in the spring of 1990. An exhaustive
data set was generated using version 2.21 of isim3d.c, with the same indicator
variograms used in the control runs (A through D) of the simulation study, and with
the OK flag set equal to five. A sample of 15 data points was taken from this exhaus-
tive data set. The sample was then input as conditioning data to version 2.21 of the
simulation code four different times. The same random seed and input indicator
variograms were used each time, but different values of the OK flag were chosen. The
first realization used OK flag = 0, corresponding to the case when ordinary kriging is
invoked at all times, and simple kriging is never used. The second realization used OK
flag = 5, the value used in version 1.1 of the computer code, (and in the simulation
study). The third realization used OK flag = 10, and the last realization used OK flag
= 900. Because there are only 900 nodes in the full data set, the latter case implies

that simple kriging is used at all times, and ordinary kriging is never invoked.

Figure A-2 shows the exhaustive data set, the sample, and the four realizations.
It is clear from this display that the value of the OK flag can have a large impact on
the realizations. Note that when the OK flag is set equal to zero and ordinary kriging
is used for all nodes, the realization is characterized by large patches of nodes falling
within the same bin. This tendency, which is caused by the fitting of local means in
all regions of the plane, becomes less evident in subsequent realizations that rely more
on simple kriging. The opposite extreme is the realization with OK flag = 900, which

demonstrates very little consistency among neighboring nodes.
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Figure A-2 Plot illustrating the influence of the OK flag on SIS

realizations. The exhaustive data set was generated with OK

2<2 flag = 5. A sample of size 15 was then taken, and used to gen-
1<2<m2

0<zent erate four realizations. The same random seed was used for

N 1<2<=0 each realization, but the value of the OK flag varied. The first

(G 2‘“;-1 realization, which used only ordinary kriging, contains large
2 <u -

patches of neighboring nodes with similar values. By contrast,
the last realization, which used only simple kriging, exhibits

very little spatial connectivity.

A-17



It is evident that the effect of the OK flag on the continuity of SIS realizations
can be as large as the effect of the input indicator variograms. Unfortunately, no
theory has been developed to help users to choose an appropriate value. The SCRF
documentation suggests setting the OK flag equal to twice the maximum number of
nodes per octant to be retained for kriging. This rule would give a value of 8 in the
above example. It is not clear whether or why this formula is appropriate; it is clear
that the user’s choice of the OK flag can have a large impact on the output of SIS, and

must be considered carefully.



APPENDIX B - SIMULATION METHODS AND PARAMETERS

This appendix describes, in detail, the simulation methods and parameters used to
generate exhaustive data sets and realizations for the simulation study. All of the indi-
cator variograms used in the study were spherical in shape and had zero nugget. In
the notation used below, "cdf" refers to cumulative distribution function, "anis" refers
to the ratio of the range in the x direction to the range in the y direction, and "a"
represents the range in the x direction.

Runs A, B,C,D,E,F, G, H

The exhaustive data sets were generated using sequential indicator simulation. Five indicator thresholds
were used: -2, -1, 0, 1, and 2. The parameters of the indicator variograms used for each threshold were
as follows:

minimum value=-5, maximum value=5

threshold=-2, cdf=.20, anis=3, a=7, sill=.16

threshold=-1, cdf=.35, anis=3, a=5, sill=.2275

threshold=0, cdf=.50, anis=1, a=3, sill=.25

threshold=1, cdf=.635, anis=1, a=2, sill=.2275

threshold=2, cdf=.80 anis=1, a=2 sill=.16

The realizations were also generated using SIS with the indicator variograms specified above.

Runs L, J

The exhaustive data sets were generated exactly as in run A. The realizations were generated using SIS
with the follow...g indicator variograrn parameters:

minimum value=-5, maximum value=5

threshold=-2, cdf=.25, anis=3, a=7, sill=.1875

threshold==-1, cdf=.40, anis=3, a=5, sill=.24

threshold=0, cdf=.50, anis=1, a=3, sill=.25

threshold=1, cdf=.60, anis=1, a=2, sill=.24

threshold=2, cdf=.75 anis=1, a=2 sill=.1875




Run K

The exhaustive data sets were generated exactly as in run A. The realizations were generated using SIS
with the following indicator variogram parameters:
minimum value=-3, maximum value=3

(All thresholds and variograms as in run A))

Run L

The exhaustive data sets were generated exactly as in run A, The realizations were generated using SIS
with the following indicator variogram parameters:
minimum value=-6, maximum value=6

(All thresholds and variograms as in run I,)

Run M

The exhaustive data sets were generated as in run A. Realizations were generated using SIS, with the
following parameters:

minimum value=p,, maximum value=p ;g

threshoid=p,, cdf=.20, anis=3, a=7, sill=.16

threshold=p 5, cdf=.35, anis=3, a=5, sill=.2275

threshold=p s, cdf=.50, anis=1, a=3, sill=.25

threshola-, s, cdf=.65, anis=1, a=2, sill=.2275

thresho d=pgg, cdf=.80 anis=1, a=2 sill=.16,

where p , refers to the o perceatile of the exhaustive data set.

Runs N, P

The exhaustive data sets were generated as in run A, Realizations were generated using SIS, with the
following parameters:

minimum value=q,, maximum value=q o,

threshold=q,, cdf=.20, anis=3, a=7, sill=.16

threshold=qs, cdf=.35, anis=3, a=S5, sill=.2275

threshold=qs,, cdf=.50, anis=1, a=3, sill=.25

threshold=q¢s, cdf=.65, anis=1, a=2, sill=.2275

threshold=q gy, cdf=.80 anis=1, a=2 sill=.16,



where g refers to the p percentile of the related data set.

Runs Q, R

The exhaustive data sets were generated as follows: (1) Independently sample 900 values from a uni-
form distribution with mean 0, variance 1. Assign each value to a point on the 30 x 30 grid. (2) Use
the Choleski decomposition of a theoretical covariance matrix to transforin the data so that they exhibit
the desired covanance structure (Anderson, 1984). The covariance matrix chosen represents a spherical
variogram with a sill of 5 and a range of 10. Realizations were generated using SIS, with the following
parameters:

minimum value=p,, maximum value=p o

threshold=p,, cdf=.20, anis=1, a=10, sill=.16

threshold=p 55, cdf=.35, anis=1, a=10, sill=.2275

threshold=ps,, cdf=.50, anis=1, a=10, sill=.25

threshold=p¢s, cdf=.65, anis=1, a=10, sill=.2275

threshold=pg,, cdf=.80 anis=1, a=10 sill=.16

where p, refers to the o percentile of the exhaustive data set.

Runs §, T, U

The exhaustive and related data sets were generated in the same manner as the exhaustive data sets in

run Q. Realizations were generated using SIS, with the following parameters:

minimum value=q,, maximum value=q
threshold=q,, cdf=.20, anis=1, a=10, sill=.16
threshold=gq3s, cdf=.35, anis=1, a=10, sill=.2275
threshold=gs,, cdf=.50, anis=1, a=10, sill=.25
threshold=q¢s, cdf=.65, anis=1, a=10, sill=.2275
threshold=qgo, cdf=.80 anis=1, a=10 sill=.16,

where g refers to the f§ percentile of the related data set.



APPENDIX C - INPUTS TO isim3d.c

This section describes, in detail, the simulation parameters used to generate the
various exhaustive and realization data sets used in the study. The C language pro-
gram isim3d.c (Gomez-Hernandez et al., 1989) provided to Sandia National Labora-
tories by the Stanford Center for Reservoir Forecasting, was used to generate all
sequential indicator simulations. This program requires information from a number of
input files. For all of the sequential indicator simulations carried out in this study, the
input files isim3d.spec, and isim3d.layer appeared as shown in Table C-3 and Table
C-4, respectively. The other two input files, isim3d.var and isim3d.dat, were varied

over the different runs.

Runs A, B,C, D

Exhaustive Data Sets:

Generated using isim3d.c, with the following input files:

isim3d.var, isim3d.dat: as shown in Tables C-1, and C-2.
Realizations:
Generated using isim3d.c, with the following input files:

isim3d.var: as shown in Table C-1.

isim3d.dat: random samples from the exhaustive data set.

Runs E, F

Exhaustive Data Sets:

Generated using isim3d.c, with the following input files:

isim3d.var, isim3d.dat: as shown in Tables C-1 and C-2.

Realizations:

Generated using isim3d.c, with the following input files:

isim3d.var: as shown in Table C-1.

isim3d.dat: clustered random samples from exhaustive data sets. Clustered such that, on average, 67%

of samples will lie within the first and third quadrants of grid square (upper right and lower left).



TABLE C-1

INPUT FILE isim3d.var"

isim3d.var, cont'd

isim3d.var, cont’d

53 threshold | 2

54 p_cdf .80
55 nugget 0

5.6 cmax 1

5.7 | num_struct | 1

58 type 2

59 sill .16
5.10 a 2
5.11 anis.x 1

5.12 ains.y 1

5.13 anis.z 1

5.14 100
5.15 cos 010
5.16 001

isim3d.var

1.1 nind 5

1.2 | z min, z max | -5 5
13 threshold -2

14 p_cdf 2

L5 nugget 0

1.6 cmax I

1.7 num_struct 1

1.8 type 2

1.9 sill .16
1.10 a 7

111 anis.x 1

112 ains.y 3

113 anis.z 1

1.14 100
1.15 cos 010
L16 001
23 threshold -1

24 p_cdf 35
25 nugget 0

2.6 cmax 1

27 num_struct 1

28 type 2

29 sill 2275
2.0 a 5

211 anis.x 1
2.12 ains.y 3
2.13 anis.z 1

2.14 100
2.15 cos 010
2.16 001

33 threshold 0

34 p_cdf 5

3.5 nugget 0

3.6 cmax 1

3.7 | num_struct | 1

38 type 2

39 sil] 25
3.10 a 3

3.11 anis.x 1

12 ains.y 1

3.13 anis.z 1

3.14 100
3.15 cos 010
3.16 001
43 threshold 1

44 p_cdf .65
45 nugget 0

4.6 cmax 1

4.7 | num_struct | 1

4.8 type 2

49 sill 2275
4.10 a 2
4.11 anis.x 1
4.12 ains.y 1
4.13 anis.z 1
4.14 100
4.15 cos 010
4.16 001

* The table is in the format of the worksheets recommended by Gomez-Hernandez et al. (1989). The actual input

file contains only the numerical entries in column 3.




TABLE C-2

INPUT FILE isim3d.dat*

1sim3d.dat

ndata 2

(x.y.z,value) in order: "y faster-than x faster-than z"

1 3 3 0 1.201

2 12 12 0 0.672

* The table is in the format of the worksheets recommended by Gomez-Hernandez et al. (1989). The actual input
file contains only the numerical entries in column 2.

C-3



ool

TABLE C-3

INPUT FILE isim3d.spec’

~ isim3d.spec
1 g_deltax, g_deltay, g_delta.z 112
2 | g_origin.x, g_ongin.y, g_originz | 9 0 0
3 g_nodes.x, g_nodes.y, g_nodes.z | 30 30 1
4 cdf 1
5 out_dummy, in_dummy ‘11
6 seed (varies)
7 from.x, from.y, from.z 111
8 to.x, to.y, to.z 30 30 1
9 radius.x, radius.y, radius.z 10 10 1
10 100
11 direction cosines 010
12 001
13 rotation flag 0
14 max_per_octant 4
15 dbg 0
16 out flg 2

* The table is in the format of the worksheets recommended by Gomez-Hernandez et al. (1989). The actual input

file contains only the numerical entries in column 3.




TABLE C4

INPUT FILE isim3d.layer*

isim3d.layer
top, thickness, in order: "y faster-than x axis"
1 0 1
2 0 1
3 0 1
900 0 1

* The table is in the format of the worksheets recommended by Gomez-Hernandez et al. (1989). The actual input
file contains only the numerical entries in column 2.



Runs G, H

Exhaustive Data Sets:

Generated using isim3d.c, with the following input files:

isim3d.var, isim3d.dat: as shown in Tables C-1 and C-2.

Realizations:

Generated using isirm3d.c, with the following input files:

isim3d.var: as shown in Table C-1.

isim3d.dat: clustered random samples from exhaustive data sets. Clustered such that, on average, 57%

(run G) or 73% (run H) of samples will lie within the first guadrant of grid square (upper right).

Runs 1, J

Exhaustive Data Sets:

Generated using isim3d.c, with the following input files:

isim3d.var, isim3d.dat: as shown in Tables C-1 and C-2.
Realizations:

Generated using isim3d.c, with the following input files:
isim3d.var: as shown in Table C-1, with the following changes:
(line 1.4) .25

(line 1.9) .1875

(line 2.4) 40

(line 2.9) .24

(line 4.4; .60

(line 4.9) .24

(line 54) .75

(line 5.9) .1875

isim3d.dat: random samples from the exhaustive data set.



Run K

Exhaustive Data Sets:

Generated using isim3d.c, with the following input files:
isim3d.var, isim3d.dat: as shown in Tables C-1 and C-2.

Realizations:

Generated using isim3d.c, with the following input files:
isim3d.var: as shown in Table C-1, with the following change:
(line 1.2) -3 3

isim3d.dat: random samples from exhaustive data sets.

Run L

Exbhaustive Data Sets;

Generated using isim3d.c, with the following input files:

isim3d.var, isim3d.dat: as shown in Tables C-1 and C-2.
Realizations:

Generated using isim3d.c, with the following input files:
isim3d.var: as shown in Table C-1, with the following changes:
(line 1.2) -6 6

(line 1.4) .25

(line 1.9) .1875

(line 2.4) 40

(line 2.9) .24

(line 4.4) .60

(line 4.9) .24

(line 5.4) .75

(iine 5.9) .1875

isim3d.dat: random samples from exhaustive data sets.



Run M

Exhaustive Data Sets:

Generated using isim3d.c, with the following input files:
isim3d.var, isim3d.dat: as shown in Tables C-1 and C-2.

Realizations:
The quantiles of the exhaustive data set were used to compute indicator variograms for the realizations,

which were generated using isim3d.c, with the following input files:

isim3d.var: as shown in Table C-1, with the following changes:
(line 1.2) min and max values of exhaustive data set

(line 1.3) 20™ percentile of exhaustive data set

(line 2.3) 35" percentile of exhaustive data set

(line 3.3) 50™ percentile of exhaustive data set

(line 4.3) 65" percentile of exhaustive data set

(line 4.3) 80" percentile of exhaustive data set

isim3d.dat: random samples from the exhaustive data set.

Runs N, P

Exhaustive Data Sets:

Generated using isim3d.c, with the following input files:

isim3d.var, isim3d.dat: as shown in Tables C-1 and C-2.
Realizations:

For each exhaustive data set generated, a second, related data set was generated by isim3d.c, using the
same input files. The quantiles of the related data set were used to model indicator variograms for the

realizations, which were generated using isim3d.c, with the following input files:

isim3d.var: as shown in Table C-1, with the following changes:
(line 1.2) min and max values of related data set

(line 1.3) 20* percentile of related data set

(line 2.3) 35" percentile of related data set

(line 3.3) 50" percentile of related data set

(line 4.3) 65" percentile of related data set
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(line 4.3) 80" percentile of related data set

isim3d.dat: random samples from the exhaustive data set.

Runs Q, R

Exhaustive Data Sets:

Generated as follows: (1) Independently sample 900 values from a uniform distribution with mean 0,
variance 1. Assign each value to a point on the 30 x 30 grid. (2) Use the Choleski decomposition of
a theoretical covariance matrix to transform the data so that they exhibit the desired covariance struc-
ture (Anderson, 1984). The covariance matrix chosen represents a spherical variogram with a sill of

five and a range of ten; this is the same shape as that of the indicator variograms specified in Table C-
1.

Realizations:

Generated using isim3d.c, with the following input files:
isim3d.var: as shown in Table C-1, with the following changes:
(tine 1.2) min and max values of exhaustive data set
(line 1.3) 20" percentile of exhaustive data set

(line 1.10) 10

(line 1.12) 1

(line 2.3) 35" percentile of exhaustive data set

(line 2.10) 10

(line 2.12) 1

(line 3.3) 50* percentile of exhaustive data set

(line 3.10) 10

(line 4.3) 65" percentile of exhaustive data set

(line 4.10) 10

(line 5.3) 80" percentile of exhaustive data set

(line 5.10) 10

isim3d.dat: random samples from the exhaustive data set.



Runs §, T, U

Exhaustive Data Sets:

Generated as in run Q.

Realizations:

For each exhaustive data set, a second complete data set was generated using the same theoretical
variogram as that of the exhaustive. This second data set is referred to as a "related" data set. The
quantiles of the "related” data set were used to compute indicator variograms of the realizations. The
realizations were generated using isim3d, with the following inpui files:

isim3d.var: as shown in Table C-1, with the following changes:

(line 1.2) min and max values of related data set

(line 1.3) 20" percentile of related data set

(line 1.10) 10

(line 1.12) 1

(line 2.3) 35* percentile of related data set

(line 2.10) 10

(line 2.12) 1

(line 3.3) 50™ percentile of related data set

(line 3.10) 10

(line 4.3) 65" percentile of related data set
(line 4.10) 10

(line 5.3) 80™ percentile of related data set
(tine 5.10) 10

isim3d.dat: random samples from the exhaustive data set.
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APPENRIX D - INDICATOR VARIOGRAMS FOR EXHAUSTIVE DATA SETS
GENERATED BY THE CHOLESKI METHOD

Runs Q, R, S, T, and U of the experiment used exhaustive data sets that were
generated using the Choleski method. (For details of the method, see section 3.1.4.)
Each of these exhaustive data sets had a theoretical z-variogram that was spherical in
shape, with a range of ten and a sill of five. In generating the 100 realizations for
these runs, five indicator thresholds were given to SIS, specifying the 0.20, 0.35, 0.50,
0.65 and 0.80 quantiles of the desired cumulative distribution function (cdf). At each
threshold, SIS was told that the theoretical indicator variogram should be spherical,
with a range of ten (the sill is determined solely by the cdf). In order to demonstrate
that this was appropriate, i.e., that, for the exhaustive data sets, the shape of the indica-
tor variograms at each of the five thresholds was well-modeied by the shape of the

theoretical z-variogram, we present Figures D-1 through D-5.

The dashed lines of the left-hand panel of Figure D-1 show the observed indicator
variograms (at the 0.20 quantile) for ten independent exhaustive data sets generated
using the Choleski method. The solid line represents the corresponding indicator
variogram model provided to SIS. Although none of the individual indicator
variograms appear to be particularly close to the solid line, they do tend to cluster
around it, and all have ranges approximately equal to ten. The right-hand panel of the
figure shows (solid dots) the mean of the ten observed variograms; here, the correspon-

dence with the indicatcr variogram model is excellent.

Figures D-2 through D-5 depict the individual and mean indicator variograms, for
the same ten exhaustive data sets, for the other four thresholds. In each case, the indi-
“cator variogram models provided to SIS closely resemble the means of the individual
indicator variograms. Based on this small simulation experiment, we conclude that the
indicator variogram models provided to the SIS simulator for runs Q, R, S, T, and U
were appropriate.



INDICATOR VARIOGRAMS: 20th PERCENTILE
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Figure D-1 The left-hand panel of the figure shows the exhaustive indicator variograms, at the 20th
percentile, for ten 30 x 30 data sets, independently generated using the Choleski method.
The solid line represents the theoretical indicator variogram model that was provided to
SIS for generating realizations from such exhaustive data sets. The right-hand panel
shows the mean of the ten individual indicator variograms, along with the theoretical
model! input to SIS. Agreement between the mean and theoretical indicator variograms is

excellent.
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Figure D-2  Indicator variograms, at the 35th percentile, for ten data sets generated using the Choleski

method.




INDICATOR VARIOGRAMS: 50th PERCENTILE
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Figure D-3 Indicator variograms, at the 50th percentile, for ten data sets generated using the Choleski
method.
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INDICATOR VARIOGRAMS: 65th PERCENTILE
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Figure D-4  Indicator variograms, at the 65th percentile, for ten data sets generated using the Choleski

method.
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APPENDIX E - HYPOTHESIS TESTS FOR CONFIDENCE INTERVAL ACCURACY

Each run in the first phase of the experiment used ten different exhaustive data
sets, and generated 100 realizations of each. As the boxplots in Figure 9 (and others)
show, ten exhaustive data sets are often sufficient to demonstrate changes in precision,
from one run to the next, as characterized by confidence interval widths. However, the
calculations below show that ten exhaustive data sets are not enough to determine
whether or not the bootstrap confidence intervals obtained by multiple simulations are

accurate.

Suppose that the distribution of the multiple simulations perfectly characterizes
the uncertainty resulting from the use of simulated (rather than exact) data at a large
percentage of nodes in the region of interest. In this case, we would expect that, for
any single transfer function, approximately 5% of bootstrap 95% confidence intervals
would fail to contain the true value of the transfer function. It follows that if ten
confidence intervals are constructed, on average, 0.50 intervals will not contain the true
value. Thus, in our simulation experiment, if all ten intervals contain the true value, we
are likely to conclude that the simulation results are accurate. However, if at least one
confidence interval does not contain the true value, we need to decide whether the
results indicate that the simulations are inaccurate. To make this decision, we will use

a statistical hypothesis test.

The appropriate null and alternative hypotheses for our test of accuracy are as fol-

lows:
Hy p <0.05

Hl: p > 0.05,

where p represents the percentage of confidence intervals not containing the true value
of the transfer function. We will reject H#, if the number of confidence intervals not
containing the true value exceeds some threshold value x*. The appropriate value for
x" is chosen by considering the level and power desired for the test. In statistical
terms, the level of a hypothesis test, denoted a, is the probability that H, will be
rejected when H, is, in fact, true. The power of a test, denoted 1-B, is the probability
that #, will be rejected when H, is true. Ideally, we would like a test with level o= 0

E-1



a test that has a reasonably low level (0.05 is a common value) and as high a power as
possible. For a thorough discussion of the theory of statistical hypothesis testing, see
Silvey (1975).

For our tests of confidence interval accuracy, the binomial distribution (Feller,
1950) is used for level and power calculations. If H, is true, then the probability that a
single confidence interval will not contain the true value is given by p =0.05. The pro-

bability that, out of n confidence intervals, exactly x will not contain the true value is

given by
n
u 05% 95" | E.1)
and the probability that x or fewer intervals will not contain the true value is given by
P(n,x, 05= Z[:] 05* 95"+ (E.2)
k=0

In order to test at the 5% level, we will choose x* such that P(n, x*, 0.05) exceeds 0.95.
In this way, there is at most a 5% chance that #/, will be rejected when H, is actually
true. In order to ensure that the test has maximum power for the specified level, x* is

taken to be the smallest value of x such that P(n, x, 0.05) exceeds 0.95.

Foi n =10, P(10,1,0.05) =0914 and P(10, 2, 0.05) = 0.989, so that x" =2 is the
appropriate critical value for testing at a level of at most 5%. (Note that the actual
level of the test is not exactly equal to 0.05; it is 1-0989 = 0.011 which is somewhat
conservative.) If ten confidence intervals are constructed using multiple simulations,
and more than two fail to contain the true value of the transfer function, then we will

reject the null hypothesis, and conclude that the confidence intervals are not accurate.

How powerful is the test? To answer this question, we can evaluate the probabil-
ity that more than two (out of ten) confidence intervals will not contain the true value,
as a function of p. This is the same as the probability that the null hypothesis will be

rejected, and is given by:

2

10
1-P{10,2,p)=1- Z[k ]p"(l—p)“”‘. (E.3)

k=0

Table E-1 shows the power of the test for selected values of p, and Figure E-1 (solid
line) graphically illustrates the relationship between p and the probability that #, will
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TABLE E-1

POWER OF THE STATISTICAL TESTS FOR DETECTING
INACCURATE CONFIDENCE INTERVALS

p 1-P(10.2.p) 1-P(50,5,p)
0 0.000 0.000
0.05 0.012 0.038
0.10 0.070 0.384
0.20 0.322 0.952
0.25 0.474 0.993
0.30 0.617 0.999
0.40 0.833 1.0
0.50 0.945 1.0
0.60 0.988 1.0
0.70 0.998 1.0
0.75+ 1.0 1.0
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be rejected. It is clear that departures from H, have to be quite substantial before the
test has a good chance of detecting inaccuracy in the simulated confidence intervals:
for example, even when the actual percent of confidence intervals failing to contain the
true value is as high as 25%, there is still less than a 50% chance that the test will
detect the departure from H,. It is for this reason that Phase Il of the experiment is
necessary. Phase I, with only ten confidence intervals per run, does not provide
enough information about the accuracy of inferences made from multiple conditional

indicator simulations.

Each run in Phase II uses 50 different exhaustive data sets; thus 50 different
bootstrap 95% confidence intervals are constructed for each run. In order to develop a
hypothesis test for the accuracy of the confidence intervals, we begin by determining
the critical number (out of 50) confidence intervals failing to contain the true value.
Using expression (A.2), we find that P(50, 4, 0.05) = 0.896, and P (50, 5, 0.05) = 0.962.
Thus, the appropriate critical value for a test of level at most 5% is x" = 5, the smallest
integer such that P (50, 5, 0.05) exceeds 0.95. Here again, the true level of the test is not
exactly 0.05; it is equal to 1-0962 =0.038. The second data column of Table E-1
shows some vaiues of the power of the test, 1 - =1~ P(50, 5, p), for various values of
p. Note that the Phase II test is considerably more powerfu! than Phase I in detecting
inaccuracy in the bootstrap confidence intervals. This can also be seen by comparing

the solid and dashed lines on Figure E-1.



APPENDIX F

Information from the Reference Information Base
Used in this Report

This report contains no information from the Reference Information Base.

Candidate Information

for the
Reference Information Base

This report contains no candidate information for the Reference Information Base.

Candidate Information

for the
Site & Engineering Properties Data Base

This report contains no candidate information for the Site and Engineering Properties
Data Base.
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