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ABSTRACT

Exact analytical solutions based on the Laplace transforms are derived for describing the one-dimensional
space-time-dependent, advective transport of a decaying species in a layered, saturated rock system
intersected by a planar fracture of varying aperture. These solutions, which account for advection in
fracture, molecular diffusion into the rock matrix, adsorption in both fracture and matrix, and radioactive
decay, predict the concentrations in both fracture and rock matrix and the cumulative mass in the fracture.
The solute migration domain in both fracture and rock is assumed to be semi-infinite with non-zero initial
conditions. The concentration of each nuclide at the source is allowed to decay either continuously or
according to some periodical fluctuations where both are subjected to either a step or band release mode.
Two numerical examples related to the transport of Np-237 and Cm-245 in a five-layered system of
fractured rock were used to verify these solutions with several well established evaluation methods of
Laplace inversion integrals in the real and complex domain. In addition, with respect to the model
parameters, a comparison of the analytically derived local sensitivities for the concentration and
cumulative mass of Np-237 in the fracture with the ones obtained through a finite-difference method of
approximation is also reported.
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1 INTRODUCTION

Mathematical models are essential tools in performance assessment investigations, for estimating the
potential impact of radionuclide migration out of a high-level waste (HLW) geologic repository to the
biosphere. These models involve a mathematical description of hydro-geochemical and geophysical
processes. Their predictive capabilities are usually commensurate with our understanding of the various
classes of geologic media: porous and fractured rock. Currently, the candidate HLW disposal site is a
fractured tuff. This geological medium is poorly understood because of its inherent uncertainties and
currently there is only a limited basis to quantitatively describe hydro-geochemical processes in that
medium. Consequently, the use of simplified mathematical models for a conservative probabilistic
assessment of performance is appropriate. Moreover, in spite of their limitations, the high degree of
precision of analytical models coupled with their computational efficiency have induced many
investigators worldwide [Rosinger and Tremaine (1978), Hodgkinson and Maul (1985), Rasmuson and
Neretnieks (1986), and Burkholder et al., (1976)] to adopt these for addressing some of the critical issues
inherent in the containment characteristics of potential radioactive waste disposal sites.

Analytical solutions have played an important role in assessing the impact of burying radioactive waste
in permeable porous media [Gureghian (1987), Gureghian and Jansen (1985, 1983), van Genuchten and
Alves (1982), Pigford et al., (1980), Hadermann (1980), Burkholder et al., (1976), Rosinger and
Tremaine (1978), Lester et al., (1975), and Shamir and Harleman (1966)], and fractured rock masses
[Gureghian (1990(a,b), Ahn et al., (1985, 1986), Chen (1986), Hodgkinson and Maul (1985), Sudicky
and Frind (1982, 1984), Grisak and Pickens (1981), Kanki et al., (1981), Chambré et al., (1982), Tang
et al., (1981), and Neretnieks (1980)].

This report is presented in two volumes.

Volume 1 reports the derivation and verification of the closed form analytical solutions of the one-
dimensional non-dispersive and isothermal transport of a radionuclide in a layered system of saturated
planar fractures coupled with diffusion into the adjacent saturated rock matrix. In addition to matrix
diffusion effects as reported by Grisak et al.,-(1981), Grisak et al., (1980b), and Neretnieks (1980) [see
also Gureghian (1990a) for a comprehensive list of references] on the one hand, and non-zero initial
conditions in both fracture and rock as illustrated by Gureghian (1990b) on the other, three new features
associated with: (i) the layered nature of the rock matrix; (ii) the length dependency of fracture aperture;
and (iii) periodicity aspect of radionuclides released from the source have been implemented in these new
solutions.

Volume 2 evaluates and demonstrates the use of several sensitivity and uncertainty analysis methods using -
the analytical model developed in Volume 1.

The mathematical model "MULTFRAC" associated with Volume 1 of this report includes two modules.
The first module predicts the space-time dependent concentration of a decaying species migrating within
the fracture network and the surrounding rock matrix layers, including the cumulative mass at an arbitrary
observation point within the fracture. Note that the steady unidirectional flow of water through the
“fracture is normal to the rock matrix layers. Moreover, the material properties of individual fracture and
rock matrix layers assumed to be fully saturated are homogeneous and isotropic. The second module
predicts the analytical and numerical local sensitivities, that is, the first-order derivatives of the
concentration and cumulative mass with respect to the model parameters. These quantities are needed
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for parameter estimation or sampling design in the case of the concentration and for uncertainty analysis
of cumulative releases of a typical species from the repository at a typical point in time along the fracture,
as illustrated in Volume 2 of this report.

The analytical solutions are based on the Laplace transform method where the domains of radionuclide
migration in both fractures and rock layers are one-dimensional and of the semi-infinite type, implying
in this instance that radionuclide diffusion from the fractures wall to the rock matrix may extend to
infinity. The sorption phenomena in both fracture and rock matrix layers are described by a linear
equilibrium sorption isotherm. Two types of radionuclide release modes are considered: (i) the
continuously decaying; and (ii) the periodically fluctuating decaying source, which may in turn be subject
to step and band release modes. The initial concentrations in the fracture and rock matrix layers may be
assigned spatially varying values in the first case, whereas uniform ones may be implemented in both
cases.

The verification of the new analytical solutions pertaining to solute.transport in fracture and rock matrix
was performed by means of several well established numerical evaluation methods of Laplace inversion
integral proposed by Talbot (1979), Durbin (1974), and Stefhest (1970). Two test cases involving the
migration of Np-237 and Cm-245 in a five-layered fractured rock system were investigated. An
evaluation of some of these inversion methods over the range of investigated parameters has also been
reported. On the other hand, the verification of the analytical solutions for the local sensitivities of the
concentration and cumulative mass in the fracture with respect to the parameters of the system was
performed by means of numerical differentiation techniques based on the finite-difference method of
approximation.

The deterministic solutions presented in Volume 1 of this paper are primarily applicable to performance
assessment investigations of potential nuclear waste repository sites restricted to typical scenario analyses
associated with long-term migration of radionuclides in an idealized fractured rock system. Although
some limitations inherent to the nature of the solution method adopted here are to be considered, the
present model may be useful in studying some aspects of sensitivity and uncertainty of the cumulative
mass of a single radionuclide in an idealized fracture intersecting a layered geologic medium. The new
predictive capabilities imbedded in the derived solutions are expected to improve the confidence of the
investigator performing sensitivity and uncertainty analyses based on this model.

In spite of some limitations (i.e., assumptions of zero dispersion in the fracture and infinite matrix
diffusion), the new features embedded in the reported solutions allow one‘to deal with layered media
having piece-wise constant properties, as well as nonzero initial conditions, coupled with a realistic option
of a periodically fluctuating decaying source. These solutions are useful for verifying the accuracy of
numerical codes designed to solve similar problems and, above all, cost effective for performing
sensitivity and uncertainty analyses of scenarios likely to be adopted in performance assessment
investigations of potential nuclear waste repositories. )

The model MULTFRAC was written in VAX FORTRAN Version 4.8 usilig the G floating point option
(REAL*16). The computation was executed on a VAX 8700 under VMS Version 4.7.




1.1 PHYSICAL SYSTEM

In order to model transport in a heterogeneous geologic media, a new analytical solution was
developed for an idealized saturated fractured rock system composed of n number of parallel fractured
rock layers. In this solution, each layer is assumed to be characterized by constant parameters.

In this instance, the geometry of the cross section of such a fractured rock network corresponds
to a series of connected parallel line segments of different thicknesses (see Figure 1-1). Computationally
viable closed form analytical solutions, which satisfy some of the requirements of Volume 2 of this report
(i.e., the section dealing with the uncertainties issues), are developed after assuming that transport through
the fractures is predominantly caused by advection, and that matrix diffusion may extend to infinity. In
a single layer situation, the solution with zero dispersion in the fracture has been shown by Ahn et.al.,
(1985) to yield close enough results to the one with nonzero dispersion, contingent on it satisfying a -
criterion which will be subsequently reported. Furthermore, the solution corresponding to the infinite
rock matrix diffusion case (i.e., single fracture) was proven by Gureghian (1990a) to yield similar results
to the finite diffusion one (i.e., parallel fractures), as long as the resulting Fourier number, a
dimensionless parameter, was less than or equal to 0.1.

With the assumption that migration within the fracture is solely by advection, the mass flux F,
at the exit or entry face of a typical fracture layer i of unit width, may be written as

Ft = [2biuiAi]* (1-1)
where
A, is the concentration in the fracture (ML)
u; is the average fluid velocity in the fracture (LT™)
2b; is the thickness of the fracture (L)
+ is the symbol of an entry face

- is the symbol of an exit face

Note that in Eq. (1-1) it is assumed that transport occurs under isothermal conditions, the fluid density
is constant, and that concentrations are small such that these do not affect the properties of the fluid or
rock. In addition, the transfer of fluid through the fracture walls is assumed negligible.

At the interface of two consecutive fracture layers i-1 and i, the steady-state continuity equation
for fluid is given by

[#-154] = [4B]" (1-2)

and from the mass conservation relation of the solute we have

F,_ ~=F (1-3)

with the notion that the flow rate within a typical fracture segment is constant under steady-state flow
conditions, substituting Egs. (1-1) and (1-2) into Eq. (1-3) yields
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Figure 1-1. Description of migration pathways in a system of homogeneous layers of fractured rock
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A_ =4 (1-4)

which guarantees a continuity of concentration at the interface between fracture layers.

With the above requirements, the next step in the analytical process is to formulate the transport
equations for the fractures and rock matrix. These applicable governing equations are presented and
described in the subsequent sections.




2 ANALYTICAL CONCENTRATIONS AND CUMULATIVE MASS
GOVERNING EQUATIONS

2.1

where

The governing one-dimensional equation describing the nondispersive movement of a typical
nuclide in the ith layer of the fracture and rock matrix respectively (Neretnieks, 1980) is given by

@

(b)

Fracture
0A oA J;
Ri._‘ + ui._i + ARA; + 2 =0, x,_,<x<x 2-1D
at ax i bi i-1 i
Rock Matrix
B, &B.
/ i / X
Ri EI - Dpijaz—z' + )'RlBi =0 (2 2)

>0, x>0, z2b, i=123,...,n

is the retardation in the fracture

is the first-order rate constant for decay (T™)

is the diffusive rate of radionuclide at surface of fracture per unit area of fracture surface
(MLT)

is the retardation factor in the rock matrix

is the concentration in the rock matrix (ML?3)

is the pore diffusivity (i.e., D= D, g5 L°T?)

is the molecular diffusion of nuclide in water (L°T™)

is the geometric factor (6 /7;¥) where

is constrictivity for diffusion (L°)

is tortuosity of rock matrix (L°)

is the spatial coordinate in the fracture (L)

is the spatial coordinate in the rock matrix (L)

is the time (T)

is the index related to the particular layer of fracture and surrounding rock matrix
is the total number of fractured rock layers

A complete list of syfnbols and their meanings is given in Appendix F.

The diffusive rate of a nuclide into the ith layer of the rock matrix is assumed to obey Fick’s
law of diffusion written as




- 0B
Jy = ‘Dagi 2= b, @-3)

where D, is the effective diffusivity in the typical section of the rock matrix (see Neretnieks, 1980)
defined as

D, = ¢D, @4)
where &; s the rock porosity.

The retardation factor in the ith layer of the fracture (R;) and the rock matrix (R,’ ), respectively
(see Neretnieks et al., 1982), are given by:

= + ﬁ 2-
R=1+ @)
Rl =1 +[1-2)/2]p,K, (2-6)

where
p; s the bulk rock density (ML?)
K; is the surface distribution coefficient in the fracture (L)
K, is the distribution coefficient in the rock matrix (L*M™)

2.1.1 Imitial and Boundary Conditions

The set of differential equations, Egs. (2-1) and (2-2), -are subject to the initial conditions:

A,(x0) = a, + aye 7, x_<x<x, 2-7)
where
x, i=1 -
BT x -z =x- jg L, i>1 @-8)
B,(xz0) = by;, x,_;<x<x;, x>0, z2b, (2-9)

where a;, a,, b,; (all ML?), and o; (L) are constant for each layer i of the fracture rock system and time
invariant, and independent of boundary conditions in the fracture and rock matrix. The boundary
conditions in the fracture are given by

4,0, = AQ@, >0 (2-10)




9A,(=1)
ox

=0, >0 @2-11)

where A(t) is the concentration at the source.

For the ith layer of the rock matrix, the corresponding boundary conditions are:

B,(x,b,,H) = A%, >0, x>0, x,_j<x<x, (2-12)
9B, (x,e.
-% =0, 0, x>0, x,_ <x<x, - @13

2.1.2 Concentrations of the Source

For a step release mode, the concentration of a typical nuclide at the source A(t) decaying either
continuously or subject to periodical fluctuations are given by

(@ Exponentially Decaying Source
A@) = A%, >0, 2-14)

(b) Periodically Fluctuating Source with Exponential Decay
AQ@) = A% My, - v,sinwi], >0 (2-15)

where A° is the concentration of the species at time equals zero, v, and », are constants which sum

corresponds to one, with », < y,, and the time period T, of a complete cycle of variation is 2n/ew.
These source types are illustrated in Figure 2-1.

For a band release mode, the boundary condition at the fracture inlet may be written as

A0 = AD[U® - UE-T)], t>0 (2-16)

where T is the leaching time and U(t-T) is the Heaviside function defined as

1, ¢t>T

U-1) = %,t=T @-17)

0, t<T

The general form of the solutions for the band release mode in the ith layer of the fracture and
rock matrix based on a boundary condition given by Eq. (2-16) and which uses the superposition method
(Foglia et al. 1979) may be written as:
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PA,050) = Afxt; A@D,AL%0),B(x2,0)UQ

(2-18)

- e MA(x,t-T; A@¢-T)UE-T)

*B,(x2,9) = Bjfx.z,t; A®), 4,(0), B,(xz2,0) U®)
2-19)
- e™B, (x,2,t-T; A¢-T))UE-T)

where A,(x,t) and ®B;(x,z,t) correspond to the band-release solutions.

At the interface of two consecutive fracture layers we have:
AxD) = A &1, i>1 (220

2.1.3 Solution of Transport Equations for the Rock Matrix and Fracture
2.1.3.1 Rock Matrix

The Laplace transformation of Eq. (2-2), with its associated initial and boundary condition
Egs. (2-9), (2-12), and (2-13), may be written as ' )

By 7 - -R! @-21)
Dyt - Kl s + 0B, = -Rlp,
with
Bx,b,5) = Ax,s) (2-222)
and
BE=s) (2-22b)
&z
where
E = f B ie _'gdt (2‘23)
0

The general solution of Eq. (2-21) yielding the concentration in the ith layer of the rock matrix
is given by

—_— —_ b -r,. (z-b, b .
B,(x,2,5) = (Ax - = :i}.) e @b - :il (2-24)

with
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ry; = c s + M) (2-25)

and
¢ = (RlD,)" (2-26)

Note that the inverse Laplace transform of B; might be sought once A; is identified as shown in the
subsequent section.

The Laplace transform of the diffusive flux Eq. (2-3) prevailing at the interface of the fracture
and rock matrix within a typical layer i is given by

_ 3B,(,b,5)
gy = —q)iDpi—T"-

Note that r; in Eq. (2-27) is given by Eq. (2-25).

—_ b
= &, D1y (Ai(x,s) - ;_:i_).) 2-27)

2.1.3.2 Fracture

After proper substitution of the transform of the diffusive flux given by Eq. (2-27) into the
Laplace transformation of Eq. (2-1)

0A. _ - cﬁb.
U—2 +[R(s + A) + c(s + V4. = R(a,. + a,.e ™) + — L1 _ (2-28)
iax [ x( ) ﬁ( ) ] i x( 1i 21 (S - l)ln
with
d’i / 12 -
¢, = 5 (R,. Dp,.) (2-29)

Note that the initial conditions given by Eq. (2-7) are included into Eq. (2-28) by virtue of Theorem
(A.14) of Appendix A.

Similarly, the boundary conditions given by Egs. (2-14) and (2-15) are obtained using the
appropriate Laplace transforms given in Appendix A. Hence,

(@ Exponentially Decaying Source

— 1]
4,09 = A~ (2-30)

(b) Periodically Fluctuating Decaying Source

— v V@
4,05 = A)|—— - b 231
10) s+Ah  (s+ AP+ 0?
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First Layer

The solution of Eq. (2-28) for the first layer (i.e., with i set to one), subject to its initial and
boundary conditions given by Egs. (2-7), (2-10), and (2-11), may be written as

A@s) = [Fy - Fi]e™™ + F, (2-32)
where
| F, = 4,0,5) o @339)
3
F =Y £ (2-33b)
j=1
_ 4
F, = jf_;f,-,-(s) (2-33¢)
=2
with
78 = Ridy (2-34a)
Ty
£l = il (2-34b)
Ta = P
5@ = i (2-34¢)
T
Fu®3) = fy(s) e “™ (2-34d)
and
Ta =R+ A) + ci(s + WP (2-352)
p; =y (2-35b)
r, = ry(s + AP (2-35¢)
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meh (2-354)

0 =4 (2-35¢)
U;

Note that subscript i refers to a typical layer and x; given by Eq. (2-8) corresponds to the distance within
the portion of the fracture network stretching between the exit face of layer i-1 and the location of the
observation point in layer i.

Second Layer

With the assumption that the upstream boundary condition of the second layer will correspond
to the prevailing concentration at the downstream end of the first layer [see Eq. (1-4)], we may write

4)05) = 4,(Ly3) (2-36)
hence the solution of Eq. (2-28), related to the second fracture layer, may be written as
L) = F - FlpeTam*7a o (F - Fle™™ + F, (2-37)
Nth Layer

Applying successively the above approach to the subsequent portions of the fracture layers, the
solution of Eq. (2-28) corresponding to the nth layer may be written as

n-1

A (xs) = [F'O - F’l]e eI e “Taly
i1

(2-38)
n_ — n-1 - _
* Y Fpy - Flge™ ge"«"“ +F,
= =i

Using the following notations




n-1

8, = X ¢, + ¢, (2-39)
i=m
»-1
Ymn = ERiﬂi + Rnnn (2_40)
i=m
n-1 — ’ "
E(s) = &AM [ &M = ¢ Tl D Ol 2 D) (2-41)
' i=m

the inverse Laplace transform of Eq. (2-38) yielding the closed form solution of the concentration of a
typical species in the nth fracture layer is obtained by means of the various theorems and Laplace
transforms reported in Table A.1 of Appendix A.' This may be written as

An(x:t) = F, oh(x’t) - E F /ﬁ,.(x:t) +
i=1

242)
Z Fi-lin(,x’t) +F, u(x’t)
i=2
The various components of Eq. (2-42) coi'respond to
F, (1) = L7V [Fy8;,(x9)] (2-43a)
3
Flon@d = Y L7 () 8,y (055) (2-43b)
j=1
3
F, &1 = ElL“Jﬁ,(S) 8 () + L7 (%,5) 8, (x,5) (2-43c)
j= .
j»2
3
Fx) = Y, L7f() + L7f,(x3) (2-43d)
j=1

j2
where fo , £.(8), and g.,(x,s) are given by Eqs. (2-33a), (2-34), and (2-41), respectively.
The components of functions Foy,(x,t), Fim(X,1), Fi(X,t), and F,(x,t) are now given by:

(@ Exponentially Decaying Source




Fy (x1) =L‘1[-13'0 -gln(x,s)] = A°e'“.etfcI ue - v,,)

2(t - 'Yln)m

(b) Periodically Fluctuating Source with Exponential Decay

0,
v, erf————
2@t - Yln)m

v
4_; [E(t~yln’91n’im) - E(t —Yl,,aeh,‘i&) )]} U@ - Yln)

Fou(x’t) =L_l|1_70-31n(x»9)| = Ale™

(2-442)

(2-44b)

The reader may refer to Appendix A, Eq. (A.2-3) for a full definition of function E(+) . Note that the
second member of Eq. (2-44b), which includes a combination of exponential and complementary error
functions with complex arguments, has been shown to yield a real number (see Appendix B, Section B.3).

The inverse Laplace transforms of the right-hand side of Egs. (2-43b), (2-43c), and (2-43d) are

given by

L [£,5) 8,55 = E( -1y e qp 2 exp (BB + BAt~Ymn)] °
i

6 .
erf [Bﬂ(t = V) | Ut = V)

2(t = Ypo)? |

0, )
o o) el ) A5

0

(%fi)z(t - Y,,,,,)}erfc[%;(t V) * 2—"‘)—1,2“ Ut~ )

exp
{t = Ymn

L7f,068) 8,y ()] = € L7 [£3(5) ‘8, (55)]

with
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(2-453)

(2-45b)

(2-45c¢)

(2-45d)




L [fu(s)] =e" aliexp[( )t]erfc{ ] (2-462)
i

“zlt
L[, 09)] = z (-1y 28 P -0ty pp gimy (2-46)
9
Lf(9)] = e ¥by,|1 ~ exp (R) tle L{ itlﬂﬂ (2-460)
with
o 1"
2R,| R,
and
c q;
L= B -1y 2 2-48
Bi= g TV 5 (2-48)
Note that 8,; and 8, have dimensions of t*2.
Grouping the components of F,-',,,,,(x,t), Fina(x,1), and F,(x,t), one may then write
F/imn(x’t) F‘mm(x t) + 2Fimn(x’t) (249)
Fipy@od) = (Fip ) + €% ,F, () (2-50)
where
8, 6_c
Fimn @) = €™ berfe|—"2 | + (a,; - b,)exp|—2E|
n li 2(t _ 'Ymn)llz 1 1 Ri
2-51)
¢\ c 0
7 fi 12 mn
expl[~=| [t = Ypn)letfe| =@ = ¥, © + ——————||UC -7,
(Ri) ( ) R; 2t - ¥, )" “
and
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B

K1) = €™ E( 1)’% eXp[Bﬁﬁm + B,?,-(t - Y,,,,,)]'

j=1 9
(2-52)
erfe| Byt — ¥ )‘”+—eﬂ———-U( Y o)
Ji mn n (t _ Ym)l’z mn
2 LTy 4 2
Fon = Y (-1 é—ﬂze—e-("—ﬂ")‘elfc(ﬁmtm) .
-t " (2-53)

4

e—u[bln + (aln 1n) €xp

(&)1

Note that the evaluation of expressions involving products of exponential and complementary error
functions are presented in Appendix B.

2.1.3.3 Rock Matrix

Substitution of Eq. (2-38) in Eq. (2-24) gives the Laplace transform solution of the concentration
in the nth layer of the rock matrix

—_— n-1 -
B (x2s) = [F, - F/jJe Vo * I T] o7 o
i=1
i — b n-1 =
Y (Foy = FyJe e I e (2-54)
i=2 i

F o7t _bL(l - & lEhn)
" s+ A

The inverse Laplace transform of Eq. (2-54), yielding the closed form solution of the concentration in
the nth layer of the rock matrix, is then obtained by means of the various theorems and Laplace
transforms reported in Appendix A. This may be written as

Bxz) = G, (x50 - E G’ (x.20 +
(2-55)

n
E G120 + G, (x,3,)
i2

The components of functions Gom (x,z,t), Gilmn x,z,1), Gilmn (x,z,t), and G, (x,z,t) are now given by:
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@

®)

Exponentially Decaying Source

/

G, (x,z,f) = A%e™ erfc
= 2(t -

In

'Yln)m

U@

Periodically Fluctuating Source with Exponential Decay

G, (62,0 =L7"[Fy.8;,(x5)| = A%~

- Yln)

el
V erjej————| —
‘{2« - yl,,)lﬂ}

:—:[E(t—'yl,,,elh,iw) - E(t—yln,e/w—io))]] U@ - v,)

where function E(+) is given in Appendix A, Eq. (A.2-3).

where

G2, = G 2,0+

2G limn (x’ Z, t)

G ®2) = G, (620 + e "G (2,1

0
.G ED = *‘[ berfc 2(t - Ym)m] @, - bh.)erp[ R,

exp[ {t - ym]elfc[ L -y )P+
-2t ZIBJi
o O52:0) = € E( Iy—=

e’fc[Bﬁ(t - Y,,.,.)m +

2-13

I

2( -vm,,)"’

/

2( - ym)"2

/
mncﬂ .

ue -v,,)

exp[ﬁ 0+ Bi (F = V) ]

] ue -v,.,)

(2-56a)

(2-56b)

(2-57a)

(2-57b)

(2-58)

(2-59)



2 e 8
G,.(x:z:t) = e-hz (_l)i izn‘“Pi;e—exp[Bzznt + 61:1 crn (Z—bn)

i=1 n
erfc[Bi,,t‘” + Zm 2:1,_2}’")] + e M\by, + (ay, - bl,.)exp[cm (z-bn)-% ' (2-60)
exp (%)zt erfc %:—tm + ﬁ%:#
0y = Oy + € 2~ B, 2-61)

2.2 CUMULATIVE MASS

The cumulative mass per unit width at any point within the fracture is given by

t

M) = [u,2b,4,(0)dt = u2b, [(_)01 ) - fj Q' 51
" i=1

0

(2-62)

+ Y Q) + Q,,(x,t)]
i=2

where A_(x,t) the concentration in the fracture is given by Eq. (2-42). In Eq. (2-62), the components of
functions Qol, 9, Qu®,b), Qu(x,0), and Q,(x,t) are evaluated based on the various integrals derived

in Appendix C, and are given by

(@) Exponentially Decaying Source

4
]
Qoh(x,t) = f Foh('t)d‘t = AL [t,l,—zlﬁ,yln) U(t—yln) (2-63a)

Tin

(b) Periodically Fluctuating Source with Exponential Decay

4
Q) = [Fy ()dr =
T (2-63b)

0
Ao[vall(t,).,—;"-,yh) - vl (t, eln,im,).,yln)] U(t— ym)
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Qhnl?) = f ma(6)dT = Qi (57) + Qfma(5:1) (2-643)

t
Q) = [ Fipyv)ds = QL0 + ¢ ,Q0,x) (2-64b)

Yon

where
t e \
1QI;,,m(x’t) = f 1H,-,,m(x:7)dt = [bl,'I](tslsTmaYm)
- (2-65)
c Y ¢.¥ ¢ )
+ (a,, - b)exp|-L|0 M)I(z{l) A2y Ue-v,.,
( " l) [Ri( R, z R, R, / ( Y )
QD) = f Ht)dT = E( -1y z;p" exP [Bj; (O~ Bi¥oa)|"
j=1 i 2-66)
6,,
I,(t,(n,?,--x) By ,y,,,,) Ut~ )
y 2 iaz;,ﬁfn -a,x, 2
Q) =[Fx) = T (-1}t I,(O,t,(ﬁ,-,.-)-), B )
i= n
° 2-67)

b, _ ¢\ ¢
Lro-ere-snlodg] -2

More explicitly, using the definitions of I, through I, reported in Appendix C, Egs. (2-63)
through (2-67) may be written as
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(@) Exponentially Decaying Source

At
y

Q, (1) = Al {_e erfc[ O ] +

2@¢-y, )"

2¢ - v

-1yy, 0 .
e_”._[eﬁuﬁe#‘c[__l___ + ‘/l(t - Yln)] +

2(t-y,)"? }U(t ")

e_e“ﬁerfr[——el"— - AC -,

2-16
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(®) Periodically Fluctuating Source with Exponential Decay

e—lt 91,.
v, {- erfc +
‘ { A lz(t Y1)

Y
S A i L
22 Z(t - 'Yln)lf2

-0,V eln
g |

-t
ol ([ Bty 0 10) + ¢ Blr=11,0,,-10]

Qo,,(x’t) = A°

el

+

e E(t-vy,,0,,i0) - €/ E(t-y,,,8,,,~i0) | )

re-Mu Asin(wy,,) + ocos( myln
20(a?
(2-68b)

Ou/E 9,
[ e”’[z(tv w Y]

+ e e"‘/_ t yln
2(t Yln

Yln

where functions E(+) in Eq. (2-68b) are given by Eq. (A.2-3) of Appendix A, and:
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- emn +

e:;"‘-ee‘“ﬁelft['—'e—m—_ + ‘/A(t - ym)] +

2@ - v,,)'"?

e“’-‘”erfc[ O _ A1, }U(t - ¥,

2(t_Y1n)ll2
et Lo, -5 w5 -3 |
1 Lie - L2 expl|| L] -
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2Qm(xt)-§( IY%B"{KP{B - Bitw) |

() [ - o ]
e L(t ~ 7w, __ _m
3121 Y e '{ﬁ.u(t 'Ymn)’ uz(t _ Y,,,,.)m
M LV ' (B ] (2-70)
- fe|l—22— + At - v )| |-£ + 1] -
] R T A LV~

A )

} U(#=Yom)

2 2 )
Qs - Rty Sl e ["(ﬂ"*)' e (B, -
jn . .

=1 q,

B 4l
7 if [(At)7] 1]

2oy gy, (O " )

FR

R

G
e

erfc

e
RH

Note that when the exponential term in the model describing the initial concentration distribution in the
fracture [see Eq. (2-7)] is taken into account, overflow problems are likely to be encountered when the
value of the time parameter becomes excessively large. This state of affairs is inherent to the presence
of parameter §; [see, for example, Eq. (2-52)], which by virtue of being negative [i.e., when subscript
i corresponds to 1, see Eq. (2-48)], tends to freeze the complementary function at a constant value of
approximately 2 (i.e., when its argument becomes less than or equal to -3), while the exponential term
will increase pos1t1vely with increasing values of time. To mitigate the inherent overflow problem, the
solution is optimized through an iterative process intended to estimate an acceptable upper limit for the
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magnitude of the exponential argument. Consequently, exponential terms with 8; in their list of
arguments are ignored (i.e., set automatically to zero) when the preset limit is exceeded.
Computationally, this is achieved after assigning the significant absolute limit of the exponential
argument, initially to a value corresponding to 30, the latter affecting exclusively the specific components
of the solutions which include parameter 8;;. The computation is reiterated after halving the value of the
exponential argument, and the absolute relative error in the computed results is subsequently estimated.
This process is continued until, in two successive iterations, the preset convergence criteria (i.e., 1
percent relative error) is said to be satisfied. For the test cases reported herein, a maximum of three
iterations were proven sufficient to provide an optimized value of the exponential argument and yield a
highly accurate solution.

2.3  DISCUSSIONS OF RESULTS

The analytical solutions presented in this section of the report were verified by comparison with
three approximate methods of Laplace inversion integral as proposed by Talbot (1979), Durbin (1974),
as modified by Piessens and Huysmans (1984) and Stefhest (1970). All three methods apply to the case
where the source term corresponds to a continuous exponentially decaying one, in which instance the
required inversion of the Laplace transform is strictly confined to the real domain. However, when a
periodically fluctuating and decaying source term is adopted, then only the first two of these methods are
useful for evaluating the Laplace transform inversion in the complex domain. Note that in the case of
Stefhest’s algorithm, 36 summation points were found to produce almost oscillation-free solutions.

As far as the calculation of the approximate solution related to the cumulative mass (i.e., the
time integrated solution of the concentration at a typical point along the longitudinal axis of the fracture)
is concerned, this is performed by numerically integrating solutions of the Laplace-transformed equation
of the concentration in the fracture. This integration is performed using a composite Gauss-Legendre
quadrature scheme, where 40 integration points were found adequate to yield a convergent quadrature
for the investigated test cases.

The two test cases reported subsequently refer to the one-dimensional (1D) transport of two
radionuclides: Np-237 (i.e., long half-life) and Cm-245 (short half-life), in a heterogeneous saturated
fractured rock system composed of five layers (the last extending to infinity), with piecewise constant
parameters. In the first test case, the imposed source term corresponds to an exponentially decaying
function [see Eq. (2-14)]. This is substituted by a periodically fluctuating and decaying one [see Eq. (2-
15)] in the second, respectively. In both cases, the steady flow rate of water per unit width of fracture
corresponds to 0.1 m?/yr. Two types of solute release modes at the source were investigated, namely step
and band. Note that the flow domain in both fracture and rock layers are assigned nonzero initial
concentrations [see Eqgs. (2-7) and (2-9)].

2.3.1 Case 1 Results

This test case examines the spatial and temporal variation of the concentration of Np-237, as
well as the cumulative release of mass from the fracture. In addition, the spatial variation of the
concentration in the rock matrix is also investigated. The input data pertaining to this test case is
presented in Table 2-1.

2-20




Figure 2-2(a) shows the spatial relative concentration profiles (i.e., A/A°) of Np-237 calculated
in the fracture layers at simulation times of 10°, 5x10° and 5x10* years. A comparison of our results with
the ones obtained from the three numerical inversion algorithms [see Tables 2-2(a) through 2-2(c)] shows
that these are in excellent agreement. Note that in this test case, the observation times were selected in
a manner to allow an evaluation of the accuracy of our solution for both release modes of the radionuclide
at the source. It may be added that in the case of the intermediate observation time, the source strength
is reduced by half from its original value [see Eq. (2-17)].

Figure 2-2(b) shows the temporal relative concentration of Np-237 observed in the fracture at
three different observation points: 100, 200, and 500 meters downstream from the source, located in the
second, third, and fifth layer, respectively, for a band release. Up to the leaching time of 5x10® years,
the shape of the profiles bears a close similarity to those of a step release. Past the leaching time, the
relative concentrations profiles show a rapid change of their gradient from positive to negative and
concentrations decrease with time to a value close to the initial concentrations of the various fracture
layers of interest. A comparison of our results with the three numerical ones [see Tables 2-3(a) through
2-3(c)] shows that with the exception of a portion of the results yielded by Talbot’s solution, these are
in excellent agreement. Note that in this instance, the adoption of three recommendedt values of the
constants required by Talbot’s algorithm seems to have restricted the accuracy of the latter to simulation
times greater than 30, 80, and 100 years. Therefore, it appears that the three constants in Talbot’s
algorithm are correlated with the independent variables, rendering their selection problem-dependent.

Figure 2-2(c) depicts the time-dependent evolution of the cumulative mass (per unit width of
the fracture) profile Np-237 at three different observation points in the fracture, as in the previous
example. Because of its computational viability, Stefhest’s algorithm is selected from this point on as
the benchmark. A comparison of our analytical solution results with those yielded by Stefhest’s solution
[see Tables 2-4(a) through 2-4(c)] indicates excellent agreement. Note that all three profiles tend to
become asymptotic to three specific values of the cumulative mass namely, 4.903 x10?, 4.7 x10?, and
4.309 x10? (UA/m)". These values may be easily computed from Eq. (2-62) after setting the value of
the independent variable t equal to infinity.

Figure 2-2(d) shows the relative concentration (i.e., B/A°) profiles in the rock matrix at three
positions downstream from the source (i.e., x = 100m,.200m, and 500m) for a step release. Comparison
of our analytical results against those yielded by the Stefhest’s solution method [see Tables 2-5(a) through
2-5(c)] indicates an excellent agreement. Note that at their downstream end, all three profiles tend to
become asymptotic to a concentration value slightly in excess of the residual concentration prevailing in
their respective layers.

Figure 2-2(e) shows the relative concentration profiles in the rock matrix at three positions
downstream from the source (i.e., x = 100m , 200m, and 500m) and for a simulation time of
5x10° years, for a band release with a leaching time corresponding to 5x10° years. Past the leaching
time, the contaminant in a typical rock layer close to the source would begin to exhibit a higher
concentration than in the fracture, which would then initiate its diffusion back into the fracture. Indeed
a reference to Figure 2-2(e) shows that the gradient of the concentration profiles at the fracture/rock

T D. Hodgkinson, personal communication.
™ UA: Arbitrary Units of Activity/meter.
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interface tends to decrease with increasing distances from the source. As in the preceding case, results
reported in Tables 2-6(a) through 2-6(c) show excellent agreement between the analytical and the
numerical solutions.
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Table 2-1. Input parameters for Case 1 exponentially decaying source

SPECIES Np-237

Ty 2.3x 10° yr

Release Mode:

- Step : NA

. Band Leaching Time 5x10° yr

A° 1.0°

Q 0.1 (m%yr)

v, NA

vy NA

T, NA

Layer L (m) b (m) u (m/yr) P
1 50.0 5.0E-03 10.0 0.01
2 75.0 4.0E-03 12.5 0.008
3 100.0 3.0E-03 16.666 0.006
4 150.0 2.0E-03 25.0 0.004
5 o0 1.5E-03 33.333 0.002

Layer p (g/em’) l D, (m’/yr) K, (m) K, (cm’/g)
1 2.0 0.01 5.0E-03 0.5
2 2.3 0.02 8.0E-03 0.6978
3 2.6 0.06 2.7E-02 1.158
4 2.65 0.05 1.0E-02 1.059
5 2.7 - 0.03 3.0E-03 0.741
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Table 2-1. Input parameters for Case 1 exponentially decaying source (Cont’d)

Layer a a, a (m?) b,
1 1.50E-04 -0.50E-04 0.02 1.00E-05
2 2.00E-04 -0.25E-05 0.02 1.75E-05
3 1.75E-04 -0.20E-05 0.02 1.25E-05
4 2.00E-04 -0.15E-05 0.02 1.05E-05
5 1.50E-04 -0.20E-05 0.02 1.05E-05

. (arbitrary units of activity/L?)
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Figure 2-2(a). Relative concentration of Np-237 versus distance in the fracture at different times t = 1,000, 5,000, and 50,000 years
(Exponentially decaying source and step and band release mode)




Table 2-2(a). Case 1 Results: Concentration of Np-237 in the fracture at time t = 1,000 years
(Exponentially decaying source and step release mode)

DISTANCE (m) MULTFRAC STEFHEST TALBOT DURBIN

1.000E-01 9.993E-01 9.993E-01 9.993E-01 9.993E-01
1.500E-01 9.992E-01 9.992E-01 9.992E-01 9.992E-01
2.000E-01 9.990E-01 9.990E-01 9.990E-01 9.990E-01
3.000E-01 9.986E-01 9.986E-01 9.986E-01 9.986E-01
4.000E-01 9.983E-01 9.983E-01 9.983E-01 9.983E-01
5.000E-01 9.979E-01 9.979E-01 9.979E-01 9.979E-01

Table 2-2(b). Case 1 Results: Concentration of Np-237 in the fracture at time t = 5,000 years
(Exponentially decaying source and band release mode)

DISTANCE (m)} MULTFRAC STEFHEST TALBOT DURBIN

1.000E-01 4.612E-05 4.660E-05 4.660E-05 4.660E-05
1.500E-01 6.943E-05 6.990E-05 6.990E-05 6.990E-05
2.000E-01 9.273E-05 9.320E-05 - 9.320E-05 9.320E-05
3.000E-01 1.393E-04 1.398E-04 1.398E-04 1.398E-04
4.000E-01 1.859E-04 1.864E-04 1.864E-04 1.864E-04
5.000E-01 2.325E-04 2.330E-04 2.330E-04 2.330E-04

DISTANCE (m) -MULTFRAC
1.000E-01 2.479E-06
1.500E-01 3.824E-06
2.000E-01 5.169E-06
3.000E-01 7.859E-06
4.000E-01 1.055E-05
5.000E-01 1.324E-05

STEFHEST TALBOT
2.689E-06 2.689E-06
4.034E-06 4.034E-06
5.379E-06 5.379E-06
8.068E-06 8.068E-06
1.076E-05 1.076E-05
1.345E-05 1.345E-05
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Table 2-2(c). Case 1 Results: Concentration of Np-237 in the fracture at time t = 50,000 years
(Exponentially decaying source and step release mode)

DURBIN

- 2.689E-06
4.034E-06
5.379E-06
8.068E-06
1.076E-05
1.345E-05

Extracted data; complete data run is provided in microfiche form at the back of this report
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Figure 2-2(b). Relative concentration of Np-237 in the fracture versus time at different positions x = 100, 200, and 500 meters
(Exponentially decaying source and band release mode)



Table 2-3(a). Case 1 Results: Concentration of Np-237 in the fracture Layer 2, at distance
x = 100 meters (Exponentially decaying source and step release mode)

TIME (yr) MULTFRAC STEFHEST TALBOT DURBIN
1.000E-01 .1.370E-04 1.370E-04 3.453+248 1.370E-04
1.500E-01 1.278E-04 1.278E-04 -1.309+258 1.278E-04
2.000E-01 1.209E-04 1.209E-04 -1.006+263 1.209E-04
3.000E-01 1.109E-04 1.109E-04 -1.457+232 1.109E-04
4.000E-01 1.037E-04 1.037E-04 -3.245+266 1.037E-04
5.000E-01 9.806E-05 9.806E-05 2.308+235 9.807E-05

Table 2-3(b). Case 1 Results: Concentration of Np-237 in the fracture Layer 3, at distance
x = 200 meters (Exponentially decaying source and band release mode)

TIME (yr) MULTFRAC STEFHEST TALBOT DURBIN

1.000E-01 1.266E-04 1.266E-04 3.773+263 1.266E-04
1.500E-01 1.189E-04 1.189E-04 -2.483+248 1.189E-04
2.000E-01 1.131E-04 1.131E-04 -6.383+224 1.131E-04
3.000E-01 1.045E-04 1.045E-04 1.549+232 1.045E-04
4.000E-01 9.819E-05 9.819E-05 -3.547+269 9.821E-05
5.000E-01 9.321E-05 9.321E-05 -1.915+271 9.323E-05

Table 2-3(c). Case 1 Results: Concentration of Np-237 in the fracture Layer S, at distance
= 500 meters (Exponentially decaying source and band release mode)

TIME (yr) MULTFRAC STEFHEST TALBOT DURBIN

1.000E-01 8.014E-05 8.014E-05 1.068+242 8.016E-05
1.500E-01 7.234E-05 7.234E-05 -5.321+263 7.235E-05
2.000E-01 6.687E-05 6.687E-05 -7.510+213 6.689E-05
3.000E-01 5.943E-05 5.943E-05 3.313+254 5.942E-05
4.000E-01 5.443E-05 5.443E-05 5.954+235 5.441E-05
5.000E-01 5.074E-05 5.074E-05 -1.736+-248 5.073E-05
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Extracted data; complete data run is provided in microfiche form at the back of this report
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Figure 2-2(c). Cumulative mass of Np-237 per unit in the fracture versus time at different positions x = 100, 200, and 500 meters
(Exponentially decaying source and band release mode) °



Table 2-4(a). Case 1 Results: Cumulative mass of Np-237 in the fracture at distance x = 100 meters
(Exponentially decaying source and band release mode)

TIME (yr) MULTFRAC STEFHEST
5.000E+05 4.878E+02 4.879E+02
6.000E+05 4.886E+02 4.887E+02
7.000E+05 4.891E+02 4.893E+02
8.000E+05 4_.896E+02 4.897E+02
9.000E+05 4.900E+02 4.901E+02
4.903E+02 4.904E+02

1.000E+06

Table 2-4(b). Case 1 Results: Cumulative mass of Np-237 in the fracture at distance x = 200 meters
(Exponentially decaying source and band release mode)

TIME (yr) MULTFRAC STEFHEST
5.000E+05 4.621E+02 4.620E+02
6.000E_05 4.646E+02 4.645E+02
7.000E+05 4.664E+02 4.664E+02
8.000E+05 4.679E+02 4.679E+02
9.000E+05 4.690E+02 4.690E+02
1.000E+06 4.700E+02 4.700E+02

Table 2-4(c). Case 1 Results: Cumulative mass of Np-237 in the fracture at distance x = 500 meters
(Exponentially decaying source and band release mode)

TIME (yr) MULTFRAC STEFHEST
4.000E+05 4.042E+02 4.042E+02
5.000E+05 4.122E+02 4.123E+02
6.000E+05 4.180E+02 4.181E+02
7.000E+05 4.224E+02 4.224E+02
8.000E+05 4.258E+02 4.259E+02
9.000E+05 4.286E+02 4.286E+02
1.000E+06 4.309E+02 4.309E+02

Extracted data; complete data run is provided in microfiche form at the back of this report
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Figure 2-2(d). Relative concentration of Np-237 in rock versus distance z at time t = 5,000 years and distances from the sourée
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Table 2-5(a). Case 1 Results: Concentration of Np-237 in the rock matrix Layer 2, at distance
x = 100 meters and time t = 5,000 years (Exponentially decaying source and step release mode)

DISTANCE z(m) MULTFRAC STEFHEST
1.000E-02 7.886E-01 7.886E-01
1.500E-02 7.847E-01 7.847E-01
2.000E-02 7.809E-01 7.809E-01
3.000E-02 7.732E-01 7.732E-01
4.000E-02 7.656E-01 7.656E-01
5.000E-02 7.579E-01 7.579E-01
9.000E+-00 1.747E-05 1.747E-05
1.000E+-01 1.747E-05 1.747E-05

Table 2-5(b). Case 1 Results: Concentration of Np-237 in the rock matrix Layer 3, at distance
x = 200 meters and time t = 5,000 years (Exponentially decaying source and step release mode)

DISTANCE z(m) MULTFRAC STEFHEST
1.000E-02 3.973E-01 3.973E-01
1.500E-02 3.947E-01 3.947E-01
2.000E-02 3.922E-01 3.922E-01
3.000E-02 3.871E-01 3.871E-01
4.000E-02 3.821E-01 3.821E-01
5.000E-02 3.771E-01 3.771E-01
9.000E+00 1.248E-05 1.248E-05
1.000E+01 1.248E-05 1.248E-05

Table 2-5(c). Case 1 Results: Concentration of Np-237 in the rock matrix Layer 5, at distance
X = 500 meters and time t = 5,000 years (Exponentially decaying source and step release mode)

DISTANCE z(m) MULTFRAC STEFHEST
1.000E-02 4.293E-02 4.294E-02
1.500E-02 4.199E-02 4.200E-02
2.000E-02 4.107E-02 4.107E-02
3.000E-02 3.927E-02 3.927E-02
4.000E-02 3.754E-02 3.754E-02
5.000E-02 3.588E-02 3.588E-02
4.000E+00 1.048E-05 3.047E-15
5.000E+00 1.048E-05 -9.383E-17

Extracted data; complete data run is provided in microfiche form at the back of this report
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Table 2-6(a). Case 1 Results: Concentration of Np-237 in the rock matrix Layer 2, at distance
x = 100 meters and time t = 50,000 years (Exponentially decaying source and band release mode)

DISTANCE z(m) MULTFRAC STEFHEST
1.000E-02 3.566E-03 3.566E-03
1.500E-02 3.633E-03 3.633E-03
2.000E-02 3.699E-03 3.699E-03
3.000E-02 3.832E-03 3.832E-03
4.000E-02 3.965E-03 3.965E-03
5.000E-02 4.098E-03 4.098E-03

Table 2-6(b). Case 1 Results: Concentration of Np-237 in the rock matrix Layer 3, at distance
x = 200 meters and time t = 50,000 years (Exponentially decaying source and band release mode)

DISTANCE z(m) MULTFRAC STEFHEST
1.000E-02 1.090E-02 1.090E-02
1.500E-02 1.095E-02 1.095E-02
2.000E-02 1.101E-02 1.101E-02
3.000E-02 1.112E-02 1.112E-02
4.000E-02 1.123E-02 1.123E-02
5.000E-02 1.134E-02 1.134E-02

Table 2-6(c). Case 1 Results: Concentration of Np-237 in the rock matrix Layer 3, at distance
x = 500 meters and time t = 50,000 years (Exponentially decaying source and band release mode)

DISTANCE z(m) MULTFRAC STEFHEST
1.000E-02 2.184E-02 2.184E-02
1.500E-02 2.189E-02 2.189E-02
2.000E-02 2.195E-02 2.195E-02
3.000E-02 2.206E-02 2.206E-02
4.000E-02 2.217E02 2.217E-02
5.000E-02 2.228E-02 2.228E-02

Extracted data; complete data run is provided in microfiche form at the back of this report
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2.3.2 Case 2 Results

This test case examines, as before, the spatial and temporal variation of the concentration of Cm-
245, as well as its cumulative mass flux in the fracture. In addition, the spatial variations of the
concentration in the rock matrix are also investigated. The source terms correspond now to a periodically
fluctuating one with exponential decay, and the assigned residual concentrations are almost one order of

magnitude less than their counterparts in the case of Np-237. The input data pertaining to this test case-

is presented in Table 2-7. Note that the implementation of a periodically decaying source restricts the
use of benchmarking algorithms other than Talbot’s and Durbin’s for reasons presented earlier.

Figure 2-3(a) shows the spatial relative concentration profiles of Cm-245 observed in the fracture
layers for simulation times corresponding to 10°, 5 X 10%, and 5 X 10* years. A comparison of our
results with the ones obtained from the two numerical inversion algorithms [Tables 2-8(a) through 2-8(c)]
shows that these are in excellent agreement.

Figure 2-3(b) shows the temporal relative concentration of Cm-245 observed in the fracture at
three different observation points: 100, 200, and 500 meters downstream from the source, located in the
second, third, and fifth layer respectively, for a band release mode. The observations here are similar
to the ones reported for Np-237 except that in the present case the upper tail of the concentration profiles
is akin to the assigned initial concentrations of the various fracture layers of interest. A comparison of
our results with those yielded by Talbot’s and Durbin’s algorithms lying within the acceptable range of
concentrations [see Tables 2-9(a) through 2-9(c)] seems to indicate good agreement. Note that Talbot’s
algorithm performance is further reduced in this case, where correct predictions.of the concentrations at
the three monitoring points seem to be registered only for times greater than 40, 80, and 300 years,
respectively. :

Figure 2-3(c) depicts the time-dependent evolution of the cumulative mass release (per unit width
of the fracture) profile of Cm-245 at three different observation points in the fracture as in the previous
example. Because of its robustness, Durbin’s algorithm is selected as the benchmark. A comparison of
our analytical solution results with those yielded by Durbin’s solution [see Tables 2-10(a) through 2-10(c)]
indicates excellent agreement. Note that all three profiles will tend to become asymptotic to three specific
values of the cumulative mass namely: 2.175 X 107, 1.237 X 107, and 40.9 (UA/m)".

Figures 2-3(d) and 2-3(e) show the relative concentration profiles in the rock matrix at three
positions downstream from the source (i.e., x = 100m, 200m, and 500m) for a step release and band
release, respectively. Comparison of our analytical results against those yielded by the two approximate
solution methods [see Tables 2-11(a) through 2-12(c)] indicates excellent agreement.

The assumption of Zero dispersive flux in the fracture raises the question of the range of validity
of the analytical solutions presented in this report. This matter depends very much on the importance
of the hydrodynamic dispersion effects prevailing in the fracture. This matter has been investigated and
quantified numerically by Ahn et al., (1985) (i.e., for the case of zero initial concentrations in both
fracture and rock) who suggested that hydrodynamic dispersion D (see Bear, 1972) should meet the
following criterion

t UA: Arbitrary Units of Activity/meter.
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1047 b,
1\2
o ( DpiR’ )
in order to validate the use of the zero fracture dispersion solution. The maximum permissible value of
D; for any layer i would correspond to a minimum of 254.0 m%yr for Test Case 1, and 245.0 m*/yr for

Test Case 2. Expressed in terms of dispersivity (i.e., D;/u;), these would correspond approximately to
a value of 16 m in both cases.

Table 2-7. Input parameters for Case 2 periodically fluctuating source with exponential decay

SPECIES Cm-245
Tir 8.5x 10° yr
Release Mode:

Step NA

Band Leaching Time 5x10°yr
A° 1.0°
Q 0.1 (m*/yr)
A 0.75
¥ 0.25
T, 50yr
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Table 2-7. Input parameters for Case 2 periodically fluctuating source with exponential decay

(Cont’d)
Layer I L (m) b (m) u (m/yr) l d
1 50.0 5.0E-03 10.0 0.01
2 75.0 4.0E-03 12.5 0.008
3 100.0 3.0E-03 16.666 0.006
4 150.0 2.0E-03 25.0 0.004
5 o 1.5E-03 33.333 0.002
Layer p (g/em®) D, (m’/yr) K, (m) K. (cm’/g)
1 2.0 0.01 1.5E-02 L5
2 23 0.02 8.0E-03 1.2
3 2.6 0.06 5.4E-02 1.25
4 2.65 0.05 1.0E-02 0.75
5 2.7 0.03 4.5E-03 2.0
Layer a; a, a (m?) b,
1 1.50E-05 -0.50E-05 0.05 1.00E-06
2 2.00E-05 -0.25E-06 0.05 1.75E-06
3 1.75E-05 -0.20E-06 0.05 1.25E-06
4 2.00E-05 -0.15E-06 0.05° 1.05E-06
5 1.50E-05 -0.20E-06 0.05 1.05E-06

. (arbitrary units of activity/L?)
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Figure 2-3(a). Relative concentration of Cm-245 versus distance in the fracture at different times t = 1,000, 5,000, and 50,000 years
(Periodically fluctuating source with exponential decay, step and band release mode)




DISTANCE x(m) MULTFRAC

1.000E-01
1.500E-01
2.000E-01
3.000E-01
4.000E-01
5.000E-01

DISTANCE x(m) MULTFRAC

1.000E-01
1.500E-01
2.000E-01
3.000E-01
4.000E-01
5.000E-01

DISTANCE x(m) MULTERAC

1.000E-01
1.500E-01
2.000E-01
3.000E-01
4.000E-01
5.000E-01

Table 2-8(a). Case 2 Results: Concentration of Cm-245 in the fracture at time t = 1,000 years
(Periodically fluctuating source with exponential decay and step release mode)

TALBOT DURBIN
6.908E-01 6.908E-01 6.908E-01
6.906E-01 6.906E-01 6.906E-01
6.904E-01 6.904E-01 6.904E-01
6.900E-01 6.900E-01 6.900E-01
6.896E-01 6.896E-01 6.896E-01

6.891E-01 6.891E-01

6.891E-01

2.675E-05
4.014E-05
5.352E-05
8.030E-05
1.071E-04
1.338E-04

5.953E-08
8.949E-08
1.194E-07
1.794E-07

2.393E-07-

2.992E-07

Table 2-8(b). Case 2 Results: Concentration of Cm-245 in the fracture .at time t = 5,000 years
(Periodically fluctuating source with exponential decay and band release mode)

TALBOT DURBIN
2.677E-05 2.679E-05
4.016E-05 4.018E-05
5.355E-05 5.357E-05
8.033E-05 8.035E-05
1.071E-04 1.071E-04
1.339E-04 1.339E-04

TALBOT

5.991E-08
8.987E-08
1.198E-07
1.797E-07
2.397E-07
2.996E-07
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Table 2-8(c). Case 2 Results: Concentration of Cm-245 in the fracture at time t = 50,000 years
(Periodically fluctuating source with exponential decay and band release mode)

DURBIN

5.991E-08
8.987E-08
1.198E-07
1.797E-07
2.397E-07
2.996E-07

Extracted data; complete data run is provided in microfiche form at the back of this report
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Figure 2-3(b). Relative concentration of Cm-245 in the fracture versus time at different positions x = 100, 200, and 500 meters
(Periodically fluctuating source with exponential decay, step and band release mode)




TIME (yr)

2.000E+01
3.000E+01

4.000E+01 -

5.000E+01
6.000E+01

7.000E+01 °

8.000E+01
9.000E+01

TIME (yr)

8.000E-+01
9.000E+01
1.000E+02
1.500E+02
2.000E+02
3.000E+02
4.000E+02
5.000E+02

TIME (yr)

9.000E+01
1.000E+02
1.500E+02
2.000E_02

3.000E+02
4.000E+02
5.000E+02
6.000E+02

MULTFRAC

3.049E-06 . - .

2.810E=06
2.667E-06
2.570E-06
2.703E-06
1.027E-05
6.893E-05
2.757E-04

MULTFRAC

2.913E-06
2.818E-06
2.737E-06
2.457E-06
2.284E-06
2.133E-06
1.718E-05
1.944E-04

MULTFRAC

1.317E-06
1.302E-06
1.255E-06
1.231E-06
1.207E-06
1.191E-06
1.177E-06
1.164E-06

Table 2-9(a). Case 2 Results: Concentration of Cm-245 in the fracture in Layer 2, at distance
x = 100 meters (Periodically fluctuating source with exponential decay and step release mode)

TALBOT DURBIN

-1.702E+45 3.058E-06

-5.177E4+02 2.837E-06
2.680E-06  2.673E-06
2.568E-06  2.544E-06
2.708E-06  2.669E-06
1.050E-05 1.054E-05
7.056E-05  7.053E-05
2.814E-04  2.813E-04

TALBOT

9.066E+39
1.164E+06
-2.442E+15
2.460E-06
2.284E-06
2.135E-06
1.740E-05
1.966E-04

A\

TALBOT

-4.803E+93
-3.967E+75
-4.242E+22
-2.924E-05
1.207E-06
1.192E-06
1.178E-06
1.165E-06

2:41

Table 2-9(b). Case 2 Results: Concentration of Cm-245 in the fracture in Layer 3, at distance
x = 200 meters (Periodically fluctuating source with exponential decay and band release mode)

DURBIN

2.923E-06
2.827E-06
2.746E-06
2.482E-06
2.312E-06
2.127E-06
1.756E-05
1.963E-04

Table 2-9(c). Case 2 Results: Concentration of Cm-245 in the fracture in Layer 5, at distance .
x = 500 meters (Periodically fluctuating source with exponeritial decay and band release mode)

DURBIN

1.331E-06
1.316E-06
1.269E-06
1.245E-06
1.220E-06
1.205E-06
1.192E-06

~ 1.181E-06

Extracted data; complete data run is provided in microfiche form at the back of this report
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Figure 2-3(c). Cumulative mass of Cm-245 per unit in the fracture versus time at different positions x = 100, 200, and 500 meters
(Periodically fluctuating source with exponential decay)




Table 2-10(a). Case 2 Results:*Cumulative mass of Cm-245 in the fracture at distance
x = 100 meters (Periodically fluctuating source with exponential decay and band release mode)

TIME (yr) MULTFRAC  DURBIN
3.000E+05 2.175E+02 2.174E+02
4.000E+05 2.175E+02 2.179E+-02
5.000E+05 '2.175E+02 2.184E+02
6.000E+05 2.175E+02 NA
7.000E+05 2.175E+02 NA
8.000E+05 2.175E+02 NA
9.000E+05 2.175E+02 NA
1.000E+06 2.175E+02 NA

Table 2-10(b). Case 2 Results: Cumulative mass of Cm-245 in the fracture at distance
x = 200 meters (Periodically fluctuating source with exponential decay and band release mode)

TIME (yr) MULTFRAC DURBIN
5.000E+05 1.237E+02 NA
6.000E+05 1.237E+02 NA
7.000E+05 1.237E+02 NA
8.000E+05 1.237E+02 NA
9.000E+05 1.237E+02 NA
1.000E+06 1.237E+02 NA

Table 2-10(c). Case 2 Results: Cumulative mass of Cm-245 in the fracture at distance
x = 500 meters (Periodically fluctuating source with exponential decay and band release mode)

TIME (yr) MULTFRAC  DURBIN
5.000E+05 4.092E+01 NA
6.000E+05 4.092E+01 NA
7.000E-+05 4.092E+01 NA
8.000E+05 4.092E+01 NA
9.000E+05 4.092E+01 NA
1.000E+06 4.092E+01 NA

Extracted data; complete data run is provided in microfiche form at the back of this report
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Table 2-11(a). Case 2 Results: Concentration of Cm-245 in the rock matrix Layer 2, at distance
x = 100 meters and time t = 5,000 years (Periodically fluctuating source with exponential decay
and step release mode)

DISTANCE z(m) MULTFRAC  TALBOT DURBIN

-1.500E-02 3.446E-01 3.446E-01 3.446E-01
2.000E-02 3.421E-01 3.421E-01 3.421E-01
3.000E-02 3.373E-01 3.373E-01 3.373E-01,
4.000E-02 3.326E-01 3.326E-01 3.326E-01
5.000E-02 3.278E-01 3.278E-01 3.278E-01

Table 2-11(b). Case 2 Results: Concentration of Cm-245 in the rock matrix Layer 3, at distance
x = 200 meters and time t = 5,000 years (Periodically fluctuating source with exponential decay
and step release mode)

DISTANCE z(m) MULTFRAC  TALBOT DURBIN
1.000E-02 1.539E-01 1.539E-01 1.539E-01
1.500E-02 1.528E-01 1.528E-01 1.528E-01
2.000E-02 1.516E-01 1.516E-01 1.516E-01
3.000E-02 1.494E-01 1.494E-01 1.494E-01
4.000E-02 1.472E-01 1.472E-01 1.472E-01
5.000E-02 "~ 1.450E-01 1.450E-01 1.450E-01

Table 2-11(c). Case 2 Results: Concentration of Cm-245 in the rock matrix Layer 5, at distance
x = 500 meters and time t = 5,000 years (Periodically fluctuating source with exponential decay
and step release mode)

DISTANCE z(m) MULTFRAC  TALBOT DURBIN

1.000E-02 1.101E-02 1.100E-02 1.100E-02
1.500E-02 1.057E-02 1.057E-02 1.057E-02
2.000E-02 1.015E-02 1.015E-02 1.015E-02
3.000E-02 9.353E-03 9.352E-03 9.352E-03
4,000E-02 8.611E-03 8.610E-03 8.610E-03
5.000E-02 7.921E-03 7.920E-03 - 7.920E-03

2-45

Extracted- data; complete data run is provided in microfiche form at the back of this report
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Figure 2-3(¢). Relative concentration of Cm-245 in rock versus distance at t = 50,000 years (Periodically fluct
exponential decay and band release mode)
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Table 2-12(a). Case 2 Results: Concentration of Cm-245 in the rock matrix Layer 2, at distance

x = 100 meters and time t = 50,000 years (Periodically fluctuating source with exponential decay
and band release mode)

DISTANCE z(m) MULTFRAC TALBOT DURBIN
1.000E-02 6.722E-05 6.722E-05 6.723E-05
1.500E-02 6.833E-05 6.833E-05 6.834E-05
2.000E-02 6.944E-05 6.944E-05 6.944E-05
3.000E-02 7.166E-05 7.166E-05 7.165E-05
4.000E-02 7.387E-05 7.387E-05 7.387E-05
5.000E-02 7.608E-05 7.608E-05 7.607E-05

Table 2-12(b). Case 2 Results: Concentration of Cm-245 in the rock matrix Layer 3, at distance

x = 200 meters and time t = 50,000 years (Periodically fluctuating source with exponential decay
and band release mode)

DISTANCE z(m) MULTFRAC  TALBOT DURBIN

1.000E-02 1.661E-04 1.661E-04 1.660E-04
1.500E-02 1.668E-04 1.668E-04 1.667E-04
2.000E-02 1.675E-04 1.675E-04 1.674E-04
3.000E-02 1.689E-04 1.689E-04 1.688E-04
4.000E-02 1.703E-04 1.703E-04 1.702E-04
5.000E-02 1.716E-04 1.716E-04 1.716E-04

Table 2-12(c). Case 2 Results: Concentration of Cm-245 in the rock matrix Layer 5, at distance

x = 500 meters and time t = 50,000 years (Periodically fluctuating source with exponentlal decay
and band release mode)

DISTANCE z(m) MULTFRAC  TALBOT DURBIN
1.000E-02 3.001E-04 3.001E-04 3.001E-04
1.500E-02 3.010E-04 3.010E-04 3.010E-04
2.000E-02 3.019E-04 3.019E-04 3.019E-04
3.000E-02 3.037E-04 3.037E-04 3.037E-04
4.000E-02 3.054E-04 3.054E-04 3.054E-04
5.000E-02 3.070E-04 3.070E-04 3.070E-04
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Extracted data; complete data run is provided in microfiche form at the back of this report




3 ANALYTICALLY DERIVED SENSITIVITIES IN THE
FRACTURE

3.1 LOCAL SENSITIVITIES . S

Local sensitivities or first-order derivatives of the concentration and cumulative mass in the
fracture, with respect to a typical parameter « (i.e., A;/dc; and 8M;/dcr), are required in parameter
estimation or sampling design studies (sensitivity of concentration), and in predicting the sensitivity and
uncertainty of the performance of a system (sensitivity of cumulative mass). There are two classical
methods for evaluating the local sensitivities. The first, and the most accurate, is the analytically derived
solution, which is estimated after a direct differentiation of the closed form solution with respect to the
parameters of interest. 'The second uses numerical derivatives obtained from finite-difference
approximations. In the following, the analytically derived sensitivities are related to the concentration
in the fracture, where the initial concentration in both fracture and rock matrix are assumed to correspond
to some constant values. In addition, the sensitivities are verified through a comparison of the results
with those derived through finite-difference approximations (i.e., forward-difference and central-
difference).

3.2 ANALYTICAL DERIVATIVES

This section presents the analytically derived local sensitivities of the concentrations and
cumulative mass flux in the fracture with respect to the entire range of parameters governing the
nondispersive transport process in the fractured rock system of interest described by the equations
reported in the previous chapter of this report.

3.2.1 Total Differentials

In order to evaluate the first-order derivatives of the concentration and cumulative mass in the
fracture reported in the preceding sections, the total differentials of R;, R;, ¢5, Pis 0> Yam> &> and By,
given by Egs. (2-5), (2-6), (2-29), (2-35b), (2-39), (2-40), (2-47) and (2-48), (see also Appendix F), have
to be defined. Applying the chain rule of differentiation, these may be written as

dR, = — dK, + — db, (3-1)
oK, b,
R’ R’ R’
dR!,=—Ldp,+—tdp,+—_LtdK, G2
ad); T apri aKn .
a a ‘
= gy, + gy, + 58 gty 2 gp (3-3)
3, ab, oR/, ap, *
op; op;
dp. = —du + —ig (3-4)

3-1



30 30 '
do, . = —dc, + —"2dT" (3-5)
mn acﬁ fi al-‘i i
it = o g Nemgr, (3-6)
i i
aq; ag; aq;
= _.dc —_— + — 3'7
U= 5, Y G
9B, 9B; 9B,
dp, = —2dc; + —2dR, + 2 (-8
P a, 7 @R, idp‘ )
)y ar, '
dr, = —tdL, + —idu, ~ (-9
oL, du,
T,=%,,i<n (3-10a)
T,=n,,i=n (3-10b)

Substitution of Egs. (3-3) and (3-9) in Eq. (3-5) gives

a9 | dc o oc
do, = | 5% yo, 5% gy + 8 gR!+ 25 gp
dc, | 0@, a, ' oR/ D, *
(3-11)
ae
e
61‘
Similarly, substituting Egs. (3-1) and (3-9) in Eq. (3-6) yields
ar ar
ay, = Do o Dol iy Fig, (3-12)
3R, ar, | oL, du,
where
du, = 2 gy (3-13)
ab,

Note that the total differentials of R; and R/;, as given by Egs. (3-1) and (3-2), are used whenever
appropriate (i.e., if either R; or R, is expressed in terms of their respective components).
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Using the following partial derivatives

(3-143)

(3-14b)

(3-14c)

(3.153)

(3-15b)

(3-16a)

(3-16b)

(3-17a)

(3-17b)

(3-17¢)

(3-18a)



op C 1 c2
A _ fi fi
—_— — - —— 1, 1,2
oR,  2R? - 2[2& T
aB; 1
-V = (_ly_: J = 1:2
9g; 2
9By = _aﬂ_ﬁ% _(_1)1L
api aqi ap{ qiRi
ap,
ou;
@o;
o,
. Q
ob;  2p?

(3-18b)

(3-18¢)

(3-18d)

(3-19a)

(3-19b)

(3-20)

the first-order derivatives of 6, .., Cs> R;, and R/, with respect to a typical parameter «;, are reported
in Tables 3-1 through 3-5, respectively. The total differential of §;, given by Eq. (3-8), may be
evaluated based on the latter tables, and the various derivatives given in Egs. (3-14) through (3-20). Note
that Q in Eq. (3-20) corresponds to the steady flow rate of water (Q = 2 y; b;) through the fracture.

3.2.2 First-Order Derivatives of the Concentrations

Using the notations reported in Appendix D, the various components of Eq. (2-42) may now be

written as

F, (x5) = Al ™p Uk - v,)

3-4

(3-21a)




for a continuously decaying source

Hip%t) = e by Py, + (ay - by)°P,, P, P, U - Vo) (3-21b)
3 8 21
(o) = €7y 30 (1) *By Py Py Ut 1) 3219

2
F (x,t) = e™q (-1)/ %p_ 0p_ up .
0 2""21 ot (3-214)

* e~u[bln + (aln - bln) sPn 6Pn]




Table 3-1. First-order partial derivatives of 0, with respect to input parameters o;

G.e., L, u;, & p;y Dys R;, K, R, and K)

o em’d o emd
Li . Dpi c
C,
—ﬁ, i<n, n>1 A T
u 2Dpi
u R; NA
C
-2r,
U;
b; . Ks NA
c 2c
N
b, Q
¢ R
1 cﬁ 1 cﬁ
IDIST(2)=0: -£T, L1,
; 2R/,
c K.
wist@)=1: £|1-LiAlp
$;|  2¢R/,
¥ 1
o o (10, K o (178
URNCLI PE—.4 . | — p"_
2R\ & | 2R\ & J "

Iy=7m, i<n; T,=v, i=n

NA = Not Applicable
+ Applicable if IDIST(2) = 1 (See Appendix G)
¥ Applicable if IDIST(2) = 0 (See Appendix G)

3-6.




Table 3-2. First-order partial derivatives of v, with respect to input parameters o;

@.e., L;, u, b;, R;, and Kp)

a,; Yo,
L,
1 Ri . -
—, i<n, n>1
4;
t RT,
¥;
b -
IDIST(1) =0: T”
KT, 2RL
IDIST(1)=1: - L% » 4
b2 Q
%
1
K; T,
bi

I,=M, i<n; T,=q,i=n

T Applicable only if IDIST(1) = 1 (See Appendix G)
I Applicable only if IDIST(1) = 0 (See Appendix G)




Table 3-3. First-order partial derivatives of ¢, with respect to input parameters «;

G.e., Ly, u;, & pyy Dy Ry, Ky, R, and K,)

ai Cﬁ, - ai cﬂ:u
L, NA D,
C
fi
2D,
NA R, NA
b, K, NA
%
bi
& o R
C
IDIST(2)=0: £ &
i 2Rli
K.
IsT2)=1:. |- Prld
¢;|  29R/,
Pit g
s 1-¢; ’ K s 1-¢, o
2R\ & | ° 2R\ & )"

NA = Not Applicable '
t Applicable only if IDIST(2) = 1 (See Appendix G)
I Applicable only if IDIST(2) = 0 (See Appendix G)




Table 3-4. First-order partial derivatives of R, with respect to input parameters ¢; (i.e., b, R,, and Kp)

[44 f Ri,d al &'d ai &'d

bt # . \
. X, R; 1.0 Ks 1
b? b,

+ Applicable only if IDIST(1) = 1 (See Appendix G)
I Applicable only if IDIST(1) = 0 (See Appendix G)

Table 3-5. First-order partial derivatives of R/, with respect to input parameters ¢, (i.e., ¥, p;, K;, and R')

(47 / (47 / / 7
' R by ‘ R ba % R by % R Ly
q,if i’r A R/it 1.0
1 “loae, | a-e
12 @, ri 2, Pri

T Applicable only if IDIST(1) = 1 (See Appendix G)
I Applicable only if IDIST(1) = 0 (See Appendix G)

The partial derivatives of the above equations, with respect to a typical parameter « at the exclusion of A°,
A\, o, ay;, 3y, and by, may now be written as '

F,, (%1) = Al Py, Ut - vy,) (3-22a)
i, (5,8) = €by,'P,, + (@ = by) [ Py, “Pi P, (3-22b)

* PPy P+ Py P | }U(t  Yy)



2
2Hin, (:2) = €7 gy [ Y, (1Y °P; °P, P,
i=t (3-22¢)

+° Pyl *Piwn,, "Pian * *Prinn  Piins,) ] Ut - Yrm)

2
F (50) = e oy, 30 (- [°By (°B, "By, + P, Py,
+ 9Pjn‘ lonn llen] (3-22(1)
+e™ [bm + (ay, - by,) (SP”" p, + P, 6P,,") ]

the first-order partial derivatives of the functions given by Eq. (3-21), with respect to A°, A, a;, a,, and
by, may now be written as

F,, (ot) = e PLUE - 1y,) ‘ (3-232)
F, (nt)=-tF, (&) U(t~ vy, (3-23b)
1Hinn,, (%:8) = e [Py *Pin ?Pra] U (£ = Yo (3-24a)
His, (%8) = = 2 H (60 U (2 - ¥,,) - (3-24b)
tHin, (5:2) = e [P, - *P,, P, P | U (t - ¥,,) (3-24¢)
+Hipm, (51) = -‘;1; Hymnl 58 U (E~Ypm) (3-252)
2His, (B8) = =2 H,, (x0) U (t - ¥,,) (3-25b)
F, (xt)=e™ °P,°P, (3-26a)
2
F, = e-’“L}; (-1yY °p, “P,.,,] (3-26b)

3-10




F, G =1- e [°P,°P,| : (3-26¢)

Fnu(x,t) = -tF,(x0) (3-264d)

3,2.3 First-Order Derivatives of the Cumulative Mass

Using the notations reported in Appendix E, the various components of Eq. (2-62) may now
be written as

Qp (1) = A°{- °G ‘Gl,,+[3G{; G, + 3Gy, 2G;,,]} U(t=Y ) (3-27a)

for a continuously decaying source

1Qha58) = by {- °G'G,, + %Gy %Gy + 26 %G} Ut -,
+ (ay-by) {7Gi Ging *Ginn = *Gon %G, Gy (3-27b)

+ 36,2646 } U(t-Y,.,) -

2
2Qimn(x’t) = am E (_1)]{ loGji QGW 14Gﬂ 8Gﬂm +
j=1

(3-27¢)
lOGﬂ(_ 3Gr:n 2Gt:u llGi' + 3Gt;u an-m llGi“)} U(t_Ym)
2
Qn(x,t) = az"jztl: (__1)]{ mGjn 14Gjn[ nGjn lstn + lstn( lstn _ 1)]}
+by, G - °G) +(a,,~by,)"G,[ "G, G, + °G,-1] (3-274)

The partial derivatives of Eq. (3-27d), with respect to a typical parameter o at the exclusion of
A°, ay,, a,;, and b, may now be written as '

Qou *x7) = Ao{_ OG’a lGln. -°G lGln,- +[3G;m. Gy, + Gy 2Gl+n..
. (3-28a)

v 265, "G}, + %65°Gh, ]}

3-11



IQ;"&. (I,t) = _bli{- oG’a lGnm - OG IGM. * 2G”:ﬂ-. 3G":"+ 2G;" SG’:"a

+2G6,, %G, +?G,, 3G,,',,,,.} Ut~ )
+@u=by){ "G, Ginn *Cinn* "G i, *Giom* *Gin G,

= 3Gpy, 26 *G; - °G,, %G,y *Gi - %G %G UGy,  (3-28b)

+*Gon, *Con Gy + 26 Gy, 1G] + 26, %G Gy YUY )

2
2Qumn, (550) = h (‘l)i{ gGiinm gGmm[ mGﬁ.. 14Gﬁ * mGj‘ 14Gji,,]+
i

G

+ °G, ﬁmn,.]

Jimn

10z 142 [9 8
G, “G, [ Giimn,, * Cimn
- mGﬁ" [ SG;::: ZG,:,. "Gﬁ' _ BG;;:. ZG,;, ‘qu;]
- g, [3G’:n" 2G,, 11G; + 3G, ZG;;.,, G+ 3Gy, G, G, (3-28¢c)

- 3Gr;n,‘ G qu;_ 3G, 2Gn:n,‘ qu; -3G., an_m “GJ{‘]} U(t—ym)
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2
Q, (x2) = ay, 12; (- 1[G, "G, + 1G, G, |

[lZ(;jn 13Gjn + lstn ( IGGJ" - 1)]

10 14 12
+ 6,6, [%6,

13 12 13 15
e Gjn+ Gjn Gjn..+ G

jn,.( 16Gjn _ 1) + lSG]n lstn,‘ ]
1
+ bln (""1—2),,‘2 - OG,a)
+ n-by,) ['6, (G, G, * G, -1) (3-28d)

+ 7G"'( 17Gn,‘ lan + 17Gn ISG",. + lan,. )]

The first-order derivatives of Eq. (3-27), with respect to parameters A°, ay;, ay, and by, are given by

Q, (60 = =-0Q, @1 UG - 1,) (3-29)

IQi'nm,a"(x’t) = {7Gi G, %G, -3G.2G. ‘G’

imn imn

(3-302)
+ %Gy Gy *G YUY 1)
Qinn, &) = {~°G G, + %G, %G+ 26 %G, 6300
= 76,%Gyyy *Gipy + %G G *Gy - °G, %G, G U ,,,)
1
2QImm(x:t) = a_ 2Ql{,,m(x:t) ue - Y,,.,.) (3‘31)

28
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Q, &y =7"6[7G, "G, + °G, - 1] (3-32a)
S1n

2
Q"-m(x’t) = 12;; -1y { m.Gjn MGjn[ qun 13 Gjn + lstn( 16 Gjn - 1)]} (3-32b)
Q,, D = % - %G - 7G,[ G, 8G, + ¥G, - 1] (332¢)

33 NUMERICAL DERIVATIVES

The numerically achieved derivatives are based on the parameter perturbation technique (see
Becker and Yeh, 1972), which uses forward- or central-difference schemes. In such instances, the choice
of the step size (or perturbation vector) usually has an important bearing on the choice of the particular
scheme. The investigator is commonly confronted with the problem of deciding upon the magnitude of
this parameter, which is generally selected by means of a trial-and-error procedure.

The forward-difference approximation (FDA) is given by

fA) _ fld + k) =~ FA) , o) (3-33)
ah 2

and the central-difference approximation (CDA) is given by

f(A4) .f(A+h)-Ff(A-h) 4 (h2) (3-34)
ah h

where h is the step size. Ideally, the step size should be small enough to reduce the truncation error and
large enough to cause a reasonable change in the significant figures of vector A. Following Bard (1974),
we write

h=eA ' (3-35)

where 10° < € < 102
Dennis and Schnabel (1983) recommended setting e equal to the square root of the relative
computer precision, which in our case corresponds approximately to 107°. Note that for a typical

parameter, N + 1 evaluations of the response vector are required at each iteration by the FDA (compared
to 2N + 1 evaluations in the case of CDA), where N corresponds to the number of observation points.

34 VERIFICATION
The verification of the analytically derived local sensitivities was performed by comparison of

the results yielded by this solution scheme with the ones obtained through the two finite-difference
appproximations discussed earlier. The exact derivatives as well as the ones yielded by FDA and CDA
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were estimated, based on the data presented in Table 2-1, and values of e corresponding to 107,
Figures (3-1) and (3-2) illustrate the sensitivity of the concentration and cumulative mass of Np-237 in
the fracture to a selected choice of parameters (i.e., b, D,, K, and K)) in each of the five fracture layers.
With the exception of the very low range of sensitivities, the numerical results are in excellent agreement
with the analytical ones. Note that the values obtained from both FDA and CDA methods were identical
for all the investigated test cases, when the selected values of e are less than 102 A detailed examination
of the sensitivities will be presented in Volume 2 of this report.
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Figure 3-1(a). Sensitivity of concentration to half-thickness versus time for Np-237 (Exponentially
decaying source)

2.5E-1

-7.5E-8

-2.5E-1

-5.0E-1

-7.5E-1

-1.0E0

Sensltivity of Concentration to Pore Ditfusivity for Exponentially Decaying Source

10* 10°
Time (years)
Figure 3-1(b). Sensitivity of concentration to pore diffusivity versus time for Np-237 (Exponentially
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Figure 3-1(c). Sensitivity of concentration to surface distribution coefﬁuent in fracture versus time
for Np-237 (Exponentially decaying source)
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Figure 3-1(d). Sensitivity of concentration to distribution coefficient in rock versus time for Np-237

(Exponentially decaying source)
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Figure 3-2(a). Sensitivity of cumulative mass to half-thickness versus time for Np-237
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Figure 3-2(c). Sensitivity of cumulative mass to surface distribution coefficient in fracture versus
time for Np-237 (Exponentially decaying source)
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4 CONCLUSIONS

Analytical solutions based on the Laplace transforms have been derived for predicting the one-dimensional
nondispersive isothermal transport of a radionuclide in a layered system of planar fractures coupled with
the one-dimensional infinite diffusive transport into the adjacent rock matrix units. The solution for the
cumulative mass in the fracture has also been reported.

The particular features of these solutions reside in their analytical capability designed to handle:

® Residual concentrations in both fracture and rock matrix layers respectively; the latter are
represented by a constant and/or a spatially dependent function in the case of the fracture,
and a constant in the case of the rock matrix;

® Layered nature of the rock mass;
® Length dependency of fracture aperture yielding a nonuniform velocity field; and

® Both exponentially decaying and periodically fluctuating decaying source of solute at the
upstream end of the fracture network, which may then be subject to either a step or band
release mode.

The reported analytical solutions pertaining to the concentrations and cumulative mass were successfully
verified by means of three reliable numerical methods for evaluating the inverse Laplace transform in the
real and complex domain, respectively. To this end, two test cases involving the migration of Np-237
and Cm-245, in a five-layered fractured rock system, using synthetic, but realistic data, were investigated.
The calculated analytical local sensitivities of nuclide concentration and cumulative mass flux in fractures
with respect to all of the model parameters were in excellent agreement with the ones obtained through
a finite-difference method of approximation. In this particular instance, no marked evidence of a superior
performance of the central over the forward finite-difference method was found, as theory suggests.

In spite of some limitations (i.e., assumptions of zero dispersion in the fracture and infinite matrix
diffusion), the new features embedded in the reported solutions allow one to deal with layered media
having piece-wise constant properties, as well as nonzero initial conditions, coupled with a realistic option
of a periodically fluctuating decaying source. These solutions are useful for verifying the accuracy of
numerical codes designed to solve similar problems and, above all, cost effective for performing
sensitivity and uncertainty analyses of scenarios likely to be adopted in performance assessment
investigations of potential nuclear waste repositories.
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APPENDIX A

THEOREMS AND LAPLACE TRANSFORMS




In this appendix, a selected number of theorems and inverse Laplace transforms (see Abramowitz and
Stegun, 1972) are reported. These are used in the derivation of the solutions pertaining to the solute
_ concentration in the fracture and rock matrix, respectively.

Al THEOREMS

The operations for the Laplace transformation reported in this report require, in some cases, the
use of the following theorems. Note that £(s) corresponds to the Laplace transform of function F(t).

A;l.l Translation

L'|e™™As)| = F¢t - B)UQ - b),b>0 (A.1-1)

where U(t) is the Heaviside unit step function defined as

0, t<0
u(t) = .% -0 (A.1-2)
1, >0
A.1.2 Linear Transformation
LYfs - a)] = e®F(f) (A.1-3)
A.1.3 Differentiation

L7Is(s) - F(+0) = F/(®) (A.1-4)
Ls*fs) - L s™F(+0) -L 7 s" 2F/(+0) - -F®(+0) = FO()

A.1.4 Convolution or Faltung

L O£O] = [Fi¢ - DF(0)dr = Fy»F, (A.1-5)
. 0




In the following, the Laplace transform of the function on the right is given on the left-hand side.

Table A.1. Laplace transforms

f (s) . F (f)
1 e ®

S +a

e oVE

il iexp(_a_z,)
Vs Jm 4
2/ nt3 4t
o 1 a e“z‘erfcéz\/i
sla + s
-k/(5)
&  (k=0) e*eterfe| aft + K
Vsla + s) 2/t
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a+\/§

: 1. aeerfeayft
Vs +a Tt
k5 ,
e (kZO) —J:e@(—'zt-) - aeakeazte’fc(aﬁ + i]
Y191

2/

l[erf i] - e“"e"z‘elfc(aﬁ N i)]

2/t

1

—[1 - e“z‘erfc(a t]
a

(s + a)*> + b?

e “®sinbt

The inverse Laplace transform of the product of 1/(s> + a% and e** may be obtained using their
respective inverse transforms given in Table A.1 and applying the convolution theorem, Eq. (A.1-5), to

yield
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a2
t -
L1E a\/..;' =8 [emt-98 " g
s—ib 2/ Y
aettp 1 v - <
= —e “dv (A.2-1)
2\/50 32
0 az 2 ib
ibt L2 B

Using the integral given by Eq. (C.1), we get

L'l_e-a_\/_;_ = L1 e 1 1 ]
s + b2 2ib lS -ib s +ib (A22)
471..b[E(taa’ib) - E(t,a,—ib)]

where

E(t,a,ib) =eib‘(e“ﬁerf 2 . ibt) +e T"‘/"Zerfc[i - ibt)) (A.2-3)
2/t 24/t

Substituting for V/i in Eq. (A.2-3), using the following relations

. . +i
Ji= (2 = cos T 4+ jsinT 1+

A.2-4
7 (A.2-4)

yields
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[\l 1
E(t,a,ib)=exp-a(§)2 + i [bt+a (3)2] ] erfc
(B F
2‘/; \ 2 2 ]
1 1 (A.2-5)
+ exp [— a (2\2 +1i [bt -a (2\2] } erfc
2, 2

() -3

A similar expression to Eq. (A.2-5) may be obtained for E (t, a, -ib) after substituting for V/-i the
following relation

V=i = (e P2 < 1-4

(A.2-6)
/2
Hence
E(t,a,ib) - E(t,a,-ib) =
_exp(4 + iB)erfc(C + iD) —~ exp(4 - iB)erfc(C - iD) + (A.2-T)
expA + iB)erfc(C + iD) - exp(A - iB)erfc(C - iD)
where
1 1 1 1
A = a(é)z; B = bt + a(k)z; C = L + 25)2; D = (E)z
2 2 2/t 2 2 -
(A.2-8)
b\; b\3 bt\3 bt\3
A=-a|202 B =t -ad207 -2 -2 p--[2)
2 2 2/t 2 2




APPENDIX B

EVALUATION OF ERROR FUNCTION AND PRODUCT OF EXPONENTIAL AND
COMPLEMENTARY ERROR FUNCTION TERMS



In this appendix, the formulae of the error functions with real and complex arguments, enabling the
evaluation of terms involving the product of exponential and complementary error functions with complex
arguments, as implemented in the computer code MULTFRAC, are reported.

B.1 ERROR FUNCTION

The error or probability function is defined as

2 n
erfix) = = | e gt (B.1-1)
2|
with
erf(-x) = —erf(x) (B.1-2)
this may be expressed in terms of the complementary error function erfc(x) written as
erflx) =1 - erfe(x) (B.1-3)
where
2 p 2
erfc(x) = — [e V' dE (B.1-4)
el
and
erfe(-x) = 2 - erfe(x) (B.1-5)

Note that when x is small the integrand in Eq. (B.1-1) may be conveniently expanded in a power series
convergent everywhere and integrated term by term to yield )

3 5 7
erflx) = 2 =X X _x
J=l 310520 73!
(B.1-6)
. (_l)nd x2n+l

—_— ..
@2n+1)-n!

A few terms in the expansion are necessary to determine the value of erf(x) to a given number
of decimal places. However, as x becomes large, the loss in accuracy must be compensated by a large
number of terms which renders the calculation tedious and impractical. A rational Chebysheb
approximation may be used to alleviate this problem when x = 4 (see Cody, 1969). Alternatively, the
asymptotic expansion reported by Abramowitz and Stegun (1972) expressed in terms of the
complementary error function erfc(x) [see Eq. (B.2-3)] is used.

B-1




The derivative of the error function may be written as -

L
[en‘(x)] = _ﬁ xp(-x2)—— da (B.1-7)

B.2 FORMULAE OF ERROR FUNCTIONS WITH COMPLEX ARGUMENTS
Let z be the complex argument written as

Z=xziy (B.2-1)

and Euler’s formula written as

e = cosz + isinz (B.2-2)
Note that the evolution of the error function for a real argument was based on Cody (1969).
B.2-1 Asymptotic Expansion |z | > 2 andx < 1 and ly| =6

In this case, the asymptotic expansion of erfc(z), as given by Abramowitz and Stegun (1972), may
be written as

- »1.3.. 13..2n-1) (B.2-3)
erfe(z) = 1 + ), (D + R, (x)
zf E 222"

where R (x) is the remainder after n terms.
B.2-2 Confluent Hypérgeometric Function | z | <2

In this case, the error function is evaluated from the confluent hypergeometric function [see
Abramowitz and Stegun (1972), Eq. (7.1.21)], written as

2z

erfz = M( z%) = e“zM(l,%,z’) (B.2-4)
T

'2'5

where M is the Kummer’s function [see Abramowitz and Stegun (1972), p.504, Eq. (13.1.2)], written
as

" (B.2-52)

Mabg -1+ %, DL @2
a b (b),2! ®),n!




with . _
@, =a@+D@+2)~@+n-1),@,=1 (®.2-5b)

B.2-3 Continued Fraction Approximation | z | > 2andx > 1

In this case, the error function is evaluated from the continued fractions approximations [see
Abramowitz and Stegun (1972), p.298, Eq. (7.1.14)], written as
1121322

@ =
e ,/_[zzzzz

(Rz> 0) (B.2-6)

B.2-4 Infinite Series Expansion | P | >2,0sx<1,y<6

In this case, the error function is evaluated from the infinite series approximation [see
Abramowitz and Stegun (1972), p. 299, Eq. (7.1.29)], written as

]

B.2-7)
2 «© -n 2
*=e™* E [f @) + ig, ()] + e(xy)
“‘ -1 n? + 4x?
where
£ (xy) = 2x - 2xcoshny cos2xy + nsinhnysin2xy (B.2-8a)
8,(xy) = 2xcoshnysin2xy + nsinhny cos2xy " (B.2-8b)
le@y) | = 107 |erf(x + iy) | (B.2-8¢)

B.3 EVALUATION OF PRODUCT OF EXPONENTIAL AND COMPLEMENTARY ERROR
FUNCTION WITH COMPLEX ARGUMENTS

Functions involving the product of exponential and compleméntary error functions may witness
two types of arguments inherent to such functions, that is, real or complex.

When the arguments of the exponential and complementary functions are both real, the scheme
reported in Appendix C of Gureghian (1990) is the one adopted in this work. However, where the
arguments of these functions are of the complex form, the typical model for the complementary error
function as reported in the preceding sections is selected based upon its adequacy to cope with the
magnitude of the complex argument of interest. In the case where an infinite series approximation model
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for the complex error function is adopted, such as given by Eq. (B.2-7), it will be subsequently shown
that expressions similar to one given by Eq. (A.2-7), which display a combination of products of complex
exponential and complementary error functions, may yield either a real or an imaginary number.
Writing
F*(tAiB,C,iD) = exp(A + iB)erfc(C + iD) @30
+ exp(A - iB)erfc(C - iD)

and using Eqs. (B.2-2) and (B.2-7), it may be shown that the result is a real number given by

F*(t,A,iB,C,iD) = 2exp(A)[cosB (etfc(C) -

w(C)(1 - cos2CD) - UO)Y, r,(O) f,,(C,D))

i} (B.3-2)
+ sinB (u(C)sinZCD +v(0) Y r, (C)g,,(C,D)H
+ €(4,8,C,D)
Similarly, writing ,
F~(t,4,iB,C,iD) = exp(A + iB)erfc(C + iD) B.3-3)

- exp(A - iB)erfc(C - iD)

it may be shown that the result is an imaginary number given by
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F~ (t,A,iB,C,iD) = i2exp(A) [ sinB (etfc(C) -

#(C) (1 - cos2CD) - v (C)i: r, (C)f, (C,D) )

. (B.3-4)
- cosB(u(C)sinZCD +v (€)Y r,(O g,(C.D) ) ]
+ € (4,B,C,D)
where

_e© (B.3-52)

w(C) 2nC
O = 2¢¢ (B.3-5b)
O - 2e : (B.3-5¢)

n° + 4C

and £, g, and e are given by Eqs. (B.2-8a) through (B.2-8c).




Equations (B.3-2) and (B.3-4) may be written in a more explicit form as

F*(t,A,iB,C,iD) [cosB exp(A4) erfc(C)

+—e%[—cos3 + cos(B - 2CD) ]
T
2% s | (B - Bl - 20 B0

+ 20 (8, ot - costs - 260) 5, - )

F~(t,A,iB,C,iD) = 2i[sinB exp(4)erfc(C)

exp(4d - C?»
2nC

+

[ - sinB + sin(B - 2CD)]

-2y LB - Ecos( - 2¢D) (B.3-7)

T p=1 n? + 4¢?

+ 2C(E,sinB - sin(B - 2CD)[E, + Ej]]

where

2

2
E, = % exp (A -C? - % + nD) (B.3-8b)

B-6



REFERENCES:

Abramowitz, M., and I.A. Stegun. 1972. Handbook of Mathematical Functions. Dover
Publications, Inc.: New York, New York.

Cody, W.J. 1969. Rational Chebyshev approximation for the error function. Mathematics of
Computation: 23(107): 631-637.

Gureghian, A.B. 1990. FRACVAL Validation (Nonlinear Least Squares Method) of the Solution
of One-Dimensional Transport of Decaying Species in a Discrete Planar Fracture with Rock
Matrix Diffusion Part 1: Analytical Solutions. BMI/OWTD-8. Battelle Energy Systems Group:
Office of Waste Technology Development (OWTD) Battelle Memorial Institute (BMI):
Willowbrook, Illinois.



APPENDIX C

SOME INTEGRALS INVOLVING THE ERROR FUNCTION AND OTHER FUNCTIONS



In this appendix, the derivation of a set of integrals involving the error function and other functions
arising in the solution pertaining to the cumulative mass at any point in the fracture network is reported.

From Abramowitz and Stegun [(1972), p. 304, Eq. (7.4.33)], we have the following indefinite integral:
-a’x"’-—
fe -y [ werf(ax + 2) + e'z“”edf(ax - -é) ], (a+0) C.h
x x

C.1  Integral of I(t,a,8,7)

Writing

t
= featprf|__ B (C.1-1)
I tAat) ] = d
1 (t,a,B,Y) _[e erfc [(t - Y)m] T

Integrating Eq. (C.1-1) by parts gives

Il(t’a’B9Y) = Ill + I]_z (C'l-z)
where
-af

I = -2 ool B (C.1-3)

- a7 [ ¢ - ‘Y)ml

LA
I, = 2 (% ew d[L} (C.14)
aymy (-2

' ﬂat-'{ —at—ﬁ

- Be f AU 4 (C.1-5)

I, =5—{ "eerfe| —— + Jult - ]
2a t - ¥ (C 1_6)
+e zﬂﬁerfc[ Ja(t - y)l }



C.2 Integral of L,(t,«,8,,6:yY)

Writing
t B .
Iz(t’“:Bsz’Y) = [e®erfelB,(v - ‘Y)l'2 + ———2——]d‘t
{ -7
Integration by parts gives

LB .ByY) = I + Iy

where
at B ]
L =% f -2 e 2
* e e'fc[ﬁl( R
and
foar-[ps-nV? + Bz
e .
Vray G - P

substitution of 9 = 7 - v in Eq. (C.2-4) gives

Iy =Ly + Ly,

where
2
ﬁle“"'zﬂ‘Bz 4 -2 - o) - 2
L, e M dn
NEY n¥?
and
2
B,e T 2P 1Y 4 g} -am - L
Im = = € ndn

1/-“; o 0 113'2'

(C.2-1)

(C.2-2)

(C.2-3)

(C.24)

(C.2-5)

(C.2-6)

(C.2-7)




substitution of 7 = 9" in I, and 7 = 1/5'?2 in I,, respectively, gives

2

wr-2p,8, 07 gt o2 B
Ly, = ZBle 2 f e 2 g (C.2-8)
Vro 0
2,_Gi-a
ay-28,8, = -pi? -
P il R €29
CLRS
Using the results given by Eq. (C.1), we then have
oy ~2p,8
L, =- ———-—-p‘e i [ezﬂ z(ﬁ:-"‘)merfc
20 (p;-a)
((ﬁf-a)’”‘(t -7+ L) (C.2-10)
t-v)'*?
2
- 2l (- ey« P2
-7
“7'25152 2 7,3
I =-% 26,(67-0)
2 YR [e erfc
Bt @0yt -
e ® Y (C.2-11)

+ 72001 “)melf{ P @-oree ‘Y)m)]
e
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ay "23152

L = -5 [ezpzwf-a)me’fc((ﬂf-a)‘f’(t a L i]

20 "

. B, M o288}~
(512 _ a)E (C.2-12)
e»fc(—(ﬁi—af"(t-v)m . Bzm) by
t-v) 1
T - o
C.3  Integral of L(t,,t,,a,5)
Writing
4
Lt,,0.8) = [e*erfe(Br'P)ds C3-D
4
Integration by parts yields
2
Lt t,0.p) = % (-1 [e erfe(ps?) +
i=1
(C.3-2)
B e (7 -
(p? - «)
C.4  Integral of I(t,a,ib,\,7)
Writing
J -t
Leaiby) = [S[EG-v.aib) - EG-va,-ib]ds C4-1)
1
Y
where E (t, a, ib) is given by Eq. (A.2-3). Integration by parts gives
Lta,ibA,y) =1, + I, (C.42)

using the following definitions
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E,(t,a,ib) = e ™E(1,a,ib) (C-4.3a)

and

E,(t,a,-ib) = e™E(t,a,~ib) (C.4-3b)
1,, may then be written as
1| e iy ) o~ (2+ib) ) (C.4-4)
1L, = 4_lbl "—ib El(t Y,a,ib) + +ib E, (t-v,a,-ib)

Multiplying the first and second terms in square brackets in Eq. (C.4-4), by the conjugate of their
respective denominators, we then get

PTERe [(El(t-y,a,ib) + Ey(t-v.a,-ib) )
(C.4-5)
. % (E\(t-1,,ib) - Ey(t-v.a,-ib) )

Note that I,; corresponds to a real number, since it has been shown earlier (see Section B.3) that the sum
and difference of E,[ -] and E,[ -] will yield a real and an imaginary number, respectively.

t

- 1 -(o-ibye v BV —
142 = m { e d[El(T 'Y,a,lb)]
o €46
-+ -(* + ib)x _ -3
4ib(r + ib) ',{ ¢ AB—1a,-10)

substituting 7' = 7 - 7y in Eq. (C.4-6), and after some simplification, leads to

e i -y ad &
1 |e @iy -G "’)"] f a g dz’ (C.4-7)

T amnm - rw)| S

substituting y = 1/72 in Eq. (C.4-7) yields

_).7 ib1 -ib’{ - 2 l
I. = %¢ [ e _ e ] ex -a—'qz-'-—dn C.48
@ ofmiv LG-)  A+ib) [ e=l-% il (C48)

¢-v) 2
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Using the integral given by Eq. (C.1), and the following properties of a complex variable

et -e® (C.4-92)

sinz = n
2i

cosz = Lot e€* (C.4-9b)

we then get

_ e M(Asinby + bcosby) eVierfe
2b(2? + b2)

[2 ‘/;__? + s/l(t-v)] + eV erfe (C.4-10)

42
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APPENDIX D

FIRST-ORDER DERIVATIVES OF THE COMPONENTS OF THE CONCENTRATION
SOLUTION IN THE FRACTURE LAYERS




This appendix reports the first-order derivatives of the components of the solution of the concentration
in the fracture layers as reported in Section 3.2.2 of Chapter 3.,
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. 1 'Y
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p = —;/%_—;exp [-172.] D.1¢)

2Py = €T [ Yo * Fina) (D.22)

¥ - ( %ﬁ;) (t - 1.0)" : (D.2b)
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P = L e [t ] ®29
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1.

SPi,, = 25Piff;ff,,

12

R,

6Pi = erfc (sﬁ)

6Pi
3
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_ 6p 5
= 1P,

2
Ri

C
- _itlﬂR

be
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APPENDIX E

FIRST-ORDER DERIVATIVES OF THE COMPONENTS OF THE CUMULATIVE
MASS SOLUTION IN THE FRACTURE LAYERS



This appendix reports the first-order derivatives of the cumulative mass in the fracture layers as
reported in Section 3.2.3 of Chapter 3.

0G = __ (E.1a)
A

°G_ = -°G(t + -;:)x E.1b)
16 = erfe('h,,) , (E.2a)
oo Om (E.2b)
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'Gpy = 1Gog P, (E.2¢)

1
RS S . Y €29)
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1 2 11.2
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where ,*h is given by Eq. (E.17b), and its derivative by Eq. (E.17¢)
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APPENDIX F

NOTATIONS



ay, dg; O
A

AO

constants in the model for residual concentrations in the ith fracture layer

concentration of the species in the ith fracture layer
concentration of the species at the source at time equals to zero
half-thickness of the ith fracture layer

residual concentration in the ith rock matrix layer
concentration of the species in the ith rock matrix layer
effective diffusivity in the ith rock matrix layer

molecular diffusion of nuclide in water

pore diffusivity in the ith rock matrix layer

geometric factor of the ith rock matrix layer -

diffusive rate of nuclide at surface of ith fracture layer per unit area of fracture
surface ‘

surface distribution in the ith fracture layer
distribution coefficient in the ith rock matrix layer
thickness of ith rock matrix layer

total number of layers

steady water flow rate in fracture

retardation factor in the ith fracture layer
retardation factor in the ith rock matrix layer

time

leaching time

time period of a complete cycle (27/w)

half-life



average fluid velocity in the ith fracture layer

position vector in the fracture

position vector in the rock matrix

constant in model of initial concentration in the ith fracture layer
constrictivity for diffusion in the ith rock layer

first-order rate constant for decay

constants in model of periodically fluctuating decaying source
rock density in the ith layer

tortuosity of the ith rock layer

porosity of the ith rock layer

frequency of oscillation

Abbreviated Forms
¢i / 12
%= % (Ri Dpi)
1

¢ = (R'; D)

D, = ¢D,
- L, i<n
1 X-X_ 4 I=n
Pi = ulai
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Pu=2r "2
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APPENDIX G

MODEL PARAMETERS




’

The following parameters are used in the computer code’ (written in ANSI Standard FORTRAN
77) that implements the analytic solutions described in Section 2.

FORTRAN NAME EXPLANATION

ALFA(D) ' Constant alpha in the exponential term in residual concentration
mode in the ith fracture layer (1/L)

CCoO Concentration of the species at the source at time equals zero
(units of activity/L?) )

CINE(L,I) : Constant in residual concentration model in the ith fracture (units
of activity/L?)

CINF2,D) Coefficient of exponential term in residual concentration model

in the ith fracture (units of activity/L?)

CINR(D) Residual concentration in the ith rock matrix layer (units of
activity/L?)

CNS(1) Constant in periodically fluctuating decaying source term model
‘(NPERIOD = 1)

CNS(Q2) Coefficient of sine function term in periodically fluctuating
decaying source term model (NPERIOD = 1)

DENSR(D) ith Rock matrix layer bulk density (M/L®) (used if IDIST(1) =
2)

DIFFR(D) Pore diffusivity (L>/T)

! (Gureghian, A.B., Medrano, D., and E. King. 1992. MULTFRAC User’s Guide, Version 1.0: Analytical
solutions for one-dimensional transport of a radionuclide in a layered fractured rock with rock matrix diffusion.
" CNWRA92-023. Center for Nuclear Waste Regulatory Analyses: San Antonio, Texas. In press.)
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FORTRAN NAME

- DIMENS(,J)

DISTX(D)

DISTRB_F(l)

DISTRB_R(T)

- EXMAX

FLOWR
HALFL
HALF_THICK()

IAUTO

TIME

IBAND

ICONCF

ICONCR

EXPLANATION

Dimensions used in the problem; each must be < 12 characters

in length.

(1,]) = Species name

(2,J) = Time (year)

(3,J) = Length (meter)

4,J) = L/T (meter/year)

(5,J) = L¥T (m?year)

(6,]) = Mass/Volume (g/cc)

(7,]) = Volume/Mass (cc/g)

(8,J) = 1/Time ( 1./year)

9,J) = Units of Activity/Volume ( UA/L?)
(10,5) = 1/L (1./meter)

Thickness of ith fracture or rock layer (L)

ith Fracture layer surface distribution coefficient (L) (IDIST(1)

ith Rock matrix layer distribution coefficient (L*/M) (IDIST(2)

Largest allowed magnitude for exponential arguments (machine
dependent)

Steady water flow rate per unit width of fracture (L%T)

Half-life of species (T)

Half-thickness of the ith fracture layer (L)

= ( User supplies arrays REFX, REFZ, and TIME, including
parameters NX, NZ, and NT

= 1 Automatic generation of arrays REFX, REFZ and TIME

including parameters NX, NZ, and NT (see Note)

0 Step release mode at source
1 Band release mode at source

0 Do not calculate fracture concentrations
1 Do calculate fracture concentrations

= 0 Do not calculate rock concentrations
= ] Do calculate rock concentrations
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FORTRAN NAME

ICUMF

IDIST(1)

. IDIST(2)

IGRAPH

INDEX())

LAYER

NCONC_SENSIT

NPERIOD

NRUNMAX

EXPLANATION

=.0 Do not calculate cumulative mass flux
=1 Do calculate cumulative mass flux

=0 RETARD F corresponds to retardation factor in fracture
= 1 RETARD _F corresponds to surface distribution coefficient
in fracture (i.e., DISTRB_F)

= (0 RETARD R corresponds to retardation factor in rock
matrix

= 1 RETARD_R corresponds to distribution coefficient in rock
matrix (i.e., DISTRB R)

= 0 Graphics output disabled
= 1 Graphics output enabled; formatted graphics written to
logical unit 30, 31, 32, 35, 36 '

Logical Unit 30: Concentrations in Fracture
" " 31: Concentrations in Rock Matrix
32: Cumulative Mass
35: Concentration Sensitivities
36: Cumulative Mass Sensitivities

= 1 Evaluate sensitivity computation related to parameter i (i.e.,

- NCONC_SENSIT =2)

= 0 Skip

Number of fracture/rock matrix layers

= 1 Execute Modul€ 1 (i.e., calculate concentrations and
cumulative mass in the fractures and concentrations in the rock

matrix

= 2 Execute Module 2 (calculate senéitivity coefficients, relative
sensitivies and variance

= 3 Execute both Modules 1 and 2

= 0 Continuously Decaying Source
= 1 Periodically Fluctuating Decaying Source

Number of data sets to be run

< 500, number of time values to be evaluated
(skip if IAUTO = 1)
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FORTRAN NAME

NVAL

NX

NZ

PERIOD

POROSR(I)
REFX(D)
REFZ(I)

RETARD _F()

RETARD R(D)

STDV()
TIME()
TIML
TITLE

VELX()

X0
DX
ENDX

20

EXPLANATION

Index for selecting solution module
= 0 Option for analytical solutions
= 1 Option for sensitivity module

< 500, number of positions to be evaluated in x direction
(skip if IAUTO = 1)

- < 500, number of positions to be evaluated in x direction

(skip if JAUTO = 1)

Time period for a complete cycle of variation in periodically
fluctuating decaying source term model (NPERIOD = 1)

Average porosity in ith rock matrix layer

x-position in space (L) (read if IAUTO = 0)

" z-position in space (L) (read if IAUTO = 0)

Retardation factor in the ith fracture layer (IDIST(1) = 0) or
Surface distribution coefficient (i.e., DISTRB_F) in the ith
fracture layer (IDIST(1) = 1)

Retardation factor in the ith rock matrix layer (IDIST(2) = 0) or
Distribution coefficient (i.e., DISTRB_R) in the ith rock matrix
layer (IDIST(2) = 1)

Standard deviation of parameter I (i.e., NCONC_SENSIT = 2)
Position in time (T) (read if IAUTO = ()

Leaching time (T) (used if IBAND = 1)

2 Lines, < 80 characters per line, title of data set

Average fluid velocity in the ith fracture layer (L/T)

Note: The following parameters are read-in if IAUTO = 1 in order to generate arrays REFX, REFZ,
and TIME and their associated parameters NX, NZ, and NT.

First value of spatial coordinate X == REFX(1)
Spatial increment along X-axis
Final value of spatial coordinate X = REFX(NX)

First value of spatial coordinate Z = REFZ(1)
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FORTRAN NAME

DZ
ENDZ

TO
DT
ENDT

NLOG

DSTEP

EXPLANATION

Spatial increment along Z-axis
Final value of spatial coordinate Z = REFZ(NZ)

First value of simulation time = TIME(1)
Time increment
End value of simulation time = TIME(NT)

0 Position in space or time are equally spaced
1 Log scale used for splitting space or time arrays: REFX,
REFZ, and TIME (i.e., 10 divisions per log cycle)

Step length for evaluating first order sensitivities
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