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ABSTRACT 

Exact analytical solutions based on the Laplace transforms are derived for describing the onedimensional 
space-timedependent, advective transport of a decaying species in a layered, saturated rock system 
intersected by a plapar fracture of varying aperture. These solutions, which account for advection in 
fracture, molecular diffusion into the rock matrix, adsorption in both fracture and matrix, and radioactive 
decay, predict the concentrations in both fracture and rock matrix and the cumulative mass in the fracture. 
The solute migration domain in both fracture and rock is assumed to be semi-infinite with non-zero initial 
conditions. The concentration of each nuclide at the source is allowed to decay either continuously or 
according to some periodical fluctuations where both are subjected to either a step or band release mode. 
Two numerical examples related to the transport of Np-237 and Cm-245 in a five-layered system of 
fractured rock were used to verify these solutions with several well established evaluation methods of 
Laplace inversion integrals in the real and co'mplex domain. In addition, with respect to the model 
parameters, a comparison of the analytically derived local sensitivities for the concentration and 
cumulative mass of Np-237 in the fracture with the ones obtained through a finite-difference method of 
approximation is also reported. 
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1 INTRODUCTION 

Mathematical models are essential tools in performance assessment investigations, for estimating the 
potential impact of radionuclide migration out of a high-level waste (HLW) geologic repository to the 
biosphere. These models involve a mathematical description of hydro-geochemical and geophysical 
processes. Their predictive capabilities are usually commensurate with our understanding of the various 
classes of geologic media: porous and fractured rock. Currently, the candidate HLW disposal site is a 
fractured tuff. This geological medium is poorly understood because of its inhefent uncertainties and 
currently there is only a limited basis to quantitatively describe hydro-geochemical processes in that 
medium. Consequently, the use of simplified mathematical models for a conservative probabilistic 
assessment of performance is appropriate. Moreover, in spite of their limitations, the high degree of 
precision of analytical models coupled with their computational efficiency have induced many 
investigators worldwide Posinger and Tremaine (1978), Hodgkinson and Maul (1985), Rasmuson and 
Neretnieks (1986), and Burkholder et al., (1976)l to adopt these for addressing some of the critical issues 
inherent in the containment characteristics of potential radioactive waste disposal sites. 

Analytical solutions have played an important role in assessing the impact of burying radioactive waste 
in permeable porous media [Gureghian (1987), Gureghian and Jansen (1985, 1983), van Genuchten and 
Alves (1982), Pigford et al., (1980), Hadermann (1980), Burkholder et al., (1970, Rosinger and 
Tremaine (1978), Lester et al., (1973, and Shamir and Harleman (196611, and fractured rock masses 
[Gureghian (1990(a,b), Ahn et al., (1985, 1986), Chen (1986), Hodgkinson and Maul (1983, Sudicky 
and Frind (1982, 1984), Grisak and Pickens (1981), Kanki et al., (1981), Chambrt? et al., (1982), Tang 
et al., (1981), and Neretnieks (1980)l. 

This report is presented in two volumes. 

Volume 1 reports the derivation and verification of the closed form analytical solutions of the one- 
dimensional nondispersive and isothermal transport of a radionuclide in a layered system of saturated 
planar fractures coupled with diffusion into the adjacent saturated rock matrix. In addition to matrix 
diffusion effects as reported by Grisak et al.,.(1981), Grisak et al., (1980b), and Neretnieks (1980) [see 
also Gureghian (199Oa) for a comprehensive list of references] on the one hand, and non-zero initial 
conditions in both fracture and rock as illustrated by Gureghian (1990b) on the other, three new features 
associated with: (i) the layered nature of the rock matrix; (ii) the length dependency of fracture aperture; 
and (iii) periodicity aspect of radionuclides released from the source have been implemented in these new 
solutions. 

Volume 2 evaluates and demonstrates the use of several sensitivity &d uncertainty analysis methods using . 
the analytical model developed in Volume 1. 

The mathematical model "MULTFMC" associated with Volume 1 of this report includes two modules. 
The first module predicts the space-time dependent concentration of a decaying species migrating within 
the fracture network and the surrounding rock matrix layers, including the cumulative mass at an arbitrary 
observation point within the fracture. Note that the steady unidirectional flow of water through the 
fracture is normal to the rock matrix layers. Moreover, the material properties of individual fracture and 
rock matrix layers assumed to be fully saturated are homogeneous and isotropic. The second module 
predicts the analytical and numerical local sensitivities, that is, the first-order derivatives of the 
concentration and cumulative mass with respect to the model parameters. These quantities are needed 
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for parameter estimation or sampling design in the case of the concentration and for uncertainty analysis 
of cumulative releases of a typical species from the repository at a typical point in time dong the fracture, 
as illustrated in Volume 2 of this report. 

The analytical solutions are based on the Laplace transform method where the domains of radionuclide 
migration in both fractures and rock layers are onedimensional and of the semi-infinite type, implying 
in this instance that radionuclide diffusion from the fractures wall to the rock matrix may extend to 
infinity. The sorption phenomena in both fracture and rock matrix layers are described by a linear 
equilibrium sorption isotherm. Two types of radionuclide release modes are considered: (i) the 
continuously decaying; and (ii) the periodically fluctuating decaying source, which may in turn be subject 
to step and band release modes. The initial concentrations in the fracture and rock matrix layers may be 
assigned spatially varying values in the first case, whereas uniform ones may be implemented in both 
Cases. 

The verification of the new analytical solutions pertaining to solute-transport in fracture and rock matrix 
was performed by means of several we11 established numerical evaluation methods of Laplace inversion 
integral proposed by Talbot (1979), Durbin (1974), and Stefhest (1970). Two test cases involving the 
migration of Np-237 and Cm-245 in a five-layered fractured rock system were investigated. An 
evaluation of some of these inversion methods over the range of investigated parameters has also been 
reported. On the other hand, the verification of the analytical solutions for the local sensitivities of the 
concentration and cumulative mass in the fracture with respect to the parameters of the system was 
performed by means of numerical differentiation techniques based on the finitedifference method of 
approximation. 

The deterministic solutions presented in Volume 1 of this paper are primarily applicable to performance 
assessment investigations of potential nuclear waste repository sites restricted to typical scenario analyses 
associated with long-term migration of radionuclides in an idealized fractured rock system. Although 
some limitations inherent to the nature of the solution method adopted here are to be considered, the 
present model may be useful in studying some aspects of sensitivity and uncertainty of the cumulative 
mass of a single radionuclide in an idealized fracture intersecting a layered geologic medium. The new 
predictive capabilities imbedded in the derived solutions are expected to improve the confidence of the 
investigator performing sensitivity and uncertainty analyses based on this model. 
In spite of some limitations (Le., assumptions of zero dispersion in the fracture and infinite matrix 
diffusion), the new features embedded in the reported solutions allow one'to deal with layered media 
having piece-wise constant properties, as well as nonzero initial conditions, coupled with a realistic option 
of a periodically fluctuating decaying source. These solutions are useful for verifying the accuracy of 
numericd codes designed to solve similar problems and, above all, cost effective for performing 
sensitivity and uncertainty analyses of scenarios likely to be adopted in performance assessment 
investigations of potential nuclear waste repositories. 

The model MULTFRAC was written in VAX FORTRAN Version 4.8 using the G floating point option 
(REAL*16). The computation was executed on a VAX 8700 under VMS Version 4.7. ' I  
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1.1 PHYSICAL SYSTEM 

In order to model transport in a heterogeneous geologic media, a new analytical solution was 
developed for an idealized saturated fractured rock system composed of n number of parallel fractured 
rock layers. In this solution, each layer is assumed to be characterized by constant parameters. 

' In this instance, the geometry of the cross section of such a fractured rock network corresponds 
to a series of connected parallel line segments of different thicknesses (see Figure 1-1). Computationally 
viable closed form analytical solutions, which satisfy some of the requirements of Volume 2 of this report 
(Le., the section dealing with the uncertainties issues), are developed after assuming that transport through 
the fractures is predominantly caused by advection, and that matrix diffusion may extend to infinity. In 
a single layer situation, the solution with zero dispersion in the fracture has been shown by Ahn et.al., 
(1985) to yield close enough results to the one with nonzero dispersion, contingent on it satisfying a . 
criterion which will be subsequently reported. Furthermore, the solution corresponding to the infinite 
rock matrix diffusion case (i.e., single fracture) was proven by Gureghian (199Oa) to yield similar results 
to the finite diffusion one &e., parallel fractures), as long as the resulting Fourier number, a 
dimensionless parameter, was less than or equal to 0.1. 

With the assumption that migration within the fracture is solely by advection, the mass flux F, 
at the exit or entry face of a typical fracture layer i of unit width, may be written as 

F,f = [2biUiAiT 

where 

Ai 
Ui 
2bi + 

is the concentration in the fracture (ML-3) 
is the average fluid velocity in the fracture (LT') 
is the thickness of the fracture (L) 
is the symbol of an entry face 

- is the symbol of an exit face 

Note that in Eq. (1-1) it is assumed that transport occurs under isothermal conditions, the fluid density 
is constant, and that concentrations are small such that these do not affect the properties of the fluid or 
rock. In addition, the transfer of fluidthrough the fracture walls is assumed negligible. 

At the interface of two consecutive fracture layers i-1 and i, the steady-state continuity equation 
for fluid is given by 

and fiom the mass conservation relation of the solute we have 

Fi-l- = F,' (1-3) 

with the notion that the flow rate within a typical fracture segment is constant under steady-state flow 
conditions, substituting Eqs. (1-1) and (1-2) into Eq. (1-3) yields 
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Figure 1-1. Description of migration pathways in a system of homogeneous layers of fractured rock 
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which guarantees a continuity of concentration at the interface between fracture layers. 

With the above requirements, the next step in the analytical process is to formulate the transport 
equations for the fractures and rock matrix. These applicable governing equations are presented and 
described in the subsequent sections. 
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2 ANALYTICAL CONCENTRATIONS AND CUMULATIVE MASS 

2.1 GOVERMNG EQUATIONS 

The governing onedimensional equation describing the nondispersive movement of a typical 
nuclide in the ith layer of the fracture and rock matrix respectively (Neretnieks, 1980) is given by 

(a) Fracture 

(b) RockMatrix 

aBi a"Bi # at - Dpi--g + A#Bi = 0 

t>O, x>O, zrb, i=1,2,3, ..., n 

where 
& 
X 
Ji 

is the retardation in the fracture 
is the first-order rate constant for decay ("-I) 

is the diffusive rate of radionuclide at surface of fracture per unit area of fracture surface 
W-T? 

R: 
Bi 

Dpi 
Dd 

gfi 

7.i 
6, 

X 
2 
t 
i 
n 

is the retardation factor in the rock matrix 
is the concentration in the rock matrix (ML3) 
is the pore diffusivity (Le., Dpi= Dd g,3 (LTl) 
is the molecular diffusion of nuclide in water (LTl) 
is the geometric factor (6, /$) where 
is constrictivity for diffusion w) 
is tortuosity of rock matrix w) 
is the spatial coordinate in the fracture (I,) 
is the spatial coordinate in the rock matrix (L) 
is the time 0 
is the index related to the particular layer of fracture and surrounding rock matrix 
is the total number of fractured rock layers 

. 

A complete list of symbols and their meanings is given in Appendii F. 

me diffusive rate of a nuclide into the ith layer of the rock matrix is assumed to obey Fick's 
law of diffusion written as 
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(2-3) 

where D; is the effective diffusivity in the typical section of the rock matrix (see Neretnieks, 1980) 
defined as 

Dd = 0,. (2-4) 

where Qi s the rock porosity. 

The retardation factor in the ith layer of the fracture (R,) and the rock matrix (4), respectively 
(see Neretnieks et al., 1982), are given by: 

(2-5) 

where 
Pli 
&, 
& 

is the bulk rock density (h4L-”) 
is the surface distribution coefficient in the fracture (L) 
is the distribution coefficient in the rock matrix (L3M-’) 

2.1.1 Initial and Boundary Conditions 

The set of differential equations, Eqs. (2-1) and (2-2), are subject to the initial conditions: 

where 

[xy  i = l  
I-1 

x - xi-l = x - ELjY i > l  I .  /=1 

xi = 

(2-7) 

where a,,, ac,, b,, (all h4L3), and a, (L-3 are constant for each layer i of the fracture rock system and time 
invariant, and independent of boundary conditions in the fiacture and rock matrix. The boundary 
conditions in the fracture are given by 

A1(OJ) = A(f)y P O  (2-10) 
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(2-1 1) 

where &t) is the concentration at the source. 

For ,the ith layer of the rock matrix, the corresponding boundary conditions are: 

B,(x,b,,t) = A,(x,t), t>O,.x*, xJ-l<x=J (2-12) 

I (2-13) 

2.1.2 Concentrations of the Source 

For a step release mode, the concentration of a typical nuclide at the source A(t) decaying either 
continuously or subject to periodical fluctuations are given by 

(a) Exponentially Decaying Source 

A(t) = Aoe-b, t>O.  

(b) Periodically Fluctuating Source with Exponential Decay 

A(t) = Aoe-A'[v, - vbsinot], PO 

(2-14) 

(2-15) 

where A' is the concentration of the species at time equals zero, va and q, are constants which sum 
corresponds to one, with vb S v., and the time period Tp of a complete cycle of variation is 2 4 0 .  
These source types are illustrated in Figure 2-1. 

For a band release mode, the boundary condition at the fracture inlet may be written as 

A1(OJ) = A(t)[U(t) - U(t-T)], t>O (2-16) 

where T is the leaching time and U(t-T) is the Heaviside function difined as 

1, t > T  

0, t < T  

(2-17) 

The general form of the solutions for the band release mode in the ith layer of the fracture and 
rock matrix based on a boundary condition given by Eq. (2-16) and which uses the superposition method 
Poglia et al. 1979) may be written as: 
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where bAi(x,t) and bBi(x7z,t) correspond to the band-release solutions. 

At the interface of two consecutive fracture layers we have: 

A,(x,t) = A,&,f), i > l  

(2-19) 

(2-20) 

2.1.3 Solution of Transport Equations for the Rock Matrix and Fracture 

2.1.3.1 Rock Matrix 

The Laplace transformation of Eq. (2-2), with its associated initial and boundary condition 
Eqs. (2-9), (2-12), and (2-13), may be written as 

and 

(2-21) 

(2-22a) 

(2-22b) 

where 
0. 

(2-23) - 
Bi = [ B p - % f  

0 

The general solution of Eq. (2-21) yielding the concentration in the ith layer of the rock matrix 
is given by 

(2-24) 

with 
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lbi = c& + A)* 

and 

cri = ( R / / D f i T  

(2-25) 

(2-26) 

Note that the inverse Laplace transform of Bi might be sought once 4 is identified as shown in the 
subsequent section. 

The Laplace transform of the diffusive flux Eq. (2-3) prevailing at the interface of the fracture 
and rock matrix within a typical layer i is'given by 

= +jDpirw Aj(x,s) - - (- s + l  
aB,(x,bjA 

az J7 = -+,L$* (2-27) 

Note that rbi in Eq. (2-27) is given by Eq. (2-25). 

2.1.3.2 Fracture 

After proper substitution of the transform of the diffusive flux given by Eq. (2-27) into the 
Laplace transformation of Eq. (2-1) 

with 

(2-29) 

Note Lat the init., conditions given by Eq. (2-7) are included into Eq. (2-28) by v ~ e  of Theorem 
(A.1-4) of Appendix A. 

Similarly, the boundary conditions given by Eqs. (2-14) and (2-15) are obtained using the 
appropriate Laplace transforms given in Appendix A. Hence, 

(a) Exponentially Decaying Source 

A0 
s + l  

Z,(Op) = - 

(b) Periodically Fluctuating Decaying Source 
- 

(2-30) 

(2-3 1) 
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First Layer 

The solution of Eq. (2-28) for the first layer (Le., with i set to one), subject to its initial and 
boundary conditions given by Eqs. (2-7), (2-lo), and (2-11), may be written as 

Xl(x,s) = [To - ?l] e-rdq* + F~ (2-32) 

where 

To = Z1(O,s) (2-33a) 

(2-33b) 
3 

j = l  
q' = X & ( S )  

(2-33~) 

with 

Rial, 
rai 

= - (2-34a) 

(2-34b) 

(2-34~) 

(2-34d) 

and 

rai = Ri(s-+ A) + c8(s + A)'p 

pi = uiaI 

rei = r&(s + A)'P 

(2-35a) 

(2-331) 

(2-35~) 
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- Li 
' l i  = - 

ui 

xi  'lf = - 
ui 

(2-35d) 

(2-35e) 

Note that subscript i refers to a typical layer and xi given by Eq. (2-8) corresponds to the distance within 
the portion of the fracture network stretching between the exit face of layer i-1 and the location of the 
observation point in layer i. 

Second Layer 

With the assumption that the upstream boundary condition of the second layer will correspond 
to the prevailing concentration at the downstream end of the first layer [see Eq. (141, we may write 

hence the solution of Eq. (2-28), related to the second fracture layer, may be written as 

(2-37) - - &(x,s) = (q - Fll)e -Lrd< + rdq3 + (q - FlJe-'a2q2 + 

Nth Layer 

Applying successively the above' approach to the subsequent portions of the fracture layers, the 
solution of Eq. (2-28) corresponding to the nth layer may be written as 

i=2 j= i  

Using the following notations 
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n-1 

the inverse Laplace transform of Eq. (2-38) yielding the closed form solution of the concentration of a 
typical species in the nth fracture layer is obtained by means of the various theorems and Laplace 
transforms reported in Table A.l of Appendix A: This may be written as 

The various components of Eq. (242) correspond to 

(243a) 

(2-43b) 

(2-43~) 

(2-43d) 

where F, , %(s), and gm(x,s) are given by Eqs. (2-33a), (2-34), and (2-41), respectively. 

The components of functions Foh(x,t), F'-(x,t), F-(x,t), and F,(x,t) are now given by: 

(a) Exponentially Decaying Source 
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(b) Periodically Fluctuating Source with Exponential Decay 

The reader may refer to Appendix A, Eq. (8.2-3) for a full definition of function E( 0 )  . Note that the 
second member of Eq. (2-44b), which includes a combination of exponential and complementary error 
functions with complex arguments, has been shown to yield a real number (see Appendix B, Section B.3). 

The inverse Laplace transforms of the right-hand side of Eqs. (2-43b), (2-43c), and (2-43d) are 
given by 

with 
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with 

e = {[$r + 

and 

Note that & and Is, have dimensions 

qi p.. = - + (-1Y - 
J' 2Ri 2 

of t-"2. 

(2-46a) 

(2-46~) 

(2-47) 

Grouping the components of Fk(x,?)  Fh(x,t), and F,(x,t), one may then write 

(VI = l<m, (w) + p i m n  (w) (2-49) 

(2-50) 

where 

(2-5 1) 

and 
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(2-52) 

(2-53) 

Note that the evaluation of expressions involving products of exponential and complementary error 
functions are presented in Appendix B. 

2.1.3.3 Rock Matrix 

Substitutionof Eq. (2-38) in Eq. (2-24) gives the Laplace transform solution of the concentration 
in the nth layer of the rock matrix 

(2-54) 

The inverse Laplace transform of Eq. (2-54), yielding the closed form solution of the concentration in 
the nth layer of the rock matrix, is then obtained by means of the various theorems and Laplace 
transforms reported in Appendix A. This may be written as 

n 

B,(x,z,~) = Go l a  (x ,z ,~)  - G’,,,(x,Z,t) + 
i=1 (2-55) 

n c Gi-&,ZJ) + G,kz,t) 
i =2 

I The components of functions Go, (x,z,t), G L  (x,z,t), Gh (x,z,t), and G,, (x,z,t) are now given by: 
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(a) Exponentially Decaying Source 

U(t - Yln) 

(b) Periodically Fluctuating Source with Exponential Decay 

where function E( 0 )  is given in Appendix A, Eq. (A.2-3): 
G’h(x,z,O = lG’h(x,%O + 2G / h(x,z,t) 

where 

IG’h(x,?) = e-” 

(2-56a) 

(2-56b) 

(2-57a) 

(2-5%) 

(2-58) 

(2-59) 

c 
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e’, = e, + crn (2 - bn) 

The cumulative mass per unit width at any point within the fracture is given by 

n 

(2-62) 
I i=1 

1 
t 

M(w) = Su,2bnAn(~,r)dr = un2bn Qo,J~,t) - Q’&A 
0 

n 

+ Q,-&,O + Qn(~,t) 
i =2 

where &(x,t) the concentration in the fracture is given by Eq. (2-42). In Eq. (2-62), the components of 
functions Qo, (x,t), Q’h(x,t), Qh(x,t), and Q,(x,t) are evaluated based on the various integrals derived 
in Appendix C, and are given by 

(a) Exponentially Decaying Source 

(2-63a) 

(2-63b) 
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where 

More explicitly, using the definitions of I, through I, reported in Appendix C, Eqs. (2-63) 
through (2-67) may be written as 
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(a) Exponentially Decaying Source 

(2-68a) 
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@) Periodically Fluctuating Source with Exponential Decay 

(268b) 

where functions E( 0 )  in Eq. (268b) are given by Eq. (A.2-3) of Appendix A, and: 
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/-I [" -, l).] } U(f-Y,) e - 0 m f i  e@{ em - "t-Y,) 
0 2(f -Ym)w 

(2-70) 

(2-7 1) 

Note that when the exponential term in the model describing the initial concentration distribution in the 
fracture [see Eq. (2-7)] is taken into account, overflow problems are likely to be encountered when the 
value of the time parameter becomes excessively large. This state of affairs is inherent to the presence 
of parameter & [see, .for example, Eq. (2-5211, which by virtue of being negative [i.e., when subscript 
i corresponds to 1, see Eq. (2-48)], tends to freeze the complementary function at a constant value of 
approximately 2 (i.e., when its argument becomes less than or equal to -3)y while the exponentid term 
will increase positively with increasing values of time. To mitigate the inherent overflow problem, the 
solution is optimized through an iterative process intended to estimate an acceptable upper limit for the 
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magnitude of the exponential argument. Consequently, exponential terms with PIj in their list of 
arguments are ignored (Le., set automatically to zero) when the preset limit is exceeded. 
Computationally, this is achieved after assigning the significant absolute limit of the exponential 
argument, initially to a value corresponding to 30, the latter affecting exclusively the specific components 
of the solutions which include parameter Plj . The computation is reiterated after halving the value of the 
exponential argument, and the absolute relative error in the computed results is subsequently estimated. 
This process is continued until, in two successive iterations, the preset convergence criteria (i.e., 1 
percent relative error) is said to be satisfied. For the test cases reported herein, a maximum of three 
iterations were proven sufficient to provide an optimized value of the exponential argument and yield a 
highly accurate solution. 

2.3 DISCUSSIONS OF RESULTS 

The analytical solutions presented in this section of the report were verified by comparison with 
three approximate methods of Laplace inversion integral as proposed by Talbot (1979), Durbin (1974), 
as modified by Piessens and Huysmans (1984) and Stefhest (1970). All three methods apply to the case 
where the source term corresponds to a continuous exponentially decaying one, in which instance the 
required inversion of the Laplace transform is strictly confined to the real domain. However, when a 
periodically fluctuating and decaying source term is adopted, then only the first two of these methods are 
useful for evaluating the Laplace transform inversion in the complex domain. Note that in the case of 
Stefhest’s algorithm, 36 summation points were found to produce almost oscillation-free solutions. 

As far as the calculation of the approximate solution related to the cumulative mass (i.e., the 
time integrated solution of the concentration at a typical point along the longitudinal axis of the fracture) 
is concerned, this is performed by numerically integrating solutions of the Laplace-transformed equation 
of the concentration in the fracture. This integration is performed using a composite Gauss-Legendre 
quadrature scheme, where 40 integration points were found adequate to yield a convergent quadrature 
for the investigated test cases. 

The two test cases reported subsequently refer to the onedimensional (1D) transport of two 
radionuclides: Np-237 (Le. , long half-life) and Cm-245 (short half-life), in a heterogeneous saturated 
fractured rock system composed of five layers (the last extending to infinity), with piecewise constant 
parameters. In the first test case, the imposed source term corresponds to an exponentially decaying 
function [see Eq. (2-14)]. This is substituted by a periodically fluctuating and decaying one [see Eq. (2- 
15)] in the second, respectively., In both cases, the steady flow rate of water per unit width of fracture 
corresponds to 0.1 m2/yr. Two types of solute release modes at the source were investigated, namely step 
and band. Note that the flow domain in both fracture and rock layers are assigned nonzero initial 
concentrations [see Eqs. (2-7) and (2-9)]. 

2.3.1 Case 1 Results 

This test case examines the spatial and temporal variation of the concentration of Np-237, as 
well as the cumulative release of mass from the fracture. In addition, the spatial variation of the 
concentration in the rock matrix is also investigated. The input data pertaining to this test case is 
presented in Table 2-1: 
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Figure 2-2(a) skiows the spatial relative concentration profiles (Le., A/Ao) of Np-237 calculated 
in the fracture layers at simulation times of 1@,5x103 and 5x104 years. A comparison ofour results with 
the ones obtained from the three numerical inversion algorithms [see Tables 2-2(a) through 212(c)] shows 
that these are in excellent agreement. Note that in this test case, the observation times were selected in 
a manner to allow an evaluation of the accuracy of our solution for both release modes of the radionuclide 
at the source. It may be added that in the case of the intermediate observation time, the source strength 
is reduced by half from its original value [see Eq. (2-1711. 

Figure 2-2(b) shows the temporal relative concentration of Np-237 observed in the fracture at 
three different observation points: 100, 200, and 500 meters downstream from the source, located in the 
second, third, and fifth layer, respectively, for a band release. Up to the leaching time of 5x103 years, 
the shape of the profiles bears a close similarity to those of a step release. Past the leaching time, the 
relative concentrations profiles show a rapid change of their gradient from positive to negative and 
concentrations decrease with time to a value close to the initial concentrations of the various fracture 
layers of interest. A comparison of our results with the three numerical ones [see Tables 2-3(a) through 
2-3(c)] shows that with the exception of a portion of the results yielded by Talbot’s solution, these are 
in excellent agreement. Note that in this instance, the adoption of three recommended+ values of the 
constants required by Talbot’s algorithm seems to have restricted the accuracy of the latter to simulation 
times greater than 30, 80, and 100 years. Therefore, it appears that the three constants in Talbot’s 
algorithm are correlated with the independent variables, rendering their selection problemdependent. 

, Figure 2-2(c) depicts the timedependent evolution of the cumulative mass (per unit width of 
the fracture) profile Np-237 at three different observation points in the fracture, as in the previous 
example. Because of its computational viability, Stefhest’s algorithm is selected from this point on as 
the benchmark. A comparison of our analytical solution results with those yielded by Stefhest’s solution 
[see Tables 2-4(a) through 2-4(c)] indicates excellent agreement. Note that all three profiles tend to 
become asymptotic to three specific values of the cumulative mass namely, 4.903 xl&, 4.7 xlo2, and 
4.309 xlo2 (UA/m)v. These values may be easily computed from Eq. (2-62) after setting the value of 
the independent variable t equal to infinity. 

Figure 2-2(d) shows the relative concentration (Le., B/Ao) profiles in the rock matrix at three 
positions downstream from the source (Le., x = 100m,.200m, and 500m) for a step release. Comparison 
of our analytical results against those yielded by the Stefhest’s solution method [see Tables 2-5(a) through 
2-5(c)] indicates an excellent agreement. Note that at their downstream en& all three profiles tend to 
become asymptotic to a concentration value slightly in excess of the residual concentration prevailing in 
their respective layers. 

Figure 2-2(e) shows the relative concentration profiles in the rock matrix at three positions 
downstream from the source (Le., x = lOOm , 200m, and 500m) and for a simulation time of 
5x104 years, for a band release with a leaching time corresponding to 5x103 years. Past the leaching 
time, the contaminant in a typical rock layer close to the‘source would begin to exhibit a higher 
concentration than in the fracture, which would then initiate its diffusion back into the fracture. Indeed 
a reference to Figure 2-2(e) shows that the gradient of the concentration profiles at the fracturehock 

D. Hodgkinson, personal communication. 

t+ UA: Arbitrary Units of Activity/meter. 
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interface tends to decrease with increasing distances from the source. As in the preceding case, results 
reported in Tables 26(a) through 24(c)  show excellent agreement between the analytical and the 
numerical solutions. 
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Table 2-1. Input parameters for Case 1 exponentially decaying source 

SPECIES Np.237 

2.3 x lob yr 

Release Mode: 

, Bahd'Leaching Time 5 x 1 0 3 ~ ~  
Step NA 

A" 1 .O' 

' Q  0.1 (m*/yr) 

vb NA 

NA 

I 2 I 75.0 I 4.0E-03 I 12.5 I 0.008 

3 100.0 3.0E-03 16.666 . 0.006 

4 150.0 2.0E-03 25.0 0.004 

5 00 1 SE-03 33.333 0.002 

Layer P Wm3)  D, (m*/Yr) Kf (m) K, (Cm3/€9 

1 2.0 . 0.01 5.0E-03 0.5 

2 2.3 0.02 8.0E-03 0.6978 

3 2.6 0.06 2.7E-02 1.158 

4 2.65 0.05 1 .OE-02 1.059 

5 2.7 . 0.03 3 .OE-O3 0.741 
1 

I 
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Table 2-1. Input parameters for Case 1 exponentially decaying source (Cont’d) 

JWa 

1 

a: a: 01 (m-3 b: 

1 SOE-04 -0.50E-04 0.02 1.00E-05 

2 

3 

4 

5 

. (arbitrary units of activity/L3) 

2.00E-04 -0.25E-05 0.02 1.75E-05 

1.75E-04 -0.20E-05 0.02 1.25E-05 

2.00E-04 -0.15E-05 0.02 1.05E-05 

1 SOE-04 -0.20E-05 0.02 1 -05E-05 
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figure 2-2(a). Relative concentration of Np237 versus distance in the fracture at different times t = 1,OOO, 5,000, and 50,000 years 
(Exponentially decaying source and step and band release mode) 
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Table 2-2(a). Case 1 Results: Concentration of Np-237 in the fracture at  time t = 1,000 years 
(Exponentially decaying source and step release mode) 

DISTANCE (m) MULTF'RAC STEFHEST TALBOT DURBIN 

1.000E-01 9.993E-01 9.993E-0 1 9.993E-0 1 9.993E-01 
1 SOOE-01 9.992E-01 9.992E-01 9.992E-01 9.992E-01 
2.000E-01 . 9.990E-01 9.990E-01 9.990E-01 9.990E-01 
3.000E-01 9.986E-O 1 9.986E-01 9.986E-01 9.986E-01 
4.000E-01 9.983E-01 9.9 83E-01 9.983E-01 9.983E-01 
5.000E-01 9.979E-0 1 9.979E-01 9 -979E-0 1 9.979E-0 1 

Table 2-2(b). Case 1 Results: Concentration of Np-237 in the fracture at time t = 5,000 years 
(Exponentially decaying source and band release mode) 

DISTANCE (m) MULTFRAC STEFHEST TALBOT DURBIN 

1 .00OE-01 4.612E-05 4.660E-05 4.660E-05 4.660E-05 
1.500E-01 6.943E-05 6.990E-05 6.990E-05 6.990E-05 
2.000E-0 1 9.273E-05 9.320E-05 . 9.320E-05 9.320E-05 
3.000E-01 1.393E-04 1.398E-04 1 -398E-04 1.398E-04 
4.000E-01 1.859E-04 1.864E-04 1.864E-04 1.864E-04 
5.000E-01 2.325E-04 2.330E-04 2.330E-04 2.330E-04 

Table 2-2(c). Case 1 Results: Concentration of Np-237 in the fracture at time t = 50,000 years 
(Exponentially decaying source and step release mode) 

DISTANCE (m) .MuLTERAC STEFHEST TALBOT DURBIN 

1.000E-01 2.479E-06 2.689E-06 2.689E-06 .2.689E-06 
1.500E-01 3.824E-06 4.034E-06 4.034E-06 4.034E-06 
2.000E-01 5.169E-06 5.379E-06 5.379E-06 5.379E-06 
3 .000E-0 1 7.859E-06 8.068E-06 8.068E-06 8.068E-06 
4.0OOE-O 1 1.055E-05 1.076E-05 1.076E-05 1.076E-05 
5.000E-01 1.324E-05 1.345E-05 1.345E-05 1 -345E-05 

Extracted data; complete data run is provided in microfiche form at the back of this report 
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Figure 2-2(b). Relative concentration of Np-237 in the fracture versus time at different positions x = 100, 200, and 500 meters 
(Exponentially decaying source and band release mode) 



Table 2-3(a). Case 1 Results: Concentration of Np-237 in the fracture Layer 2, at distance 
YC = 100 meters (Exponentially decaying source and step release mode) 

TIME (vr) MULTFRAC STEFHEST TALBOT DURBIN 

l.OOOE-O1 .1.370E-04 1.370E-04 3.453+248 1.370E-04 
1.500E-01 1.27 8E-04 1.278E-04 -1.309+258 1.278E-04 
2.000E-01 1 -209E-04 1.209E-04 -1.006 + 263 1.209E-04 
3.000E-01 1.109E-04 1.109E-04 -1.457+232 1.109E-04 
4.000E-01 1.037E-04 1.037E-04 -3.245+266 1.037E-04 
5.000E-01 9.806E-05 9.806E-05 2.308 + 235 9.807E-05 

Table 2-3@). Case 1 Results: Concentration of Np-237 in the fracture Layer 3, at distance 
x = 200 meters (Exponentially decaying source and band release mode) 

MULTFRAC $ T E m  TALBOT DURBIN lx.MLm 
1.000E-01 1.266E-04 1.266E-04 3.773+263 1.266E-04 
1 SOOE-0 1 1.189E-04 1.189E-04 -2.483 +248 1.189E-04 
2.000E-01 1.13 1E-04 1.131E-04 -6.383 + 224 1.13 1E-04 
3.000E-01 1.045E-04 1.045E-04 1.549 + 232 1 -045E-04 
4.000E-01 9.8 19E-05 9.8 19E-05 -3.547+269 9.821E-05 
5 .OOOE-0 1 9.32 1E-05 9.321E-05 -1.915+271 9.323E-05 

Table 2-3(c). Case 1 Results: Concentration of Np-237 in the fracture Layer 5, at distance 
x = 500 meters (Exponentially decaying source and band release mode) 

3mmYd MULTFRAC STEFHEST TALBOT DURBIN 

l.OOOE-O1 8.014E-05 8.0 14E-05 1.068 + 242 8 .O 16E-05 
1.500E-0 1 7.234E-05 7.234E-05 -5.321+263 7.235E-05 
2.000E-01 6.687E-05 6.687E-05 -7.5 10 + 2 13 6.6 89E-05 
3.000E-01 5.943E-05 5.943E-05 3.3 13 + 254 5.942E-05 
4.000E-01 5.443E-05 5.443E-05 5.954 + 235 5.441E-05 
5.OOOE-O 1 5.074E-05 5.074E-05 -1.736+248 5.073E-05 

Extracted data; complete data run is provided in microfiche form at the back of this report 
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Figure 2-2(c). Cumulative mass of Np-237 per unit in the fracture versus time at different positions x = 100, 200, and 500 meters 
(Exponentially decaying source and band release mode) * 



Table 2-4(a). Case 1 Results: Cumulative mass of Np237 in the fracture at distance x = 100 meters 
(Exponentially decaying source and band release mode) 

5.000E + 05 4.878E+ 02 4.879E+02 
6.OOOE+05 4.886E+02 4.887E+02 
7.WOE + 05 4.891E+02 4.893E+02 
8 .WOE + 05 4.896E + 02 4.897E+02 
9. OOOE + 05 4.900E+02 4.901E+02 
1 .WOE + 06 4.903E+02 4.904E+02 

Table 243). Case 1 Results: Cumulative mass of Np-237 in the fracture at distance x = 200 meters 
mponentially decaying source and band release mode) 

TIME (vr) MULTFRAC STE- 

5.OOE + 05 4.621E+ 02 4.620E + 02 
6.OOOE-05 4.646E+02 4.645E + 02 
7 .OOOE + 05 4.664E+02 4.664E+02 
8.OOOE+05 4.679E + 02 4.679E+ 02 
9 .WOE + 05 4.690E+02 4.690E+ 02 
1 .WOE + 06 4.700E+02 4.700E+02 

Table 2 4 ~ ) .  Case 1 Results: Cumulative mass of Np-237 in the fracture at distance x = 500 meters 
(Exponentially decaying source and band release mode) 

MULTF'RAC STEFHEST 

4. OOOE + 05 4.042E + 02 4.042E + 02 
5.OOOE+ 05 4.122E+02 4.123E+02 
6.000E+05 4.180E+02 4.18 lE+ 02 
7 . W E  + 05 4.224E +02 4.224E + 02 
8.OOOE+ 05 4.258E+ 02 4.259E+ 02 
9.OOOE+ 05 4.286E + 02 4.286E+02 
1.000E+06 4.309E+ 02 4.309E+ 02 

Extracted data; complete data run is provided in microfiche form at the back of this report 
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Figure 2-2(d). Relative concentration of Np-237 in rock versus distance z at time t = 5,000 years and distances from the source 
x = 100,200 and 500 meters (Exponentially decaying source and step release mode) 



Table 2-5(a). Case 1 Results: Concentration of Np-237 in the rock matrix Layer 2, at distance 
x = 100 meters and time t = 5,000 years (Exponentially decaying source and step release mode) 

DImANCE z(m) MULTFRAC STEFHEST 

1.000E-02 7.886E-0 1 7.886E-01 
1 SOOE-02 7.847E-0 1 7.847E-01 
2.000E-02 7.809E-01 7.809E-0 1 
3.000E-02 7.732E-01 7.732E-01 
4,000E-02 7.656E-01 7.656E-01 
5.000E-02 7.579E-01 7.579E-01 

9.000E+OO 1.747E-05 1.747E-05 
1 .000E + 01 1.747E-05 1.747E-05 

Table 2-5(b). Case 1 Results: Concentration of Np-237 in the rock matrix Layer 3, at distance 
x = 200 meters and time t = 5,000 years (Exponentially decaying source and step release mode) 

DImANCE dm) MULTFRAC S T E m  

1.000E-02 3.973E-01 3.973E-01 
1 SOOE-02 3.947E-01 3.947E-01 
2.000E-02 3.922E-0 1 3.922E-0 1 
3.000E-02 3.87 1E-01 3.87 1E-01 
4.000E-02 3.821E-01 3.82 1E-01 
5.000E-02 3.77 1E-01 3.771E-01 

9.000E + 00 1.248E-05 1.248E-05 
1 .OWE + 0 1 1.248E-05 1 -248E-05 

Table 2-5(c). Case 1 Results: Concentration of Np-237 in the rock matrix Layer 5, at distance 
x = 500 meters and time t = 5,000 years (Exponentially decaying source and step release mode) 

DISTANCE dm) MULTFRAC STEFHEST 

1.000E-02 4.293E-02 4.294E-02 
1 S00E-02 4.199E-02 4.200E-02 
2 .OOOE-02 4.107E-02 4.107E-02 
3 .WOE42 3.927E-02 3.927E-02 
4.000E-02 3.754E-02 3.754E-02 
5.000E-02 3.588E-02 3 S88E-02 

4.000E+Oo 1 -048E-05 3.047E-15 
5.000E+Oo 1.048E-05 -9.383E-17 

Extracted data; complete data run is provided in microfiche form at the back of this report 
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Table 2-6(a). Case 1 Results: Concentration of Np-237 in the rock matrix Layer 2, at distance 
x = 100 meters and time t = 50,000 years (Exponentially decaying source and band release mode) 

DI!W.ANCE z(m) MULTFRAC SrEFHEST 

1 .OWE42 3 S66E-03 3 S66E-03 
1 SOOE-02 3.633E-03 3.633E-03 
2.000E-02 3.699E-03 3.699E-03 
3.000E-02 3.832E-03 3.832E-03 
4.000E-02 3.965E-03 3.965E-03 
5.000E-02 4.09 8E-03 4.098E-03 

Table 2-6(b). Case 1 Results: Concentration of Np-237 in the rock matrix Layer 3, at distance 
x = 200 meters and timet = 50,000 years (Exponentially decaying source and band release mode) 

DISTANCE z(m1 MULTFRAC STEFHEST 

1.000E-02 1.090E-02 1.090E-02 
1 SOOE-02 1.095E-02 1.095E-02 
2.000E-02 1.101E-02 1.101E-02 
3 .000E-02 1.112E-02 1.1 12E-02 
4.000E-02 1.123E-02 1.123E-02 
5.000E-02 1.134E-02 1.134E-02 

Table 2-6(c). Case 1 Results: Concentration of Np-237 in the rock matrix Layer 3, at distance 
x = 500 meters and time t = 50,000 years (Exponentially decaying source and band release mode) 

1.000E-02 2.184E-02 2.184E-02 
1 S00E-02 2.189E-02 2.189E-02 
2.000E-02 2.195E-02 2.195E-02 
3 .OOOE-02 2.206E-02 2.206E-02 
4.000E-02 2.217E-02 2.2 17E-02 
5.000E-02 2.228E-02 2.228E-02 

Extracted data; complete data run is provided in microfiche form at the back of this report 
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2.3.2 Case 2 Results 

This test case examines, as before, the spatial and temporal variation of the concentration of Cm- 
245, as well as its cumulative mass flux in the fracture. In addition, the spatial variations of the 
concentration in the rock matrix are also investigated. The source terms correspond now to a periodically 
fluctuating one with exponential decay, and the assigned residual concentrations are almost one order of 
magnitude less than their counterparts in the case of Np-237. The input data pertaining to this test case. 
is presented in Table 2-7. Note that the implementation of a periodically decaying source reskicts the 
use of benchmarking algorithms other than Talbot’s and Durbin’s for reasons presented earlier. 

Figure 2-3(a) shows the spatial relative concentration profiles of Cm-245 observed in the fracture 
layers for simulation times corresponding to 103, 5 x 103, and 5 x 104 years. A comparison of our 
results with the ones obtained from the two numerical inversion algorithms [Tables 2-8(a) through 2-8(c)] 
shows that these are in excellent agreement. 

Figure 2-3(b) shows the temporal relative concentration of Cm-245 observed in the fracture at 
three different observation points: 100,200, and 500 meters downstream from the source, located in the 
second, third, and fifth layer respectively, for a band release mode. The observations here are similar 
to the ones reported for Np-237 except that in the present case the upper tail of the concentration profiles 
is akin to the assigned initial concentrations of the various fracture layers of interest. A comparison of 
our results with those yielded by Talbot’s and Durbin’s algorithms lying within the acceptable range of 
concentrations [see Tables 2-9(a) through 2-9(c)] seems to indicate good agreement. Note that Talbot’s 
algorithm performance is further reduced in this case, where correct predictionsof the concentrations at 
the three monitoring points seem to be registered only for times greater than 40, 80, and 300 years, 
respectively. 

Figure 2-3(c) depicts the timedependent evolution of the cumulative mass release (per unit width 
of the fracture) profile of Cm-245 at three different observation points in the fracture as in the previous 
example. Because of its robustness, Durbin’s algorithm is selected as the benchmark. A comparison of 
our analytical solution results with those yielded by Durbin’s solution [see Tables 2-10(a) through 2-1O(c)] 
indicates excellent agreement. Note that all three profiles will tend to become asymptotic to three specific 
values of the cumulative mass namely: 2.175 X 102, 1.237 X 102, and 40.9 (UA/m)+. 

Figures 2-3(d) and 2-3(e) show the relative concentration profiles in the rock matrix at three 
positions downstream from the source (i.e., x = loom, 200m, and 500m) for a step release and band 
release, respectively. Comparison of our analytical results against those yielded by the two approximate 
solution methods [see Tables 2-1 l(a) through 2-12(c)] indicates excellent agreement. 

The assumption of zero dispersive flux in the fracture raises the question of the range of validity 
of the analytical solutions presented in this report. This matter depends very much on the importance 
of the hydrodynamic dispersion effects prevailing in the fracture. This matter has been investigated and 
quantified numerically by Ahn et al., (1985) (Le., for the case of zero initial concentrations in both 
fracture and rock) who suggested that hydrodynamic dispersion D (see Bear, 1972) should meet the 
following criterion 

UA: Arbitrary Units of Activity/meter. 
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in order to validate the use of the zero fracture dispersion solution. The maximum permissible value of 
Di for any layer i would correspond to a minimum of 254.0 m2/yr for Test Case 1, and 245.0 m2/yr for 
Test Case 2. Expressed in terms of dispersivity (Le., Di/uJ, these would correspond approximately to 
a value of 16 m in both cases. 

Table 2-7. Input parameters for Case 2 periodically fluctuating source with exponential decay 

SPECIES Cm-245 

8.5 x 103 yr 

Release Mode: 
Step NA 
Band Leaching Time 5 x 103 yr 

A" 1 .o* 

Q 0.1 (m3/yr) 

0.75 

vb 0.25 

5.0 yr 
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Table 2-7. Input parameters for Case 2 periodically fluctuating source with exponential decay 
(Cont'd) 

Layer 

1 

2 

3 

4 

5 

L (m) b (m). u WYr) * 
50.0 5.0E-03 10.0 0.01 

0.008 75.0 4.0E-03 12.5 

100.0 3 .OE-03 16.666 0.006 

150.0 2.0E-03 25.0 0.004 

03 1 SE-03 33.333 0.002 

L 

Layer P Wm3)  D, (m*/yr) Kt (m) K, (cm3/g) 

1 2.0 0.01 1 SE-02 1.5 

2 2.3 0.02 8.0E-03 1.2 

3 2.6 0.06 5.4E-02 1.25 

4 2.65 0.05 1 .OE-02 0.75 

5 2.7 0.03 4.5E-03 2.0 

Layer 

1 

2 

3 

4 

5 

. (arbitrary units of activity/L3) 

a: a: a (m-3 b: 

1 SOE-05 -0.50E-05 0.05 1 .OOE-06 . 

~ 2.00E-05 -0.25E-06 0.05 1.75E-06 

1.75E-05 -0.20E-06 0.05 1.25E-06 

2.00E-05 -0.15E-06 0.05 ' 1.05E-06 

1 SOE-05 -0.20E-06 0.05 1.05E-06 
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Egure 2-3(a). Relative concentration of Cm-245 versus distance in the fracture at different times t = 1,000,5,000, and 50,000 years 
(Periodically fluctuating source with exponential decay, step and band release mode) 



.Table 2-8(a). Case 2 Results: Concentration of Cm-245 in the fracture at time t = 1,000 years 
(Periodically fluctuating source with exponential decay and step release mode) 

DISTANCEx(m) MULTF'RAC TALBOT DURBTN 

1. OOOE-0 1 6.908E-01 6.908E-01 6.908E-01 
1 SOOE-01 6.906E-01 6.906E-01 6.906E-01 
2 .OOOE-0 1 6.904E-01 6.904E-01 6.904E-01 
3.000E-0 1 6.900E-0 1 6.900E-01 6.900E-01 
4.000E-01 6.896E-01 6.896E-0 1 6.896E-0 1 
5.000E-0 1 6.891E-01 6.891E-01 6.891E-01 

Table 2-8(b). Case 2 Results: Concentration of Cm-245 in the fracture-at time t = 5,000 years 
(Periodically fluctuating source with exponential decay and band release mode) 

DISTANCE x(m) MULTFRAC TALBOT DURBTN 

l.OOOE-O1 2 -675E-05 2.677E-05 2.679E-05 
1.500E-01 4.014E-05 4.016E-05 4.018E-05 
2.000E-0 1 5.352E-05 5.355E-05 5.357E-05 
3. OOOE-0 1 8.030E-05 8.033E-05 8.035E-05 
4.000E-01 1.071E-04 1.071E-04 1 -071E-04 
5 .OOOE-01 1.338E-04 1.339E-04 1.339E-04 

Table'2-8(c). Case 2 Results: Concentration of Cm-245 in the fracture at time t = 50,000 years 
(Periodically fluctuating source with exponential decay and band release mode) 

DISTANCE x(m) MULTFRAC TALBOT DURBIN 

1.000E-01 5.953E-08 5.991E-08 5.991E-08 
1.500E-01 8.949E-08 8.987E-08 8 -987E-08 
2.000E-0 1 1.194E-07 1.198E-07 1.198E-07 
3.000E-01 1.794E-07 1.797E-07 1.797E-07 
4.000E-01 2.393E-07. 2.397E-07 2.397E-07 
5.000E-O 1 2.992E-07 2.996E-07 2.996E-07 

Extracted data; complete data run is provided in microfiche form at the back of this report 
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Figure 23(b). Relative concentration of Cm-245 in the fracture versus time at different positions x = 100, 200, and 
(Periodically fluctuating source with exponential decay, step and band release mode) 
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Table 2-9(a). Case 2 Results: Concentration of Cm-245 in the fracture in Layer 2, at distance 
x = 100 meters (Periodically fluctuating source with exponential decay and step release mode) 

3mnuid MULTFRAC TALBOT DURBTN 

2.000E+01 
3 .WOE + 0 1 
4.OOOE + 0 1 
5.000E+01 
6.0OOE+O 1 
7.0OOE+Ol 
8 .OOOE + 0 1 
9.000E+01 

3.049E-06 I . 
2.810E=06 
2.667E-06 
2.570E-06 
2.703E-06 
1.027E-05 
6.893E-05 
2.757E-04 

-1.702E+45 
-5.177E+02 
2.680E-06 
2.568E-06 
2.708E-06 
1.05OE-05 
7.056E-05 
2.814E-04 

3.058E-06 
2.837E-06 
2.673E-06 
2.544E-06 
2.669E-06 
1.054E-05 
7.053E-05 
2.8 13E-04 

Table 2-9(b). Case 2 Results: Concentration of Cm-245 in the fracture in Layer 3, at distance 
x = 200 meters (Periodically fluctuating source with exponential decay and band release mode) 

2mUYd MULTJ?RAC TALBOT DURBIN 

8.000E+01 
9.000E + 0 1 
1 .000E+02 
1 S00E + 02 
2.OOOE+02 
3 .OOOE+ 02 
4.000E + 02 
5.0OOE + 02 

2.9 13E-06 
2.8 18E-06 
2.737E-06 
2.457E-06 
2.284E-06 
2.133E-06 
1.7 1 8E-05 
1.944E-04 

9.066E + 39 
1. W E +  06 

2.460E-06 
2.284E-06 
2.135E-06 
1 -740E-05 
1.966E-04 

-2.442E+ 15 

2.923E-06 
2.827E-06 
2.746E-06 
2.482E-06 
2.312E-06 
2.127E-06 
1.756E-05 
1.963E-04 

Table 2-9(c). Case 2 Results: Concentration of Cm-245 in the fracture in Layer 5, at distance . 
x = 500 meters (Periodically fluctuating source with exponential decay and band release mode) 

L 

3mnuid MULTFRAC TALBOT DURBIN 

9 .WOE + 0 1 
1 .OOOE + 02 
1.500E + 02 
2.OOOE-02 
3.000E+02 
4.000E+02 
5.OOOE+02 
6.000E+02 

1.3 17E-06 
1.302E-06 
1.255E-06 
1.23 1E-06 
1.207E-06 
1.19 1E-06 
1.177E-06 
1.164E-06 

-4.803E+93 

-4.242E+22 

1.207E-06 
1.192E-06 
1.178E-06 
1.165E-06 

-3.967E + 75 

-2.924E-05 

1.331E-06 
1.3 16E-06 
1.269E-06 
1.245E-06 
1.220E-06 
1.205E-06 
1.192E-06 
1.181E-06 

Extracted data; complete data run is provided in microfiche form at the back of this report 
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Figure 2-3(c). Cumulative mass of Cm-245 per unit in the fracture versus time at different positions x = 100,200, and 500 meters 
(Periodically fluctuating source with exponential decay) 



Table %lO(a). Case 2 Resu1ts:’Cumulative mass of Cm-245 in the fracture a t  distance 
x = 100 meters (Periodically fluctuating source with exponential decay and band release mode) 

3mEm MULTFRAC DURBIN 

3 .WOE + 05 
4.000E + 05 
5.000E+05 
6.000E+05 
7.OOOE + 05 
8 .WOE + 05 
9.000E+05 
1 .OOOE+ 06 

2.175E+02 
2.175E+02 
.2.175E+02 
2.175E+02 
2.175E+02 
2.175E+02 
2.175E+ 02 
2.175E+02 

2.174E+02 
2.179E+02 
2.184E+02 
NA 
NA 
NA 
NA 
NA 

Table %lO(b). Case 2 Results: Cumulative mass of Cm-245 in the fracture at distance 
x = 200 meters (Periodically fluctuating source with exponential decay and band release mode) 

3XmL.m MULTJ?RAC DURBIN 

5.OOOE+ 05 1.237E+02 NA 
6.WOE+ 05 1.237E+02 NA 
7.000E + 05 1.237E+02 NA 
8 .WOE + 05 1.237E+ 02 NA 
9 .OOOE + 05 1.237E+02 NA 
l.OOOE+ 06 1.237E+02 NA 

Table %lO(c). Case 2 Results: Cumulative mass of Cm-245 in the fracture at distance 
x = 500 meters (Periodically fluctuating source with exponential decay and band release mode) 

TIME Cvrl MULTFRAC DURBIN 

5.000E+ 05 4.092E + 01 NA 
6.000E + 05 4.092E + 0 1 NA 
7.000E + 05 4.092E + 01 NA 
8 .WOE + 05 4.092E+ 01 NA 
9.000E + 05 4.092E+ 01 NA 
1.000E+06 4.092E+ 01 NA 

Extracted data; complete data run is provided in microfiche form at the back of this report 
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Table 2-11(a). Case 2 Results: Concentration of Cm-245 in the rock matrix Layer 2, at distance 
x = 100 meters and time t = 5,000 years (Periodically fluctuating source with exponential decay 
and step release mode) 

DTSTANCEdm) MULTF'RAC TALBOT DURBIN 

1 SOOE-02 3.446E-01 3.446E-01 3.446E-01 
2.000E-02 3.42 1E-0 1 3.421E-01 3.421E-01 
3.000E-02 3.373E-01 3.373E-01 3.373E-01- 
4.000E-02 3.326E-01 3.326E-01 3.326E-01 
5.000E-02 3.278E-01 3.278E-01 3.278E-01 

Table 2-11@). Case 2 Results: Concentration of Cm-245 in the rock matrix h y e r  3, at distance 
x = 200 meters and time t = 5,000 years (Periodically fluctuating source with exponential decay 
and step release mode) 

DISTANCEdm) MULTF'RAC TALBOT DURBIN 

1.000E-02 1.539E-0 1 1.539E-01 1.539E-01 
1.5OOE-02 1.528E-01 1.528E-01 1.528E-01 
2.000E-02 1.5 16E-O 1 1.516E-01 1.516E-01 
3.000E-02 1.494E-01 1.494E-01 1.494E-01 
4.000E-02 1.472E-01 1.472E-01 1.472E-01 
5.000E-02 ' 1.450E-O 1 1.450E-01 1.450E-01 

Table 2-11(c). Case 2 Results: Concentration of Cm-245 in the rock matrix Layer 5, at distance 
x = 500 meters and time t = 5,000 years (Periodically fluctuating source with exponential decay 
and step release mode) 

DTSTANCEz(m) MULTFRAC TALBOT DURBIN 

1.000E-02 1.101E-02 1.100E-02 1.100E-02 
1 SOOE-02 1.057E-02 1.057E-02 1.057E-02 
2.000E-02 1.015E-02 1.015E-02 1.015E-02 
3 .WOE42 9.353E-03 9.352E-03 9.352E-03 
4.000E-02 8.611E-03 8.610E-03 8.610E-03 
5.OOOE-02 7.921E-03 7.920E-03 7.920E-03 

Extracttddata; complete data run is provided in microfiche form at the back of this report 
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Figure 23(e). Relative concentration of Cm-245 in rock versus distance at t = 50,000 years (Periodically fluctuating source with 
exponential decay and band release mode) 



Table 2-l2(a). Case 2 Results: Concentration of Cm-245 in the rock matrix Layer 2, at distance 
x = 100 meters and time t = 50,000 years (Periodically fluctuating source with exponential decay 
and band release mode) 

DISTANCEz(m) MULTFRAC TALBOT DURBIN 

1.000E-02 6.722E-05 6.722E-05 6.723E-05 
1.5OOE-02 6.833E-05 6.833E-05 6.834E-05 
2.000E-02 6.944E-05 6.944E-05 6.944E-05 
3.000E-02 7.166E-05 7.166E-05 7.165E-05 
4.000E-02 7.387E-05 7.387E-05 7.3 87E-05 
5.000E-02 7.608E-05 7.608E-05 7 -607E-05 

Table 2-12(b). Case 2 Results: Concentration of Cm-245 in the rock matrix Layer 3, at distance 
x = 200 meters and time t = 50,000 years (Periodically fluctuating source with exponential decay 
and band release mode) 

DISTANCEz(m) MULTF'RAC TALBOT DURBIN 

1.000E-02 1.661E-04 1.661E-04 1.660E-04 
1.5OOE-02 1.668E-04 1.668E-04 1 -667E-04 
2.000E-02 1.675E-04 1.675E-04 1.674E-04 
3.000E-02 1.689E-04 1.689E-04 1.688E-04 
4.000E-02 1.703E-04 1.703E-04 1.702E-04 
5.000E-02 1.716E-04 1.716E-04 1.716E-04 

Table 2-12(c). Case 2 Results: Concentration of Cm-245 in the rock matrix Layer 5, at distance 
x = 500 meters and time t = 50,000 years (Periodically fluctuating source with exponential decay 
and band release mode) 

DISTANCE z(m) MULTF'RAC TALBOT DURBIN 

1 .000E-02 3.001E-04 3.001E-04 3.001E-04 
1.500E-02 3.010E-04 3.010E-04 3.010E-04 
2.000E-02 3 .O 19E-04 3.019E-04 3.019E-04 
3.000E-02 3.037E-04 3.037E-04 3.037E-04 . 
4.000E-02 3.054E-04 3.054E-04 3.054E-04 
5.000E-02 3.070E-04 3.070E-04 3.070E-04 

Extracted data; complete data run is provided in microfiche form at the back of this report 
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3 ANALYTICALLY DERIVED SENSITIVITIES IN THE 
FRACTURE 

3.1 LOCAL SENSITIVITIES I 

Local sensitivities or first-order derivatives of the concentration and cumulative mass in the 
fracture, with respect to a typical parameter a (i.e., aAJaai and aMi/aaJ, are required in parameter 
estimation or sampling desim' studies (sensitivity of concentration), and in predicting the sensitivity and 
uncertainty of the performance of a system (sensitivity of cumulative mass). There are two classical 
methods for evaluating the local sensitivities. The first, and the most accurate, is the analytically derived 
solution, which is estimated after a direct differentiation of the closed form solution with respect to the 
parameters of interest. The second uses numerical derivatives obtained from finitedifference 
approximations. In the following, the analytically derived sensitivities are related to the concentration 
in the fracture, where the initial concentration in both fracture and rock matrix are assumed to correspond 
to some constant values. In addition, the sensitivities are verified through a comparison of the results 
with those derived through finitedifference approximations (Le. , forwarddifference and central- 
difference). 

3.2 ANALYTICAL DERIVATIVES 

This section presents the analytically derived local sensitivities of the concentrations and 
cumulative mass flux in the fracture with respect to the entire range of parameters governing the 
nondispersive transport process in the fractured rock system of interest described by the equations 
reported in the previous chapter of this report. 

3.2.1 Total Differentials 

In order to evaluate the first-brder derivatives of the concentration and cumulative mass in the 
fracture reported in the preceding sections, the total differentials of &, RIi, cay pi, Om, 'ym, Q, and &, 
given by Eqs. (2-5), (24,  (2-29), (2-35b), (2-39), (2-40), (2-47) and (2-48), (see also Appendix F), have 
to be defined. Applying the chain rule of differentiation, these may be written as 

dbi 

aRli aR aR Ji 

* i  - . aPn aKfi . 
dRJi=-d+,+>dpd+-dK, .  

dp, 7 -hi * i  + -da, * i  
ai aa, 

(3-1) 

(3-2) 

(3-4) 
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r, = ti , i < n 

r, = q, , i = n 

Substitution of Eqs. (3-3) and (3-9) in Eq. (3-5) gives 

Similarly, substituting Eqs. (3-1) and (3-9) in Eq. (3-6) yields 

dy ,  = -dR, + -[-dL, *Inn ni + sh] 
aRi ar, h i  

where 

(3-9) 

(3-loa) 

(3-lob) 

(3-1 1) 

(3-12) 

(3-13) 

Note that the total differentials of & and RIi, as given by Eqs. (3-1) and (3-2), are used whenever 
appropriate (Le., if either R; or RIi is expressed in terms of their respective components). 
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Using the following partial derivatives 

- =rj 
ac, 

(3-14a) 

(3-14b) 

(3-14~) 

(3.15a) 

(3-1s) 

(3-16a) 

(3-16b) 

(3-17a) 

(3-1%) 

(3-17~) 

(3-18a) 
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- = - -  hi Q 
ab, 2b: 

(3-18b) 

(3-18~) 

(3-18d) 

(3-19a) 

(3 - 19b) 

(3-20) 

the first-order derivatives of Om, ymy c,, Ri, and R'i, with respect to a typical parameter cui, are reported 
in Tables 3-1 through 3-5, respectively. The total differential of pjiy given by Eq. (3-8), may be 
evaluated based on the latter tables, and the various derivatives given in Eqs. (3-14) through (3-20). Note 
that Q in Eq. (3-20) corresponds to the steady flow rate of water (Q = 2 u; bJ through the fracture. 

3.2.2 First-Order Derivatives of the Concentrations 

Using the notations reported in Appendix D, the various components of Eq. (2-42) may now be 
written as 

FOh(x,t) = Aoe-Ar 'Pin U(t - y,) (3-2 1 a) 
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(3-21b) 

(3-21~) 

P, 
(3-21d) 
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Table 3-1. F'irst-order partial derivatives of e,, with respect to input parameters ai 

6.e.Y L i Y  "iY 4iY Pa D,Y R i Y  & Y  R'iY and KrJ 

u; 

b; 

P' 

R; 

K, 

K+ 

ri=iii, i<n; ri=qi, i = n  

NA 

NA 

NA = Not Applicab€e 
7 Applicable if IDIST(2) = 1 (See Appendix G) 
$ Applicable if IDIST(2) = 0 (See Appendix G) 
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Table 3-2. First-order partial derivatives of ym with respect to input parameters a, 
u*, bY UIY bi, IZY and I(13 

Li 

Ui 

I 

ri=flf icn;  ri=qi, i = n  

t Applicable only if IDIST(1) = 1 (See Appendix G) 
2 Applicable only if IDIST(1) = 0 (See Appendix G) 
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Table 3-3. First-order partial derivatives of G with respect to input parameters cyi 

4.e.Y I.1, "1, 41, Pi, Dpis Ri, I ( n Y  RIiY and Irc;3 

6i 

C Ad 

NA 

NA 

ZDZSZ72)=0: - 5 
oi 

ZDZSZp)=l: - % 
+i 

ai 

Dpi 

NA 

NA 

NA = Not Applicable 
j. Applicable only if IDIST(2) = 1 (See Appendix G) 
$ Applicable only if IDIST(2) = 0 (See Appendix G) 
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Table 3-4. First-order partial derivatives of R, with respect to input parameters CY, &e., b,, R,, and KJ 

'f Applicable only if IDIST(1) = 1 (See Appendix G) 
# Applicable only if IDIST(1) = 0 (See Appendix G) 

Table 35. First-order partial derivatives of R', with respect to input parameters CY, @e., a,, pi, I&, and R'S 

cu, - 
Pit 

, R' I Li 
I 

'f Applicable only if IDIST(1) = 1 (See Appendix G) 
# Applicable only if IDIST(1) = 0 (See Appendix G) . 

The partial derivatives of the above equations, with respect to a typical parameter a at the exclusion of A', 
A, a, a,, h, and bli, may now be written as 

F (x,?) = Aoe-u 'P 1R'U(f - Yln) (3-22a) 
O.5. 

1 'm., (x,?) = e -"{ bli 'P,,,,,, + (ali - bli) [ 3Phg 4 ~ p t ,  zpm 
(3-22b) 
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+9Ph.( 8P.. I-'- '€3.. Jumr + 8PPiimn ' P & 4  ] U(' - Ym) 

(3-22~) 

(3-22d) 

the lirst-order partial derivatives of the functions given by Eq. (3-21), with respect to Ao, A, a,, G, and 
bli, may now be written as 

F, (x,t) = e-ir 'PInU(t - y,,) (3-23a) 
'"A 

F (x,t) = e-it s~ n n  "P (3-26a) 
%n 

r 2  1 
(3-26b) 
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(3-26~) 

3.2.3 First-Order Derivatives of the Cumulative Mass 

Using the notations reported in Appendix E, the various components of Eq. (2-62) may now 
be written as 

Qo,(~,t) = A'{ - 'G 'GI, +[ 3Gk 2Gk + 3 G i  'GJ} U(t-ym) (3-27a) 

for a continuously decaying source 

1 Q! 1m (x,t) = b,, { - OG'G,, + 2GA 'G; + 2GA 'GA) U(f-y, ,)  

+ (ali-bll) { 'G, 6Gimn 'Gh - 'GL2GA4G; (3-2%) 

+ 3GA2Gin4G') U ( f - y m )  . 

+ bh(i - OG) +(aln -bin) 'Gn[ 17Gn "G, + "G, - l] 

(3-27~) 

(3-27d) 

The partial derivatives of Eq. (3-27d), with respect to a typical parameter CY at the exclusion of 
A', a',, as, and bli, may now be written as 

(3-28a) 
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+ 2 + 36 '  
mJ% 

I Q & C ( ~ Z )  = blf( - OG,, 'G,,,,, - OG 'G + 'G; 3G,, + G,, 
-e 

+ 2G& 3Gin + 2GA 3Gn;5g} U(f-y,,) 

+(all - blf){ 'G,, 6G, 'Gh + 'Gf( 'Ghg 'Gh + 'G- 'Glm,> 

- 3G&g 2G& 4G; - 3G:n 2G&g 4G; - 3G2 2GA 'G,T. (3-28b) 

+ 3G&g 2GA 4G; + 3 G i  2Gn;l.c 'G; + 3 G i  2G& 4GL} U(f-y,,) 
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(3-28d) 

The first-order derivatives of Eq. (3-27), with respect to parameters A", ali, k, and bli, are given by 

(3-29) Qo ( ;~ , t )  = - Q o l n ( ~ J t >  1 u(t - Y ~ J  
k A 0  A* 

Q[ (x,?) = { 'Gr "Gim 'G- - 3G& 2G& 4G: 
m a l l  

+ 3GA 2G& 'GG;) U(f - ym) 
(3-30a) 

(3-30b) 

(3-3 1) 
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Q (x,t) = 'Gn[ "G, 18Gn + 19Gn - 11 (3-32a) 
-,)I 

2 
Q (x,t) = (-l>i{ "Gjn 14Gjn[ "Gin 13Gin + 15Gin( 16Gjn - l)]} (3-32b) 
-9. j=1 

Q,,,(x,t) = n 1 - "G - 'Gn[ 17G, '*Gn + "G - 1 (3-32~) 
n l  

3.3 NUMERICAS, DERIVATIVES 

The numerically achieved derivatives are based on the parameter perturbation technique (see 
Becker and Yeh, 1972), which uses forward- or centraldifference schemes. In such instances, the choice 
of the step size (or perturbation vector) usually has an important bearing on the choice of the particular 
scheme. The investigator is comrnonly confronted with the problem of deciding upon the magnitude of 
this parameter, which is generally selected by means of a trial-and-error procedure. 

The forwarddifference approximation (FDA) is given by 

(3-33) 

and the centraldifference approximation (CDA) is given by 

where h is the step size. Ideally, the step size should be small enough to reduce the truncation error and 
large enough to cause a reasonable change in the significant figures of vector A. Following Bard (1974), 
we write 

h = E A  (3-35) 

where lo-' < E < lo2. 
Dennis and Schnabel (1983) recommended setting E equal to the square root of the relative 

computer precision, which in our case corresponds approximately to 1W6. Note that for a typical 
parameter, N + 1 evaluations of the response vector are required at each iteration by the FDA (compared 
to 2N + 1 evaluations in the case of CDA), where N corresponds to the number of observation points. 

3.4 VEXIFTCATION 

The verification of the analytically dehed  local sensitivities was performed by comparison of 
the results yielded by this solution scheme with the ones obtained through the two finitedifference 
appproximations discussed earlier. The exact derivatives as well as the ones yielded by FDA and CDA 
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were estimated, based on the data presented in Table 2-1, and values of E corresponding to 1W6. 
Figures (3-1) and (3-2) illustrate the sensitivity of the concentration and cumulative mass of Np-237 in 
the fracture to a selected choice of parameters (i.e., by Dp, K, and KJ in each of the five fracture layers. 
With the exception of the very low range of sensitivities, the numerical results are in excellent agreement 
with the analytical ones. Note that the values obtained from both FDA and CDA methods were identical 
for all the investigated test cases, when the selected values of E are less than 10'. A detailed examination 
of the sensitivities will be presented in Volume 2 of this report. 
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rime (yam) 

Hgure 3-l(a). Sensitivity of concentration to half-thickness versus time for Np237 (Eqonentially 
decaying source) 

Rgure 3-10). Sensitivity of concentration to pore diffusivity versus time for Np237 (Exponentially 
decaying source) 
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Eigure 3-l(c). Sensitivity of concentration to surface distribution coefficient in fracture versus time 
for Np-237 (Exponentially decaying source) 

- Anarytlcal 
0 kmerical 
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Time (years) 

Eigure 3-l(d). Sensitivity of concentration to distribution coefficient in rock versus time 
(Exponentially decaying source) 

for Np-237 
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1 o3 10" 1 os 1 o6 

FIgure 3-2(a). Sensitivity of cumulative mass to half-thickness versus time for Np237 
(Exponentially decaying source) 
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Figure 3-2(c). Sensitivity of cumulative mass to surface distribution coefficient in fracture. versus 
time for Np-237 (Exponentially decaying source) 

versus time for 
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4 CONCLUSIONS 

Analytical solutions based on the Laplace transforms have been derived for predicting the onedimensional 
nondispersive isothermal transport of a radionuclide in a layered system of planar fractures coupled with 
the onedimensional infinite diffusive transport into the adjacent rock matrix units. The solution for the 
cumulative mass in the fracture has also been reported. 

The particular features of these solutions reside in their analytical capability designed to handle: 

Residual concentrations in both fracture and rock matrix layers respectively; the latter are I 

represented by a constant and/or a spatially dependent function in the case of the fracture, 
and a constant in the case of the rock matrix; 

Layered nature of the rock mass; 

0 Length dependency of fracture aperture yielding a nonuniform velocity field; and 

Both exponentially decaying and periodically fluctuating decaying source of solute at the 
upstream end of the fracture network, which may then be subject to either a step or band 
release mode. 

The reported analytical solutions pertaining to the concentrations and cumulative mass were successfully 
verified by means of three reliable numerical methods for evaluating the inverse Laplace transform in'the 
real and complex domain, respectively. To this end, two test cases involving the migration of Np-237 
and Cm-245, in a five-layered fractured rock system, using synthetic, but realistic data, were investigated. 
The calculated analytical local sensitivities of nuclide concentration and cumulative mass flux in fractures 
with respect to all of the model parameters were in excellent agreement with the ones obtained through 
a finitedifference method of approximation. In this particular instance, no marked evidence of a superior 
performance of the central over the forward finitedifference method was found, as theory suggests. 

In spite of some limitations (i.e., assumptions of zero dispersion in the fracture and infinite matrix 
diffusion), the new features embedded in the reported solutions allow one to deal with layered media 
having piece-wise constant properties, as well as nonzero initial conditions, coupled with a realistic option 
of a periodically fluctuating decaying source. These solutions are useful for verifying the accuracy of 
numerical codes designed to solve similar problems and, above all, cost effective for performing 
sensitivity and uncertainty analyses of scenarios likely to be adopted in performance assessment 
investigations of potential nuclear waste repositories. 
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APPENDIX A 

THEOREMS AND LAPLACE TRANSFORMS 



In this appendix, a selected number of theorems and inverse Laplace transforms (see Abramowitz and 
Stegun, 1972) are reported. These are used in the derivation of the solutions pertaining to the solute 
concentration in the fracture and rock matrix, respectively. 

A.l THEOREMS 

The operations for the Laplace transformation reported in this report require, in some cases, the 
use of the following theorems. Note that f(s) corresponds to the Laplace transform of function F(t). 

(A. 1-1) 

where U(t) is the Heaviside unit step function defined as 

. l o ,  t < O  

A.1.2 Linear Transformation 

L -' ~s - a)] = eaF'(t) 

A.1.3 Differentiation 

L-'&s) - F(+O) = F/(t) 

A.1.4 Convolution or Faltung 

(A. 1-2) 

(A. 1-3) 

(A. 1-4) 

(A. 1-5) 

A-'1 



In the following, the Laplace transform of the function on the right is given on the left-hand side. 

Table A.l. Laplace transform 

A-2 



1 
& + a  

a + 4s 

s(a + @ 

1 
s(a + @ 

b 
(s + aI2 + b2 

1 - - aea2tegcafi 
fi 

The inverse Laplace transform of the product of 1/(s2 + a') and may be obtained using their 
respective inverse transforms given in Table A. 1 and applying the convolution theorem, Eq. (A.1-5), to 
yield 

A-3 



Using the integral given by Eq. (C.l), we get 

1 -a 6 
2ib -7 s - ib - -1 s + rb 

- L-1 e - 
s2 + b2 

1 
4ib 

= -[E(t,a,ib) - E(t,a, -ib)] 

where 

E(t,a,ib) =e ib  ea f i e r f  - +m +e-(If ierf  - -@t Is 1 1; 1) 
Substituting for t/i in Eq. (A.28), using the following relations 

fi = (e(xfl)i)'n = cos- x + ish-  x = - 1 +i 

4 4 J z  

(A.2-1) 

(A.2-2) 

(A.2-3) 

(A.2-4) 

yields 

A-4 



1 

E(t,a,ib) = e d a (  4); + i [ bt+a (4)' ] ecfc 

] e& 
(A.2-5) 

A similar expression to Eq. (A.2-5) may be obtained for E (t, a, -ib) after substituting for d-i the 
following relation 

(A.2-6) 

Hence 

E(t,a,ib) - E(t,a,-ib) = 

e q ( A  + iB)e@(C + iD) - e q ( A  - iB)e$c(C - i o )  + 

e q ( A  + i B I e ~ c ( 6  + i@ - exp(A - i@erjc<C - irs> 

> 

(A.2-7) 

where 



APPENDIX B 

EVALUATION OF ERROR FUNCTION AND PRODUCT OF EXPONENTIAL AND 
COMPLEMENTARY ERROR FUNCTION TERMS 



In this appendix, the formulae of the error functions with real and complex arguments, enabling the 
evaluation of terms involving the product of exponential and complementary error functions with complex 
arguments, as implemented in the computer code MULTFIUC, are reported. 

B.l ERROR FUNCTION 

The error or probability function is defined as 

with 

ef l -x )  = -eflx) 

@. 1-1) 

@. 1-2) 

this may be expressed in terms of the complementary error function erfc(x) written as 

ef lx)  = 1 - erfc(x) @. 1-3) 

where 

and 

erfc(-x) = 2 - erfc(x) @. 1-5) 

Note that when x is small the integrand in Eq. (l3.1-1) may be conveniently expanded in a power series 
convergent everywhere and integrated term by term to yield 

eflx) = 2 - [x--  x3  + - x 5  - - x7 + ... f i  3*1! 5*2! 7*3! 

++l 

(2n+l) *nl 
+ (-l)n+l + ...I (3.1-6) 

A few terms in the expansion are necessary to determine the value of erf(x) to a given number 
of decimal places. However, as x becomes large, the loss in accuracy must be compensated by a large 
number of te- which renders the calculation tedious and impractical. A rational Chebysheb 
approximation may be used to alleviate this problem when x 2 4 (see Cody, 1969). Alternatively, the 
asymptotic expansion reported by Abramowitz and Stegun (1972) expressed in terms of the 
complementary error function erfc(x) [see Eq. (B.2-3)] is used. 
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The derivative of the error function may be written as 

B.2 FORMULAE OF ERROR FUNCTIONS WITH COMPLEX ARGUMENTS 

Let z be the complex argument written as 

z = x * i y  

and Euler’s formula written as 

e u  = cosz + isinz 

(B.2-1) 

(€3.2-2) 

Note that the evolution of the error function for a real ar&ument was based on Cody (1969). 

B.2-1 AsymptoticExpansion I z > 2 and x C 1 and I y I Z 6 

In this case, the asymptotic expansion of erfc(z), as given by Abramowitz and Stegun (1972), may 
be written as 

+ 1 e -z2 
a0 1.3 ...(2 n-1) 

z f i  n = l  (2z2)” 
eflc(z> = -[ 1 + ( - 1 ) n  (B.2-3) 

where R (x) is the remainder after n terms. 

B.2-2 Confluent Hypergeometric Function I z I C 2 

In this case, the error function is evaluated from the confluent hypergeometric function [see 
Abramowitz and Stegun (1972), Eq. (7.1.2111, written as 

e@. = . - M ( - , - , - z )  2z 2 - - -e 2z -Z2M(1,T,z 3 ‘2 ) 
7t 2 2  x 

(B.2-4) 

where M is the Kummer’s function [see Abramowitz and Stegun (1972), p.504, Eq. (13.1.2)], written 
as 

(33.2-5a) 
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with 

(a), = a(a + 1)(a + 2) -e- (a + It - l ) ,  (a), = 1 (B.2-5b) 

B.2-3 Continued Fraction Approximation I z I > 2 and x > 1 

In this case, the error function is evaluated from the continued fractions approximations [see 
Abramowitz and Stegun (1972), p.298, Eq. (7.1.14)], written as 

(B.2-6) 

B.2-4 Infinite Series Expansion I z I > 2, 0 S x S 1, y < 6 

In this case, the error function is evaluated from the infinite series approximation [see 
Abramowitz and Stegun (1972), p. 299, Eq. (7.1.29)], written as 

e -2 
erS(x + iy) = erfx + -[(1 - cos2xy) + kinky] . 

2nx 

where 

j&y) = 2x - 2xcoshnycos2xy + nsinhnysin2q (€3.2-8a) 

gn(x,y) = 2xcoshnysin2xy + nsinhnycos2xy (B.2-8b) 

(B.2-8~) 

B.3 EVALUATION OF PRODUCT OF EXPONENTIAL AND COMPLEMENTARY ERROR 
FUNCTION WITH COMPLEX ARGUMENTS 

Functions involving the product of exponential and complementary error functions may witness 
two types of arguments inherent to such functions, that is, real or complex. 

When the arguments of the exponential and complementary functions are both real, the scheme 
reported in Appendix C of Gureghian (1990) is the one adopted in this work. However, where the 
arguments of these functions are of the complex form, the typical model for the complementary error 
function as reported in the preceding sections is selected based upon its adequacy to cope with the 
magnitude of the complex argument of interest. In the case where an infinite series approximation model 
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for the complex error function is adopted, such as given by Eq. W.2-7), it will be subsequently shown 
that expressions similar to one given by Eq. (A.2-7), which display a combination of products of complex 
exponential and complementary error functions, may yield either a real or an imaginary number. 

Writing 

F+(t,A,iB,C,iD) = exp(A + iB)erfc(C + i o )  

+ exp(A - iB)erfc(C - i o )  

and using Eqs. (B.2-2) and @.2-7), it may be.shown that the result is a real number given by 

F+(t,A,iB,C,iD) = 2exp(A) 

Similarly, writing 

F-(t,A,iB,C,iD) = exp(A + iB)erfc(C + i o )  

- exp(A - iB)erfc(C - iD)  

(B.3-1) 

(B.3-2) 

(€3.3-3) 

it may be shown that the result is an imaginary number given by 
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F' (t,A,iB,C,iD) = i2exp(A) shB erfc(C) - [ A  
m 

u(C) (1 - cos2CD) - v ( C ) C  rn (C)f, (C,D) 
n 

11 m 

u(C)sin2CD + v ( C ) C  rJc) gn(C,D) 
n 

where 

e -c2 
u(c) = - 

2 x c  

2e-c' v(c )  = - 
x 

n2 -- 

and f,, g,, and E are given by Eqs. (B.2-Sa) through (B.2-8c). 

(€3.3-4) 

(l3.3-5a) 

(€3 .3-5 b) 

(€3.3-5c) 
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. ... ~ . .  ~. . 

Equations (33.3-2) and (B.3-4) may be written in a more explicit form as 

F'(t,A,ib,C,iD) = 2 cosB exp(A) erfc(C) I 
+ - c2) [ - cosB + cos(B - 2CD) ] 

2n c 

(B.3-6) 

+ 2 c  (E, COSB - cos(B - 2CD) [E2 + E3] ) ] ] 

F-(t,A,iB,C,iD) = 2i[sinB exp(A)erfc(C) 

+ - C2)[ - sinB + sin(B - 2CD)I 
27c c 

where 

El = exp A - C2 [ -5)  
+ m) 

4 

(B.3-7) 

(B.3-8a) 

(B.3-8b) 
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n2 E3 = L exp [A- - C2 - - - nD 
2 .  4 

REFERENCES: 

(B.3-8~) 
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Cody, W.J. 1969. Rational Chebyshev approximation for the error function. Mathematics of 
Computation: 23(107): 631-637. 

Gureghian, A.B. 1990. FRACVAL Validation (Nonlinear Least Squares Method) of the Solution 
of One-Dimensional Transport of Decaying Species in a Discrete Planar Fracture with Rock 
Matrix Dimsion Part 1: Analytical Solutions. BMUOWTD-8. Battelle Energy Systems Group: 
Office of Waste Technology Development (OWTD): Battelle Memorial Institute @MI): 
Willowbrook, Illinois. 
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APPENDIX C 

SOME INTEGRALS INVOLVING THE ERROR FIJNCTION AND OTHER FUNCTIONS 



In this appendix, the derivation of a set of integrals involving the error function and other functions 
arising in the solution pertaining to the cumulative mass at any point in the fracture network is reported. 

From Abramowitz and Stegun [(1972), p. 304, Eq. (7.4.3311, we have the following indefinite integral: 

C.l Integral of Il(t,cu,&y) 

Writing 

Integrating Eq. (C.1-1) by parts gives 

Il(t,a,B,y) = Ill + I ,  

where 

P e -at 
I ,  = --e??c 

a 

P 2 ' -a*-- 
I= = --[e 

a f i  Y 

substituting = l P n  in Eq. (C.l-5), and using Eq. (C. l), will then yield 

(C. 1-1) 

(C. 1-2) 

(C. 1-3) 

(C. 14) 

(C. 1-5) 
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Integration by parts gives 

where 

and 

substitution of 1 = T - y in Eq. (C.2-4) gives 
I= = IBl 4. I- 

where 

and 

(C.2-1) 

(C.2-2) 

(C.2-3) 

(C.2-4) 

(C.2-5) 

(C.2-6) 

(C.2-7) 
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substitution of T = 7'" in L1 and T = 1/17'" in & respectively, gives 

ay-2p1p, (t-;I -(a: - a)? - - af  
421 = 2PIe e T2 dr 

f i e  0 

Using the results given by Eq. (C.l), we then have 

(C.2-8) 

(C.2-9) 

(C.2-10) 

(C.2-11) 
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C.3 Integral of I3(tlY~,ayfl 

Writing 

Integration by parts yields 

- ll 

01 
1 

(sl” - a)i 

(C.2-12) 

(C.3-1) 

(C.3-2) 

where E (t3 a, ib) is given by Eq. (A.2-3). Integration by parts gives 

I 4 ( t ~ i b a L ~ )  = 141 + 142 (C.4-2) 

using the following definitions 
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E,(t,a,ib) = e-*E(t,a,ib) (C-4.3a) 

and 

E2(t,a, -ib) = e*E(t,a,-ib) 

141 may then be written as 

E, ( t -y ,a , - ib)  1 - ( I  +ay 
+ I + i b  

(C.4-3b) 

Multiplying the first and second terms in square brackets in Eq. (C.4-4), by the conjugate of their 
respective denominators, we then get 

z41 = - e-2 [(E,(t-  y,a,ib) + E2(t-y,a, -ib) ) 
4(12 + bz) 

((2.4-5) 

1 I 
ib 

+ - (E,(?-y,a,ib) - E,(t-y,a,-ib) ) 

Note that 141 corresponds to a real number, since it has been shown earlier (see Section B.3) that the sum 
and difference of E,[ a ]  and Q[ - 1  will yield a real and an imaginary number, respectively. 

t 

IU = /e -('-a)r d[E, (s - y,a,ib)] - 
4ib(I - ib) 

t 

l e - ( *  + a)'d[Ez(s -y,a,-ib)] 
4ib(I + ib) 

substituting 7' = T - y in Eq. (C.4-6), and after some simplification, leads to 

substituting = 1/71" in Eq. (C.4-7) yields 

(C.4-7) 
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Using the integral given by Eq. (C.l), and the following properties of a complex variable 
- 

sim = 
2i 

+ 

- z =  2 

we then get 

(C.4-9a) 

(C.4-9b) 

(C .4- 10) 

REFERENCES: 

Abramowitz, M., and I.A. Stegun. 1972. Handbook of Mathematical Functions. Dover 
Publications, Inc.: New York, New York. 
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APPENDIX D 

F'IRST-ORDER DERIVATIVES OF THE COMPONENTS OF THE CONCENTRATION 
SOLUTION IN THE FRACTURE LAYERS 



This appendix reports the first-order derivatives of the components of the solution of the concentration 
in the fracture layers as reported in Section 3.2.2 of Chapter 3.. 

2 
2~ = -- exp [-( Ymn + yh)2] 6 1 imn 

D-1 



3 ~ h  = exp ( yh) 

3PM' = 3Ph 3 fW' 

5fi = -t yz 
Ri 

D-2 



2 :pi = --exp [- y] 
6 

1 
fmls ,  
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@.loa) 

@.lob) 

@. 10c) 

@.lOd) 

@. 1 la) 

@. l lb)  

@. 1 IC) 

@.l ld)  

@. l l e )  
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APPENDIX E 

FIRST-ORDER DERIVATIVES OF TltIE COMPONENTS OF THE CUMULATIVE 
MASS SOLUTION IN FRACTURE LAYERS 



This appendix reports the first-order derivatives of the cumulative mass in the fracture layers as 
reported in Section 3.2.3 of Chapter 3. 

'G, = e@( 'hJ 

r 

1 - - 2 exp[ - ' h a  
6 1Gm = 

2G& = erfc['hm * 'hJ 

2h,, = d m  

2 a  lGm = --e- 2 [-( 'h, * 2hmr] 
6 
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1 3G& = -exp( 3 h 3  
2 1  

.I = 5 ,G,[’h,‘ + ’h- ’G. 
UM.. 
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?Gh = --e-[-( 2 'hm + 5h- )2 ]  f i  

"Gb = e-[ "hh] 

-1 
7G, = [[:r - I ]  

'Gjh = e@c('hjb + 'h,J 
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(E.9b) 

(E.9c) 

(E.94 

(E.9e) 

(E. loa) 

(E. lob) 

(E. 10c) 

(E. 1Od) 

(E. 1 la) 

(E. 1 lb) 

(E. 12a) 
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I2Gh = exp ( 

2 I2hh = - a  x + Pht  - A t  n n  

''Gin, = IZGh 12hh 
S 'S 

"h. = -aqsxn - a,%,,, + 2tPhPh,,. - t A  % 8s 

13Gh = er f (  I3hJ 

13hh = Pht y2 

I3Gin, = 13 Gh I3hiR 
S 

13hh. = Pkst m 
.S 

13 2 Gh = --exp (- "4,') 
f i  

"Gji = 1 
p; - A 

(E. 12b) 

(E.13a) 

(E. 13b) 

(E. 13c) 

(E.13d) 
- 

(E. 14a) 

(E. 14b) 

(E. 14c) 

(E.144 

(E. 14e) 

(E. 15a) 

(E.1m 

(E. 16a) 
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16G, = yh,, ?hi,, + 16 h 16 h,, 

17Gn = exp( "hn) 

(E. 16b) 

(E. 17a) 

(E. 17b) 

@. 17c) 

(E. 17d) 

(E. 17e) 

(E. 170 

(E. 18a) 

(E. 18b) 

(E. 18~). 

(E.18d) 
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18Gn = e@[ 18hn] 

where 116h is given by Eq. @. la ) ,  and its derivative by Eq. @.17e) 

(E. 19a) 

(E. 19b) 

(E. 19c) 

(E. 19d) 

(E.20a) 

(E.20b) 

(E.20c) 

(E.20d) 
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APPENDlx F 

NOTATIONS 



Kfi 

Ki 

t, 

n 

Q 

R, 

Rli 

t 

T 

constants in the model for residual concentrations in the ith fracture layer 

concentration of the species in the ith fracture layer 

concentration of the species at the source at time equals to zero 

half-thickness of the ith fracture layer . 

residual concentration in the ith rock matrix layer 

concentration of the species in the ith rock matrix layer 

effective diffusivity in the ith rock matrix layer 

molecular diffusion of nuclide in water 

pore diffusivity in the ith rock matrix layer 

geometric factor of the ith rock matrix layer ' 

diffusive rate of nuclide at surface of ith fracture layer per unit area of fracture 
surface 

surface distribution in the ith fracture layer 

distribution coefficient in the ith rock matrix layer 

thickness of ith rock matrix layer 

total number of layers 

steady water flow rate in fracture 

retardation factor in the ith fracture layer 

retardation factor in the ith rock matrix layer 

time 

leaching time 

time period of a complete cycle ( 2 d w )  

half-life 
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ui 

X 

Z 

VlY v2 

Pri 

7ri 

*i 

0 

average fluid velocity in the ith fracture layer 

position vector in the fracture 

position vector in the rock matrix 

constant in model of initial concentration in the ith fracture layer 

constrictivity for diffusion in the ith rock layer 

first-order rate constant for decay 

constants in model of periodically fluctuating decaying source 

rock density in the ith layer 

tortuosity of the ith rock layer 

porosity of the ith rock layer 

frequency of oscillation 

Abbreviated Forms 

pi  = uiai 
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Q = 2u,bi 

- - Li 
' I i  - - 

'i 

i=m 

e', = e, + c ~ ' ,  (z-q 
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n-1 

i=m 

i = l  
x-xi ,  i > 1 
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APPENDIX G 

MODEL PARAMEIXRS 



, 
The following parameters are used in the computer code' (written in ANSI Standard FORTRAN 

77) that implements the analytic solutions described in Section 2. 

, 

FORTRAN NAME 

ALFA0 

cco 

CINR0 

CNS(1) 

CNS (2) 

DENSRO 

DIFFR0 

EXPLANATION 

Constant alpha in the exponential term in residual concentration 
mode in the ith fracture layer (1L) 

Concentration of the species at the source at time equals zero 
(units of activityL3) 

Constant in residual concentration model in the ith fracture (units 
of activityL3) 

Coefficient of exponential term in residual concentration model 
in the ith fracture (units of activityL7 

Residual concentration in the ith rock matrix layer (units of 
activityL3) 

Constant in periodically fluctuating decaying source term model 
*(NPERIOD = 1) 

Coefficient of sine function term in periodically fluctuating 
decaying source term model (NPERIOD = 1) 

ith Rock matrix layer bulk density @lL7 (used if IDIST(1) = 
2) 

Pore diffusivity (L2/T) 

* (Gureghian, A.B., Medrano, D., and E. King. 1992. MULTFRAC User's Guide, Version 1.0: Analytical 
solutions for onedimensional transport of a radionuclide in a layered fractured rock with rock matrix diffusion. 
CNWRA92-023. Center for Nuclear Waste Regulatory Analyses: San Antonio, Texas. In press.) 
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FORTRAN NAME 

- DIMENS@,J) 

DISTX(I) 

DISTRB-F(I) 

DISTRB-RO 

- EXMAX 

FLOWR 

HALFL 

HALF-THICK@) 

IAUTO 

TIME 

IBAND 

ICONCF 

ICONCR 

EXPLANATION 

Dimensions used in the problem; each must be I; 12 characters 
in length. 

(1,J) = Species name 
(2,J) = Time bear) 
(3,J) = Length (meter) 
(4,J) = L/T (metedyear) 
(5,J) = Lz/T (m2/year) 
(6,J) = MassNolume (g/cc) 
(7,J) = Volume/Mass (cc/g) 
(8,J) = l/Time ( l./year) 
(9,J) = Units of ActivityNolume ( UA/L3) 
(10,J) = 1/L (l./meter) 

Thickness of i@ fracture or rock layer (L) 

ith Fracture layer surface distribution coefficient (L) @DIST(l) 
= 1) 

ith Rock matrix layer distribution coefficient (L3/M) (IDIST(2) 
= 1) 

Largest allowed magnitude for exponential arguments (machine 
dependent) 

Steady water flow rate per unit width of fracture (L2/T) 

Half-life of species 0 

Half-thickness of the ith fracture layer (L) 

= 0 User supplies arrays REFX, REFZ, and TIME, including 

= 1 Automatic generation of arrays REFX, REF2 and TIME 
parameters NX, NZ, and NT 

including parameters NX, NZ, and NT (see Note) 

= 0 Step release mode at source 
= 1 Band release mode at source 

= 0 Do not calculate fracture concentrations 
= 1 Do calculate fracture concentrations 

= 0 Do not calculate rock concentrations 
= 1 Do calculate rock concentrations 
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FORTRAN NAME 

ICUMF 

IDIST( 1) 

IDIST(2) 

IGRAPH 

INDEXO 

LAYER 

NCONC-SENSIT 

NPERIOD 

NRUNMAX 

NT 

EXPLANATION 

= .O Do not calcdate cumulative mass flux 
= 1 Do calculate cumulative mass flux 

= 0 RETARD-F corresponds to retardation factor in fracture 
= 1 RETARD F corresponds to surface distribution coefficient 

in fracture (Le., DISTRB-F) 

= 0 RETARD-R corresponds to retardation factor in rock 

= 1 RETARD-R corresponds to distribution coefficient in rock 
matrix 

matrix (i.e., DISTRI-R) 

= 0 Graphics output disabled 
= 1 Graphics output enabled; formatted graphics written to 

logical unit 30, 31, 32, 35, 36 

Logical Unit 30: Concentrations in Fracture 
'I 

'I 32: Cumulative Mass 
" 35: Concentration Sensitivities 
'I 36: Cumulative Mass Sensitivities 

II 31: Concentrations in Rock Matrix 
11 

II 

II 

= 1 Evaluate sensitivity computation related to parameter i (Le., 

= 0 Skip . 

1 NCONC-SENSIT 22) 

Number of fracturehock matrix layers 

= 1 Execute Module 1 (Le., calculate concentrations and 
cumulative mass in the fractures and concentrations in the rock 
matrix 

= 2 Execute Module 2 (calculate sensitivity coefficients, relative 
sensitivies and variance 

= 3 Execute both Modules 1 and 2 

= 0 Continuously Decaying Source 
= 1 Periodically Fluctuating Decaying Source 

Number of data sets to be run 

I 500, number of time values to be evaluated 
(skip if IAUTO = 1) 
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FORTRAN NAME EXPLANATION 

NVAL 

Nx 

Index for selecting solution module 
= 0 Option for analytical solutions 
= 1 Option for sensitivity module 

I 500, number of positions to be evaluated in x direction 
(skip if IAUTO = 1) 

NZ t I; 500, number of positions to be evaluated in x direction 
(skip if IAUTO = 1) 

PERIOD Time period for a complete cycle of variation in periodically 
fluctuating decaying source term model (NPERIOD = 1) 

POROSRO Average porosity in ith rock matrix layer 

REFXO x-position in space (L) (read if IAUTO = 0) 

REFZO ' z-position in space (L) (read if IAUTO = 0) 

RETARD-F(I) Retardation factor in the ith fracture layer (IDIST(1) = 0) or 
Surface distribution coefficient (i.e., DISTRl3-F) in the ith 
fracture layer (IDIST(1) = 1) 

RETARD-RO Retardation factor in the ith rock matrix layer (IDIST(2) = 0) or 
Distribution coefficient (i.e., DISTRl3-R) in the ith rock matrix 
layer (IDIST(2) = 1) 

STDVO Standard deviation of parameter I (Le., NCONC-SENSIT 2 2) 

nMEO Position in time 0 (read if IAUTO = 0) 

TIML Leaching time (used if IBAND = 1) 

TITLE 2 Lines, I; 80 characters per line, title of data set 

VELXO Average fluid velocity in the ith fracture layer (UT) 

Note: The following parameters are read-in if IAUTO = 1 in order to generate arrays REFX, REFZ, 
and TIME and their associated parameters NX, NZ, and NT. 

xo 
DX 
ENDX 

First value of spatial coordinate X = REFX(1) 
Spatial increment along X-axis 
Final value of spatial coordinate X = REFX(NX) 

20 First value of spatial coordinate Z = REFZ(1) 
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FORTRAN NAME 

DZ 
END2 

TO c 

DT 
ENDT 

NLOG 

DSTEP 

EXPLANATION 

Spatial increment along z-axis 
Final value of spatial coordinate Z = REFZ(N2) 

First value of simulation time = TIME(1) 
Time increment 
End value of simulation time = TIME(NT) 

= 0 Position in space or time are equally spaced 
= 1 Log scale used for splitting space or time arrays: REFX, 
REFZ, and TIME @.e., 10 divisions per log cycle) 

Step length for evaluating first order sensitivities 
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