

1 Comparison of CO₂ Trapping in Highly Heterogeneous Reservoirs
2 with Brooks-Corey and Van Genuchten Type Capillary Pressure
3 Curves

4 Naum I. Gershenzon^{*a}, Robert W. Ritzi Jr.^a, David F. Dominic^a, Edward Mehnert^b,
5 Roland T. Okwen^b

6 *^aDepartment of Earth and Environmental Sciences, Wright State University, 3640 Col. Glenn*
7 *Hwy., Dayton, OH 45435, USA*

8 *^bIllinois State Geological Survey, Prairie Research Institute, University of Illinois at Urbana-*
9 *Champaign, 615 East Peabody Drive, Champaign, IL 6182, USA*

10 * corresponding author: naum.gershenzon@wright.edu

11
12
13

14

Abstract

15 Geological heterogeneities affect the dynamics of carbon dioxide (CO₂) plumes in subsurface
16 environments in important ways. Previously, we showed how the dynamics of CO₂ plumes are
17 influenced by the multiscaled sedimentary architecture in deep brine fluvial-type reservoirs. The
18 results confirm that representing small-scale features and the corresponding heterogeneity in
19 saturation functions, along with hysteresis in saturation functions, are all critical to understanding
20 capillary trapping processes. Here, we show that when heterogeneity and hysteresis are
21 represented, the two conventional approaches for defining saturation functions, Brooks-Corey
22 and van Genuchten, represent fundamentally different physical systems. The Brooks-Corey
23 approach represents heterogeneity in entry pressures, and leads to trapping by capillary pinning.
24 The van Genuchten approach represents a network of pores transporting the nonwetting fluid,
25 across rock types, with negligible capillary entry pressure, and leads to significant capillary
26 retardation. These differences significantly affect the large-scale characteristics of CO₂ plumes
27 (i.e., their mass, shape, and position).

28

29 **Keywords:** CO₂ geosequestration, capillary trapping, Brooks-Corey, van Genuchten,
30 heterogeneity, sedimentary architecture

31

32 1. Introduction

33 The idea of reducing atmospheric carbon dioxide (CO₂) by capturing CO₂ from emission
34 streams and injecting and permanently sequestering it the Earth's crust has been examined for
35 decades (Gale et al. [14]). Multiple CO₂ sequestration research and demonstration projects have
36 been operating worldwide since 1972. The critical question is whether injected CO₂ can be
37 permanently stored in deep sedimentary basins without affecting groundwater quality? To
38 answer this question detailed modeling of the migration and distribution of injected CO₂ in the
39 subsurface is required.

40 Various processes may trap supercritical CO₂ (CO₂ hereafter) emplaced in deep brine
41 reservoirs, including shorter-term physical trapping (0–10 years), intermediate-term dissolution

42 in brine (0–1,000 years), and longer-term mineralization (100 years–million years). Here, the
43 focus is on the processes of physical trapping and dissolution taking place within the reservoir
44 before a plume reaches caprock, and not on structural trapping by caprock at the top of the
45 reservoir, or on mineralization.

46 A large body of experimental, theoretical, and numerical research now shows that capillary
47 trapping has a primary impact on the distribution of CO₂ within the permeable sections of the
48 reservoir, and field observations now confirm the formation and stability of capillary trapped
49 CO₂ there, e.g., Krevor et al. [31]. There are two main capillary trapping processes:

50 (1) Carbon dioxide bubbles are trapped within pore spaces because of “snap-off” (Figure 1a),
51 a process in which counter-imbibition of brine (the wetting fluid) behind the advancing plume,
52 preferentially through smaller pores and pore throats, traps CO₂ bubbles within the intervening
53 pore bodies (e.g., Hunt et al., [21]; Wildenschild et al., [58]; Iglauer et al., [24]). In conventional
54 modeling approaches, this process is reflected in hysteresis in the constitutive relationship
55 between relative permeability and phase saturation (e.g., Juanes et al., [26]; Spiteri et al., [53];
56 Joekar-Niasar et al., [25]). Snap-off trapping allows CO₂ to be distributed with a larger surface
57 area, and thus enhances solution trapping. The process is lessened if the medium is not strongly
58 water wet; however, in data reviewed by Iglauer et al. [23], most reservoir rocks exhibit water-
59 wet behaviour, and the water-wet medium assumption is common in studies of capillary
60 trapping. Altundas et al. [1] showed that hysteresis in the constitutive relationship between
61 capillary pressure and saturation can also retard or halt the advance of the plume through the
62 reservoir, because the pressure in the non-wetting phase at the leading edge of the plume must be
63 sufficiently large for counter-imbibition to occur readily in the tail region. The effect of this
64 process was shown to be small relative to snap-off trapping under the conditions they explored.

65 (2) Capillary trapping can be caused by heterogeneity in the capillary entry pressure among
66 reservoir rock types [5, 10, 15, 16, 51, 60]. In this process (Figure 1b), CO₂ is pinned below local
67 contacts between an underlying reservoir rock type with larger pores and an overlying reservoir
68 rock type with smaller pores and thus larger entry pressure. This pinning can occur even within
69 the permeable sections of the reservoir where the entry pressure of smaller scale, relatively finer-
70 grained textural units (e.g. finer-grained sandstone) exceeds the buoyant pressure of the CO₂ in
71 the underlying coarser-grained textural units (Figure 1b). During injection, CO₂ preferentially
72 enters the higher-permeability, coarser-grained regions. As discussed by Meckel et al. [46], flow

73 behaviour at a distance away from the injection well and behaviour everywhere after injection
74 ends is dominated by buoyant and capillary forces (viscous forces are negligible) and controlled
75 by their differences across such contacts. As with snap-off trapping, capillary pinning increases
76 the surface area of the CO₂ phase and thus enhances solution trapping. Gershenzon et al. [15, 16]
77 investigated the relative effect of these physical trapping processes in a cross-bedded fluvial
78 reservoir containing both coarser- and finer-grained cross-beds, as discussed below. As we show
79 below, the capillary pinning could be permanent (Figure 1b) or transient (Figure 1c).

80 In the following, we will use three terms to designate capillary trapping: “snap-off”,
81 “capillary pinning,” and “capillary retardation”. The latter term is for the transient capillary
82 pinning.

83 **Figure 1.**

84 The conventional approach for modeling of CO₂ plume dynamics uses functions or tables to
85 represent the relationships of capillary pressure and relative permeability with saturation. The
86 shape and particular parameters of these curves, such as irreducible water saturation, S_{wi} ,
87 maximum residual gas saturation (saturation trapped by snap-off), S_{gr} , and the entry pressure, P_e ,
88 play a key role in the trapping processes and define the rate and amount of trapped CO₂, as well
89 as the shape and dynamics of the CO₂ plume [1, 7, 10, 14, 26, 28, 32, 39, 47, 53]. Two models
90 commonly used to represent the capillary pressure saturation curves are the Brooks-Corey [4]
91 and the van Genuchten [56] models. Hereafter, we will use the abbreviations BC and vG to
92 designate Brooks-Corey and van-Genuchten, respectively.

93 The main difference between the vG and BC models is that the BC model represents an entry
94 pressure (capillary pressure is not equal to zero at water saturation equal to zero) and the vG
95 model does not. The vG model represents the existence of at least one connected pore-pathway
96 with pores large enough so that the capillary pressure is negligible. Capillary pinning in these
97 two cases are different. Let us first describe the capillary pinning effect in the BC case. Consider
98 a FG textural unit underlain by a CG unit (Figure 2). If for a given CO₂ saturation, S_{CG}^w , capillary
99 pressure in the CG unit, $P_c(S_{CG}^w)$, is less than the entry pressure in overlain FG unit,
100 $P_c(S_{FG}^w = 1) \equiv P_{e,FG}$, minus the buoyant force per unit area, i.e. if $P_c(S_{CG}^w) < P_{e,FG} - (\rho_w - \rho_{CO_2})gh$
101 (here g is gravitational acceleration and h is the height of the CO₂ layer), then CO₂ from the CG
102 unit will be unable to penetrate to FG unit (Figure 2a). In this case CO₂ is trapped in the

103 underlying CG layer. In vG case (Figure 2b) as long as the brine saturation in the FG unit
104 exceeds S_{FG}^w , some amount of buoyant CO₂ (as a non-wetting fluid) may freely penetrate the
105 overlying rock without any capillary pressure barrier. However, because CO₂ will not enter the
106 overlying unit when P_c in the overlying exceeds $P_c(S_{CG}^w)$, capillary pressure will limit the rate at
107 which CO₂ saturation can increase in the overlying unit, and give rise to a process we refer to
108 below as ‘capillary retardation’. As we show, capillary retardation can cause a significant delay
109 in the rise of the plume, and promote dissolution trapping. Importantly, we show that the
110 differences between BC and vG saturation functions, one leading to capillary pinning, the other
111 to capillary retardation, can considerably change the amount of trapped and dissolved CO₂ as
112 well as the dynamics and shape of CO₂ plumes in heterogeneous reservoirs.

113 **Figure 2**

114 Li et al. [39] investigated the difference between simulations of CO₂ sequestration in
115 homogeneous aquifers using these two models. They observed that (1) the vG capillary pressure
116 model accelerates CO₂ solubility trapping compared with the BC model; and (2) simulation
117 results are very sensitive to the slope of the vG curve in the vicinity of maximum brine
118 saturation.

119 Geological heterogeneities fundamentally affect the dynamics of a CO₂ plume in subsurface
120 environments [2, 5, 12, 18, 20, 22, 29, 40, 47, 49, 51, 54, 60]. Bryant et al. [5] and Ide et al. [22]
121 showed that a layer of smaller permeability lying above a layer of larger permeability can cause a
122 pinning effect. Saadatpoor et al. [51] further illustrated this trapping mechanism by assuming a
123 functional dependence between permeability and capillary pressure, and simulating the dynamics
124 of the buoyant CO₂-brine front in a heterogeneous reservoir. Comparison of this simulation with
125 an analogous simulation, but with a homogeneous (averaged) capillary pressure curve, revealed a
126 dramatic difference in results. In the former case, CO₂ rises through the high-permeability
127 channels, which are surrounded by the capillary barriers of the low-permeability material. In
128 some regions capillary barriers prevent upward movement of CO₂, allowing only lateral
129 migration, which effectively traps the CO₂ plume. The same idea was explored by Zhou et al
130 [60]. Considering regional-scale flow and transport processes in a layered reservoir, CO₂
131 accumulated between layers with different permeability and capillary-pressure entry points,
132 causing retardation of upward CO₂ migration. Krevor et al. [29] and Pini et al. [49] provided
133 laboratory evidence showing that sub-core scale heterogeneity can control CO₂ saturation. They

134 demonstrated that CO₂ plumes can be immobilized behind capillary barriers as a continuous
135 phase [29]. The variability of the capillary pressure-saturation curves measured in the laboratory
136 is caused by the presence of millimeter-scale heterogeneities in a sample [49]. Li and Benson
137 [40] further investigated how millimeter-scale heterogeneities affect large-scale CO₂ migration
138 by the local capillary barriers. In particular, they showed that these heterogeneities may
139 significantly reduce (by a factor of two) the CO₂ frontal speed during buoyancy-driven
140 migration. Trevisan et al. [54] experimentally studied the influence of larger-size heterogeneity
141 (centimeter–meter) that contributes to the distribution of a CO₂ plume in a brine-saturated
142 reservoir. They found that (1) spatial variability of capillary entry pressure controls plume
143 dynamics in capillary-dominated flow regimes; and (2) heterogeneity influences plume spreading
144 mainly during the short-term injection period, while long-term trapping performance of
145 heterogeneous models can be reproduced by Land's models fitted to homogeneous models with
146 analogous mean permeability.

147 Some potential CO₂ reservoirs have sedimentary architecture reflecting fluvial deposition
148 (Figure 3). Gershenzon et al. [15, 16] investigated how such fluvial architecture can affect the
149 dynamics of a CO₂ plume during and after injection. They used new three-dimensional
150 geocellular models representing the field-observed spatial arrangement of coarser-grained (CG)
151 cross-bed sets (24% volume fraction in their study) juxtaposed with finer-grained (FG) cross-sets
152 (76%). These models also represent how these cross-sets are organized within a hierarchy of
153 larger-scale features [42, 43]. Heterogeneity in the constitutive relationship models was
154 represented by using separate BC models for each cross-set type. Given the contrast in entry
155 pressures, capillary pinning was pronounced and all CO₂ was effectively immobilized by the
156 combination of snap-off trapping, capillary pinning, and dissolution, before reaching the top of
157 the reservoir.

158 Here, we expand on the work by Gershenzon et al. [15, 16] and Li et al. [39] by including vG
159 models as well as BC models to represent the capillary pressure saturation function, as it varies
160 with rock type in a reservoir with fluvial architecture. We show that capillary and dissolution
161 trapping are very different for the BC and vG approaches under the type of reservoir
162 heterogeneity represented here.

163 **Figure 3.**

164 **2. Methodology**

165 Many existing and potential CO₂ reservoirs have fluvial sedimentary architecture, e.g., Mt.
166 Simon Sandstone [13], the lower Parratte Formation [6, 30], the Victor interval of the Ivishak
167 Formation [55], and the lower Tuscaloosa Formation [30, 41]. The heterogeneity in permeability
168 of these reservoirs is defined by their fluvial architecture ranging from the centimeter to the
169 reservoir scale. The sedimentary architecture of some of these reservoirs has been quantified in
170 three-dimensional models [3, 17, 42, 44, 50]. To create a geocellular model of fluvial reservoir
171 architecture, we use the methodology described in Ramanathan et al. [50]. We generated a
172 realization of the channel-belt architecture, including two textural facies: FG rocks (76%) and
173 CG rocks (24%). The proportion of CG rocks affects the proportion of high-permeability cells
174 that are connected to create preferential flow pathways. In the realization we created, 71% of CG
175 cells are connected in one spanning cluster. This model has been used to create a map of intrinsic
176 permeability suitable for simulation of CO₂ distribution in fluvial reservoirs (Figure 4). The
177 geometric mean of permeabilities is as follows: 58 mD among FG cells, 3823 mD among CG
178 cells, and 193 mD among all cells.

179 **Figure 4.**

180 The reservoir size is 100 m × 100 m × 5 m (250 thousand cells of size 2 m × 2 m × 0.05 m).
181 The CO₂ was injected at a rate of 0.03025 kg/s for 10 days into the bottom of a vertical well at a
182 depth of 2360 m. Our simulations covered a total of 1,010 days or 1,000 days post-injection. The
183 pressure and temperature at the top of the reservoir are 230.8 bar and 53°C, respectively, such
184 that the injected CO₂ was supercritical. The well was placed at $x = 23$ m and $y = 1$ m. No-flow
185 boundaries were imposed on all boundaries of the CO₂ reservoir. The total amount of injected
186 CO₂ is 26136 kg. For the simulations, both the heterogeneous reservoir described above (Figure
187 4) and a homogeneous reservoir with intrinsic isotropic permeability of 193 mD (equal to the
188 geometric mean of the permeability of the heterogeneous reservoir) were used.

189 Two different sets of characteristic curves were utilized for the FG and the CG rock types.
190 Thus, the total number of characteristic curves was 12 (Figure 5), including six for drainage and
191 six for imbibition. To generate the curves, we used the following methodology that adapted the
192 approach of Holtz [19]. First, using an empirical relation between permeability (k) and porosity
193 (ϕ), we obtained porosity for FG and CG rocks (Table 1, column 2):

$$k = 7 \cdot 10^7 \phi^{9.61} \text{ in mD.} \quad (1)$$

Then, we found the averaged irreducible water saturation (S_{wi}) and residual CO₂ saturation (S_{gr}) for both facies types by formulae (Table 1, columns 4 and 5):

$$S_{wi} = 5.159(\log(k)/\emptyset)^{-1.559}; \quad (2)$$

$$S_{gr} = -0.969\emptyset + 0.5473 . \quad (3)$$

The next step was to calculate capillary pressure for drainage (P_{cd}) using the Brooks-Corey relation [4]:

$$P_c = P_e \left(\frac{S - S_{wi}}{1 - S_{wi}} \right)^{-1/\lambda}, \quad (4)$$

where S is water saturation, P_e is the minimum pressure required for the entry of CO_2 into the pore of the rock, and λ is a fitting parameter known as pore-size distribution index. For rocks from the Mt. Simon Sandstone, $P_e = 0.046$ bar and $\lambda = 0.55$ [30]. We used this value for the FG rocks. To find the entry pressure point for the CG rocks, we scaled the FG rocks value based on the Leverett J -function as proposed by Saadatpoor et al [51]:

$$P_e^{CG} = P_e^{FG} \left(\frac{k_{FG} \phi_{CG}}{k_{CG} \phi_{FG}} \right)^{0.5}. \quad (5)$$

For imbibition, we used a curve analogous to (4) but, in contrast to drainage, the imbibition curve crosses the saturation axis at a value of $S = 1 - S_{gr}$.

For the relative permeability curves, the Brooks-Corey relations in the form proposed by Dullien [8] were used:

$$k_{r,w} = (S_w^*)^{N_w}; \quad (6)$$

$$k_{r,CO_2} = k_{r,CO_2}(S_{wi})(1-S_w^{**})^2[1-(S_w^{**})^{N_{CO_2}}], \quad (7)$$

where $S_w^* = \frac{S - S_{wi}}{1 - S_{wi}}$, $S_w^{**} = \frac{S - S_{wi}}{1 - S_{gr} - S_{wi}}$. The variables N_w and N_{CO2} are fitting parameters known

as the Corey exponents for water and CO₂, respectively. The following values were used: $N_{CO_2} = 4$ [30] and $N_w = 5$ and $N_w = 3$ for drainage and imbibition, respectively.

The values of other parameters are in Table 1. The results are summarized in Figure 5.

Table 1. Data for relative permeability and capillary pressure curves for the BC case. The values of S_{wi} , S_{gr} , $k_{r,CO_2}(S_{wi})$, and P_s^{OFC} are calculated by formulae (1–7). The values of P_s^{SS} and \emptyset are from [30].

222

	ϕ	λ	S_{wi}	S_{gr}	$k_{r,CO_2}(S_{wi})$	P_e (bar)
FG rocks	0.23	0.55	0.22	0.32	0.65	$4.6 \cdot 10^{-2}$
CG rocks	0.36	0.55	0.14	0.20	0.95	$0.72 \cdot 10^{-2}$

223

224 To generate a vG-type capillary pressure curve we followed Li et al. [39] and used the same
 225 relation (4) in the range $S_{wi} \leq S \leq (1-S_{nt})$ and the relation (8) if $1-S_{nt} < S \leq 1$ (Figure 6):

$$226 \quad P_c = (1-S) \frac{P_e}{S_{nt}} \left(\frac{S - S_{nt} - S_{wi}}{1 - S_{wi}} \right)^{-1/\lambda} . \quad (8)$$

227 There is no difference between the BC and vG types for imbibition curves.

228 **Figure 5.**

229 **Figure 6.**

230 We also created a “true” vG curve using the conventional formula:

$$231 \quad P_c = P_g [(S_w^*)^{-1/m_g} - 1]^{1/n_g}, \quad m_g = 1 - 1/n_g, \quad (9)$$

232 where P_g is a pressure scaling parameter related to the average size of the pores. The exponents
 233 m_g and n_g are related to the pore-size distribution. The values of these parameters were chosen
 234 based on the BC parameters in the formulas proposed by Lenhard et al. [34]. Thus, we used the
 235 following values: $P_g(\text{CG}) = 1.13 \cdot 10^{-2}$ bar, $P_g(\text{FG}) = 7.24 \cdot 10^{-2}$ bar, and $n_g = 1.668$.

236 ECLIPSE-300 (compositional model with the CO2STORE option) has been used for
 237 simulations. Four components were included in simulations: H₂O, CO₂, NaCl, and CaCl₂ with
 238 initial total phase mole fractions of 0.9109, 0, 0.0741, and 0.015, respectively. The water
 239 compressibility and viscosity are $4.35 \cdot 10^{-5}$ 1/bar and 0.813 cP, respectively. Killough’s hysteresis
 240 model for history-dependent capillary pressure and relative permeability functions [27] has been
 241 used, i.e., snap-off saturation of CO₂, relative permeability, and capillary pressure were
 242 calculated based on the formulae (34.1–4) and (34.20–21) described in the ECLIPSE manual
 243 [45]. The mutual solubilities of CO₂ and H₂O were calculated following the procedure given by
 244 Spycher and Pruess [52]. The gas density was obtained by a tuned cubic equation-of-state. The
 245 CO₂ viscosity was calculated based on the procedure described by Fenghour et al. [11] and
 246 Vesovic et al. [58].

247 **3. Results**

248 The results for the homogeneous simulations are discussed first. In both (with BC and vG
 249 curves) homogeneous simulations, the plumes reached the top of the reservoir and spread under
 250 the impermeable boundary. Figure 7 shows the plume shape after 1,010 days. The dynamics of
 251 CO₂ trapping by snap-off through the simulation are shown in Figure 8. The trapping by snap-off
 252 is the same in both homogeneous simulations because the same relative permeability saturation
 253 functions were used. The majority of the CO₂ (75.7%) is trapped by snap-off at the end of the
 254 simulation. The dynamics of trapping by dissolution are shown in Figure 9, and the dynamics of
 255 CO₂, eventually trapped by the impermeable top, are shown in Figure 10. Table 2 summarizes
 256 the distribution of CO₂ at the end of the simulation. The difference between the homogeneous
 257 simulations is that the simulation using the vG model has more trapping by dissolution compared
 258 to the simulation using the BC model, as seen clearly in Table 2, and thus less CO₂ reaches the
 259 top. This is the main reason why the plume in the BC case is wider (Figure 7). These results are
 260 consistent with Li et al. [39].

261 **Figure 7.**

262 **Figure 8.**

263 **Figure 9.**

264 **Figure 10.**

265
 266 **Table 2.** Mass distribution of CO₂ (fraction from the total amount of injected CO₂) at the end of
 267 the simulation.

	Trapped by snap-off			Trapped by pinning	Trapped by dissolution			Mobile
	CG	FG	Total		CG	FG	Total	
Homogeneous BC	0.754			0	0.158			0.088 (trapped by seal)
Homogeneous vG	0.757			0	0.193			0.050 (trapped by seal)
Heterogeneous BC	0.362	0.215	0.577	0.159	0.067	0.197	0.265	0
Heterogeneous	0.290	0.352	0.642	0.003	0.076	0.303	0.355	0

vG1								
Heterogeneous	0.303	0.303	0.606	0.005	0.083	0.306	0.389	0

268

269 In the heterogeneous simulations, the plumes do not reach the top of the reservoir at the end
 270 of the simulations (Figure 11). Importantly, the reason the plumes do not reach the top is very
 271 different between simulations using the BC and vG models. With the BC model, the CO₂ that is
 272 not trapped by snap-off or dissolution is immobilized by capillary pinning. With the vG model,
 273 all the CO₂ is trapped by snap-off and dissolution and there is essentially no mobile CO₂. A study
 274 of Figures 8–12 and Table 2 brings out these and other subtle differences.

275 **Figure 11.**

276 **Figure 12.**

277 With either model, CO₂ preferentially enters the more permeable CG cells during injection.
 278 With the vG model, the CO₂ more readily crosses into FG cells; the plume spreads into more of
 279 the reservoir, and thus more (by 12%) snap-off trapping occurs (Figure 8). Indeed, Figure 12 and
 280 Table 2 show that more snap-off trapping occurs in FG rocks with the vG model than in CG
 281 rocks, because the plume occupies more pores space in FG rocks. The opposite is true with the
 282 BC model. Note that ECLIPSE has the ability to calculate snap-off trapping and the amount of
 283 mobile CO₂, which includes capillary-pinned CO₂. In cases where CO₂ did not reach the top of
 284 the reservoir, the total amount of so-called mobile CO₂ is capillary pinned.

285 With the BC approach, CO₂ is trapped within connected clusters of CG cells that do not span
 286 the domain, and the CO₂ remains immobile unless the buoyancy force is sufficient to overcome
 287 the capillary entry pressure of FG rocks, as discussed in Gershenzon et al. [15]. In spanning
 288 clusters, CO₂ propagates mainly in the horizontal direction because the lengths of lateral
 289 branches of spanning CG clusters are greater than their local thickness. This happens initially
 290 during injection when viscous forces exceed buoyancy forces, and at all times when buoyancy
 291 forces are smaller than capillary forces. In the latter case, a lateral pressure gradient forces CO₂
 292 to move along a boundary between CG rocks (lower capillary entry pressure) and the overlying
 293 FG rocks (higher capillary entry pressure). Also, the downward dip of CG cross-sets has a
 294 significant influence, creating a local downward component to velocity vectors inside a CG
 295 cross-set, and giving rise to local trapping within them during the post-injection phase. The CO₂
 296 can exit from a spanning and downward dipping CG cluster across its upper boundary if the

297 buoyancy force is large enough. It will propagate upward into and through an overlying FG
298 cross-set and into the next CG cross-set above, responding to both buoyancy and capillary forces.
299 This process continues until the buoyancy force becomes comparable to the capillary force, and
300 then the plume becomes immobile or trapped without reaching the top of the reservoir.

301 The amount of dissolution trapping between heterogeneous simulations using the vG and BC
302 models is seen in Figure 9 and Table 2. As with the homogenous simulations, there is more
303 dissolution trapping when the vG model is used because, without capillary pinning, the CO₂
304 more readily crosses into FG cells and is distributed with a larger surface area, promoting
305 dissolution. By the end of the simulation, 35.5% of the CO₂ (Table 2) is trapped in the vG
306 simulation and only 26.5% in the BC simulation.

307 The most significant result is that at the end of the simulation time, the simulation with the
308 BC model still has a significant amount of CO₂ essentially immobilized by entry-pressure
309 pinning within CG cross-sets (15.9% of the source), whereas almost all of the CO₂ was trapped
310 by snap-off or dissolution in the simulation with the vG model. All CO₂ is trapped in either case,
311 yet the distribution of CO₂ is quite different (Figure 11).

312 To study the influence of the size of S_{nt} (the “tail” within the vG capillary curves), another
313 heterogeneous simulation was run with $S_{nt} = 0.04$, i.e., 2.5 times smaller than in the previous
314 simulation. Results were then compared for the BC, vG1 ($S_{nt} = 0.1$), and vG2 ($S_{nt} = 0.04$)
315 approaches. Table 2 shows that (1) the amount of mobile CO₂ in the gas phase for vG2 is a little
316 bit larger than for vG1 but still much smaller than for BC; (2) the amount of trapped CO₂ in the
317 gas phase for vG2 is smaller than for vG1 but still larger than for BC; and (3) the amount of
318 dissolved CO₂ for vG2 is a little bit larger than for vG1 and much larger than for BC. Thus, in
319 the range considered, the value of S_{nt} does not significantly affect the results.

320 We also created a simulation with the vG model calculated by equation (9). Comparison with
321 results using the vG model from Figure 6 (calculated by equations (4) and (8)) shows negligible
322 differences in the amount of trapped and solute CO₂ between these two cases. This indicates that,
323 as we expected, the main difference in results by using BC vs. vG capillary pressure curves is
324 due to the lack of an entry pressure in the vG case, and that the size of the vG tail or particular
325 equation used for the vG model are less important.

326 Regardless of the shape of the capillary pressure curves, the lack of entry pressure in the vG
327 model suggests that all mobile CO₂ (not trapped by snap-off and not dissolved) will eventually

328 migrate to the caprock. This is not the case in the BC approach; mobile CO₂ trapped by the
329 capillary pinning will never reach the caprock. To illustrate this fundamental difference, we ran
330 heterogeneous simulations with the same conditions as above but with no snap-off trapping (that
331 is, with the value of maximum residual gas saturation equal to zero and hysteresis turned off) and
332 for a longer period of time (10,000 days). The results are shown in Figure 13. With the vG
333 model, almost all mobile CO₂ accumulates at the top of reservoir, but, with the BC model, CO₂ is
334 trapped by capillary pinning.

335 **Figure 13.**

336 The simulations with heterogeneity better reflect geologic reality for fluvial sandstones. Note
337 that fluvial architecture causes CO₂ to propagate predominantly in the lateral direction, creating
338 strong effective permeability anisotropy. A comparison of the homogeneous simulations to the
339 more realistic heterogeneous simulations shows the importance of representing heterogeneity in
340 the constitutive relationships, regardless of whether or not an entry pressure exists. The
341 homogeneous simulations overestimate the amount of snap-off trapping, underestimate the
342 amount of solution trapping, and underestimate the total amount of trapping within the reservoir
343 regardless of the approach for specifying capillary pressure curves.

344 To examine the sensitivity of the simulations to grid spacing, we compare the results of
345 calculations with “normal” grid size, $2 \times 2 \times 0.05$ m, and with a grid size 8 times smaller, $1 \times 1 \times$
346 0.025 m. To make the computation feasible with a finer grid (number of cells is 160K), we use a
347 small part of the original heterogeneous reservoir for simulation (number of cells $20 \times 20 \times 50 =$
348 20K). We found that (1) positions and shapes of the plumes are virtually the same; (2) the
349 difference in reservoir pressure is negligible; (3) the difference in amount of snap-off trapping is
350 about 2% for both BC and vG cases; (4) the difference in amount of dissolution is up to 10% ,
351 (about 3% from the total CO₂ amount). This allows us to conclude that the results were not
352 sensitive to the grid resolution used.

353 **4. Discussion and Conclusions**

354 Simulation of CO₂ sequestration requires knowledge of capillary pressure–CO₂ saturation
355 relations. These functional dependences are difficult to derive experimentally and are quite
356 uncertain for most potential reservoirs. Conventionally, these curves are derived from
357 experiments on a few samples and modeled using the Brooks and Corey [4] or van Genuchten

358 [56] approaches. The main difference between these two approaches is in the form of the
359 capillary pressure curve where CO_2 saturation is small. Our results show that the presence or
360 absence of an entry pressure in the capillary pressure curve at low CO_2 saturation significantly
361 affects the rate and amount of CO_2 trapping. Therefore, distinguishing the true capillary pressure
362 at small CO_2 saturation may be important.

363 Li et al. [39] found that CO_2 dissolution was affected by the shape of the capillary pressure
364 tail in homogeneous reservoirs, but capillary trapping (snap-off) was insensitive to this shape.
365 Here, we investigated the difference in CO_2 trapping (both dissolution and capillary trapping)
366 between the BC and vG approaches to define capillary pressure curves for a heterogeneous
367 reservoir, including two types of cross-strata (FG and CG). We found:

368 1. Carbon dioxide capillary trapping is significantly impacted by the type of capillary
369 pressure curve used. Snap-off trapping averaged over the whole reservoir is somewhat larger for
370 the vG approach. However, the larger difference is the amount of CO_2 trapped by capillary
371 pinning, in the BC approach vs. the capillary retardation in the vG approach. As a result, mobile
372 CO_2 eventually reaches the caprock in the vG approach, but never reaches the caprock with the
373 BC approach. Also, note that a larger amount of CO_2 is trapped in CG rocks relative to FG rocks
374 with the BC approach, whereas the opposite is true with vG approach. Thus, the distribution of
375 CO_2 is quite different between the two approaches.

376 2. Heterogeneity increases the surface area of the plume and therefore dissolution trapping
377 is enhanced. This is a logical extension of the results by Li et al. [39], who showed that changes
378 to the slope region of the tail of a vG model increased the surface area and thus dissolution
379 trapping in homogeneous reservoirs. The type of heterogeneity investigated here increased
380 dissolution trapping to a much greater extent than did changes to the slope region of the vG tail.

381 The explanation of these differences between the BC and vG approaches is as follows. The
382 rate of dissolution in a homogeneous reservoir is proportional to the CO_2 -brine contact area. In
383 the vG case, the contact area is diffuse and CO_2 -brine boundary is wider than in the BC case.
384 This is because there is a pore network with negligible capillary entry pressure in the vG case,
385 which allows CO_2 to penetrate higher into the brine-saturated rock through this network. The
386 same explanation is applicable for the heterogeneous reservoirs. However, the boundaries
387 between different materials (CG and FG rocks in our case) should be also considered. In
388 heterogeneous media, CO_2 propagates along highly permeable clusters in addition to moving up

389 by buoyancy force. As a result, a part of the CO₂ (in our example all CO₂ in the gas phase) is
390 trapped at the CG-FG boundaries (the capillary pinning effect in BC case and capillary
391 retardation effect in vG case; Figure 11), because the buoyancy force is smaller than the capillary
392 pressure force. The latter force prevents CO₂ from moving upward. The penetration width of
393 CO₂ at the CG-FG boundary depends on the pore-size distribution in FG rocks. The wider the
394 distribution is the larger the effective CO₂-brine surface, and the larger the dissolution rate,
395 which explains the results depicted in Figure 9. This effect on the dissolution rate is much larger
396 in heterogeneous reservoirs than in homogeneous reservoirs because the total effective contact
397 area is much larger in the latter case.

398 Capillary trapping (snap-off) in the homogeneous simulations was not sensitive to the type of
399 capillary pressure curve; the capillary trapping rate and the amount are the same for BC and vG
400 curves (Figure 8). In heterogeneous reservoirs, the CO₂-brine interface zone partially coincides
401 with CG-FG boundaries (Figure 12). In this case, the width of the CO₂-brine interface zone
402 affects the distribution of CO₂ between CG and FG rocks. In the BC approach, the width of the
403 interface zone is smaller and CO₂ does not penetrate up into FG rocks. In contrast, in the vG
404 approach, a part of the CO₂ penetrates into FG rocks. As a result, the ratio between amounts of
405 CO₂ in FG rocks to amounts of CO₂ in CG rocks is larger in the vG approach. This explains why
406 the amount of snap-off CO₂ is larger in FG rocks (and is smaller in CG rocks, respectively) in the
407 vG approach than in the BC approach (Figure 12). Because the snap-off is larger in FG rocks
408 than in CG rocks (per unit volume of material), the total amount of snap-off CO₂ in the entire
409 (heterogeneous) reservoir is larger in the vG approach (Figure 8).

410 The effect described above, i.e., strong dependency of CO₂ trapping on the type of capillary
411 pressure curve used for simulation, depends on CO₂ relative permeability curves as well.
412 Difference between the amounts of snap-off in the vG and BC cases depends on the residual CO₂
413 saturation parameter. In cases where only a drainage curve is used for simulation and residual
414 CO₂ saturation equals zero, snap-off trapping is absent. Calculated snap-off amount depends on
415 the type of hysteresis model for history-dependent relative permeability functions used for
416 simulation. The comparison between three models, i.e., Killough's [27], Carlson's [9] and
417 Jargon's [45] models, showed that, for the conditions considered here, the difference may reach
418 20% between Killough's and Carlson's models and 50% between Killough's and Jargon's
419 models.

420 The amount of CO₂ trapped by snap-off in the vG case depends on the tail shape, i.e., S_{nt}
421 value; the larger is S_{nt} , the larger is the snap-off. This is because the larger tail allows more CO₂
422 to penetrate the FG rocks and thus more total (in both FG rocks and CG rocks rocks) CO₂ is
423 trapped. However, the change in the trapping amount due to “tail size” is small compared to the
424 change in the trapping due to switching from the vG to BC case.

425 Note that the grid-cell size used for simulation ($2 \times 2 \times 0.05$ m) was dictated by the typical
426 size of the first (smallest) level of heterogeneity in geocellular model architecture [17, 50]. This
427 size was established based on field measurements of fluvial depositions [3, 42-44]. An increase
428 in grid-cell size will cause the loss or corruption of this level of heterogeneities. This will lead to
429 erroneous results because most of the effects described here occur because of the presence of
430 small-scale heterogeneity. In particular, the connectivity of highly permeable rocks will be
431 altered. However, small grid size does not allow simulation of CO₂ injection in realistically sized
432 reservoirs with volumes a few orders of magnitude larger than the reservoir volume considered
433 here. Upscaling requires averaging effects of small-scale heterogeneity, which is a subject of our
434 further research.

435 The same general findings would be expected in other types of sedimentary architecture
436 where coarser-grained rock types with lower entry pressures are juxtaposed within finer-grained
437 rock types with higher entry pressures (e.g., eolian deposits with coarser- and finer-grained
438 cross-sets or alluvial deposits with incised coarser-grained channel lags).

439 What capillary pressure curve best describes the behaviour of CO₂ in brine-filled, fluvial
440 reservoirs? Li [36] noted that the BC approach has been used frequently for lithified porous
441 media (rock) and the vG approach for unlithified porous media (soils). Indeed, the published data
442 for reservoir rocks often indicate that the BC approach is appropriate, e.g., Krevor et al. [30].
443 There are reported attempts to combine the BC and vG approaches to one closed-form model
444 based on the experimental data with a variety of rocks, e.g., [33, 36, 57]. Results of these studies
445 indicate that, in some cases, both curve types fit experimental data equally well; in other cases,
446 one of the types is more preferable than the other. The detailed comparison of six relative
447 permeability–saturation–capillary-pressure models (two BC and four vG types) based on
448 experimental data with sandstones from four different formations was recently implemented by
449 Oostrom et al. [48]. Only processes during injection were analyzed in one-dimensional and two-
450 dimensional homogeneous reservoirs in that study. Even with these limitations, the results show

451 large variations in plume shape and CO₂ saturation distribution depending on the model used.
452 Those results and the results of our study suggest that a high priority should be given to
453 quantifying the existence or absence of entry pressures, and, if present, their heterogeneity as a
454 part of characterizing candidate fluvial reservoirs for CO₂ sequestration.

455 But this is one part of the problem. The second part is the implementation of the BC
456 approach in simulation software. Widely used simulation packages, such as TOUGH2, do not
457 implement the BC approach for capillary pressure. Though ECLIPSE does implement this
458 approach, there are essential differences between the BC and vG cases: (1) calculation time is
459 one to two orders of magnitude larger in the former case; and (2) there are more convergence
460 problems in the BC case. The future versions of these and other software should include
461 algorithms with a sufficiently implemented BC option for capillary pressure curves, e.g., [35, 37,
462 38].

463

464 **Acknowledgements**

465

466 We thank the Editor and reviewers for comments and suggestions used to improve this
467 manuscript. This work was supported as part of the Center for Geological Storage of CO₂, an
468 Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science,
469 Basic Energy Sciences under Award # DE-SC0C12504. We acknowledge Schlumberger Limited
470 for the donation of ECLIPSE Reservoir Simulation Software. We thank Daniel Klen for
471 manuscript editing. Both the data and input files necessary to reproduce the simulations are
472 freely available from the authors upon request (naum.gershenzon@wright.edu).

473

474 **REFERENCES**

475

476 [1] Altundas, Y.B., T.S. Ramakrishnan, N. Chugunov, and R. de Loubens (2011), Retardation of
477 CO₂ Caused by Capillary Pressure Hysteresis: A New CO₂ Trapping Mechanism, *SPE Journal*,
478 16 (4), 784–794, doi: <http://dx.doi.org/10.2118/139641-PA>.

479 [2] Boait F, White N, Chadwick A, Noy D, Bickle M. Layer spreading and dimming within the
480 CO₂ plume at the Sleipner field in the North Sea. *Energy Procedia* 2011; 4: 3254–61.
481 <http://dx.doi.org/10.1016/j.egypro.2011.02.244>.

482 [3] Bridge, J.S. (2006), Fluvial facies models: Recent developments, in *Facies Models Revisited*,
483 SEPM Spec. Publ., 84, edited by H. W. Posamentier and R. G. Walker, 85–170, Soc. for
484 Sediment. Geol. (SEPM), Tulsa, Okla.

485 [4] Brooks, R. J., and A. T. Corey (1964), Hydraulic properties of porous media, *Hydrol. Pap.* 3,
486 Colo. State Univ., Fort Collins.

487 [5] Bryant, S. L., S. Lakshminarasimhan, and G. A. Pope (2006), Buoyancy-dominated
488 multiphase flow and its impact on geological sequestration of CO₂, SPE 99938, SPE/DOE
489 Symposium on Improved Oil Recovery, Tulsa, Okla.

490 [6] Dance, T. (2009), A workflow for storage site characterization, A case study from the
491 CO₂CRC Otway Project, AAPG/SEG/SPE Hedberg Conference on Geological Carbon
492 Sequestration and Verification, August 16–19, Vancouver BC.

493 [7] Delshad, M., X. Kong, R. Tavakoli, S.A. Hosseini, and M.F. Wheeler (2013), Modeling and
494 simulation of carbon sequestration at Cranfield incorporating new physical models, *Int. J.*
495 *Greenhouse Gas Control*, 18, 463–473, doi: [10.1016/j.ijggc.2013.03.019](https://doi.org/10.1016/j.ijggc.2013.03.019).

496 [8] Dullien, F.A.L. (1992), *Porous Media Fluid Transport and Pore Structure*, Academic, San
497 Diego.

498 [9] Carlson, F.M. (1981), Simulation of Relative Permeability Hysteresis to the Nonwetting
499 Phase. Presented at the *SPE Annual Fall Technical Conference and Exhibition*, San Antonio,
500 Texas, USA, SPE-10157-MS. <http://dx.doi.org/10.2118/10157-MS>.

501 [10] Ide, S.T., Jessen K, Orr Jr FM. (2007) Storage of CO₂ in saline aquifers: Effects of gravity,
502 viscous, and capillary forces on amount and timing of trapping. *Int. J Greenhouse Gas Control*.
503 1, 481–91.

504 [11] Fenghour, A., Wakeham, W.A., Vesovic, V. (1998) The Viscosity of Carbon Dioxide. *J.*
505 *Phys. Chem. Ref. Data*, 27, 1, 31–44.

506 [12] Flett, M., R. Gurton, and G. Weir (2007), Heterogeneous saline formations for carbon
507 dioxide disposal: Impact of varying heterogeneity on containment and trapping, *J. Pet. Sci. Eng.*,
508 57, 106–118, doi: [10.1016/j.petrol.2006.08.016](https://doi.org/10.1016/j.petrol.2006.08.016).

509 [13] Freiburg, J., D. Morse, H. Leetaru, R. Hoss, and Q. Yan (2014), A depositional and
510 diagenetic characterization of the Mt. Simon Sandstone at the Illinois Basin–Decatur Project
511 Carbon Capture and Storage Site, Decatur, Illinois, USA, Circular 583, Illinois State Geological
512 Survey, University of Illinois, Urbana-Champaign.

513 [14] Gale, J., J.C. Abanades, S. Bachu and C. Jenkins, 2015, Special Issue commemorating the
514 10th year anniversary of the publication of the Intergovernmental Panel on Climate Change
515 Special Report on CO₂ Capture and Storage, International Journal of Greenhouse Gas Control 40
516 (2015) 1–5, doi.org/10.1016/j.ijggc.2015.06.019.

517 [15] Gershenson, N. I., M.R. Soltanian , R. W. Ritzi Jr, D.F. Dominic, E. Mehnert, R.T. Okwen
518 (2015) Influence of Small-Scale Fluvial Architecture on CO₂ Trapping Processes in Deep Brine
519 Reservoirs, *Water Resour. Res.*, 51, 8240–8256, doi:10.1002/2015WR017638.

520 [16] Gershenson, N. I., M.R. Soltanian , R. W. Ritzi Jr, D.F. Dominic, (2014) Influence of small
521 scale heterogeneity on CO₂ trapping processes in deep saline aquifers. *Energy Procedia* 59, 166–
522 73.

523 [17] Guin, A., R. Ramanathan, R. W. Ritzi Jr., D. F. Dominic, I. A. Lunt, T. D. Scheibe, and V.
524 L. Freedman (2010), Simulating the heterogeneity in braided channel belt deposits: 2. Examples
525 of results and comparison to natural deposits, *Water Resour. Res.*, 46, W04516,
526 doi:[10.1029/2009WR008112](https://doi.org/10.1029/2009WR008112).

527 [18] Han, W. S., S.-Y. Lee, C. Lu, and B. J. McPherson (2010), Effects of permeability on CO₂
528 trapping mechanisms and buoyancy-driven CO₂ migration in saline formations, *Water Resour.*
529 *Res.*, 46, W07510, doi:[10.1029/2009WR007850](https://doi.org/10.1029/2009WR007850).

530 [19] Holtz, M.H. (2002), Residual Gas Saturation to Aquifer Influx: A Calculation Method for 3-
531 D Computer Reservoir Model Construction, paper was prepared for presentation at the SPE Gas
532 Technology Symposium held in Calgary, Alberta, Canada, 30 April–2 May 2002.

533 [20] Hovorka S.D., C. Doughty, S. M. Benson, K. Pruess and P.R. Knox (2004), The impact of
534 geological heterogeneity on CO₂ storage in brine formations: a case study from the Texas Gulf
535 Coast. Geological Society, London, Special Publications, 233, 147–163.

536 [21] Hunt, J. R., N. Sitar, and K. S. Udell (1988), Nonaqueous phase liquid transport and
537 cleanup: 1. Analysis of mechanisms, *Water Resour. Res.*, 24(8), 1247–1258.

538 [22] Ide, S.T., K. Jessen, F.M. Orr Jr. (2007), Storage of CO₂ in saline aquifers: Effects of
539 gravity, viscous, and capillary forces on amount and timing of trapping, *International Journal of*
540 *Greenhouse Gas Control*, 1(4), 481 – 491, doi: [10.1016/S1750-5836\(07\)00091-6](https://doi.org/10.1016/S1750-5836(07)00091-6).

541 [23] Iglauer, S., C. H. Pentland, and A. Busch (2015), CO₂ wettability of seal and reservoir rocks
542 and the implications for carbon geo-sequestration, *Water Resour. Res.*, 51, 729–774,
543 doi:[10.1002/2014WR015553](https://doi.org/10.1002/2014WR015553).

544 [24] Iglauer, S., A. Paluszny, C. H. Pentland, and M.J.Blunt (2011), Residual CO₂ imaged with
545 X-ray micro-tomography, *Geophys. Res. Lett.*, 38, L21403, doi:[10.1029/2011GL049680](https://doi.org/10.1029/2011GL049680).

546 [25] Joekar-Niasar, V., F. Doster, R.T. Armstrong, D. Wildenschild, and M.A. Celia, (2013),
547 Trapping and hysteresis in two-phase flow in porous media, *Water Resources Research*, 49, 1–
548 13, doi:10.1002/wrcr.2031.

549 [26] Juanes, R., E. J. Spiteri, F. M. Orr Jr., and M. J. Blunt (2006), Impact of relative
550 permeability hysteresis on geological CO₂ storage, *Water Resour. Res.*, 42, W12418,
551 doi:[10.1029/2005WR004806](https://doi.org/10.1029/2005WR004806).

552 [27] Killough, J. E. (1976) Reservoir Simulation with History-dependent Saturation Functions
553 *Trans. AIME* 261, 37–48.

554 [28] Kopp A, H. Class, and R. Helmig (2009), Investigations on CO₂ storage capacity in saline
555 aquifers. Part 1: Dimensional analysis of flow processes and reservoir characteristics. *Int J
556 Greenhouse Gas Control*, 3, 263–76.

557 [29] Krevor, S.C., R. Pini, B. Li, and S. M. Benson (2011), Capillary heterogeneity trapping of
558 CO₂ in a sandstone rock at reservoir conditions, *Geophys. Res. Lett.*, 38, L15401,
559 doi:10.1029/2011GL048239.

560 [30] Krevor, S.C., R. Pini, L. Zuo, and S. M. Benson (2012), Relative permeability and trapping
561 of CO₂ and water in sandstone rocks at reservoir conditions, *WaterResour.Res*, 48 , W02532,
562 doi:[10.1029/2011WR010859](https://doi.org/10.1029/2011WR010859).

563 [31] Krevor, S.C, M.J. Blunt, S.M. Benson, C.H. Pentland, C. Reynolds, A. Al-Mehali, B. Niu
564 (2015), Capillary trapping for geologic carbon dioxide storage –From pore scale physics to field
565 scale implications, *International Journal of Greenhouse Gas Control*, 40, 221–237,
566 doi.org/10.1016/j.ijggc.2015.04.006.

567 [32] Kumar, A., R. Ozah, M. Noh, G. A. Pope, S. Bryant, K. Sepehrnoori, and L.W. Lake
568 (2005), Reservoir simulation of CO₂ storage in deep saline aquifers, *SPE Journal*, 10(3), 336–
569 348, doi: <http://dx.doi.org/10.2118/89343-PA>.

570 [33] Leij F, RusselW, Lesch S (1997) Closed-form expressions for water retention and
571 conductivity data. *Ground Water* 35(5):848–858, 10.1111/j.1745-6584.1997.tb00153.x.

572 [34] Lenhard R, J. Parker, S. Mishra (1989), On the correspondence between Brooks-Corey and
573 van Genuchten models. *Journal of Irrigation and Drainage Engineering*. 115, 744–751 doi:
574 10.1061/(ASCE)0733-9437(1989)115:4(744).

575 [35] Lichtner, P.C., G.E. Hammond, C. Lu, S. Karra, G. Bisht, B. Andre, R. Mills, J. Kumar,
576 (2015) PFLOTRAN User Manual.

577 [36] Li, K., (2010), More general capillary pressure and relative permeability models from
578 fractal geometry. *Journal of Contaminant Hydrology* 111, 13–24.

579 [37] Li B. Including fine-scale capillary heterogeneity in modeling the flow of CO₂ and brine in
580 reservoir cores. M.S. thesis, Stanford University, USA; 2011.

581 [38] Li B, Benson SM, Tchelepi HA. Modeling fine-scale capillary heterogeneity in multiphase
582 flow of CO₂ and brine in sedimentary rocks. In: Proceedings of the XIX international conference
583 on water resources University of Illinois at Urbana-Champaign, IL, USA; June 2012. p. 17–22.

584 [39] Li, B., H. A. Tchelepi , S.M. Benson (2013), Influence of capillary-pressure models on CO₂
585 solubility trapping, *Advances in Water Resources*, 62(C): 488–98, doi:
586 [10.1016/j.advwatres.2013.08.005](https://doi.org/10.1016/j.advwatres.2013.08.005).

587 [40] Li, B., & S.M. Benson, (2015). Influence of small-scale heterogeneity on upward CO₂
588 plume migration in storage aquifers. *Advances in Water Resources*, 83, 389–404.

589 [41] Lu, J., R. Reed, and S. Hovorka (2011), Diagenesis and sealing capacity of the middle
590 Tuscaloosa mudstone at the Cranfield carbon dioxide injection site, Mississippi, U.S.A.,
591 *Environmental Geosciences*, 18(1), 35–53, doi:[10.1306/eg.09091010015](https://doi.org/10.1306/eg.09091010015).

592 [42] Lunt, I.A. and J.S. Bridge (2007), Formation and preservation of open framework gravel
593 strata in unidirectional flows, *Sedimentology*, 54, 71–87, doi:[10.1111/j.1365-3091.2006.00829.x](https://doi.org/10.1111/j.1365-3091.2006.00829.x).

594 [43] Lunt, I.A., J.S. Bridge, and R.S. Tye (2004), A quantitative, three dimensional depositional
595 model of gravelly braided rivers, *Sedimentology*, 51(3), 377–414, doi:[10.1111/j.1365-3091.2004.00627.x](https://doi.org/10.1111/j.1365-3091.2004.00627.x).

596 [44] Lunt, I.A. (2002), A three-dimensional, quantitative depositional model of gravelly braided
597 river sediments with special reference to the spatial distribution of porosity and permeability,
598 Phd dissertation, Binghamton University, State University of New York.

599 [45] Manual “ECLIPSE reservoir simulation software, Technical Description”, Version 2010.2

600 [46] Meckel TA, Bryant SL, Ganesh PR. (2015), Characterization and prediction of CO₂
601 saturation resulting from modeling buoyant fluid migration in 2D heterogeneous geologic
602 fabrics. *International Journal of Greenhouse Gas Control*, 34, 85–96.

604 [47] Mo, S., P. Zweigel, E. Lindeberg, and I. Akervoll (2005), Effect of geologic parameters on
605 CO₂ storage in deep saline aquifer, *The 14th Europec Biennial Conference*, Madrid, Spain, SPE
606 93952.

607 [48] Oostrom, M.D. White, S.L. Porse, S.C.M. Krevor, S.A. Mathias (2016), Comparison of
608 relative permeability–saturation–capillary pressuremodels for simulation of reservoir
609 CO₂injection. *International Journal of Greenhouse Gas Control*, 45, 70–85.

610 [49] Pini, R., S.C. Krevor, and S. M. Benson, 2012. Capillary pressure and heterogeneity for the
611 CO₂/water system in sandstone rocks at reservoir conditions, *Advances in Water Resources* 38
612 (2012) 48–59.

613 [50] Ramanathan, R., A. Guin, R. W. Ritzi Jr., D. F. Dominic, V. L. Freedman, T. D. Scheibe,
614 and I. A. Lunt (2010), Simulating the heterogeneity in braided channel belt deposits: 1. A
615 geometric-based methodology and code, *Water Resour. Res.*, 46, W04515,
616 doi:[10.1029/2009WR008111](https://doi.org/10.1029/2009WR008111).

617 [51] Ritzi, R.W., J.T. Freiburg, N.D. Webb, (2016), Understanding the (co)variance in
618 petrophysical properties of CO₂ reservoirs comprising fluvial sedimentary architecture,
619 *International Journal of Greenhouse Gas Control*, (51), p. 423-434, doi:
620 10.1016/j.ijggc.2016.05.001

621 [51] Saadatpoor, E., Steven L. Bryant, and K. Sepehrnoori (2009), Effect of capillary
622 heterogeneity on buoyant plumes: A new local trapping mechanism, *Energy Procedia*, 1(1),
623 3299–3306,doi: [10.1016/j.egypro.2009.02.116](https://doi.org/10.1016/j.egypro.2009.02.116).

624 [52] Spycher, N. and K. Pruess (2005) CO₂-H₂O mixtures in the geological sequestration of
625 CO₂.II. Partitioning in chloride brines at 12-100 C and up to 600 bar. *Geochimica et
626 Cosmochimica Acta*, 69 (13), 3309–3320.

627 [53] Spiteri, E. J., R. Juanes, M. J. Blunt, and F. M. Orr (2008), A new model of trapping and
628 relative permeability hysteresis for all wettability characteristics, *SPE Journal*, 13(3), 277–288
629 doi: <http://dx.doi.org/10.2118/96448-PA>.

630 [54] Trevisan L., R. Pini, A. Cihan, J.T. Birkholzer, Q. Zhou, and T.H. Illangasekare (2015)
631 Experimental analysis of spatial correlation effects on capillary trapping of supercritical CO₂ at
632 the intermediate laboratory scale in heterogeneous porous media. doi: 10.1002/2015WR017440

633 [55] Tye, R. S., B. A. Watson, P. L. McGuire, and M. M. Maguire (2003), Unique horizontal-
634 well designs boost primary and EOR production, Prudhoe Bay field, Alaska, in T. R. Carr, E. P.

635 Mason, and C. T. Feazel, eds., Horizontal wells: Focus on the reservoir: AAPG Methods in
636 Exploration, 14, 113–125.

637 [56] van Genuchten M.T. (1980), A closed-form equation for predicting the hydraulic
638 conductivity of unsaturated soils. *Soil Sci Soc Am J*, 44(5), 892–8.

639 [57] Valiantzas, J.D. (2011) Combined Brooks-Corey/Burdine and van Genuchten/Mualem
640 Closed-Form Model for Improving Prediction of Unsaturated Conductivity. *Journal of Irrigation*
641 *and Drainage Engineering*, 137(4), 223–233.

642 [58] Vesovic, V. Wakeham, W. A., Olchowy, G.A., Sengers, J.V., Watson, J.T.R., Millat, J.
643 (1990), The Transport Properties of Carbon Dioxide. *J. Phys. Chem. Ref. Data*, 19, 3, 763–808.

644 [59] Wildenschild, D., R.T. Armstrong, A.O. Herring, I.M. Young, and J.W. Carey (2011)
645 Exploring capillary trapping efficiency as a function of interfacial tension, viscosity, and flow
646 rate, *Energy Procedia* 4, 4945–4952, doi:10.1016/j.egypro.2011.02.464.

647 [60] Zhou, Q., Birkholzer, J. T., Mehnert, E., Lin, Y.F. and Zhang, K. (2010), Modeling Basin-
648 and Plume-Scale Processes of CO₂ Storage for Full-Scale Deployment, *Groundwater*,
649 48(4), 494–514, doi: [10.1111/j.1745-6584.2009.00657.x](https://doi.org/10.1111/j.1745-6584.2009.00657.x).

650

651 **Figures legends**

652

653 **Figure 1.** **(a)** Snap-off trapping: Counter-imbibition of brine (the wetting fluid) behind the
654 advancing plume occurs preferentially through smaller pores and pore throats, trapping CO₂
655 bubbles within the intervening pore bodies (e.g., [22, 25, 62]). **(b)** Capillary pinning: CO₂ is
656 pinned below local contacts between an underlying rock type with larger pores and an overlying
657 rock type with smaller pores and thus larger entry pressure. This occurs where the entry pressure
658 (P_e) of the FG rock exceeds the buoyant pressure (P_b) of CO₂ in the CG rock (e.g., [5, 16, 17, 23,
659 53, 63]); this effect is quasi-permanent. **(c)** Capillary retardation: a transient pinning effect in
660 which CO₂ preferentially enters regions with larger pores during injection, and leaks through
661 network of pores with negligibly small capillary pressure in the overlying, finer-grained rock.
662 Increase in CO₂ saturation in the finer grained rock is rate-limited because of the difference in
663 saturation relationships between rock types, retarding plume movement, as explained in Figure 2.

664

665 **Figure 2.** **(a)** Schematic illustration of ‘capillary pinning’ effect in BC case. If for a given CO₂
666 saturation, S_{CG}^w , capillary pressure in CG unit, $P_c(S_{CG}^w)$, is less than the entry pressure in
667 overlying $P_{e,FG}$ FG unit, $P_c(S_{FG}^w = 1) \equiv P_{e,FG}$, minus the buoyant force per unit area, then CO₂
668 from CG unit is unable to penetrate to FG unit. **(b)** Schematic illustration of ‘capillary
669 retardation’ effect in the vG case. As long as brine saturation in the FG unit exceeds S_{FG}^w , some

670 amount of buoyant CO_2 may freely penetrate the overlying rock without any capillary pressure
671 barrier. However, because CO_2 will not enter the overlying unit when P_c in the overlying rock
672 exceeds $P_c(S_{CG}^w)$, capillary pressure will limit the rate at which CO_2 saturation can increase in the
673 overlying unit.

674

675 **Figure 3.** Fluvial forms and internal architecture, from Ritzi et al. [51]. (a) A modern fluvial
676 channel-belt system comprising active channels and compound bars. The compound bars, in
677 turn, comprise unit bars. (b) Conceptual diagram of a compound bar with unit bars outlined in
678 green. (c) Cross section through (b) showing that unit bar deposits comprise sets of cross strata
679 with different textures. .

680

681 **Figure 4.** Rendering of the geocellular model populated with intrinsic permeability. The CG
682 cross-sets (24% by volume) are apparent as higher-permeability regions. Paleoflow was right to
683 left, and thus the CG cross-sets dip to the left. Though boundaries of unit bar deposits cannot be
684 easily distinguished in this rendering, the cross-sets dip more steeply at the front of unit bar
685 deposits and these differences in dip are apparent. Vertical exaggeration is 10×.

686

687 **Figure 5.** Capillary pressure (a), relative permeability of CO_2 (b) and relative permeability of
688 water (c) in FG and CG rocks for drainage and imbibition.

689

690 **Figure 6.** Brooks-Corey (equation (8)) and van Genuchten-type (equation (9)) capillary pressure
691 curves for CG and FG rocks for drainage.

692

693 **Figure 7.** Vertical cross section of a homogeneous reservoir showing CO_2 saturation after 1,010
694 days (1,000 days after the end of injection) in simulations using the vG (top panel) and BC
695 (bottom panel) approaches for capillary pressure curves. Vertical exaggeration is 10×.

696

697 **Figure 8.** The dynamics of CO_2 trapping (fraction from the total amount of injected CO_2) in
698 homogeneous and heterogeneous reservoirs in simulations using the BC and vG approaches for
699 capillary pressure curves.

700

701 **Figure 9.** The dynamics of CO_2 (fraction from the total amount of injected CO_2) dissolved in
702 homogeneous and heterogeneous reservoirs in simulations using the BC and vG approaches for
703 capillary pressure curves.

704

705 **Figure 10.** The dynamics of supercritical CO_2 (fraction from the total amount of injected CO_2) in
706 homogeneous and heterogeneous reservoirs in simulations using BC and vG approaches for
707 capillary pressure curves. At large time this “mobile” CO_2 is actually trapped by entry-pressure
708 pinning in the heterogeneous BC case, and by reaching the top of the domain in both
709 homogeneous cases.

710

711 **Figure 11.** Vertical cross section of a heterogeneous reservoir showing CO₂ saturation after
712 1,010 days (1,000 days after the end of injection) in simulations using the vG approach (top
713 panel) and BC approach (bottom panel) for capillary pressure curves. Vertical exaggeration is
714 10×.

715

716 **Figure 12.** The dynamics of CO₂ trapping by snap-off (fraction from the total amount of injected
717 CO₂) in heterogeneous reservoirs using the BC and vG approaches for capillary pressure curves.

718

719 **Figure 13.** Three-dimensional images of a heterogeneous reservoir showing CO₂ saturation after
720 7.5, 110, and 10,000 days with snap-off trapping suppressed, using the BC (left) and vG (right)
721 approaches for capillary pressure curves. Vertical exaggeration is 8×.

Figure 1

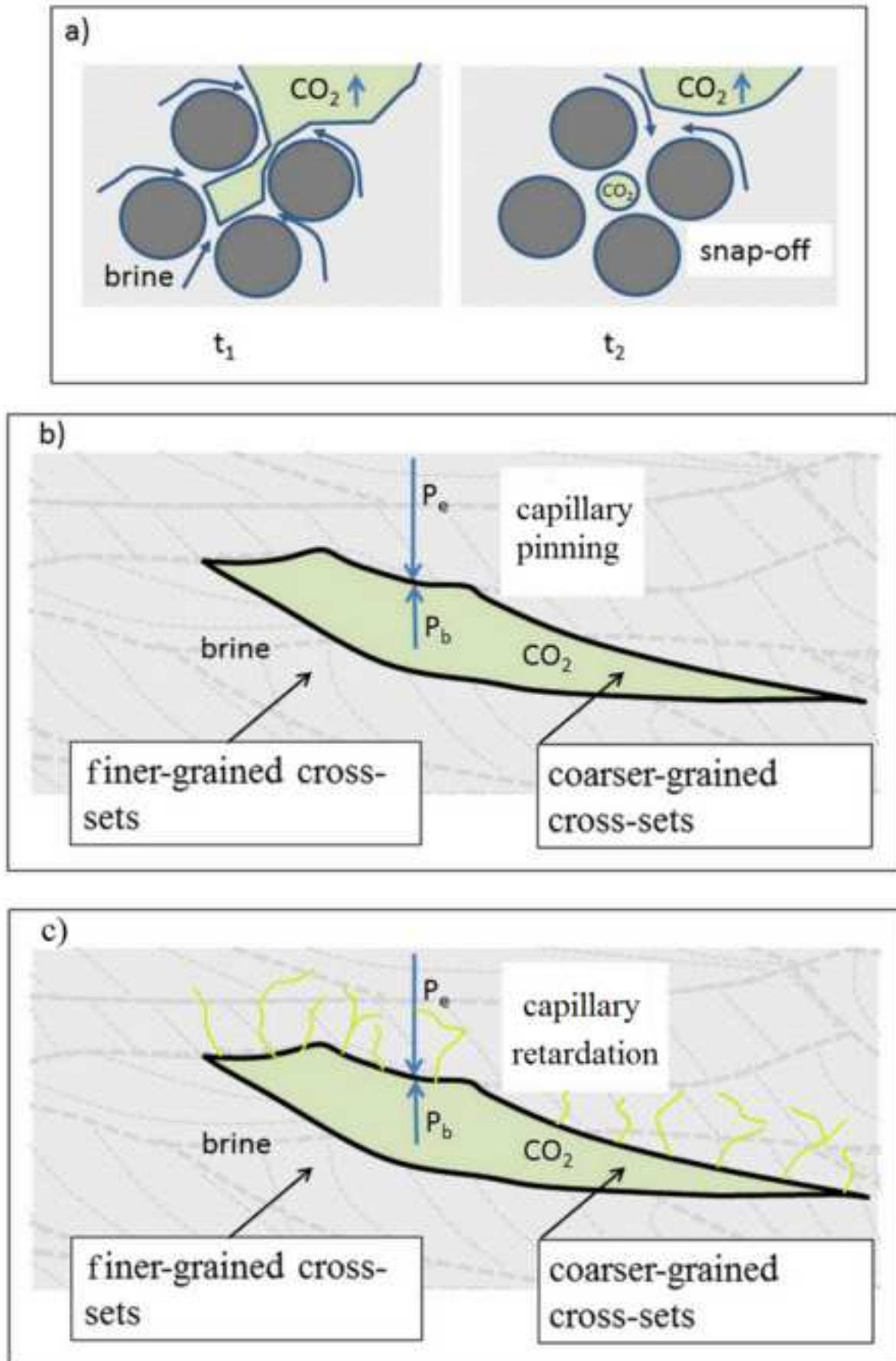
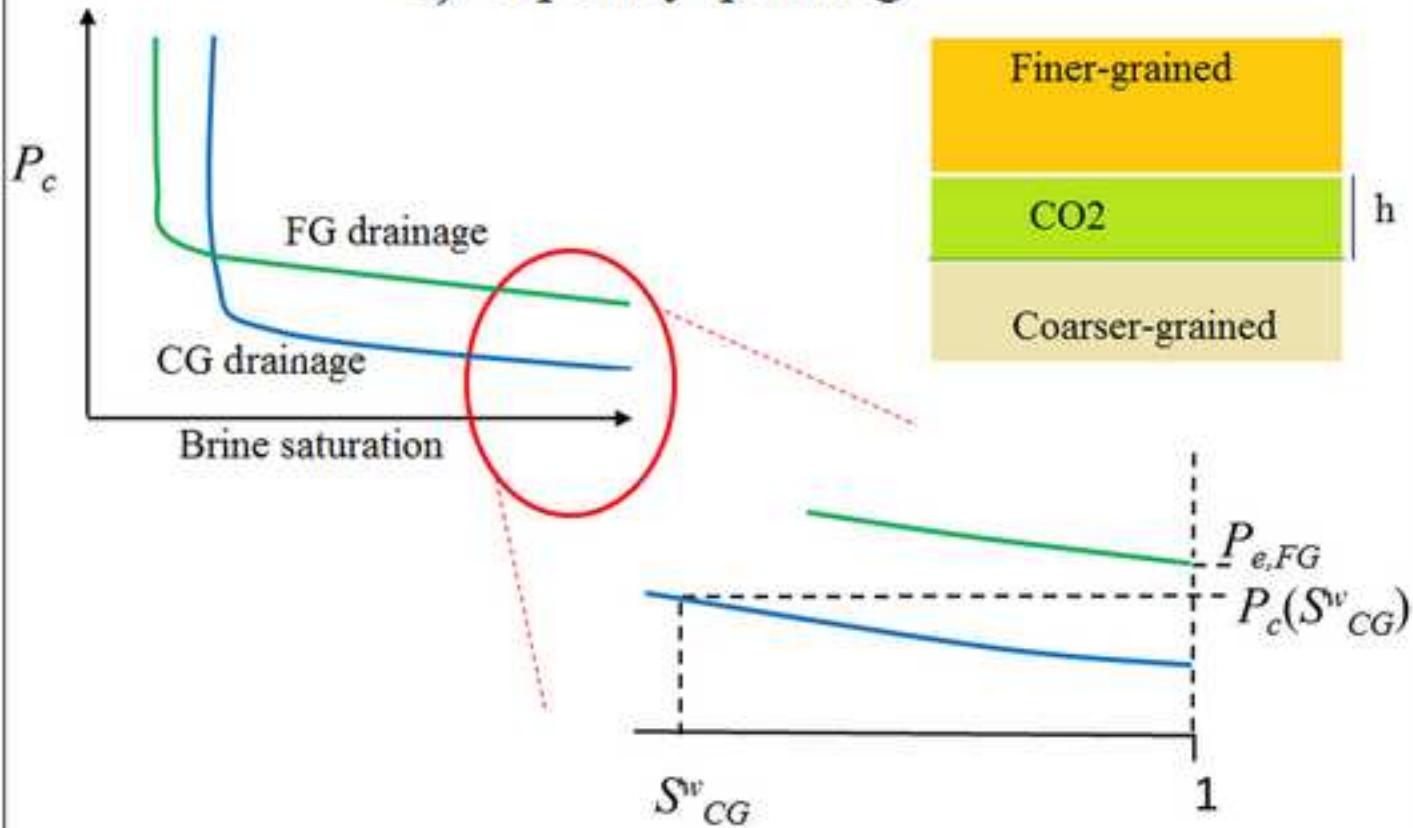



Figure 2

a) capillary pinning

b) capillary retardation

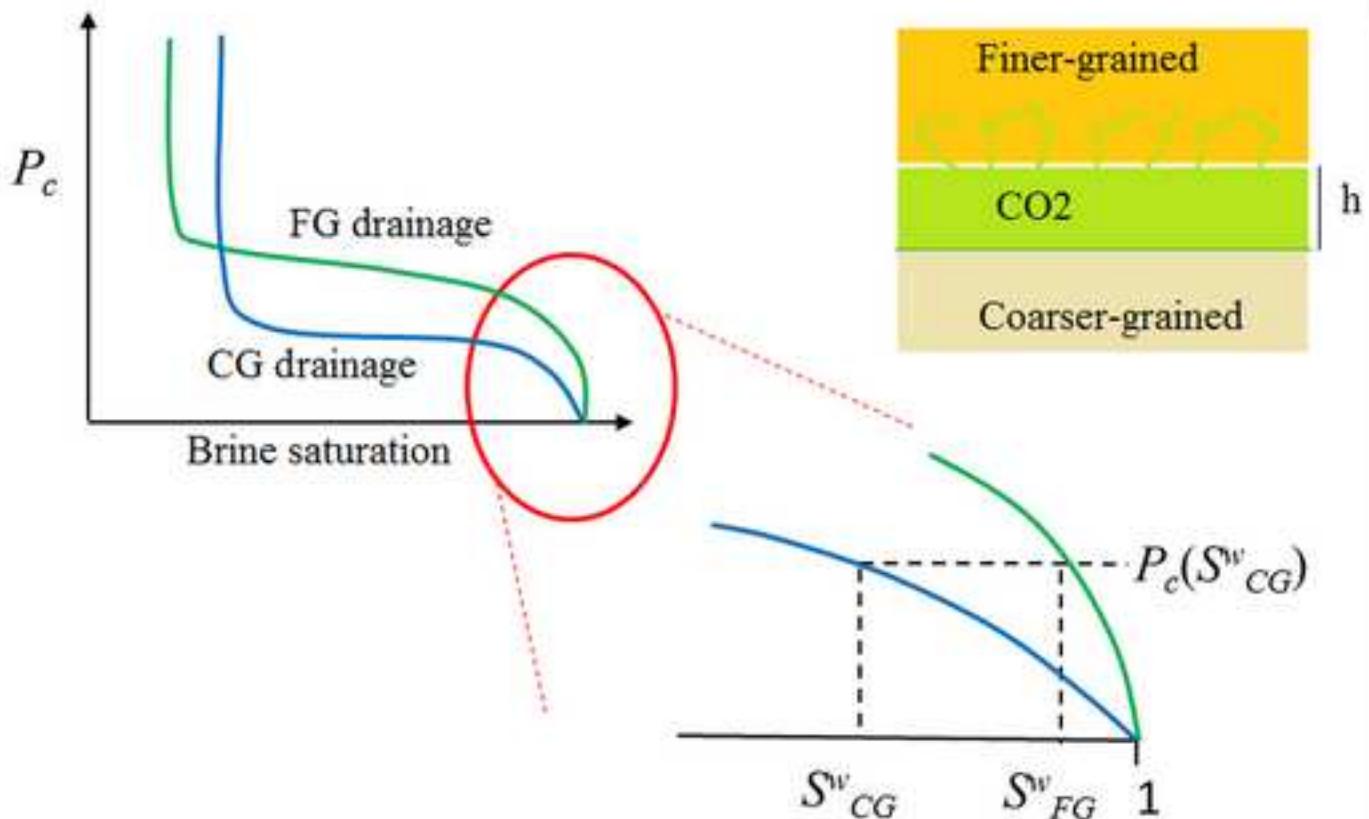


Figure 3

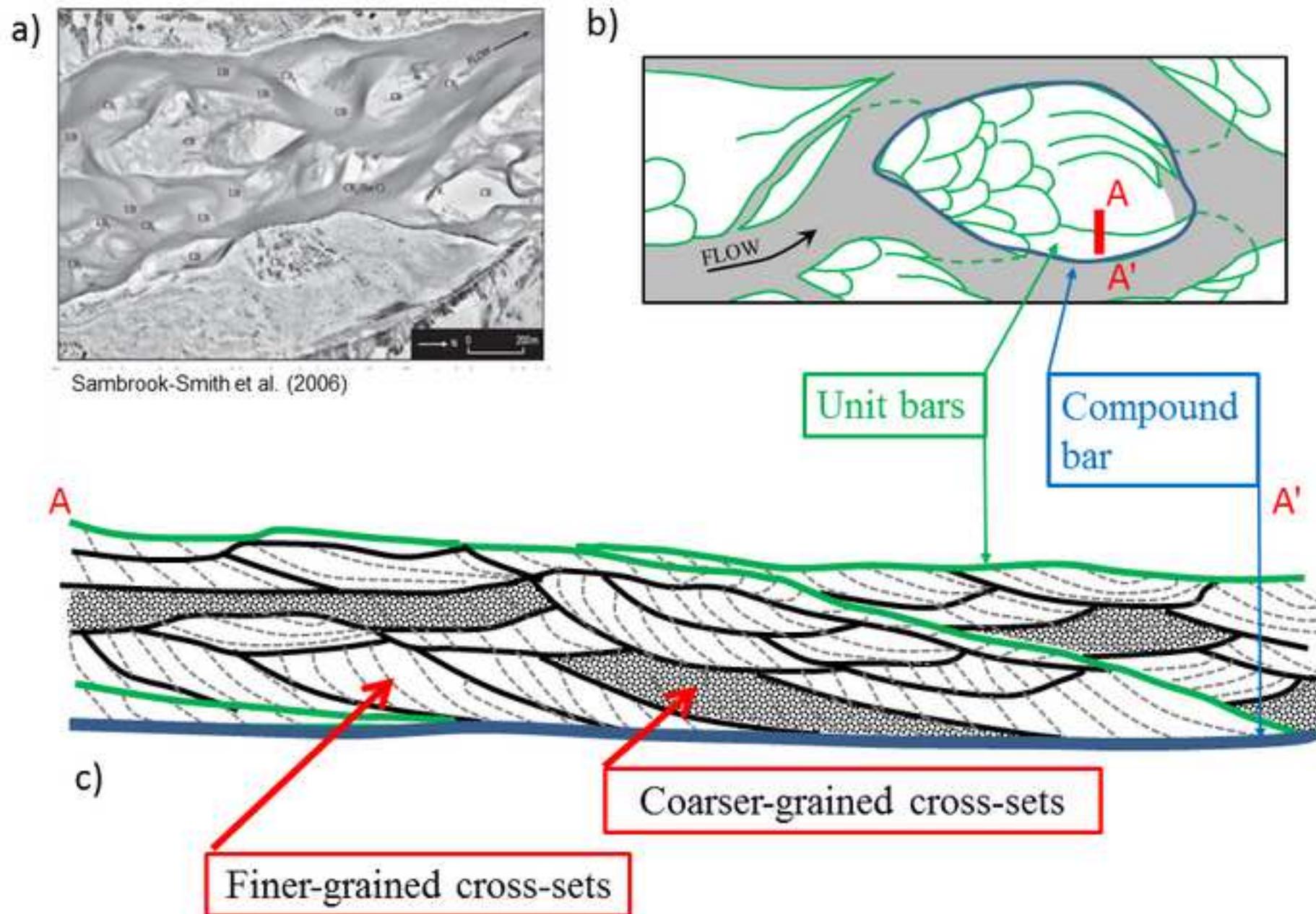


Figure 4

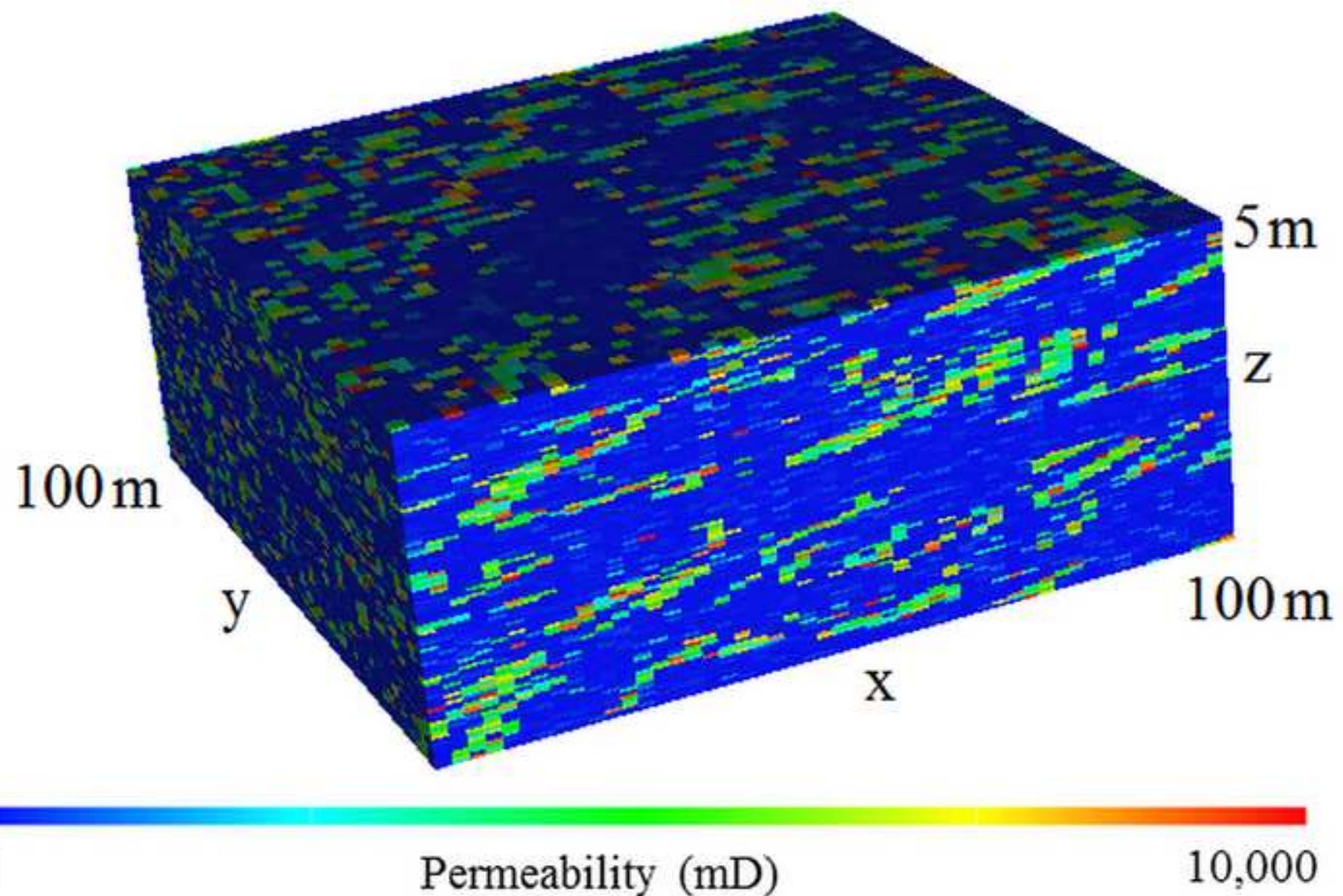


Figure 5

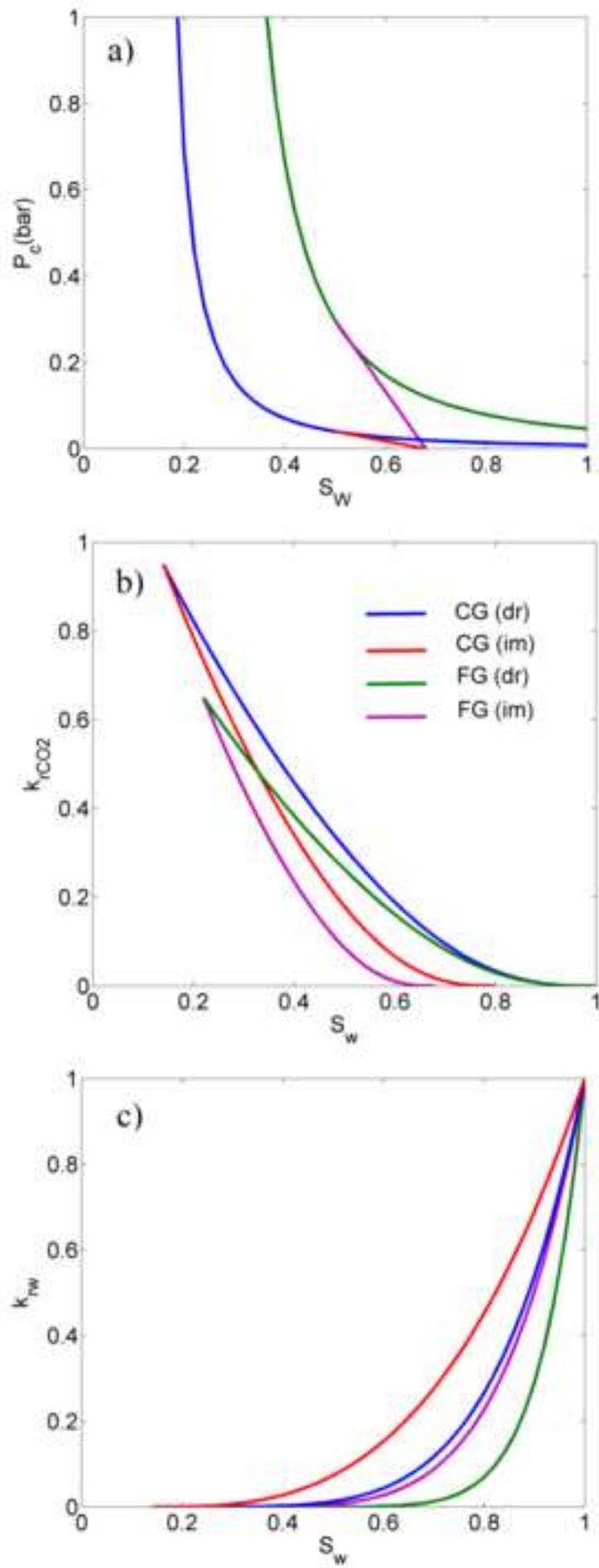


Figure 6

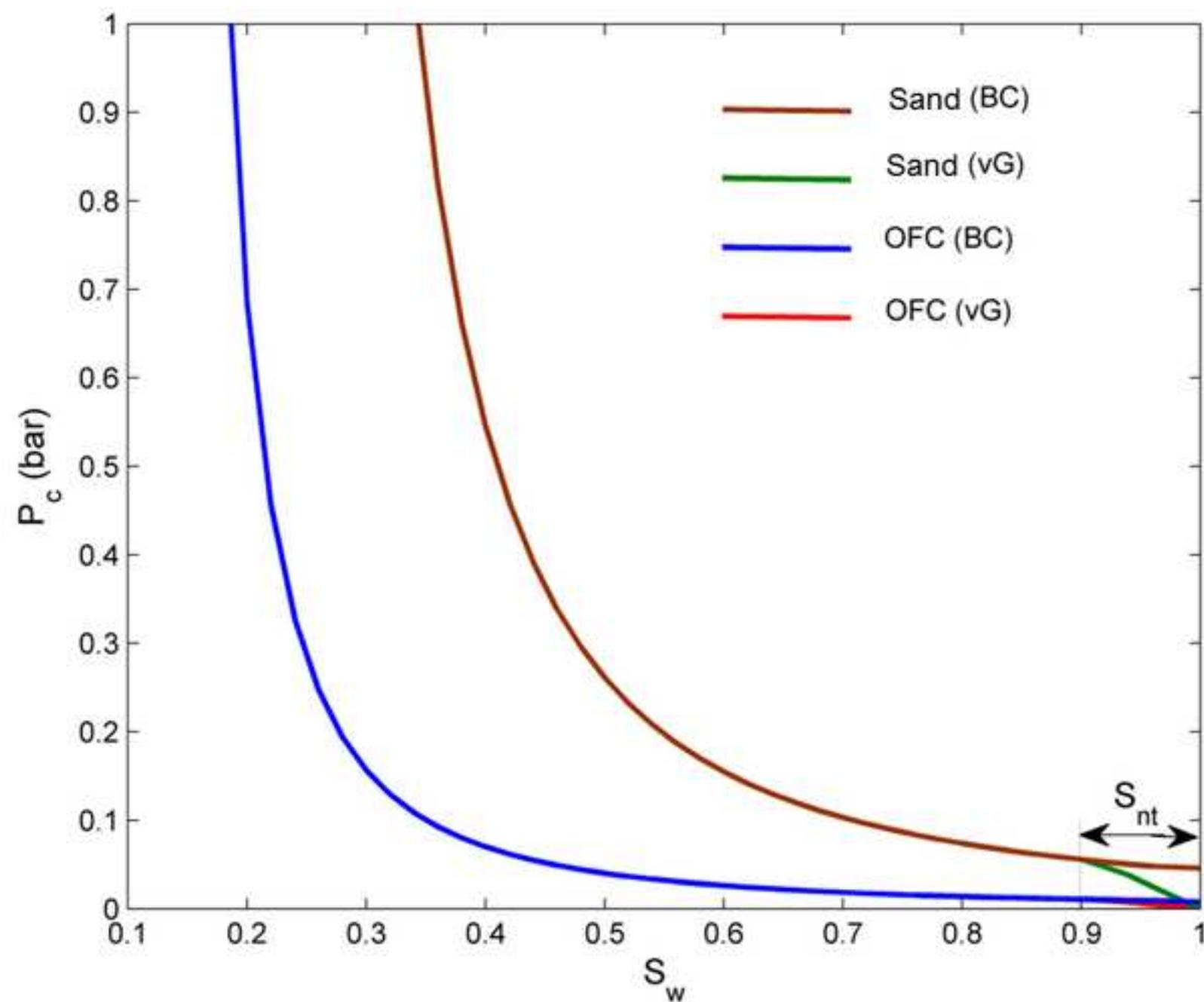


Figure 7

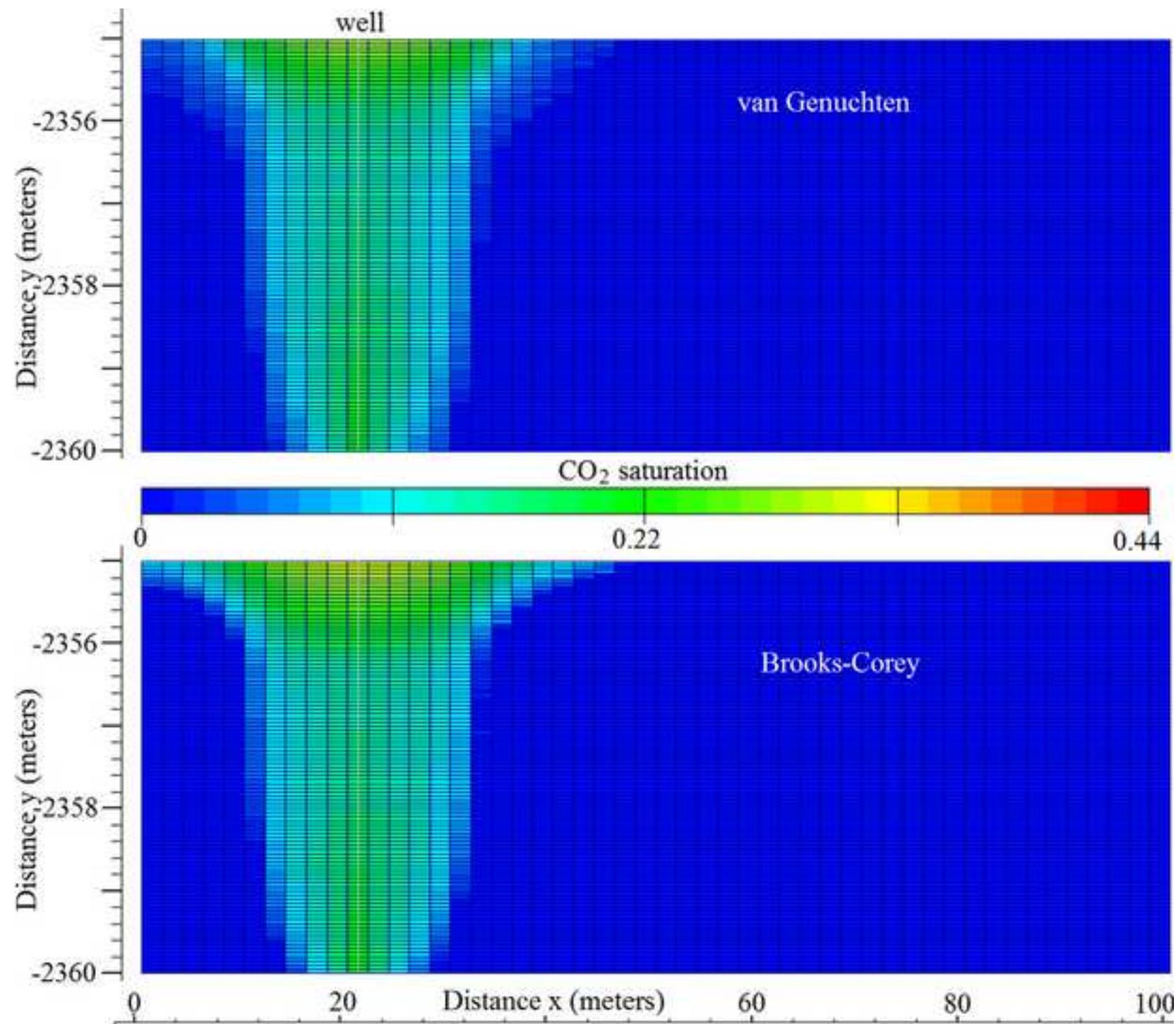


Figure 8

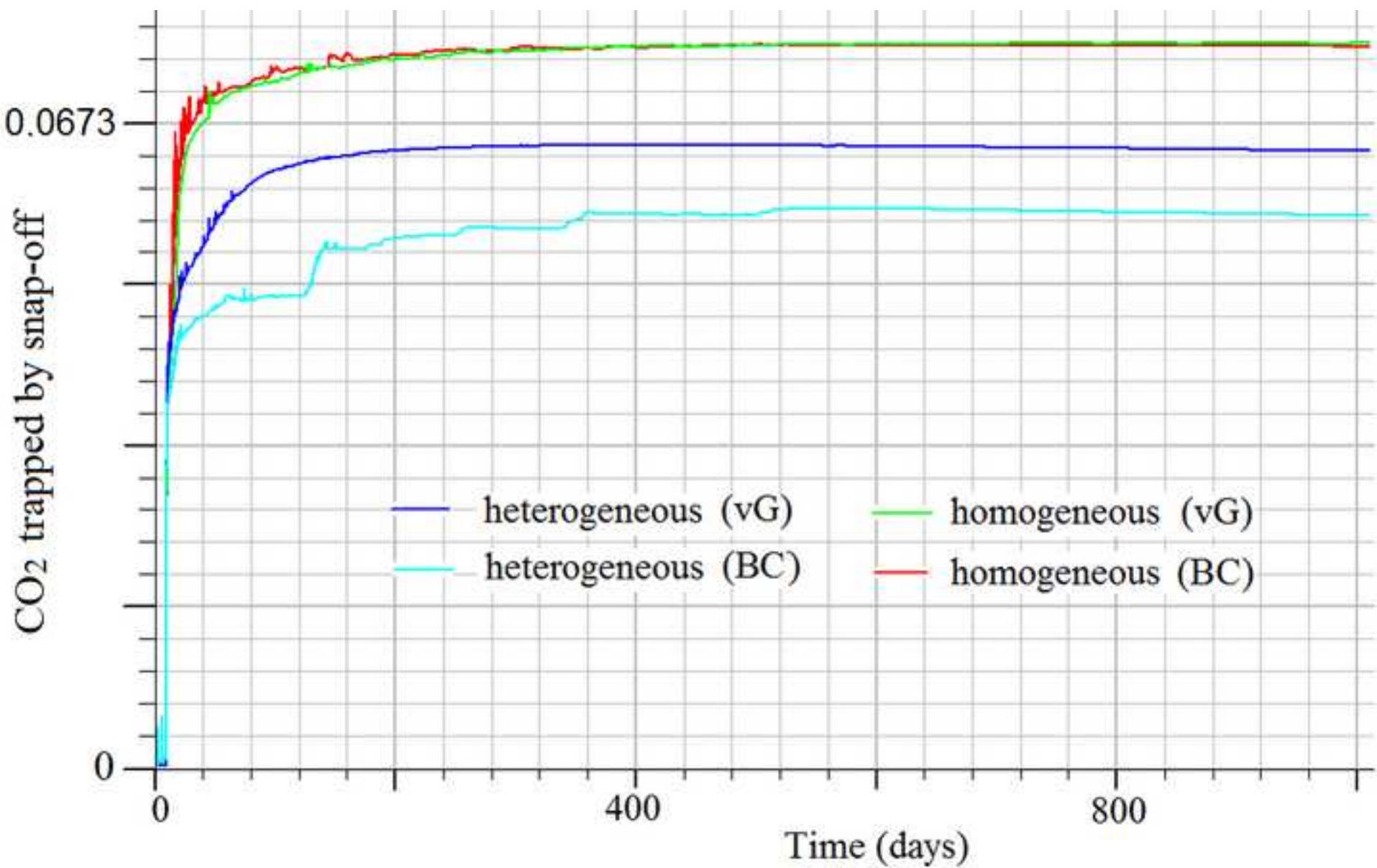


Figure 9

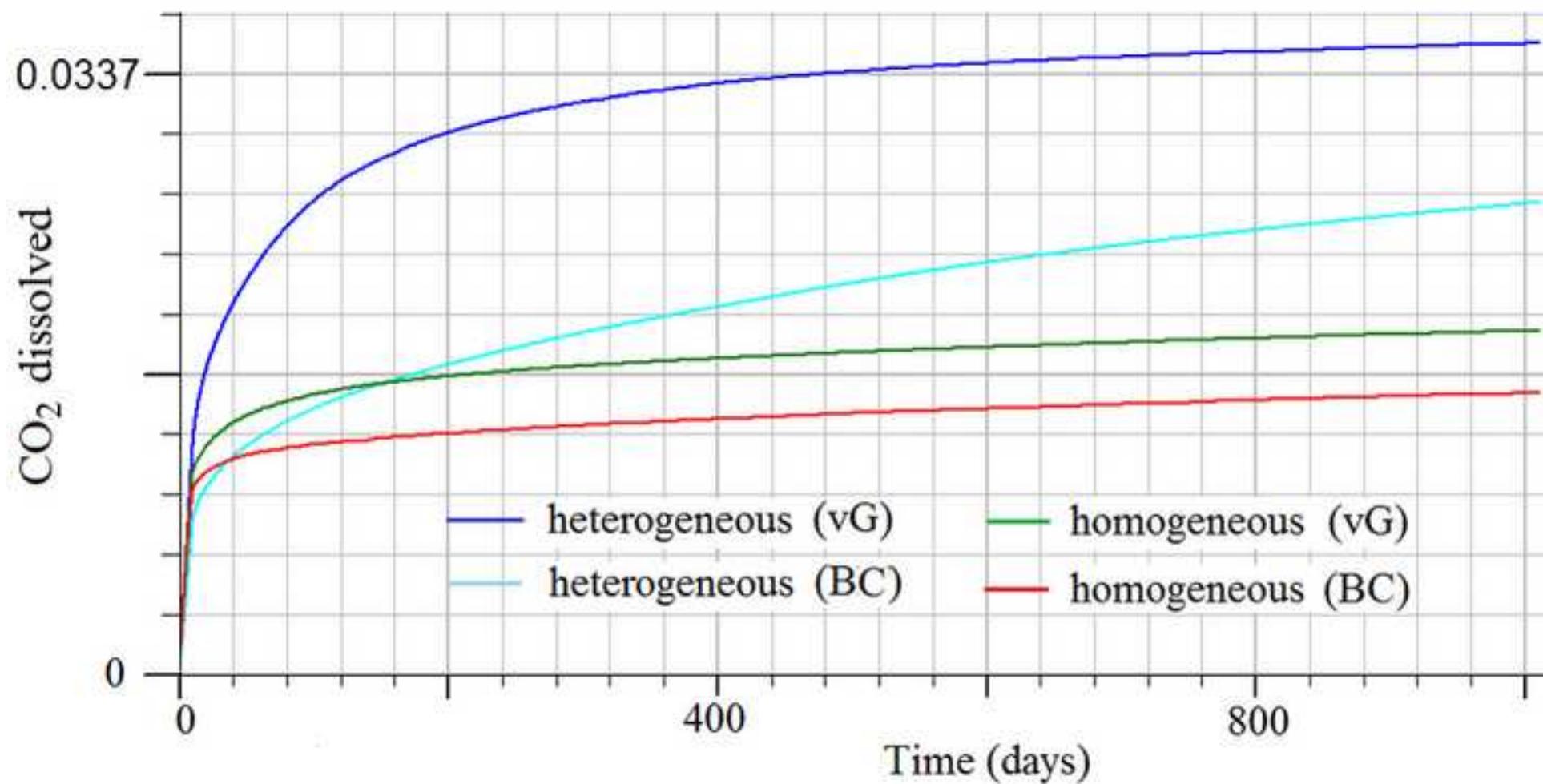


Figure 10

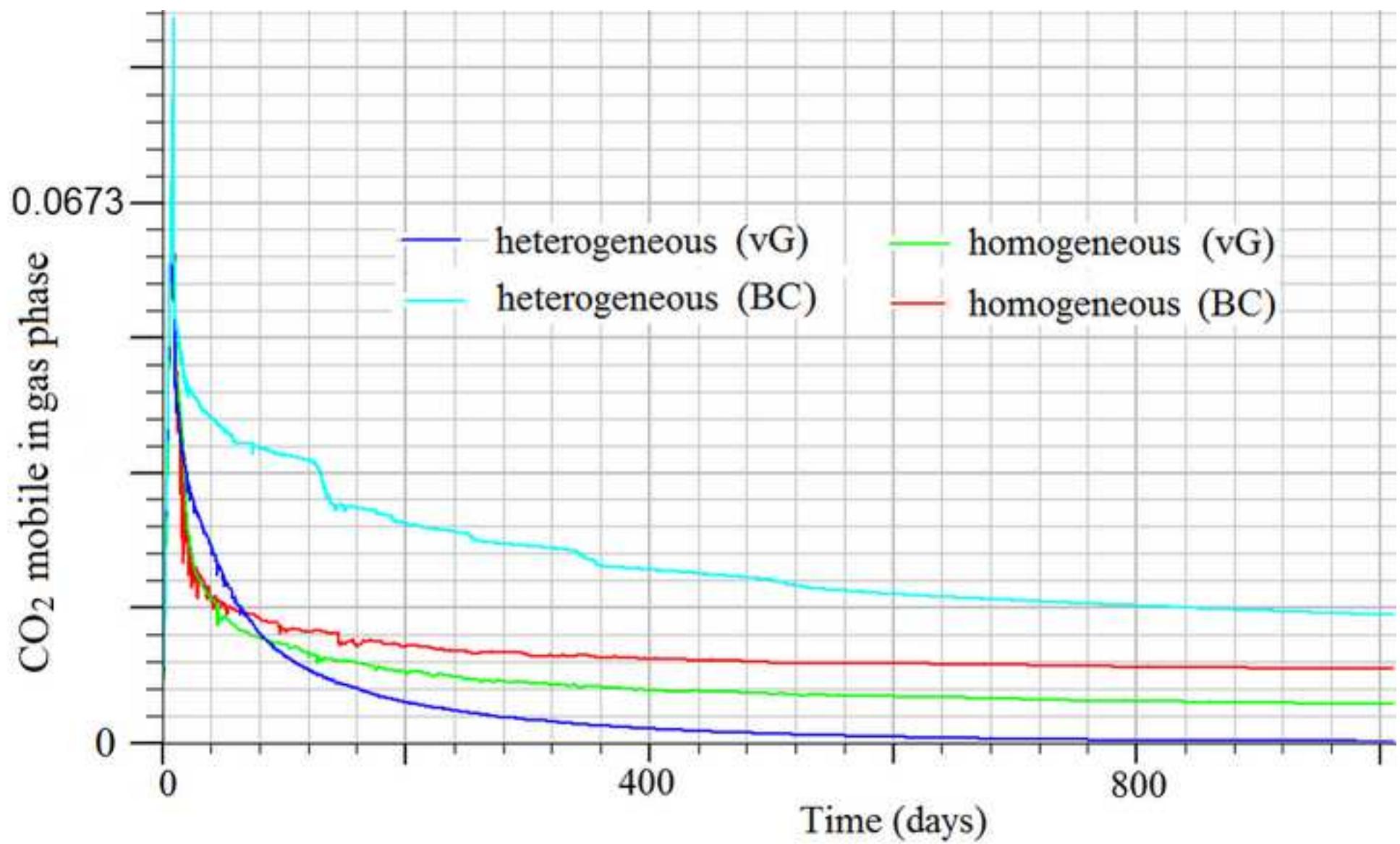


Figure 11

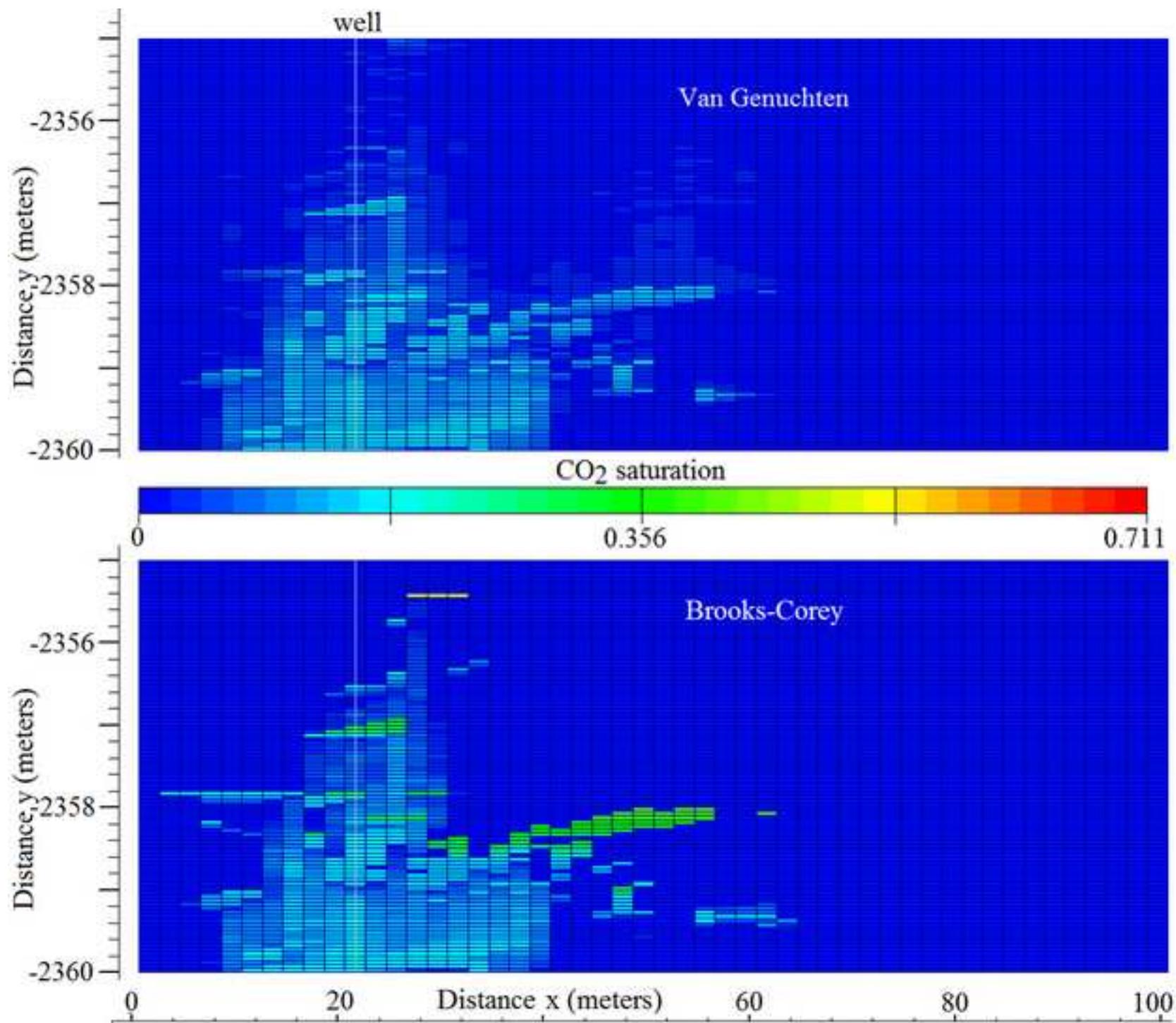


Figure 12

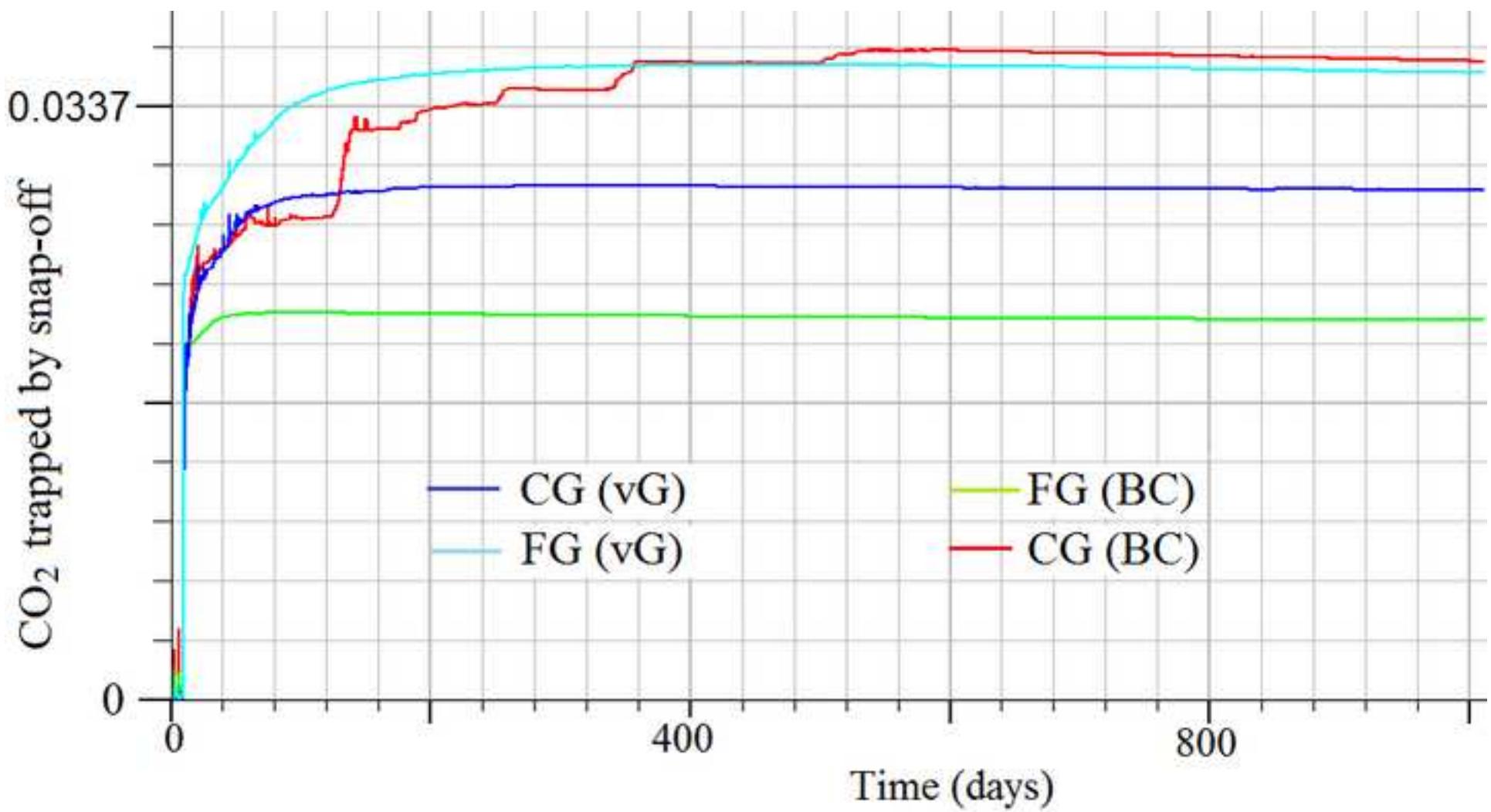
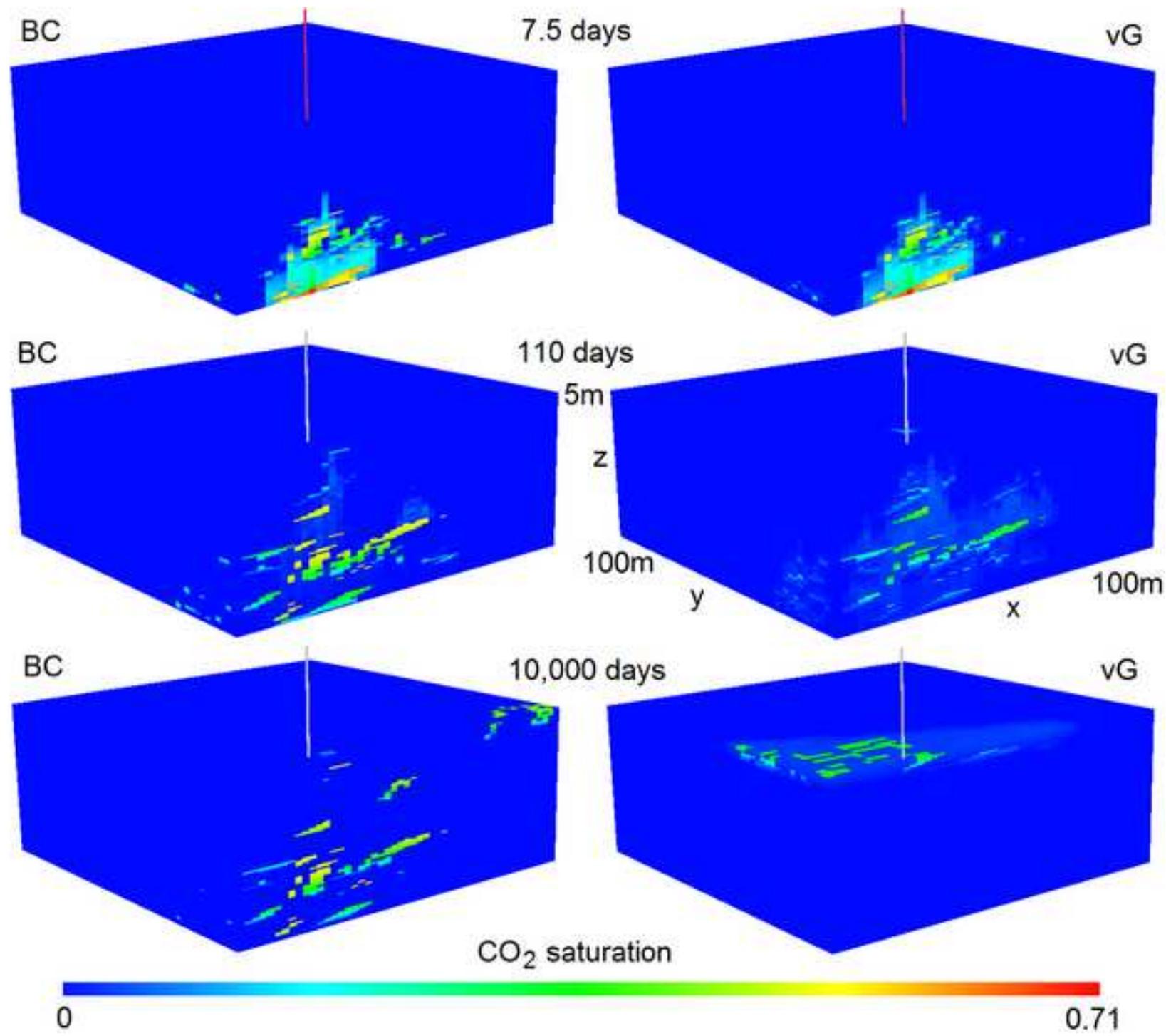



Figure 13

