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O ABSTRACT

The thermomechanical effect on the exploratory ramps, drifts, and shafts as a result of high-level
nuclear waste disposal is examined using a three-dimensional thermo-elastic model. The repository
layout modeled is based on the use of mechanical mining of ali excavations with equivalent waste
emplacement areal power densities of 57 and 80 kW/aere. Predicted temperatures and stress changes
for the north and south access drifts, east main drift, east-west exploratory drift, the north and south
Calico Hills access ramps, the Calico Hills north-south exploratory drift, and the optional exploratory
studies facility and man and materials shafts are presented for times 10, 35, 50, 100, 300, 500, 1000,
2000, 5000, and 10,000 years after the start of waste emplacement. The study indicates that the
east-west exploratory ._.aSftat the repository horizon is subject to the highest thermomechanical
impact because it is located closest the buried waste canisters. For most exploratory openings, the
thermally induced temperatures and stresses tend to reach the maximum magnitudes at approxi-
mately 1000 years after waste emplacement.
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1.0 INTRODUCTION

This report presents the results of an analysis that evaluates certain thermomechanical effects
upon the potential high-level nuclear waste repository and the exploratory drifting at the Yucca
Mountain site. The repository layout assumed in this analysis is based on mechanical mining of
the exploratory drifts and repository openings and differs from that proposed in the Site Charac-
terization Plan (U.S. Department of Energy (DOE), 1988) and described in the Site Characterization
Plan Conceptual Design Report (SCP-CDR) (Sandia National Laboratories (SNL), 1987). Ali
exploratory drifts and subsequent repository openings would be circular with the emplacement drifts
perpendicular to the main access drifts. This layout was proposed to facilitate construction using
mechanical mining equipment and was selected in conjunction with the exploratory drifting layout
as a result of the Exploratory Studies Facility (ESF) Alternatives Study (SNL, 1991). For this study,
the waste is assumed to be 30 years (instead of 8.55 years) out of the reactor before emplacement
in the repository.

For the thermomechanical analysis, conduction was assumed to be the only heat transfer
mechanism. STRES3D (Asgian et al, 1991), the computer code used, models the three-dimensional
layout and time-sequential emplacement of the heat-generating high-level nuclear waste in an
inf'mite half-space and assumes temperature-independent thermomechanical properties. The rock
mass is assumed elastic, isotropic, and homogeneous.

The objective of the analysis is to predict the temperature and stress changes at ali of the
exploratory access and drift locations planned for construction during the site characterization
studies. Results are required for selected times after waste emplacement so that thermomechanical
impacts of the repository on excavations can be assessed in both the preclosure and postclosure
periods. The results of this analysis may be used in the design of exploratory drift ground sup-
port/reinforcement and may provide an assessment of the repository thermomechanical environment
for other repository design and system performance studies.

O This of the in the and results for alireport provides descriptiona input parameters analysis
points of interest. Two densities of waste emplacement are considered. The first places the waste
in the emplacement rooms with an areal power density (APD) equivalent to 57 kW/acre for the
SCP-CDR repository layout (SNL, 1987). This equivalence takes into consideration the age of the
waste at emplacement and the actual APD for the 30-year-old waste of 51.7 kW/acre. The second
emplacement layout is based on an APD equivalent to 80 kW/acre for the SCP-CDR repository
layout. For the 30-year-old waste, the actual APD is 72.5 kW/acre.
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2.0 THEORETICAL BACKGROUND

O STRES3Dwas used to calculat_ the temperaturesandstresses in the elastic half-spacerep-resentingthe repositorysite. STRES3Dis basedon the thermoelasticityfundamentalsolutionby
Nowacki (1962) in which heat flow is by conductiononly. Nowacki presented solutions for
temperatureand stress in an infiniteelastic mediumresulting from the instantaneous additionof a
finite quantity of heat at a given location. This solution has been used for integrationover time to
providesolutions for eitherconstant heat sourcesor exponentially decaying heat sources. Because
of the assumption of elasticity, the stresses from more than one such point heat source can be
superimposed. STRES3D provides a framework for superposition of multiple heat sources of
different exponentially decaying half-lives to simulate the time-varying heat generation of the
high-level nuclearwaste. By positioning heat sources in different locations with different turn-on
times, sequential waste emplacement throughoutthe repository can be modeled.

To simulatethe effect of the groundsurface,which is assumed to be stress-free andconstant
in temperature, Nowacld (1962) suggested using the method of images. This approach is used
within STRES3D,wherea heatsinkis placed at the immagelocation of each heat sourceto maintain
the requiredsurface temperatureand normal stress. However, the surface shear stresses are non-
vanishing and need to be relieved by applying surfaceshear stressesof equal magnitude butopposite
sign. This is done numerically in STRES3Dby defining a gridon the surface,calculating the shear
stress at each gridpoint as a result of the heat sources and sinks, and then applying an equal but
oppositely directedshear stress at each point to neutralize the surface shears. Hence, the stress at
any point in the elastic half-space can be calculated by summing the contributions from the heat
sources, sinks, and surface shears.

2-1



3.0 REPOSITORY CONFIGURATION AND INPUT PARAMETERS

The ramp-repository layout was based on drawings provided by Ray_eo_Services, NevadaQ and is included in the Problem Definition Memo (PDM) 75-25 (see Appendix ).

3.1 Revositorv Geometry

The repository geometry is shown in Figures 3-1 through 3-3: The general re.posit.orylayout
and the exploratory drifting for me two ramp access conngurauons are snown m tqgure _-t.
Figure 3-2 shows the slopes of the main access drifts and emplacement rooms and details of main
spacings and offsets. Three main access drifts are planned in the north-south direction on 100-ft
spacings. For the analysis, a 200-ft standoff is assumed between the mains and the fwst waste in
the emplacement drifts so as to minimize the thermomechanical impact of the heat generated by
the waste on the mains.

The exploratory drifts on the Main Test Level to be located in the TSw2 unit are shown in
more detail in Figure 3-3. This figure shows the layout of the ramps to the north and south of the
potential repository, access ramps to the Calico Hills Level, and excavatior_s planned at the Main
Test Area. The elevations of the mains on the potential repository horizon and the exploratory
drifting on the Calico Hills Level are shown in Figure 3-4. In the figure, D, D', A and G are the
control points for the repository geometry.

The waste emplacement drifts are on 83.3-ft spacings to provide maximum waste spacing in
the emplacement rooms while not exceeding a maximum extraction guideline of 30%. The
57-kW/acre equivalent case results in spacing of the waste canisters at 15.4 ft (4.69 m), and 10.9 ft
(3.34 m) for the 8G-kW/acre equivalent case. Each canister's thermal output at emplacement is
1.52 kW. The in-borehole emplacement scheme is _ssumed.

O T.b,_total number of canisters to be stored in the potential repository is 31,283. For the above
drift and canister spacings, not ali of the repository area outlined in Figure 3-1 is required for
emplacement. Waste emplacement will begin at the north of the potential repository area and
progress to the south. The waste is scheduled to be emplaced progressively, within 25 years wit!l
a rate of emplacement of only 200 cans/year for the first 3 years, 447 cans m year 4, 895 cans in
year 5, and 1489 cans/year for years 6 through 23. In years 24 and 25, 1340 and 1200 cans/year
should be placed, respectively.

Figure 3-5 shows in plan view the length of the emplacement rooms in which canisters would
be emplaced and the sequence of emplacement for the 57-kW/acre case. It has been assumed that
ali available locations will be used for emplacement and that the east-west exploratory drift will
not be used for waste storage. The waste will be emplaced in the floor of the emplacement drift
from the perimeter drift to within 200 ft of the main access drifts. The unused space within the
repository perimeter drift could be used for waste sterage should some geologic feature that made
some areas unsuitable for waste storage be encountered in the emplacement drifts. For the
57-kW/acre equivalent APD case, a total of 164 drifts would be used for storage. On the southern
side of the east-west exploratory drift, a total of 76 emplacement drifts are to be used. In the pre-
viously defined repository area, a total of 19 drifts would be developed on each side of the east
main drift. The emplacement schedule, shown in Figure 3-5, was approximated assuming that for
each drift, waste emplacement will be completed in a single year. The 57-kW/acre case involves
placement of 31,732 cans in 25 years.

For the 80-kW/acre equivalent case, the space used for waste storage is narrower because of
the higher density of canisters in each drift. The emplacement schedule for the 80-kW/acre case is

O
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shown in Figure 3-6. For the 80-kW/acre case, a total of 106 drifts are u_ed for storage, with only

O 18 emplacement drifts used on the southern side of the east-west exploratory drift. The emplacementschedules for both the 57- and 80-kW/acre cases are summarized it, Table 3-1.

The waste canisters will be placed iL_boreholes in the floor of the emplacement drifts. Specific
details of the length of the boreholes and canisters are not available for the new repository layout,
so the basic canister/borehole geometry of the SCP-CDR was used. Figure 3-7 shows the
emplacement room/canister borehole configuration for the SCP-CDR design and that assumed for
this layout. From this cross section, the depth of the center of the canister was used to define the
elevation of the plate heat sources used for input to STRES3D.

Figure 3-8 shows an isometric schematic of the repository geometry for the 57-kW/acre
equivalent case. Also shown are the accesses, emplacement drifts, and repository exploratory
drifting.

3.2 Thermal and Mechanical Properties

The temperatures and stresses due to heat generation from the canisters depend on the thermal
and mechanical properties of the host rock mass. Presently, the repository is assumed to be located
in a homogeneous, isotropic medium with properties of the welded tuff of the TSw2 unit, the unit
in which the potential repository would be located. The properties were specified either in
PDM 75-25 or the Reference Information Base (RIB), Version 4, Revision 4 (DOE, 1991). The
thermal and mechanical parameters are given in Table 3-2 in the units used in the analysis. Both
the saturated thermal capacitance and the coefficient of thermal expansion of the welded tuff of the
TSw2 unit are temperature-dependent and were recorded as piecewise constants within certain
temperature ranges in the RIB. The study value for the saturated thermal capacitance is obtained
by averaging the thermal capacitances of 25", 50", and 94"C recorded in the RIB. As for the

O coefficient of thermal expansion, the value for the temperature range between 25* to 50"C wasselected as the study value since it is the highest value for temperatures within 25* to 150"C. A
comparison between these study values and the current RIB values where available is presented in
Table 3-3.

3.3 Thermal Loadin_w

The thermomechanical effect is directly related to the magnitude and decay characteristics
of the heat sources. For high-level nuclear waste, the source strength may be represented by the
summation of several exponentially decaying components:

Q ('_)= Y_Qi exp(-bi x) , (3-1)
i=1

where Qi = component strength,
bi = decay coefficient for component i, and
x = total elapsed time after removing the waste from the reactor.

lt is convenient to rewrite Equation 3-1 in terms of the time after emplacement (t), and the time
after removing the waste from the reactor to time of emplacement (to). Hence, substituting 't = t + to
into Equation 3-1, we have

n )

Q (t + to)= Q _ A i exp{-bi(t + t0)} , (3-2)
i-I

0
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Figure 3-7. Waste Canister Configuration
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TABLE 3-2. THERMAL AND ROCK PARAMETERS OF REPOSITORY SITE

Thermal Rock Mass Rock Mass
Thermal Surface Thermal Expansion Young's Poisson's

Diffusivity Temperature Gradient Constant Modulus Ratio
('F) ('C) (*F/ft) (1/'F) (GPa)

333.2 ° 65.7 18.7 0.00971 5.05E-6 13.4 0.25
i i i iiiiiiiii i i i

" Converted from thermal conductivity and capacitance shown in Table 3-3.

TABLE 3-3_ COMPARISON BETWEEN STUDY VALUES AND THE CURRENT RIB
(Version 4, Revision 4) VALUES

RIB Range or
Study RIB Standard

Parameter Value Value Deviation

Thermal Properties
Saturated thermal capacitance (J/m3- C)

at 25"C 2.14E+6 2.0324E+6 NA
at 50"C 2.14E+6 2.1280E+6
at 94"C 2.14E+6 2.2638E+6

Saturated thermal conductivity (W/m- C) 2.10 2.10 :1.'0.2

Mechanical Properties
Young's modulus (GPa) 13.4" 32.7b NA
Poisson's ratio 0.25 0.25 _ NA

Coefficient of thermal expansion (m/ro'C)
25 to 50 9.1E-6 9.1E-6 :!:1.3
50 to 100 9.1E-6 8.2E-6 x'-0.8
100 to 150 9.1E-6 6.8E-6 :L-0.5
150 to 200 9. lE-6 9.7E-6 NA

Initial Temperature
Surface Temperature ('C) 18.7 18.7a NA

• For rock mass, refer to Hardy & Bauer (1991).
b Laboratory derived value.

Weighted average value.
a Scaled from the temperature versus depth curve.

where Ai is a set of dimensionless factors equal to Q,/Q with _ Ai = 1. Equation 3-2 can be further
simplified to i.

A

Q(t +t,) =Q _ ai exp(-bit ) , (3-3)
i=l

where ai =At exp (-b_to). For this analysis, a six-comronent approximation of the high-level waste
heat generation was used. This approximation gives an adequate representation of the heat gen-
eration for 10,000 years. Table 3-4 lists the Qi andb_coefficients for the six component heat sources
as specified in PDM75-25.
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TABLE 3-4. HEAT GENERATION FROM WASTE CANISTERS

-' Waste Source Strength Time Exponent Equivalent S0urceStrength
Component Components (years "t) (*F fP/yrs) QCA_'

I I I I I II

Q_ b_ $7bkW/acre 80bkW/acre

1 19.8996 3.92555E-5 2406.79523 3381.643
2 18.0297 4.42918E-4 2154.34625 3026.941
3 174.893 1.94302E- 3 19978.38045 28070.42
4 1068.40 2.16836E-2 67503.28788 94844.78
5 468.152 1.659570E-1 390.1785328 548.2162
6 7423.13 5.718320E-1 0.031870246 4.477898E-04

• STRES3D inpu,, parameter.
b Equivalent actual APD at emplacement 51.6 and 72.5 kW/acre.

The initial APD is used to define the magnitude of the heat sources at emplacement. In
STRES3D, the heat sources are modeled by plate sources which require input of the heat source
component strength (QCAi) and the decay constant (b_). QCAI is defined as the set of components
of the factored APD divided by the volumetric heat capacity of the host medium (Cv). The factored
APD depends on the plate geometry used to model the distributions of the heat sources and the
APD. The plate model used in this analysis has a length equal to the drift length in which the waste
is emplaced and a uniform width equal to I ft. The factored APD equivalent to the required APD
must be S x APD where S is the spacing of the drifts (in feet). Hence, the input to STRES3D is

QCA_ = S x APD x K a_/Cv , (3-4)

where K = a constant equal to 72.397 that converts APD from kW/acre to Joules/yr/ft 2.

QCAi values are listed in Table 3-4 for two initial APDs for 30-year-old waste (to = 30).

The initial APDs used in the simulations represent scaled values calculated using a technique
that allows for the definition of equivalent thermal loads across a range of waste ages and burnups
(Ryder, 1992). The method, known as the equivalent energy density concept (EED), bases its
equivalence criteriaon the assumption that a given waste will produce worst-case thermomechanical
effects equal to those for baseline waste provided that the thermal energy deposited in the host rock
over a specified period of time is the same for both waste descriptions. Scaled emplacement densities
of 51.6 and 72.5 kW/acre were used in this study's simulations to mimic the near-field peak-
temperature behavior of 10-year-old baseline waste (Johnstone et al, 1984) emplaced at 57 and
80 kW/acre, respectively.

Other input parameters include description of source geometry, location, and size of surface
elements and are discussed in the next section.
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4.0 THERMOMECHANICAL COMPUTATION

The program STRES3D, Version 4.10 was used in the thermomechanical computation.
Version 4.0, the PC version of the STRES3D code, is documented in Asgian et al (1991).
Version 4.10 of the STRES3D code operates on a DEC work station using the ULTRIX operating
system. Compared with Version 4.0, there arc two minor coding changes and one coding correction
in Version 4.10. Other minor syntax changes were made to the code to accommodate the ULTRIX
operating system. The f'wstminor coding change is related to dimensioning. This change was made
to accommodate the number of sub-area sources, which for this layout was equal to the number of
Gauss points and is significantly higher than for other problems analyzed using STRES3D. The
second minor coding change was to modify the location for switching to a subroutine that more
accurately calculates the effect of the surface shear relief at locations near the surface. An error
was found in STRES3D in evaluating the position o( the areal heat sources. The correction made
in VerAon 4.10 results in the correct vertical positioning of the inclined plate heat sources.

4.1 Ntlmerical Intep_ration of Heat Sources

Long thin plate heat sources were used to represent the waste eml?laced below each room.
In each plate, the Gauss-Legendxe quadrature is used to integrate the point heat source solutions.
The number of Gauss points controls the accuracy of the solution for temperature and stress, par-
ticularly near theGauss points. To achieve accurate results without substantial computational effort,
a sensitivity study was conducted to determine an appropriate number of Gauss points for each
emplacement drift. It was found that a total of 9663 Gauss points should be used in calculating the
temperatures and stresses at the points of interest throughout theESF. Figure 4-1 shows the location
of the Gauss points used for the ESF analysis for the 57-kW/acre case. For the 80-kW/acre loading,
6868 Gauss points were used.

4.2 Calculation pf Surface Shear Stresses

As mentioned earlier, the surface shear stresses due to the effect of heat sources and as a result
of superposition of image sources are cancelled by adding a stress field with surface shear stress of
opposite sign. For this purpose, a surface shear mesh was generated. The mesh area must be
sufficiently large to cover the region in which surface shears generated by the heat sources and
image sources are significant. Figure 4-2 represents a plan view of the repository area shielded by
a shear stress mesh (16,000 ft by 24,000 ft, each element is 200 ft by 200 ft). This mesh is located
at 4500 ft elevation, which is ground elevation. In calculating surface shear stresses, relatively few
Gauss points are used in each drift to account for heat sources for each time of interest because the
surface elements are a significant distance from the heat sources. The configuration of the Gauss
points for the 57-kW/acre loading at the repository horizon (total 876) for calculation of the surface
shears is illustrated in Figure 4-3. A total of 624 Gauss points were used to evaluate the surface
shears for the 8G-kW/acre loading.

4.3 Calculation of Temperature. Stresses. and Displacements

The locations of interest for temperature and stress changes are shown in Figure 4-4. The
locations are along the exploratory ramps, exploratory drifts, the optional shaft, and over the Main
Test Level. Results of temperature, stress, and strain at the man and materials shaft, a repository
opening, are also included. Specifically included are the east main access drift, east-west exploratory
drift, and Main Test Area at the Main Test Level; north and south ramps connecting to the east main
access drift; Calico Hills north-south drift at the Calico Hills Level; Calico Hills north and south
ramps; the ESF optional man and materials shafts. Coordinates of the points shown in Figure 4-4
are given in Table 4-1.
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Gauss points for evaluation of heat sources

Figure 4-1. Gauss Points Used to Represent Heat-Generating Waste for 57-kW/acre Case
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TABLE 4.1. COORDINATES OF POINTS ILLUSTRATED IN FIGURE 4.4
i| i

Names Point X Y Z

East main (1) A 758690 558110 3740
East-west drift (1) B 765655 558225 3558
East-west drift (2) C 761729 564045 3296
East main (2) D 767500 564053 3240
Main test area D' 765939 566366 3093
North portal E 765324 569875 3684
Calico Hills north ramp F 767667 564889 3303
Calico Hills drift G 758166 557757 3130
South portal H 756520 566351 3927
Main test area (1) I 765800 562906 3336
Main test area (2) I' 764240 565219 3190
Line 4 (1) J 765610 563188 3318
Line 4 (2) J' 767309 564334 3222
Line 5 (1) K 765196 563802 3280
Line 5 (2) K' 766896 564948 3183
Line 2 (1) L 766447 563342 3299
Line 2 (2) L' 764886 565655 3153
Line 1 (1) M 765858 562945 3333
Line 1 (2) M' 764298 565258 3187
ESF shaft N 766745 563966 4500
Man & materials shaft P 759200 557870 4500
Calico Hills south ramp Q 757744 558624 3802

The temperatures and induced stresses for the places of interest were computed at 10, 35, 50,
100,300,500, 1,000, 2,000,5,000and 10,000 years after waste emplacement begins. Strain profiles d&
were also generated for the two shafts.

The computation was performed in two steps. The surface shear stresses were developed for
each time of interest and stored on files. These files were then addressed by STRES3D along with
input data files for each specific location of output. The induced stresses from drifts, ramps, and
test lines were rotated in the direction either transverse or axial to the excavations. Strains are
converted from stresses using the following relations:

ex ={ax-v(%+a,)}/E ,

e, = { % - v(a,, + _,) } /E ,

e, ,

_1_ = % IG ,

Y_, = xr, IG ,

_[,_=x,=IG , (4-1)

where G = the shear modulus,
E = Young's modulus, and
v = Poisson's ratio.
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5.0 RESULTS OF THERMOMECHANICAL ANALYSIS

5.1 Ali Results

The distributions of absolute temperatures and induced stresses and strains in the repository
area and surrounding rock mass at the locations of interest are presented in graphical form in
Appendixes B through L for the 57-kW/aore and80-kW/acre cases. Appendixes B throughJinclude
plots of the maximum compressive principal stress change and the minimum principal stress change.
Ali locations mentioned in the graphs c_ be found in Figure 4-4. Coordinates for the drifts, which
contain waste for the 57-kW/acre case and include ali the drifts used for the 80-kW/acre case, are
given in Appendix M. The stress results shown in the appendixes are the induced stress resulting
from the effects of heat generated by the waste. The induced stress is the change in stress resulting
from the thermal loads. Stresses are shown in SI units (MPa) andtemperatures are given both in
degrees Centigrade and degrees Fahrenheit. Distances are in feet.

The results for drifts, ramps, and test lines in the Main Test Area are presented using a local
coordinate system (xP,y', z') as shown in Figure 5-1. For the ramps, the local coordinate system
rotates to follow the direction of the ramp. The stress component profiles for the shafts (Appendixes I
and J) and the contour stress component plots for the Main Test Area (Appendix K) are presented
relative to the global coordinate system shown in Figure 4-4. The output temperature, stresses, and
strains are presented for ten time periods.

The northand south ramps provide access from the MTL to the respective portals. The Calico
Hills ramps connect the MTL and CHL as shown in Figures 3-3 and 3-8. There is a curved section
of driftin every ramp. Itis reflected in the graphs of temperatures and stresses where sharptransitions
appear. In addition, because the stresses are computed in either the transverse or axial direction to
the drift, the stress orientation varies along the curved portion of the ramp. As a result, the graphs

O shown do not necessarily reflect the discontinuity of stresses in the vicinity of the transition pointfrom the straight to curved portion of the ramps.

Evaluation of temperature and stresses at the shaft locations other than in the TSw2 and in
the Calico Hills exploratory drifting is an approximation to actual conditions due to the assumption
that the host rock mass is homogeneous throughout the section. Additional effort was made to
compute strains at the shaft locations because the strains can be used as input in calculating loading
on the shaft linings (see, e.g., Richardson, 1990) in areas where the host rock is not the TSw2.

5.2 Comparison of P¢¢k Values of Temperatures and Stresses

This section summarizes the results presented in the appendixes by comparing the maximum
temperatures or maximum absolute induced stresses at each time period analyzed for particular
drifts, ramps, or shafts. From comparison of the maximum temperature and stress change plots,
locations subjected to differing degrees of thermal loading may be readily identified. The com-
parison is made based on absolute values of stress, therefore, irregular curves may occur due to the
transitions between tension and compression. Inspection of the stress profiles in the appropriate
appendixes for the times of interest around such irregular maximum plots should resolve any
uncertainty in the cause of the irregularities.

5.2.1 Comparison of Peak Values for Ramps. Shafts. 0,hdExploratory_Drifting

A comparison of maximum temperatures and stresses is made for nine locations--east main
drift (e-main), east-west exploratory drift (ew-drift), Calico Hills main drift (eh-drift), north ramp
(n-ramp), south ramp (s-ramp), Calico Hills northramp (chn-rm), Calico Hills south ramp (chs-rra),

O ESF shaft (n-shaft), and man and materials shaft (s-shaft)--at the period from 10 to 10,000 years
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Figure 5-1. Local 12_rdinate System and Stress Sign Conventions

after waste emplacement. The results are presented both graphically (Figures 5-2 to 5-8 for the
57-kW/acre case and Figures 5-9 to 5-15 for the 80-kW/acre case) and tabularly (Tables 5-1 to 5-9
for the 57-kW/acre case and Tables 5-10 to 5-18 for the 80-kW/acre case).

Figures 5-2 and 5-9 represent comparisons of temperatures for the ramps, shafts, and
exploratory drifts. Initial temperatures are in the neighborhood of 80°F (27"C). The east-west
exploratory drift has the highest maximum temperature at all times due to its close proximity to the
heat sources. The peak temperatures for the drift are 202°F (94"12)and 248"F (120"C) at 500 years
for the two thermal loading conditions. Substantially higher temperatures for the 80-kW/acre case
than for the 57-kW/acre case indicate the higher density of heat sources located in the vicinity of
the east-west exploratory drift in the former case. The east main drift has the second highest
temperature magnitudes, which are about 148°F (64"12)and 177"F (81°12)_at 1000 years; following
is the Calico Hills drift, with 140°F (60°C) and 161 °F (72°12)at 2000 years. The temperature changes
at the other locations are insignificant. The temperatures in the south ramp stay almost constant at

t Where two numbers ,aregiven in sequence like this, it should be assumed the f'wstnumber
refers to the 57-kW/aere case and the second, the 80-kW/acre case.
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Figure 5-2. Comparison of Maximum Temperature Histories Along Exploratory Drifts, Ramps,
and Shafts, 57-kW/acre Case
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Figure 5-3. Comparison of Maximum Transverse Stress (Ao_,_,)Histories Along Exploratory
Drifts, Ramps, and Shafts, 57-kW/acre Case
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Figure 5-4. Comparison of Maximum Axial Stress (A%,/) Histories Along Exploratory Drifts,
Ramps, and Shafts, 57-kW/acre Case
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Figure 5-5. Comparison of Maximum Vertical Stress (Ao,,,,)Histories Along Exploratory Drifts,
Ramps, and Shafts, 57-kW/acre Case
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Figure 5-6. Comparison of Maximum Shear Stress (Aory.)Histories Along Exploratory Drifts,
Ramps, and Shafts, 57-kW/acre Case
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Figure 5-7. Comparison of Maximum Shear Stress (A%,v) Histories Along Exploratory Drifts,
Ramps, and Shafts, 57-kW/acre Case
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Figure 5-8. Comparison of Maximum Shear Stress (Aa,,d) Histories Along Exploratory Drifts,
Ramps, and Shafts, 57-kW/acre Case

5-9



Figure 5-9. Comparison of Maximum Temperature Histories Along Exploratory Drifts, Ramps,
and Shafts, 80-kW/acre Case
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Figm_ 5-10. Comparison of Maximum Transverse Su_ss (Aadr) Histories Along Exploratory
Drifts, Ramps, and Shafts, 80-kW/acre Case
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Figure 5-11. Comparison of Maximum Axial Stress (Aoy,y,)Histories Along Exploratory Drifts,
Ramps, and Shafts, 80-kW/acre Case
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Figure 5-12. Comparison of Maximum Vertical Stress (Ao,.,.)Histories Along Exploratory Drifts,
Ramps, and Shafts, 80-kW/acre Case
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Figure 5-13. Comparison of Maximum Shear Stress (Aory,)Histories Along Exploratory Drifts,
Ramps, and Shafts, 80-kW/acre Case
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Figure 5-14. Comparison of Maximum Shear Stress (Aoy,,,)Histories Along Exploratory Drifts,
Ramps, and Shafts, 80-kW/acre Case
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Figure 5-15. Comparison of Maximum Shear Stress (Ao,,_e)Histories Along Exploratory Drifts,
Ramps, and Shafts, 80-kW/acre Case
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TABLE 5-1. PEAK VALUES OF TEMPERATURE/STRESSES FOR EAST MAIN
DRIFT, 57-KW/ACRE CASE

i

_O Year Temperature Ao= Aor_ Ao= Ao_ Ao. Ao=
(*F) (*C) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa)i ii

10 78 26 0.2 0.1 0.2 0.1 0.0 0.0
35 79 26 2.0 0.4 1.9 0.7 0.1 0.3
50 82 28 2.8 0.3 2.6 1.0 0.2 0.4

100 93 34 4.4 0.6 3.4 1.3 0.3 0.5
300 121 49 6.0 2.3 3.1 1.3 0.4 0.5
500 135 57 6.4 3.1 2.7 1.3 0.5 0.5

1000 148 64 6.3 3.9 1.9 1.1 0.5 0.4
20130 145 63 5.1 3.6 0.9 0.7 0.6 0.4
5000 125 52 3.1 2.3 0.3 0.4 0.5 0.3

10000 111 44 2.0 1.5 0.2 0.3 0.4 0.2
i

TABLE 5-2. PEAK VALUES OF TEMPERATURE/STRESSES FOR EAST-WEST
EXPLORATORY DRIFT, 57-KW/ACRE CASE

i

Year Temperature Ao= Ao. Ao., Ao_ Aaf. Ao=
('F) ('C) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa)

i

10 77 25 0.0 0.0 0.0 0.0 0.0 0.0
35 118 48 5.8 3.3 2.4 0.2 0.7 0.4
50 142 61 7.9 5.3 2.4 0.3 0.8 0.5

100 176 80 10.0 7.8 3.5 0.3 0.8 0.5
300 196 91 10.3 8.8 3.3 0.3 0.7 0.5
500 202 95 10.2 8.8 2.9 0.3 0.7 0.5

1000 198 92 9.0 7.8 2.0 0.3 0.7 0.4
2000 173 78 6.4 5.9 1.0 0.3 0.7 0.3
5000 137 58 3.6 3.5 0.4 0.2 0.6 0.3

10000 119 48 2.4 2.4 0.3 0.1 0.5 0.2
ii i i i

TABLE 5-3. PEAK VALUES OF TEMPERATURE/STRESSES FOR CALICO HILLS
DRIFT, 57-KW/ACRE CASE

iii i

Year Temperature Ao= Ao. Ao,, Ao_ Aaf, Ao=
('F) ('C) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa)

10 83 28 0.0 0.0 0.0 0.0 0.0 0.1
35 83 28 0.3 0.3 0.4 0.2 0.2 0.3
50 83 28 0.3 0.5 0.6 0.3 0.3 0.5

100 83 29 0.6 0.7 1.1 0.5 0.5 0.7
300 97 36 1.9 0.6 1.7 0.8 0.9 1.0
500 111 44 2.8 0.9 1.7 0.9 0.8 1.0

1000 130 54 4.4 2.9 1.1 0.9 0.6 0.8
2000 140 60 4.2 3.2 0.7 0.6 0.2 0.3
5000 131 55 3.2 2.7 0.3 0.3 • 0.2 0.1

10000 118 48 2.2 1.9 0.2 0.2 0.2 O.1
---, I ,1,,

O
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TABLE 5-4. PEAK VALUES OF TEMPERATURE/STRESSES FOR NORTH RAMP,
57-KW/ACRE CASE

Year Temperature Ao= Ao. Ao,, Ao,_ Ao. Ao:,,
(*F) (*C) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa)

10 78 26 0.5 0.4 0.2 0.3 0.3 0.3
35 78 26 0.3 0.3 0.5 0.4 0.0 0.0
50 78 26 0.4 0.4 0.6 0.6 0.0 0.1

100 79 26 0.6 0.7 0.9 0.8 0.0 0.1
300 85 29 0.9 1.2 0.9 1.1 0.1 0.1
500 88 31 1.0 1.5 0.8 1.1 0.1 0.2

1000 93 34 1.0 1.8 0.7 1.0 0.1 0.2
2000 95 35 0.9 1.7 0.5 0.7 0.2 0.2
5000 93 34 0.7 1.3 0.2 0.5 0.3 0.2

10000 90 32 0.5 0.9 0.1 0.4 0.3 0.2

TABLE 5-5. PEAK VALUES OF TEMPERATURE/STRESSES FOR SOUTH RAMP,
57-KW/ACRE CASE

Year Temperature Ao= Ao. Ao,, Ao_ AOys AO_

(*F) (*C) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa)

10 73 23 0.0 0.0 0.0 0.0 0.0 0.0
35 73 23 0.1 0.1 0.0 0.1 0.0 0.0
50 73 23 0.2 0.2 0.0 0.1 0.0 0.0

100 73 23 0.3 0.3 0.0 0.2 0.1 0.1
300 73 23 0.6 0.6 0.0 0.4 0.1 0.1 ,dL
500 73 23 0.8 0.8 0.0 0.5 0.2 0.1

1000 73 23 1.0 1.0 0.0 0.6 0.2 0.1
2000 73 23 0.9 0.9 0.0 0.6 0.1 0.1
5000 74 23 0.7 0.7 0.0 0.5 0.0 0.0

10000 74 24 0.5 0.5 0.0 0.4 0.1 0.1

TABLE 5-6. PEAK VALUES OF TEMPERATURE/STRESSES FOR CALICO HILLS
NORTH RAMP DRIFT, 57-KW/ACRE CASE

Year Temperature Ao= Ao. Ao,, Ao_ Aoy, Ao_
(*F) (*C) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa)

10 83 28 0.0 0.0 0.0 0.0 0.0 0.0
35 83 28 0.1 0.1 0.2 0.2 0.1 0.2
50 83 28 0.1 0.1 0.2 0.3 0.2 0.2

100 83 28 0.2 0.2 0.3 0.4 0.3 0.4
300 85 30 0.3 0.4 0.5 , 0.7 0.5 0.5
500 88 31 0.4 0.5 , 0.5 0.8 0.5 0.5

1000 93 34 0.5 0.8 0.5 0.8 0.4 0.4
2000 96 36 0.7 1.1 0.4 0.6 0.2 0.2
5000 98 36 0.7 1.2 0.3 0.4 0.2 0.2

10000 96 35 0.6 0.9 0.2 0.3 0.2 0.1

O
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TABLE 5-7. PEAK VALUES OF TEMPERATURE/STRESSES FOR CALICO HILLS
SOUTH RAMP DRIFT, 57-KW/ACRE CASE

O Year Temperature AG_ AG. AG,, AG_ AGy, AG_
(OF) (oc) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa)

10 79 26 0.0 0.0 0.0 0.0 0.0 0.0
35 79 26 0.0 0.1 0.0 0.0 0.0 0.0
50 79 26 0.1 0.1 0.0 0.1 0.0 0.0

100 79 26 0.1 0.3 0.0 0.1 0.1 0.0
300 79 26 0.2 0.5 0.0 0.2 0.1 0.0
500 79 26 0.2 0.6 0.0 0.3 0.2 0.0

1000 79 26 0.3 0.8 0.0 0.3 0.2 0.1
2000 79 26 0.3 0.8 0.0 0.3 0.1 0.1
5000 80 26 0.3 0.6 0.1 0.2 0.1 0.0

10000 80 27 0.3 0.4 0.0 0.2 0.0 0.0

TABLE 5-8. PEAK VALUES OF TEMPERATURE/STRESSES FOR ESF SHAFT,
57-KW/ACRE CASE

Year Temperature AG_ AG. AG,, AG_ AGy, AG_
(°F) (*C) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa)

10 90 32 0.0 0.0 0.1 0.0 0.0 0.0
35 90 32 0.1 0.2 0.4 0.1 0.2 0.1
50 90 32 0.1 0.3 0.5 0.2 0.2 0.1

100 90 32 0.2 0.5 0.8 0.2 0.3 0.2
300 90 32 0.3 1.0 1.2 0.3 0.6 0.3
500 90 32 0.3 1.2 1.3 0.2 0.7 0.3

1000 93 34 0.7 1.5 1.1 0.3 0.7 0.2
2000 99 37 1.0 1.6 0.8 0.4 0.7 0.1
5000 104 40 1.0 1.3 0.3 0.3 0.5 0.1

10000 104 40 0.8 1.0 0.2 0.2 0.4 0.1

TABLE 5-9. PEAK VALUES OF TEMPERATURE/STRESSES FOR MAN AND
MATERIALS SHAFT, 57.KW/ACRE CASE

i i ,,

Year Temperature AG_ AG. AG,, AG_ AG_ AG_
(*F) (*C) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa)

10 85 30 0.0 0.0 0.0 0.0 0.0 0.0
35 85 30 0.1 0.0 0.0 0.1 0.0 0.0
50 85 30 0.2 0.1 0.0 0.2 0.0 0.0

100 85 30 0.3 0.1 0.0 0.3 0.1 0.1
300 85 30 0.7 0.2 0.0 0.6 0.1 0.1
500 85 30 0.9 0_3 0.0 0.8 0.1 0.2

1000 85 30 1.0 0.3 0.1 0.9 0.1 0.2
2000 86 30 0.9 0.2 0.2 0.9 0.1 0.1
5000 88 31 0.5 0.1 0.2 0.7 0.0 0.1

10000 88 31 0.3 0.2 0.1 0.5 0.1 0.1
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TABLE 5-10. PEAK VALUES OF TEMPERATURE/STRESSES FOR EAST MAIN
DRIFT, 80.KW/ACRE CASE i i ilii

Year Temperature AO= AO. Ao,, Aa. Ao,, Ao,.
(*F) (*C) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa).,

i

10 78 26 0.2 0.1 0.2 0.1 0.0 0.0
35 79 26 2.7 0.6 2.5 1.0 0.1 0.4
50 83 28 3.9 0.5 3.5 1.3 0.3 0.5

100 100 38 6.2 0.7 4.7 1.8 0.5 0.7
300 139 59 8.6 2.8 4.0 1.9 0.6 0.6
500 158 70 9.3 3.8 3.3 1.8 0.7 0.6

1000 177 81 9.2 4.6 2.2 1.5 0.8 0.5
2000 171 77 7.4 4.3 1.1 1.0 0.9 0.5
5000 141 61 4.4 2.7 0.4 0.5 0.7 0.4

10000 121 49 2.9 1.7 0.2 0.3 0.6 0.3
i m,i i i.i

TABLE 5-11. PEAK VALUES OF TEMPERATURE/STRESSES FOR EAST-WEST
EXPLORATORY DRIFT, 80-KW/ACRE CASE

i i i m
m

Year Temperature Ao= At_. Aa. At_. Aa,, AO.
(*F) (*C) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa)

i i i

l0 77 25 0.0 0.0 0.0 0.0 0.0 0.0
35 123 51 7.4 3.8 3.4 0.2 0.8 0.6
50 163 73 10.8 7.3 3.3 0.3 1.0 0.7

100 217 103 13.8 11.6 4.3 0.6 1.1 0.8
300 244 118 13.4 13.0 3.5 1.1 1.0 0.8
500 248 120 12.8 12.8 2.8 1.3 1.0 0.8

1000 233 112 10.7 10.9 2.0 1.4 1.0 0.9
2000 192 89 7.4 7.7 1.4 1.2 0.9 0.9
5000 146 63 4.1 4.4 0.7 0.7 0.7 0.7

10000 126 52 2.7 3.0 0.5 0.5 0.5 0.5
i Hl|

TABLE 5-12. PEAK VALUES OF TEMPERATURE/STRESSES FOR CALICO HILLS
DRIFT, 80-KW/ACRE CASE

ii i r Jlml i ,,,,,

Year Temperature Ao= AO. AO. AO_, AO,. AOu
('F) (*C) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa)

10 83 28 0.1 0.1 0.0 0.0 0.0 0.1
35 83 28 0.3 0.5 0.5 0.3 0.2 0.5
50 83 28 0.5 0.7 0.7 0.5 0.4 0.6

100 83 28 1.0 1.1 1.3 0.8 0.7 1.0
300 103 39 2.8 0.6 1.9 1.2 1.1 1.4
500 122 50 4.2 0.9 2.0 1.3 1.0 1.4

1000 149 65 5.8 2.6 1.6 1.2 0.7 1.0
2000 161 72 6.1 3.7 0.9 0.8 0.2 0.4
5000 145 63 4.4 3.1 0.4 0.4 0.3 0.1

10000 128 53 3.0 2.1 0.2 0.3 0.3 0.1
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TABLE 5.13. PEAK VALUES OF TEMPERATURE/STRESSES FOR NORTH RAMP,
80.KW/ACRE CASE

iii i i

Year Temperature Ao_ Ao. Ao= Ao. Ao,, AO..
(°F) (*C) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa)

I0 78 26 0.I 0.I 0.I 0.I 0.0 0.0
35 78 26 0.4 0.4 0.6 0.6 0.0 0.I
50 78 26 0.6 0.6 0.8 0.8 0.0 0.I
I00 80 27 0.9 0.9 1.2 1.2 0.I 0.I
300 88 31 1.3 1.6 1.3 1.5 0.1 0.2
500 92 33 1.4 2.0 1.2 1.6 0.1 0.2

1000 99 37 1.5 2.3 0.9 1.4 0.2 0.3
2000 102 39 1.3 2.2 0.6 0.9 0.4 0.3
5000 99 37 1.0 1.6 0.3 0.6 0.5 0.3

10000 95 35 0.7 1.1 0.2 0.4 0.4 0.3
±1_ i i i i i iiii i i

TABLE 5.14. PEAK VALUES OF TEMPERATURE/STRESSES FOR SOUTH RAMP,
80.KW/ACRE CASE

Year Temperature AO= Aa, Ao_ Aaf, AO_ Ao_
(*F) (*C) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa)

10 73 23 0.0 O.O 0.0 0.0 O.O 0.0
35 73 23 0.1 0.1 0.0 0.0 O.O 0.0
50 73 23 0.1 O.1 O.O 0.1 0.0 0.0

100 73 23 0.2 0.2 0.0 0.1 0.0 0.0
300 73 23 0.4 0.4 0.0 0.2 0.1 0.1
500 73 23 0.5 0.5 0.0 0.3 0.1 0.1

1000 73 23 0.6 0.6 O.O 0.3 0.1 0.1
2000 73 23 0.6 0.6 O.O 0.4 0.1 0.1
5000 73 23 0.6 0.5 lJ.O 0.3 0.1 0.1

10000 73 23 0.5 0.4 0.0 0.3 0.0 0.0

TABLE 5-15. PEAK VALUES OF TEMPERATURE/STRESSES FOR CALICO HILLS
NORTH RAMP, 80-KW/ACRE CASE

i i

Year Temperature Ao= Ao. Aou Ao_ Ao,, Ao,,
(*F) (*C) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa)

10 83 28 0.0 0.0 0.0 0.1 0.0 0.1
35 "83 28 0,1 0.1 0.2 0.3 0.2 0.2
50 83 28 0.1 0.1 0.3 ,0.4 0.2 0.3

100 83 28 0.2 0.2 0.5 0.6 0.4 0.5
300 86 30 0.4 0.5 0.7 0.9 0.6 0.7
500 90 32 0.6 0.6 0.8 1.1 0.6 0.7

1000 96 36 0.8 1.0 0.8 1.1 0.5 0.5
2000 102 39 1.O 1.4 0.6 0.8 0.2 0.2
5000 104 40 1.1 1.5 0.4 0.5 0.3 0.2

100_ 101 38 0.9 1.2 0.2 0.4 0.3 0.2
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TABLE 5-16. PEAK VALUES OF TEMPERATURE/STRESSES FOR CALICO HILLS
SOUTH RAMP, 80-KW/ACRE CASE

II __ I III1|1 II I i I II ii ii1|

Year Temperature Aa= Aay, Ao,, Ao_ Ao. Aou
('F) (*C) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa)

i

10 79 26 0.0 0.0 0.0 0.0 0.0 0.0
35 79 26 0.0 0.1 0.0 0.0 0.0 0.0
50 79 26 0.0 0.1 0.0 0.0 0.0 0.0

100 79 26 0.1 0.2 0.0 0.1 0.0 0.0
300 79 26 0.1 0.3 0.0 0.1 0.1 0.0
500 79 26 0.2 0.4 0.0 0.1 0.1 0.0

1000 79 26 0.2 0.5 0.0 0.2 0.1 0.0
2000 79 26 0.2 0.5 0.0 0.2 0.1 0.0
5000 79 26 0.2 0.5 0.0 0.2 0.1 0,0

10000 79 26 0.2 0.4 0.0 0.1 0,0 0,0
i

TABLE 5-17. PEAK VALUES OF TEMPERATURE/STRESSES FOR ESF SHAFT,
80-KW/ACRE CASE

iiiii III

Year Temperature Ao= Ao, Ao,, Ao_ Aoy, Ao,.,
(*F) (*C) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa)

....

10 90 32 0.0 0.0 0,1 0.1 0.0 0.0
35 90 32 0.1 0.3 0.5 0.2 0.2 0.1
50 90 32 0.2 0.4 0.7 0.3 0.3 0.1

100 90 32 0.2 0.7 1.1 0.4 0.5 0.2
300 90 32 0.4 1.3 1,7 0.5 0.8 0.3

500 90 32 0.5 1.7 1.8 0.5 1.0 0.4 O1000 96 32 0.8 2.1 1.6 0.2 1.1 0.2
2000 105 32 1.3 2.2 1.1 0.2 1.0 0.1
5000 110 32 1.4 1.8 0.5 0.2 0.8 0.2

10000 109 32 1.2 1.4 0.3 0.1 0,6 0.2

TABLE 5-18. PEAK VALUES OF TEMPERATURE/STRESSES FOR MAN AND
MATERIALS SHAFT, 80.KW/ACRE CASE

.ill

Year Temperature Ao= Ao, Ao,, Ao_, Ao, Ao=
(*F) (*C) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa)

10 85 29 0.0 0.0 0.0 0.0 0.0 0.0
35 85 29 0.1 0.0 0.0 0.0 0.0 0.0
50 85 29 0.1 0.0 0.0 0.1 0.0 0.0

100 85 29 0.2 0.0 0.0 0.2 0.0 0.1
300 85 29 0.3 0.1 0.0 0.3 0.1 0.1
500 85 29 0.4 0.1 0.1 0.4 0.1 0.1

1000 85 29 0.5 0.1 0,1 0.5 0.1 0.1
2000 85 29 0.5 0.1 0.0 0.5 0.1 0.1
5000 85 29 0.5 0.1 0.0 0.5 0.0 0.1

10000 86 30 0.3 0.0 0.1 0.4 0.0 0.0
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ali times. The ESF shaft (n-shaft), ranked fourth in temperature value, is subjected to only maximum
temperature changes of 14"F(8"C) and 19*F (11"C). In general, peak temperatures occur between
500 and 2000 years for the drifts with significant temperature changes. The maximum temperatures
are delayed beyond 2000 years for those places with insignificant temperature changes.

Figures 5-3 and 5-10 compare the maximum transverse stress (Aax") for the two thermal
loadings. Similar to the temperature profile, the east-west exploratory drift leads the others with
maximum stress changes of 10.3 MPa at 300 years and 13.8 MPa at 100 years. The steep increase
is a typical feature of the stress profile. The second highest stresses occur within the east main drift,
with 6.4 and 9.3 MPa at 500 years. The Calico Hills drift attains the third highest peak stresses of
4.4 MPa at 1000 years and 6.1 MPa at 2000 years. The Calico Hills south ramp has the lowest
stress magnitude among these nine locations.

For the maximum axial stresses (Aay'y'), Figures 5-4 and 5-11 depict a somewhat different
scenario. The east-west exploratory drift has the highest peak stresses of 8.8 and 13.0 MPa at
500 years, which is more than twice the peak stresses either within the east main drift (3.9 and
4.6 MPa at 1000 years) or the Calico Hills north-south drift (3.2 and 6.1 MPa at 2000 years). It
should be noted that the maximum absolute axial stress change in the Calico Hills main drift
undergoes a transition from tension to compression between 100 and 500 years; the minimum
absolute axial stress change occurs in the south shaft.

The peak vertical stresses, shown in Figures 5-5 and 5-12, represent a somewhat different
trend. It should be noted that the area of maximum stress also includes the central distress zone of
the main drifts. The east-west exploratory drift still has the highest peak stress change value of
3.5 MPa at 100 years for the 57-kW/acre ;ase. For the 80-kW/acre case, the east main drift has the
highest peak stress change of 4.7 MPa, also at 100 years. The Calico Hills main drift and north
shaft have the third and fourth highest peak values, respectively, for the 57-kW/acre case, but in
reversed order for the 80-kW/acre case. The maximum values in the Calico Hills main drift and
the north ramp ali peak at 500 years for both the 57- and 80-kW/acre thermal loadings. In contrast,
no obvious stress changes occur at the south ramp and Calico Hills south ramp.

Comparison of maximum horizontal shear stresses (A a_,y,)is shown in Figures 5-6 and 5-13.
The east main drift has the highest values of 1.3 and 1.9 MPa at 300 years, followed by the north
ramp with 1.1 and 1.6 MPa at 500 years.

For vertical shear stresses (A ay,e) (Figures 5-7 and 5-14), the Calico Hills north-south drift
has the highest value of 0.9 MPa at 100 years for the 57-kW/acre case. For the 80-kW/aere case,
the Calico Hills north-south and east-west exploratory drifts have the highest values of 1.1 MPa at
100 and 300 years, respectively. Figures 5-8 and 5-15 show peak vertical shear stresses (A _,.,,,),of
which the Calico Hills north-south drift has the highest values of 1.0 and 1.4 MPa at 300 years.

5.2.2 Comparison of Peak Values for Five Lines in Main Test Area

The positions of ali five lines within the Main Test Area can be found in Figure 4-4. The
maximum temperatures and stresses for each individual line are listed in Tables 5-19 through 5-23
for the 57-kW/acre case and Tables 5-24 through 5-28 for the 80-kW/acre case. Comparison of the
five lines is illustrated in Figures 5-16 to 5-22 for the 57-kW/acre case and Figures 5-23 to 5-29 for
the 80-kW/aere case.
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TABLE 5-19. PEAK VALUES OF TEMPERATURE/STRESSES FOR TEST LINE 1,
$7-KW/ACRE CASE

" i ii i

Year Temperature Ao= Ao. Ao,, Ao_ Ao_ Ao_ qP'
(*F) ('C) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa)

i .... ,i i i i ii ii

10 78 26 0.1 0.1 0.1 0.1 0.0 0.0
35 81 27 1.6 0.9 1.4 0.8 0.1 0.2
50 85 29 2.2 1.3 1.7 1.0 0.1 0.2

100 95 35 3.2 2.1 2.5 1.3 0.2 0.2
300 112 44 3.9 3.3 2.5 1.3 0.2 0.2
500 118 48 4.1 3.7 2.2 1.3 0.2 0.3

1000 122 50 3.8 3.9 1.5 1.2 0.2 0.3
2000 125 52 3.0 3.5 0.8 0.9 0.3 0.4
5000 113 45 1.9 2.2 0.3 0.6 0.2 0.4

10000 104 40 1.4 1.5 0.2 0.4 0.2 0.3
i i ii i i ,, ,,,m

TABLE 5-20. PEAK VALUES OF TEMPERATURE/STRESSES FOR TEST LINE 2,
57.KW/ACRE CASE

iii i i i i i i

Year Temperature Ao= AO. AO.. AO_, AO,. AOu
(*F) (*C) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa)

i ii i ii i i i

10 79 26 0.0 0.1 0.1 0.0 0_0 0.0
35 79 26 0.2 0.7 0.9 0.1 0.1 0.0
50 79 26 0.3 1.0 1.2 0.2 0.1 0.0

100 80 27 0.5 1.5 1.8 0.3 0.2 0.1
300 91 33 1.0 2.3 2.0 0.6 0.3 0.1
500 99 37 1.5 2.6 1.9 0.8 0.3 0.1

1000 109 43 2.1 2.8 1.5 0.9 0.4 0.1
2000 113 45 2.3 2.5 0.9 0.8 0.4 0.3
5000 106 41 1.6 1.6 0.4 0.5 0.3 0.3

10(_ 99 37 1.1 1.1 0.2 0.4 0.2 0.3
li

TABLE 5-21. PEAK VALUES OF TEMPERATURE/STRESSES FOR TEST LINE 3,
57-KW/ACRE CASE

ro,li illl i i i i

Year Temperature Ao_ Ao,, Ao,, Ao_, Ao,, Ao.
('F) (°C) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa)

10 78 26 0.2 0.1 0.2 0.1 0.0 0.0
35 78 26 1.0 0.2 1.3 0.6 0.0 0.1
50 78 26 1.5 0.2 1.8 0.8 0.0 0.1

100 84 29 2.4 0.3 2.5 1.2 0.1 0.2
300 102 39 3.6 1.5 2.5 1.3 0.1 0.3
500 112 44 4.0 2.1 2.2 1.2 0.1 0.3

1000 125 52 4.2 2.8 1.5 1.0 0.1 0.4
2000 127 53 3.6 2.8 0.8 0.7 0.2 0.4
5000 114 46 2.3 2.0 0.3 0.4 0.3 0.3

10000 104 40 1.5 1.3 0.2 0.3 0.3 0.2
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TABLE 5.22. PEAK VALUES OF TEMPERATURE/STRESSES FOR TEST LINE 4,
57.KW/ACRE CASE

i ii

O Year Temperature AO_ AO_, AO. AO_ AOj. AO."
(°F) (°C) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa)
i iii |li| ii i

10 78 26 0.1 0.2 0.2 0.1 0.0 0.0
35 86 30 0.6 1.9 1.3 0.8 0.3 0.1
50 91 33 1.0 2.4 1.6 1.0 0.3 0.1

100 100 38 2.0 2.8 1.9 1.3 0.2 0.1
300 110 43 3.1 2.9 2.2 1.3 0.2 0.1
500 116 47 3.5 3.0 2.1 1.3 0.2 0.2
I000 123 51 3.7 3.1 1.6 1.0 0.2 0.2
2000 124 51 3.3 2.8 0.9 0.6 0.3 0.3
5000 113 45 2.1 2.0 0.4 0.3 0.4 0.3

10000 104 40 1.4 1.4 0.2 0.2 0.3 0.2
i

TABLE 5-23. PEAK VALUES OF TEMPERATURE/STRESSES FOR TEST LINE 5,
57-KW/ACRE CASE

i me m,i

Year Temperature Ao." Ao. Ao.. Ao_ Ao_ Ao."
(*F) (*C) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa)

10 79 26 0.0 0.2 0.2 0.0 0.0 0.0
35 87 31 0.7 2.3 1.6 0.1 0.3 0.1
50 93 34 1.2 3.0 1.8 0.1 0.3 0.2

100 107 42 2.2 3.9 1.9 0.2 0.3 0.2
300 122 50 3.2 4.4 1.7 0.3 0.3 0.3

_b, 500 126 52, 3.5 4.4 1.6 0.4 0.3 0.3
IP' 1000 128 53 3.5 3.9 1.3 0.5 0.3 0.2

2000 123 51 3.0 3.1 0.8 0.5 0.4 0.1
5000 112 44 2.0 2.1 0.4 0.3 0.4 0.2

10000 103 39 1.4 1.4 0.2 0.3 0.3 0.2
li.

TABLE 5-24. PEAK VALUES OF TEMPERATURE/STRESSES FOR TEST LINE 1,
80-KW/A,CRE CASE

i J -- iii

Year Temperature Ao." Ao. Ao,, Ao_ Ao_, Ao..
(*F) (*C) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa)

10 78 26 0.0 0.1 0.1 0.1 0.0 0.0
35 81 27 2.1 1.2 1.9 1.0 0.1 0.2
50 86 2;0 2.9 1.7 2.4 1.4 0.2 0.3

100 102 39 4.3 2.9 3.5 1.8 0.2 0.3
300 125 52 5.3 4.7 3.5 1.9 0.3 0.4
500 134 57 5.5 5.4 3.1 1.8 0.3 0.5

1000 141 61 5.0 5.7 2.2 1.5 0.3 0.6
2000 144 62 3.9 5.1 1.1 1.1 0.4 0.7
5000 127 53 2.4 3.3 0.4 0.6 0.3 0.5

10000 113 ,45 1.7 2.2 0.2 0.4 0.3 0.4
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TABLE 5-25. PEAK VALUES OF TEMPERATURE/STRESSES FOR TEST LINE 2,
80-KW/ACRE CASE

Year Temperature Aa= Aa. A(_u Aa_ At_y, A(_,_
(*F) (*C) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa)

10 79 26 0.0 0.1 0.1 0.1 0.0 0.0
35 79 26 0.2 1.0 1.2 0.2 0.1 0.0
50 79 26 0.4 1.4 1.7 0.2 0.2 0.0

100 81 27 0.6 2.2 2.5 0.4 0.3 0.1
300 97 36 1.2 3.3 2.8 0.8 0.4 0.1
500 108 42 1.7 3.7 2.7 0.9 0.4 0.2

1000 122 50 2.6 4.0 2.2 1.1 0.5 0.3
2000 127 53 2.8 3.7 1.3 0.9 0.5 0.5
5000 117 47 2.0 2.4 0.5 0.6 0.4 0.5

10000 106 41 1.4 1.7 0.3 0.4 0.3 0.4

TABLE 5-26. PEAK VALUES OF TEMPERATURE/STRESSES FOR TEST LINE 3,
80-KW/ACRE CASE

i i i i

Year Temperature Aa= Aa. A(_,, Aa,_ Aaf, Aa..
(*F) (*C) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa)

10 78 26 0.2 0.1 0.2 0.1 0.0 0.0
35 78 26 1.4 0.3 1.8 0.9 0.1 0.1
50 79 26 2.0 0.3 2.5 1.2 0.1 0.2

100 86 30 3.4 0.3 3.5 1.6 0.1 0.3
300 112 44 5.1 1.8 3.5 1.8 0.1 0.4
500 127 53 5.8 2.6 3.1 1.7 0.2 0.4 lib

1000 144 62 6.1 3.5 2.2 1.4 0.3 0.5
2000 147 64 5.3 3.6 1.1 0.9 0.4 0.5
5000 129 54 3.4 2.4 0.4 0.5 0.5 0.4

100_ 114 46 2.2 1.6 0.2 0.4 0.4 0.3

TABLE 5-27. PEAK VALUES OF TEMPERATURE/STRESSES FOR TEST LINE 4,
80-KW/ACRE CASE

Year Temperature Aa= Aa. Aa,, Aa_ Aaf, Aa=
(*F) (*C) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa)

10 78 26 0.1 0.1 0.1 0.0 0.0 0.0
35 88 31 0.7 2.5 1.8 1.0 0.4 0.1
50 96 36 1.4 3.2 2.2 1.4 0.4 0.2

100 109 43 2.8 3.8 2.7 1.8 0.4 0.2
300 123 51 4.4 3.7 3.1 1.9 0.3 0.2
500 131 55 5.0 3.8 3.0 1.8 0.4 0.2

1000 142 61 5.4 3.9 2.3 1.5 0.4 0.3
2000 143 62 4.8 3.6 1.3 0.9 0.5 0.4
5000 127 53 3.1 2.5 0.5 0.5 0.5 0.4

10000 113 45 2.1 1.6 0.3 0.3 0.4 0.3

0
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TABLE 5-28. PEAK VALUES OF TEMPERATURE/STRESSES FOR TEST LINE 5,
80-KW/ACRE CASE

O Year Temperature Ac= A_yy Au,, Aa_ Aay, Aa_
(OF) (oc) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa)

.__t._ i i,i

10 78 26 0.0 0.0 0.0 0.0 0.0 0.0
35 89 32 0.9 3.0 2.2 0.1 0.4 0.2
50 99 37 1.6 4.0 2.4 0.1 0.5 0.2

100 119 48 3.2 5.3 2.6 0.3 0.5 0.3
300 140 60 4.6 5.9 2.4 0.5 0.5 0.3
500 146 63 5.0 5.8 2.3 0.5 0.5 0.3

1000 149 65 5.1 5.1 1.9 0.7 0.6 0.2
2000 142 61 4.4 4.0 1.2 0.6 0.7 0.2
5000 125 52 2.9 2.6 0.5 0.4 0.5 0.3

10000 112 44 2.0 1.8 0.3 0.3 0.4 0.2
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Figure 5-16. Comparisonof MaximumTemp¢ratumHistories at the Main Test L¢vel,
57-kW/acreCase
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Figure 5-17. Comparisonof Maximum Transverse Stress (Ao¢_)Histories at the Main Test
Level, 57-kW/acre Case
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Figure 5-18. Comparison of Maximum Axial Stress (Aay,y,)Histories at the Main Test Level,
57-kW/aere Case
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Figure 5-19. Comparison of Maximum Vertical Stress (Ac,,,,) Histories at the Main Test Level,
57-kW/acre Case
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Figure 5-20. Comparison of Maximum Shear Stress (Aa,e_,)Histories at the Main Test Level,
57-kW/aere Case
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Figure 5-21. Comparison of Maximum Shear Stress (Ao/,,) Histories at the Main Test Level,
57-kW/acre Case
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Figure 5-22. Comparison of Maximum Shear Stress (Ao,,_,)Histories at the Main Test Level,
57-kW/acre Case
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Figure 5-23. Compadson of Maximum Temperature Histodes at the Main Test L_vcl,
80-kW/acre Case
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Figure 5-24. Comparison of Maximum Transverse Stress (Ao_,_,)Histories at the Main Test
Level, 80-kW/acre Case
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Figure 5-25. Comparison of Maximum Axial Stress(Ao//) Historiesat the Main Test Level,
80-kW/acreCas¢
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Figure 5-26. Comparison of Maximum Vertical Stress (Ao,,,,) Histories at the Main Test Level,
80-kW/acre Case
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Figure 5-27. Compadson of Maximum Shear S_ess (Aory,)Histones at the Main Test Level,
80-kW/acre Case
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Figure 5-28. Comparisonof Maximum ShearStress (Ao/,.) Histories at theMain Test Level,
80-kW/acreCase
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Figure5-29. Comparisonof Maximum ShearStress (Ao,.r)Histories at the Main Test Level,
80-kW/acreCase
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The comparison of maximum temperatures for the five lines is given in Figures 5-16 and
5-23. Line 5, positioned in the center region, has the highest temperatures of 128°F (53°C) and
149°F (65°C) at 1000 years. The peak temperatures for the other four lines occur at 2000 years.
The minimum temperatures occur in line 2 with values of 113°F (45°C) and 127°F (53"C). q_

The peak normal stresses (Aa_,_,)shown in Figures 5-17 and 5-24 reflect similar characteristics
as the temperatm'e profiles. Line 3 appears to have the highest stresses of 4.2 and 6.0 MPa at
1000 years, followed closely by line 1 with peak values of 4.1 and 5.5 MPa at 500 years. Line 2
attains the lowest peak values of 2.3 and 2.8 MPa at 2000 years.

Line 5 leads the peak axial stresses (A ay.y,)with 4.4 and 5.9 MPa at 300 years, followed by
line 1 with 3.9 and 5.7 MPa at 1000 years (Figures 5-18 and 5-25). Line 3 appears to have the
lowest overall axial stresses. Line 3 tops the peak vertical stresses (A_,,,,) with 2.5 and 3.5 MPa
at 100 years (Figures 5-19 and 5-26). In terms of peak horizontal shear stresses (Figures 5-20 and
5-27), lines 1 and 4 both appear to be the highest. Line 5 maintains minimum peak values of 0.5
and 0.7 MPa at 1000 years. For vertical shear stresses, some lines fluctuate during certain periods
(Figures 5-21, 5-22 and 5-28, 5-29). The stress fluctuation reflects the transition between tension
and compression. Lines 5 and 1 have the highest value of Aay,,,,while line 1 has the highest Aa,,¢
with 0.4 and 0.7 MPa at 2000 years.

®
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6.0 CONCLUDING REMARKS

The preliminary evaluation of the potential thermomechanical effects on underground
structures caused by waste emplacement at Yucca Mountain provides information that may be
useful to future engineering design. This information can be briefly summarized in the following:

• The facilities subject to the highest thermomechanical effects are the east-west
exploratory drift, east main drift, and Calico Hills main drift all of which are relatively
close to the waste. The least affected areas will be the south ramp, Calico Hills south
ramp, and man and materials shaft. The maximum anticipated temperature change is
120"F(67"C), and the maximum anticipated horizontal stress change is 13.8 MPa, both
occur in the east-west exploratory drift.

• The maximum thermomechanical impact will apparently occur in most of the explor-
atory drifts in the neighborhood of 1000 years after waste emplacement. Significant
temperature and stress increases will not occur in most areas during the preclosure
period (0 to 100 years); however, the rate of the temperature and stress change is
substantially higher at locations close to the emplaced heat generating waste, as in the
case of the east-west exploratory drift.

• The emplacement configuration considered in this study was proposed and selected by
the ESF alternative study (SNL, 1991). Temperatures and stresses induced by the
heat-generating waste of this configuration are predicted to be uniformly distributed in
the vicinity of the storage area. The problem of local stress concentration and uneven
temperature gradient using this configuration tend to be less severe than using the
SCP-CDR layout.

The repository layout analyzed is not a mature design and will be refined or modified as other
O related designs and strategies emerge. Waste age, emplacement configuration, drift spacings, and

APD could all be modified before final design. Details of the exploratory layout such as standoff
distances, area, positioning of ramps and shafts, and slopes and elevations of drifts will affect the
resulting temperatures and stress changes in the repository. The present analysis provides estimates
of temperature and stress change for two potential APDs and can be used in the decision making
process for detailed design of repository components and for some performance assessment studies.
Ultimately, reanalysis of the final repository layout will be required.

6-1
4



7.0 REFERENCES

Asgian, M. I., C. M. St. John, M. P. Hardy, and R. R. Goodrich (1991). "Documentation andVerification of SRES3D, Version 4.0." SAND89-7023, Sandia National Laboratories,
Albuquerque, NM. (NNA.911118.0083)

DOE (U.S. Department of Energy) (1988). "Site Characterzafion Plan, Yucca Mountain Site,
Nevada Research and Development Area, Nevada." DOE_W-0199, Chapter 8.
(HQO.881201.0002)

DOE (U.S. Department of Energy) (1991)o "Yucca Mountain Project Reference Information Base."
YMP/CC-0002. Version 4.0, Revision 4.0, Nevada Operations Office, Yucca Mountain, NN.
(NNA.920131.0196)

Hardy, M. P. and S. J. Bauer (1991). "Drift Design Methodology and Preliminary Application for
the Yucca Mountain Site Characterization Project." SAND89-0837, Sandia National Lab-
oratories, Albuquerque, NM. (NNA.910808.0105)

Johnstone, J. K., R. R. Peters and P. F. Gnirk (1984). "Unit Evaluation at Yucca Mountain Nevada
Test Site: Summary Report and Recommendation." SAND83-0372, Sandia National Lab-
oratories, Albuquerque, NM. (2qNA.870519.0052)

Nowacki, W. (1962). Thermoelasticiw, pp. 389-390. Addison-Wesley Publications, Inc., Reading,
Massachusetts. (NNA.910813._)07)

Richardson, A. M. (1990). "Preliminary Shift Liner Design Criteria and Methodology Guide."
SAND88-7060, Sandia National Laboratories, Albuquerque, NM. (NNA.900305.0001)

O Ryder, "Equivalent Energy Density Concept: Preliminary aE. (1992). A Reexamination of

Technique for Equating Thermal Loads." SANDgl-1493, Sandia National Laboratories,
Albuquerque, NM. (NNA.920710.0123)

SNL (Sandia National Laboratories) (1987). "Nevada Nuclear Waste Storage Investigations Project,
Site Characterization Plan Conceptual Design Report," compiled by H. R. MacDougall, L. W.
Scully and, J. R. Tillerson. SAND84-2641, Sandia National Laboratories, Albuquerque, NM.

(31N1.880902. 0014-. 0019)

SNL (Sandia National Laboratories) (1991). "Yucca Mountain Site Characterization Project,
Exploratory Studies Facility Alternatives Study: Final Report," edited by A. W. Dennis.
SAND91-0025, Volume 1, Sandia National Laboratories, Albuquerque, NM.
(WNA.910712.0001)

O
7-1



APPENDIX A

PDM 75.25--New 3-D Far-Field Repository
Thermomechanical Calculations
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PROBLEM DEFINITION:

The purpose of this set of calculations is to provide 3-D linear elastic,

homogeneous far-fleld thermal and thermomechanical values for temperature,

stress, and strain for the Exploratory Studies Facillty (ESF). The
calculations are to simulate thermal and thermomechanical conditions over a

lO,O00-year period, following the time sequenced emplacement of waste in

the repository. The far-fleld model will not include any exploratory

excavations although time-dependent outputs will be required at selected
excavation locations.

The results will serve the primary purpose of providing an estimate of the

temperatures, strains, and stresses expected along and in the vicinity of

potential exploratory excavations. This will establish loading conditions

which will be imposed on the facility excavations.

The details necessary to perform the 3-D elastic far-fleld modeling and the
desired products of the effort follow.

DESCRIPTION OF PROBLEM:

The problem description to be developed for this PDM is similar to the

problem solved and the philosophical approach for PDM 75-13 (and

revisions), and the subject of SLTR90-7005. That work was developed and

completed for the same purpose as the current work, this PDM is to use an

updated repository layout, ESF, etc., as described below.

The geometries necessary to do the analyses are illustrated in the attached

figures transmitted to SNL 10/18/91 from Raytheon Services Nevada (RSN),

(memo Bullock to Blejwas, dated 10/18/91 with 3 figures). The figures are

identified by their titles: (I) Repository General Layout and Plan Using

Revised Repository North Entry Point with Elevation at 3240.00', (2). ESF

General Arrangement- Subsurface Access General Arrangement- PLAN, and (3)

YMP Repository/Malt Test Area Boundary Interface - Plans and Cross sections

Using Revised Repository North Entry Point with Elevation at 3240.00'. In

addition to these figures, two additional figures are presented (4) which

provides the Emplacement Schedule tile and location in years and was

developed by the analyst in conjunctlonwith the PI, and (5) which provides

Details of Repository locations, slopes aTMI grades and was developed

following conversations with RSN staff. These 6tawing will aid in

selecting the areas in which output will be presen_e_.

The panels are to be sequentially loaded and modeled using rim,lte length
line heat sources.

O
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SPECIFIC GOALS OF ANALYSIS:

The specific goals of the analyses are to provide complete temperature,
stress, and strain states at 0, 10, 35, 50, 100, 300, 500, 1000, 2000,

5000, and 10,000 years after waste emplacement throughout the test horizon

and along the accesses. In locations where maximum temperature and stress
states have been achieved beyond 100 years, output is not required (for

reporting) beyond the time that the maxima occurred. However, in ali cases
output will be required to 100 years. The purpose is to provide maximum
temperature and stress states for various locations in the ESF. This data
should be presented in both table and graph form. The graphs will not be
limited to but should include the contour plots of temperatures and
stresses at the ESF horizon, the ESF accesses, and other planned

underground openings of interest.

This information will be presented in the form of a SAND report, if the
information is considered valuable to the Project upon its completion. This
determination will be made by the Pl.

REVIEW REQUIREMENTS:

An analysis-revlew, as specified in QAIP 2-4, is necessary for this

analysis because it is quality affecting. This review will consist of one
or two interim reviews by the PI, followed by a review by a committee upon

the analysis completion. Please inform the PI of the analysis completion
and the review meeting will be scheduled. Technical reviews will also be

done, as required by DOP 6-2, for the SAND report that documents the

analysis performed in this PDM.

rYP_ OF _ALySlS:

The STRES3D code (Asgian et al, 1991), Version 4.0, will be used. The cod_

will exercise one or more of the heat elements available to adequately

simulate the 3-D geometry. The ESF excavations are not modeled, however

the imposed stress, strain, and temperature state at the excavation

locations is requested as output. Boundary elements will simulate the

repository surface.

OA REOUIREMENTS:

The analyses are to be performed as quality affecting. The requirements to

perform the analyses are documented in the current Agaplto Quality

Assurance Program Plan and implementing procedures. According to SNL QAIP

3-2, the principal investigator (SNL) must certify the codes being used as

appropriate for the analyses being performed. Code requirements for

quality affecting analyses are documented in QAIP 3-2. This requires
documentation of the code in accordance with QAIP 3-2. The required

documentation of the STRES3D code in accordance with QAIP 3-2 fs complete.
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ASSUMPTIONS:

The model will assume linear elastic and isotropic behavior. A homogenous

medium (TSw2) is assumed as the repository domain.

LOADING:

Thermal loading due to the waste and loading that reflects the in situ

stress states at the repository horizon will be incorporated into the

modeling.

_AD DESCRIPTION:

Both in situ and thermal loading with design-basis areal power densities of

approximately 57 kW/acre and 80 kW/acre will be used.

Waste Characteristics: These values were obtained from E. E. Ryder of

Division 6313. One of Mr. Ryder's many duties includes determination of
these characteristics. It should be understood that these values are not

"fixed" by the Project. These values will, however, allow for these
calculations to be made in a referencable manner such that another can

trace and replicate the procedures followed.

Decay Curve Characteristics

ai bi

19.8996 0.392555E "4

18.0297 0.442918E "3

174.893 0.194302E "2

1068.40 0.216836E "I

, 468.152 0.165957

7423.13 0.571832

Areal Power Density: 80 kW/acre scaled to 72.5 kW/acre, and

57 kW/acre scaled to 51.6 kW/acre.

Average Age: 30 years out of reactor

Emplacement Drift Spacing 25,4 m ffi83.3 ft (center to center)

Standoff distance from mains 200 ft ffi61.0 m
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0
MATERIAL PROPERTIES DATA"

The thermal and mechanical properties used in the study are listed below
from the current RIB or referenced to the current RIB values (Version 4)

except as noted.

THERMAL AND MECHANICAL PROPERTIES

Please note that the rock mass is modeled as a single homogeneous,

isotropic elastic medium. The rock mass properties used for the analysis
are values for the TSw2 even though the area consists of a layered sequence

of rocks.

In Situ Stress State - see definition in RIB

Surface Elevation (avg.) 4500 ft = 1372 m *I

Surface temperature, F 65.7 = 18.7 C *2

(scaled from USW G-4 data in RIB)

Thermal gradient 0.0971 F/ft = 0.177 C/m *3

(scaled from USW G-4 data in RIB)

Thermal Diffusivity 333.2 ft2/yr ffi30.97 m2/yr
calculated from values in the RIB *4

Young's Modulus, 1.943E 6 psi = 13,400

(Rock mass quality 3, please see Hardy & Bauer, 1991)
Poisson's Ratio (avg) 0.25 *5

Coefficient of Thermal Expansion 25-50°C 5.05E'6/°F = 9.1E'6/°C

*i- Estimated mean elevation of surface at proposed repository location as

determined from USGS Busted Butte Quad. Map.

*2- From straight line fit to USW G-4 temperature vs depth data in RIB.
*3- See *2.

"4- Computed from saturated thermal conductivity divided by thermal

capacitance for TSw2 unit, using mean of thermal capacitance for TSw2 from
25 to 94°C.

"5- Average value from three holes given in RIB.

BOUNDARY CONDIT!ON_:

Semi-infinite half space.

MESH CONSTRAINTS :

Not Applicable.
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APPENDIX B

Temperature and Stress Change Prof'fles for the East Main Drift
for 57- and 80-kW/acre Equivalent APD



B.1 EAST MAIN DRIFT

O
Three north-south main access drifts are planned through the center of the repository layout

(Figure 3-1). The east main drift, located on the east side, will be constructed first as part of the

exploratory drifting for the site characterization (Figure 4-4 of the main text). Figures B- 1 and B-2

indicate the temperature profiles along the east main drift from 10 to 10,000 years after the start of

waste emplacement. The starting point of the plots, point A, is to the south of the repository area.

Waste is emplaced to within 2683 ft of point A for the 57-kW/acre case and 4132 ft for the

80-kW/acre case. To the north, the Main Test Area is encountered at 8590 ft, and the first waste

is emplaced at the end of the east main at 10,640 ft from point A. Noticeable temperature changes

begin after 35 years from the start of waste emplacement.

Temperatures increase significantly after 100 years until the maximum temperatures are

reached at 1000 years. Afterwards, the temperatures drop rapidly. For the 57-kW/acre case as the

temperature drops at'ter 2000 years, the east-west exploratory drift no longer influences the tem-

perature profile. O
The maximum value for the induced horizontal compressive stresses (A c_,_,)(perpendicular

to the axis of the drift) is reached at 500 years (Figures B-3 and B-4). Small tensile stress changes

in the axial stress*,s (A _y,/) occur adjacent to the emplacement drifts containing waste (Figures B-5

and B-6). The change in vertical stresses (Figures B-7 and B-8) appears to occur at earlier times

than the horizontal stresses. The maximum change of the vertical stress at 35 yeaxs is almost 50%

of the maximum overall value, which is at 100 years. Changes in shear stresses are depicted in

Figures B-9 to B-14. The shear in the horizontal direction (Aaf,y,) (Figures B-9 and B-10) is sig-

nificant at the borders of the heated area. Vertical shear stresses (Figures B- 11 and B- 12 for Afly,,,

and Figures B-13 and B-14 for A_,,_,)are distributed more uniformly along the drift.

A
k.J=aa
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POWER DENSITY: 57KW/ACRE, EAST MAIN DRIFt

Date plotted: 6/9/92
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Figure B-1. Temperature Profile for the East Main Drift, 57-kW/acre Case
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POWER DENSITY: 80KW/ACRE, EAST MAIN DRIFT
Date plotted: 6/11/92
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FigureB-2. TemperatureProfile for theEast Main Drift, 80-kW/acre Case
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POWER DENSITY: 57KW/ACRE, EAST MAIN DRIFT

Date plotted: 6/9/92
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Figure B-3. Transverse Stress (Aa_,_,)Profile for the East Main Drift, 57-kW/acreCase
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POWER DENSITY: 80KW/ACRE, EAST MAIN DRIFT

Date plotted: 6/11/92
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Figure B-4. Transverse Stress (Ao_,_,)Profile for the East Main Drift, 80-kW/acre Case
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POWER DENSITY: 57KW/ACRE, EAST MAIN DRIFt
Date plotted: 6/9/92
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Figure B-5. Axial Stress (Acry,y,)Profile for the East Main Drift, 57-kW/acre Case
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POWER DENSITY: 80KW/ACRE, EAST MAIN DRIFT

Date plotted: 6/11/92
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Figure B-6. Axial Stress (A%,y,)Profile for the East Main Drift, 80-kW/acre Case
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POWER DENSITY: 57KW/ACRE, EAST MAIN DRIFT

Dam plotted: 6/9/92
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Figure B-7. Vertical Stress (Aan,) Profile for the East Main Drift, 57-kW/acre Case
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POWER DENSITY: 80KW/ACRE, EAST MAIN DRIFT O

Date plotted: 6/11/92

12000.

lOOO0.

Figure B-8. Vertical Stress (At_,,,,)Profile for the East Main Drift, 80-kW/acre Case
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POWER DENSITY: 57KW/ACRE, EAST MAIN DRIFT

Date plotted: 6/9/92
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Figure B-9. Shear Stress (Aoey,)Profile for the East Main Drift, 57-kW/acre Case
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POWER DENSITY: 80KW/ACRE, EAST MAIN DIF

Date plotted: 6/11/92
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Figure B-10. Shear Stress (Acrz,y,)Profile for the East Main Drift, 80-kW/acre Case
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POWER DENSITY: 57KW/ACRE, EAST MAIN DRIFT

Date plotted: 6/9/92

12000.

10000.

_., 8000.

6000.

r_

"_ 4000.

2000.

O. : : : _ "_-.... : : i : ' ' i : " " i " : " i
-0.40 -0.20 0.00 0.20 0.40 0.60 0.80

ShearstressSyz(MPa)

10Years SM10.OUT _ 500Yea_ SMS00.OUT35 Years SM35.OUT i 1000 Ye,m's SMI000.OUT

SM2000.OUT
50 Ymas SMSO.OUT _e_100Years SMI00.OUT SMS000.OUT
300Years SM300.OUT 10000Years SM10000.OUT

FigureB-1I. ShearStress(Ao¢,,)ProfilefortheEastMainDrift,57-kW/acreCase
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POWER DENSITY: 80KW/ACRE, EAST MAIN DRIFT
Date plotted: 6/11/92
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Figure B-12. Shear Stress (Ao/,,) Profile for the East Main Drift, 80-kW/acre Case
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POWER DENSITY: 57KW/ACRE, EAST MAIN DRIFT

Date plotted: 6/9/92
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Figure B-13. Shear Stress (At_,,i) Profile for the East Main Drift, 57-kW/acre Case
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POWER DENSITY: 80KW/ACRE, EAST MAIN DRIFT

Date plotted: 6/11/92
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FigureB-14.ShearStress(Aarr,)ProfilefortheEastMainDrift,80-kW/acreCase
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POWER DENSITY: 57KW/ACRE, EAST MAIN DRIFF
Date plotted: 11/23/92
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Figure B-15. Maximum Principal Stress (A_mJ l_'ofile for the East Main Drift, 57-kW/acre
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Figure B-16. Maximum Principal Stress (Ao_,x) Profile for the East Main Drift, 80-kW/acre
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Figure B-17. Minimum Principal Stress (Ao,_) Profile for the East Main Drift, 57-kW/acre
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APPENDIX C

Temperature and Stress Change Profiles for the East-West Exploratory Drift
for 57- and 80-kW/acre Eqmvalent APD
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C.1 EAST-WEST EXPLORATORY DRIFT

The location for the east-west exploratory drift is shown in Figure 4-4 of the main text. The rb,
changes in temperatures and stresses are expected to be substantial in this drift because of close
proximity to heat sources. The temperatures start to change dramatically after waste emplacement
is completed (35 years, Figures C-1 and C-2). Peak values are reached at 500 years.

The maximum change in transverse horizontal stresses (Aoex,) occurs at 300 years for the
57-kW/acre case and at 100 years for the 80-kW/acre case (Figures C-3 and C-4). Note that the
stress changes in the west side of the east-west drift are similar to the changes to the east side. The
induced axial stress profile (Aoy0j) appears to be similar to the induced transverse stress profile,
with the highest stress period for ali stresses at 300 years (Figures C-5 and C-6). The highest vertical
stress changes appear at the intersection of the east-west experimental drift and the east main drifts.
Excluding the intersection location, the maximum induced compressive stresses (Figures C-7 and
C-8) occur at the east end of the drift at 35 years. For horizontal shear stresses (Figures C-9 and
C-10), a different trend for the 57- and 80-kW/acre cases may be observed. The trend appears
similar for vertical shear stresses (Figures C- 11 through C- 1a).
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Q POWER DENSITY: 57KW/ACRE, E-W EXP DRIFt
Date plotted: 6/9/92
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Figure C-1. Temperature Profile for the East-West Exploratory Drift, 57-kW/acre Case
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Figure C-2. Temperature Profile for the East-West Exploratory Drift, 80-kW/acre Case
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POWER DENSITY: 57KW/ACRE, E-W EXP DRIFT
Date plotted: 6/9/92
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Figure C-3. Transverse Stress (Ao_,r)Profile for the East-West Exploratory Drift, 57-kW/acre
Case
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POWER DENSITY: 80KW/ACRE, E-W EXP DRIFr e
Date plotted: 6/11/92
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Figure C-4. Transverse Stress (Aax,,,)Profile for the East-West Exploratory Drift, 80-kW/acre
Case
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O POWER DENSITY: 57KW/ACRE, E-W EXP DRIFF
Date plotted: 6/9/92
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Figure C-5. Axial Stress (Ao//) Profile for theEast-West Exploratory Drift, 57-kW/acre Case
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POWER DENSITY: 80KW/ACRE, E-W EXP DRIFT
Date plotted: 6/11/92
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Figure C-6. Axial Stress (Ao//) Profile for the East-WestExploratory Drift, 80-kW/ac:.,eCase
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O POWER DENSITY: 57KW/ACRE, E-W EXP DRIFT
Date plotted: 6/9/92
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Figure C-7. Vertical Stress (Ao,,,,)Profile for the East-West Exploratory Drift, 57-kW/acre
Case
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Figure C-8. Vertical Stress (Aa,,,,)Profile for the East-West Exploratory Drift, 80-kW/acre
Case
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b' POWER DENSITY: 57KW/ACRE, E-W EXP DIFT
Date plotted: 6/9/92

Figure C-9. Shear Stress (At_,y,)Profile for the East-West Exploratory Drift, 57-kW/aere Case
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POWER DENSITY: 80KW/ACRE, E-W EXP DRIFF O
Date plotted: 6/11t92
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Figure C-10. Shear Stress (A_d/) Profile for the East-West Exploratory Drift, 80-kW/acre
Case
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POWER DENSITY: 57KW/ACRE, E-W EXP DRIFT
Date plotted: 6/9/92
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Figure C-11. Shear Stress (Ao/,,) Profile for the East-West Exploratory Drift, 57-kW/acre
Case
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POWER DENSITY: 80KW/ACRE, E-W EXP DRIFT
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Figure C-12. Shear Stress (At_y,_,)Profile for the East-West Exploratory Drift, 80-kW/acre
Case
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POWER DENSITY: 57KW/ACRE, E-W EXP DRIFT
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Figure C-13. Shear Stress (Ao,,.,)Profile for the East-West Exploratory Drift, 57-kW/acre
Case
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POWER DENSITY: 80KW/ACRE, E-W EXP DRIFT
Date plotted: 6/11/92

000.

i iii

6000. _ "

2000. )
)

I

0.- " : " i " : : ...... ' " " " ' "
-1.00 43.50 0.00 0.50 1.00 1.50 2.00

Shear stress Szx (MPa)

_ IOY_ WMI0.OUT _ .500Y_'a WM500.OUT

__ wmooo.o_y_ WM35.8_ WMIOOO.OUT

300Years • I0000Years WMI0000.OUT

Figure C-14. Shear Stress (Ao,,z)Profile for the East-West Exploratory Drift, 80-kW/aere
Case
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O POWER DENSITY: 57KW/ACRE, E-W EXP DRIFF
Date plotted: 11/23/92
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Figure C-15. Maximum Principal Stress (Aom,) Profile for the East-West Exploratory Drift,
57-kW/aere Case
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POWER DENSITY: 80KW/ACRE, E-W EXP DRIFI O
Date plotted: 11/23/92
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Figure C-16. Maximum Principal Stress (Ao'_,_)Profile for the East-West Exploratory Drift,
80-kW/acre Case
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O POWER DENSITY: 57KW/ACRE, E-W EXP DRIFT
Date plotted: 11/23/92
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Figure C- 17. Minimum Principal Stress (Ao,m) Profile for the East-West Exploratory Drift,
57-kW/acre Case
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POWER DENSITY: 80KW/ACRE, E-W EXP DRIFT
Date plotted: 11/23/92
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Figure C-18. Minimum PrincipalStress (Ac_._)Profile for the East-WestExploratoryDrift,
80-kW/acreCase
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APPENDIX D

Temperature and Stress Change Profiles for the Calico Hills Level
for 57- and 80-kW/acre Equivalent APD
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D.1 CALICO HILLS LEVEL

The CalicoHills north-south drift is situated directlybelow theeast maindrift, with an average
difference in elevation of 538 ft between the two levels (Figures 3-4 and 4-4 of the main text). As V

expected, the magnitudes of temperature and stresses are lower than those in the Main Test Level
due to greater distance from the heat sources.

Temperatures change very slowly within the preclosure period (0 to 100 years, Figures D-1
and D-2); however, they begin to increase rapidly thereafter and reach maximum values at
2000 years.

The stresses calculated at this level are based on the TSw2 unit thermomechanical properties
becauseof the assumption of uniform thermomechanical properties in STRES3D. The Calico Hills
nonwelded tufts have a significantly lower elastic modulus than the TSw2 unit and, hence, the
thermally induced stres_s in the Calico Hills Level will be lower than shown here. A reasonable
approximation of the thermal stresses can be calculated from the strain changes using the Calico
Hills elastic properties.

Normal stresses (Ao_¢)depict a similar trend as temperatures (Figures D-3 andD-4). Stresses
become slightly tensile near the south border. The maximum stress changes which occur at 1000
years for the 57-kW/aere case and at 2000 years for the 80-kW/acre case are approximately two-
thirds of those for the east maindrift. The stress profiles for Aoy,y,are of interest (Figures D-5 and
D-6). During the pre,closure period (0to 100years), stresses are mostly tensile below the repository
area. At 300 years after emplacement, stresses almost vanish in the area, then increase steadily
until reaching a maximum value at 2000 years before declining. Vertical stresses (Ao,,,,)appear
to be a little peculiar (Figures D-7 andD-8). Dominant peak stresses are situated in the middle of
the drift accompaniedby two smallpeak stresses oneach side. Themaximum verticalstresschanges
arereachedatabout300 years, thenbegin to declinerapidly. StressesnearlydisappearatS000 years, dh,
The horizontal shear stress profilesare shown in Figures D-9 and D-10. Vertical shear stresses are
given in Figures D-11 through D-14. The shear stresses attain their maximum values at 300 to
500 years.
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Figure D- 1. Temperature Profile for the Calico Hills Level, 57-kW/acre Case
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FigureD-2. Temperature_ fortheCalicoHillsLevel,80-kW/acreCase
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POWER DENSITY: 57KW/ACRE, C-H EXP DRIFT
Date plotted: 6/9/92
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Figure D-3. Transverse Stress (Ao¢i) Profile for the Calico Hills Level, 57-kW/acre Case
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Figure D-4. Transverse Stress (Aoei) Profile for the Calico Hills Level, 80-kW/acre Case
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Figure D-5. Axial Stress (Acry,/)Profile for the Calico Hills Level, 57-kW/acre Case
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POWER DENSITY: 80KW/ACRE, C-H EXP DRIFT
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FigureD-6. AxialStress(Aay,i)ProfilefortheCalicoHillsLevel,80-kW/acreCase
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Figure D-7. Vertical Stress (Ao,,,,)Profile for the Calico Hills Level, 57-kW/acre Case
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POWER DENSITY: 80KW/ACRE, C-H EXP DRIFt

Date plotted: 6/11/92

12000.

10000.

8000.

r_

6000.

*wnl 4000 *

000o

o

-2.00 -1.60 -1.20 -0.80 -0.40 -0.00 0.40

Normal stress Szz (MPa)

10 Years HIL10.OUT Z 500 Years HILS00.OUT35 Years HIL35.OUT i 1000 Years HIL1000.OUT

50 Years HILS0.OUT 2000 Years HIL2000.OUT
100 Years HIL100,OUT 5000 Years HILS000.OUT
300 Years HIL300.OUT 10000 Years HILI0000.OUT

Figure D-8. Vertical Stress (Aa,._,)Profile for the Calico Hills Level, 80-kW/acre Case
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Figure D-9. Shear Stress (Ac_ey,)Profile for the Calico Hills Level, 57-kW/acre Case
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POWER DENSITY: 80KW/ACRE, C-H EXP DRIFT
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Figure D-10. ShearStress (Aa_ey,)Profile for theCalicoHills Level, 80-kW/acreCase
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Date plotted: 6/9/92

12000. -

10000 t d

8000.

"_ 4000.

2000.

e

-1.60 -1.20 -0.80 -0.40 -0.00 0.40 0.80

Shearstress Syz(MPa)

10Yearn HILI0.OUT 7 500 Years HILS00.OUT35 Yem,s HIL35.OUT i I000 Years HILIOOO.OUT

50 Ye,srs HILS0.OUT 2000 Years HIL2000.OUT
I00 Years HILI00.OUT 5000 Years HILS000.OUT
300 Yem_ H]L300.OUT 10000 Years HIL10000.OUT

Figure D-11. Shear Stress (Ao/e) Profile for the Calico Hills Level, 57-kW/acre Case
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POWER DENSITY: 80KW/ACRE, C-H EXP DRIFT
Date plotted: 6/11/92
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Figure D-12. Shear Stress (A%,_,)Profile for the Calico Hills Level, 80-kW/acre Case
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Figure D-13. Shear Stress (A_,,e)Profile for the Calico Hills Level, 57-kW/acre Case
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Figure D-15. Maximum Principal Stress (Ao.,=) Profile for the Calico Hills Level,
57-kW/aere Case
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Figure D-16. Maximum Principal Stress (Ac_)Profile for the Calico Hills Level,
80-kW/acre Case
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Figure D-17. Minimum Principal Stress (Ao_n) Profile for the Calico Hills Level,
57-kW/acre Case
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Figure D-18. Minimum Principal Stress (Ao._) Profile for the Calico Hills Level,
80-kW/aere Case
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APPENDIX E

Temperature and Stress Change Profiles for the North Ramp
for 57- and 80-kW/acre Eqmvalent APD
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E.1 NORTH RAMP

The north ramp begins at the end of the straight portion of the east main access drift, curves
initially, then straightens until connecting to the north portal. The plots in this appendix show the
temperature and stress changes from point D, which is the transition point from the east main access
drift (see Figure 4-4 in the main text) to the north portal. The curved portion of the ramp ends at
800 ft from point D.

Figures E-1 and E-2 show the temperature profiles along the ramp for times ranging from 10
to 10,000 years after emplacement. Temperatures start to increase after 100 years of emplacement,
especially in the curved portion. Maximum temperatures are reached at 2000 years. Basically, the
north portal is unaffected during the entire period.

For the transverse stresses (A Cdd), tension appears along the curved ramp before 2000 years.
Maximum tension is reached in the middle of the curved ramp. Compared with the stresses in the
straight ramp, significant changes in stress at the curved ramp may be identified from the rest of
the stress components (Figures E-3 through E-14). Maximum values occur from 300 (Ac,,,,) to
5000 (A c/,,) years.
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Figure E-1. Temperature Profile for the North Ramp, 57-kW/acre Case
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POWER DENSITY: 80KW/ACRE, NORTH RAMP
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FigureE-2. TemperatureProfile for the North Ramp,80-kW/acreCase
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Figure E-3. TransverseStress (Aaec) Profile for the North Ramp, 57-kW/acre Case
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Figure E-4. TransverseStress (Aoee) Profile for the North Ramp, 80-kW/acre Case
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Figure E-5. Axial Stress (Acy,y,)Profile for the North Ramp, 57-kW/acre Case
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POWER DENSITY: 80KW/AeRE, NORTH RAMP
Date plotted: 6/11/92

8000. "

E

6000.

F

D-0.
-1.o0 o.00 1.00 2.00 3.00

Normal stress Syy (MPa)

muo.otrr_ i

35 Y_,rs
50 Y_ _ 2000 Years NR2000.OUT

_.OUT_Y_ :8N _y___,,,, out

Figure E-6. Axial Stress (Aaf,/) Profile for the North Ramp, 80-kW/acre Case
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Figure E-7. Vertical Stress (Act,,,,)Profile for the North Ramp, 57-kW/acre Case
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Figure E-8. Vertical Stress (Ao,,,,)Profile for the North Ramp, 80-kW/acre Case
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POWER DENSITY: 57KW/ACRE, NORTH RAMP
O Date plotted: 6/9/92
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Figure E-9. Shear Stress (Ao_,/)Profile for the North Ramp, 57-kW/acre Case
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Date plotted: 6/11/92 O
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Figure E-10. Shear Stress (Acre/)Profile for the North Ramp, 80-kW/acre Case
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Figure E-11. Shear Stress (A%,,,)Profile for the North Ramp, 57-kW/acre Case
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Figure E-12. Shear Stress (Ao/,,) Profile forthe North Ramp, 80-kW/acre Case
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Figure E-13. Shear Stress (Acr,,_,)Profile for the North Ramp, 57-kW/acre Case
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Date plotted: 6/11/92
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Figure E-14. Shear Stress (Aaec) Profile for the North Ramp, 80-kW/aere Case
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Figure E-15. Maximum Principal Stress (A_,_d)Profile for the North Ramp, 57-kW/acre Case
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Figure E-16. Maximum Principal Stress (AO_,x)Profile for the North Ramp, 80-kW/acre Case
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Figure E-17. Minimum Principal Stress (AOm_)Profile for the North Ramp, 57-kW/acre Case
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Figure E-18. Minimum Principal Stress (Aaf) Profile for the North Ramp, 57-kW/acre Case
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APPENDIX F

Temperature and Stress Change Profiles for the South Ramp
for 57- and 80.kW/acre Equivalent APD
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F.1 SOUTH RAMP

The location for the south ramp is shown in Figure 4-4 of the main text. The analysis output
for the south ramp is presented in Figures F-1 through F-14, in which the data is plotted from the
south portal down to connect with the southern portion of the east main access drifts. The curved
portion of the ramp begins at 7935 ft from the south portal. There is no change in temperature
throughout the south ramp until 2000 years for the 57-kW/acre case (Figure F-1) and 5000 years
for the 80-kW/aere case (Figure F-2). The maximum temperature is reached at 10,000 years. There
are essentially no influential temperature changes at the south portal.

Due to the south ramp's relatively distant position from heat sources, stress changes are
insignificant (Figures F-3 through F- 14). The maximum stresses occur between 1000 and 5000 years
after emplacement.
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Figure F-1. Temperature Profile for the South Ramp, 57-kW/acre Case
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FigureF-2. TemperatureProirflefor the South Ramp,8G-kW/acreCase
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Figure F-3. Transverse Stress (Aa_,_,)Profile for the SouthRamp, 57-kW/aere Case
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Figure F-4. Transverse Stress (Ao_,i)Profile for the South Ramp, 80-kW/aere Case
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Figure F-5. Axial Stress (At_/y,)Profile for the South Ramp, 57-kW/acre Case
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Figure F-6. Axial Stress (A%,:/)Profile for the SouthRamp, 80-kW/acre Case
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Figure F-7. Vertical Stress (ha,,,,) Profile for the South Ramp, 57-kW/acre Case
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Figure F-8. Vertical Stress (Act,,,,)Profile for the South Ramp, 80-kW/acre Case
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Figure F-9. Shear Stress (Acs¢_,)Profile for the South Ramp, 57-kW/acre Case
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Figure F-10. Shear Stress (Acr_,/)Profile for the South Ramp, 80-kW/acre Case
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Figure F-11. Shear Stress (Acy/,,)Profile for the South Ramp, 57-kW/acre Case
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Figure F-12. Shear Stress (Aa/,,) Profile for the South Ramp, 80-kW/acre Case
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Figure F-13. Shear Stress (At_:,,,)Profile for the South Ramp, 57-kW/acre Case
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Figure F-14. Shear Stress (Aa:,_,)Profile for the South Ramp, 80-kW/acreCase
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Figure F-15. Maximum Principal Stress (Ao,_) Profile for the South Ramp, 57-kW/aere Case
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POWER DENSITY: 80KW/ACRE, SOUTH RAMP O
Date plotted: 11/23/92
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Figure F-16. Maximum Principal Stress (Ao._) Profile for the South Ramp, 80-kW/acre Case
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POWER DENSITY: 57KW/ACRE, SOUTH RAMP

Date plotted: 11/23/92
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Figure F-17. Minimum Principal Stress (AOs) Profile for the South Ramp, 57-kW/acre Case
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POWER DENSITY: 80KW/ACRE, SOUTH RAMP
Date plotted: 11/23/92
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Figure F-18. MinimumPrincipal Stress (Ao,m) Profile for the South Ramp, 80-kW/acre Case
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APPENDIX G

Temperature and Stress Change Profiles for the Calico Hills North Ramp
for 57- and 80-kW/acre Equivalent APD
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G.I CALICO HILLS NORTH RAMP

The Calico Hills north ramp intersects the north ramp at point F (Figure 4-4 of the main text),
ramps down to the north for 2374 ft, then rotates through 180" to proceed south to the main
exploratory drift at the Calico Hills Level (point D). The temperatures (Figures G- 1 and G-2) start
to increase after 300 years near point D at the Calico Hills Level. The maximum temperatures occur
at 5000 years at the Calico Hills Level. Temperatures at 10,000 years do not decline uniformly
throughout the ramp.

The stress profiles along the ramp show dramatic changes as the ramp rotates through 180*.
Tension dominates the normal stresses (Ao,re) (Figures G-3 and G-4) with a maximum value at
1000 years. In most cases, compressive stresses occur along the curved portion of the ramp and at
point D of the Calico Hills Level after 300 years. Noticeable stress changes at the curved ramp
may be a typical feature of ali stress profiles.
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POWER DENSITY: 57KW/ACRE, CALICO HILLS NORTH RAMP
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Figure G-1. Temperature Profile for the Calico Hills North Ramp, 57-kW/acre Case
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POWER DENSITY: 80KW/ACRE, CALICO HILLS NORTH RAMP
Date plotted: 6/11/92
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Figure G-2. Temperature Profile for the Calico Hills North Ramp, 80-kW/acreCase
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POWER DENSITY: 57KW/ACRE, CALICO HILLS NORTH RAMP

O Date plotted: 6/8/92
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Figure G-3. Transverse Stress (Ao,re)Profile for the Caqco Hills North Ramp, 57-kW/acre Case
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POWER DENSITY: 80KW/ACRE, CALICO HILLS NORTH RAMP
Date plotted: 6/11/92
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Figure G-4. Transverse Stress (A_,r,r)Profile for the Calico Hills North Ramp, 80-kW/acre Case
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POWER DENSITY: 57KW/ACRE, CALICO HILLS NORTH RAMP

Date plotted: 6/8/92
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Figure G-5. Axial Stress (Aajy,)Profile for the Calico Hills North Ramp, 57-kW/acre Case
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POWERDENSITY: 80KW/ACRE,CALICO HILLS NORTH RAMP
Date plotted: 6/11/92
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POWER DENSITY: 57KW/ACRE, CALICO HILLS NORTH RAMP
Date plotted: 6/8/92
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Figure G-7. Vertical Stress (Ao:,,,)Profile for the Calico Hills NorthRamp, 57-kW/acre Case
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POWER DENSITY: 80KW/ACRE, CALICO HILLS NORTH RAMP
Date plotted: 6/11/92
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Figure G-8. Vertical Sr_ess(A6,,e)Profile for the Calico Hills North Ramp, 80-kW/acre Case
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POWER DENSITY" 57KW/ACRE, CALICO HILLS NORTH RAMP
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Figure G-9. Shear Stress (Aoey,)Profile for the Calico Hills North Ramp, 57-kW/acre Case

O
G-11



POWER DENSITY: 80KW/ACRE, CALICO HILLS NORTH RAMP

Date plotted: 6/11/92
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Figure G-10. ShearStress (A<_,y,)Profilefor theCalicoH/lls Noc_ Ramp,80-kW/acreCase
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POWER DENSITY: 57KW/ACRE, CALICO HILLS NORTH RAMP
Date plotted: 6/8/92
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Figure G-11. Shear Stress (Aoy,e)Profile for the Calico Hills North Ramp, 57-kW/acre Case
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POWER DENSITY: 80KW/ACRE, CALICO HILLS NORTH RAMP
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Figure G-12. Shear Stress (A_y,,,)Profile for the Calico Hills North Ramp, 80-kW/acre Case
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O POWER DENSITY: 57KW/ACRE, CALICO HILLS NORTH RAMPDate plotted: 6/8/92
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Figure G-13. Shear Stress (AG,,_,)Profile for the Calico Hills North Ramp, 57-kW/acre Case
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POWER DENSITY: 80KW/ACRE, CALICO HILLS NORTH RAMP
Date plotted: 6/11/92
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Figure G-14. Shear Stress (Ac,,,:)Profile for the Calico Hills North Ramp, 80-kW/acre Case
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POWER DENSITY: 57KW/ACRE, CALICO HILLS NORTH RAMP

O Date plotted: 11/23/92
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Figure G-15. Maximum Principal Stress (Aaf, x)Profile for the Calico Hills North Ramp,
57-kW/acre Case
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POWER DENSITY: 80KW/ACRE, CALICO HILLS NORTH RAMP dh,
Date plotted: 11/23/92

8000. -

' D

6000.

o. F
0.00 1.00 2.00 3.00 4.00

Max. principal stress (MPa)

35Years CNR.35.OUT 'Y' I000Years CNRI000.OUT
A 50Years CNR50.OUT _ 2000Years CNR2000.OUT
X I00Years CNRI00.OUT X 5000Years CNR5000.OUT

300 Years CNR300.OUT 8 10000 Years CNR10000.OUT

Figure G-16. Maximum Principal Stress (Aaf, x)Profile for the Calico Hills North Ramp,
80-kW/acre Case
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POWER DENSITY: 57KW/ACRE, CALICO HILLS NORTH RAMP

O Date plotted: 11/23/92
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Figure G-17. Minimum Principal Stress (At_min) Profile for the Calico Hills North Ramp,
57-kW/acre Case
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POWER DENSITY: 80KW/ACRE, CALICO HILLS NORTH RAMP
Date plotted: 11/23/92
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Figure G-18. Minimum Principal Stress (Aa.8) Profile for the Calico Hills North Ramp,
80-kW/irateCase
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APPENDIX H

Temperature and Stress Change Profiles for the Calico Hills South Ramp
for 57- and 80-kW/acre Equivalent APD
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H.1 CALICO HILLS SOUTH RAMP

The Calico Hills south ramp is similar to the north ramp in that the ramp starts on the south
ramp at Q (Figure 4-4 of the main text), ramps down to the south for 3155 ft, curves through 180"
to 4093 ft, and connects with the Calico Hills Level exploratory drift at G. Compared to the Calico
Hills north ramp, the temperatures and stresses in the south ramp show similar patterns with smaller
magnitude due to its position further away from the heat sources. There are no temperature changes
until 5,000 years for the 57-kW/acre case and 10,000 years for the 80-kW/acre case (Figures H-1
and H-2). The highest temperatures are only a few degrees over the original values.

Similar to the Calico Hills north ramp, the transverse horizontal stresses (A_,_,) (Figures H-3
and H-4) are mostly tensile except at the curved ramps. Maximum stresses appear at 2000 years.
For other stress components (Figures H-5 through H-14), maximum values occur between 1000
and 5000 years. Peak values are either at the intersection with the south ramp or with the Calico
Hills north-south drift.
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Figure H-1. Temperature Profile for the Calico Hills South Ramp, 57-kW/acre
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POWER DENSITY: 80KW/ACRE, CALICO HILLS SOUTH RAMP
Date plotted: 6/11/92
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Figure H-2. TemperatureProirflefor the CalicoHills South Ramp,80-_:W/acre
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O POWER DENSITY: 57KW/ACRE, CALICO HILLS SOUTH RAMP
Date plotted: 6/8/92
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Figure H-3. Transverse Stress (Acted)Profile for the Calico Hills South Ramp, 57-kW/acre Case
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POWER DENSITY: 80KW/ACRE, CALICO HILLS SOUTH RAMP O
Date plotted: 6/11/92
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Figure H-4. Transverse Stress (Acei) Profile for the Calico Hills South Ramp, 80-kW/acre Case
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POWER DENSITY: 57KW/ACRE, CALICO HILLS SOUTH RAMP
O Date plotted: 6/8/92
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Figure H-5. Axial Stress (AGtt) Profile for the Calico Hills South Ramp, 57-kW/acre Case
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POWER DENSITY: 80KW/ACRE, CALICO HILLS SOUTH RAMP
Date plotted: 6/11/92
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Figure H-6. Axial Stress (Aoy,y,)Profile for the Calico Hills South Ramp, 80-kW/acre Case
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O POWER DENSITY: 57KW/ACRE, CALICO HILLS SOUTH RAMP
Date plotted: 6/8/92
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FigureH-7. Vertical Stress (Aa,,,,)Profile for the Calico Hills South Ramp, 57-kW/acre Case
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Figure H-8. Vertical Stress (A6,...)Profile for the Calico Hills South Ramp, 80-kW/acre Case
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O POWER DENSITY: 57KW/ACRE, CALICO HILLS SOUTH RAMP
Date plotted: 6/8/92
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Figure H-9. Shear Stress (At_,y,)Profile for the Calico Hills South Ramp, 57-kW/acre Case

H-11



POWER DENSITY: 80KW/ACRE, CALICO HILLS SOUTH RAMP rill
Date plotted: 6/11/92
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Figure H-10. Shear Stress (Aaf,/) Profile for the Calico Hills South Ramp, 80-kW/acre Case
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O POWER DENSITY: 57KW/ACRE, CALICO HILLS SOUTH RAMP
Date plotted: 6/8/92
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Figure H-11. Shear Stress (Aoy,,,)Profile for the Calico Hills South Ramp, 57-kW/acre Case
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POWER DENSITY: 80KW/ACRE, CALICO HILLS SOUTH RAMP O
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Figure H-12. Shear Stress (Aay,_,)Profile for the Calico Hills South Ramp, 80-kW/acre Case
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O POWER DENSITY: 57KW/ACRE, CALICO HILLS SOUTH RAMP
Date plotted: 6/8/92
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Figure H-13. Shear Stress (Ao,,_,)Profile for the Calico Hills South Ramp, 57-kW/acre Case
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,mb,
POWER DENSITY: 80KW/ACRE, CALICO HILLS SOUTH RAMP
Date plotted: 6/I 1/92
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Figure H-14. Shear Stress (Ao,,_,)Profilefor the Calico Hills South Ramp, 8G-kW/acreCase
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POWER DENSITY: 57KW/ACRE, CALICO HILLS SOUTH RAMP
O Date plotted: 11/25/92
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Figure H-i5. Maximum Principal Stress (AOm_)Profile for the Calico Hills South Ramp,
57-kW/aere Case
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POWER DENSITY: 80KW/ACRE, CALICO HILLS SOUTH RAMP

Date plotted: 11/25/92 e
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Figure H-16. Maximum Principal Stress (Ao=,x)Profile for the Calico Hills South Ramp,
80-kW/aere Case
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POWER DENSITY: 57KW/ACRE, CALICO HILLS SOUTH RAMP

O Date plotted: 11/25/92
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Figure H-17. Minimum Principal Stress (Aa_a,)Profile for the Calico Hills South Ramp,
57-kW/acre Case
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POWER DENSITY: 80KW/ACRE, CALICO HILLS SOUTH RAMP
Date plotted: 11/25/92
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Figure H-18. Minimum Principal Stress (At_m_)Profile for the Calico Hills South Ramp,
80-kW/acre Case
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APPENDIX I

Temperature and Stress and Strain Change Profiles for the
Exploratory Studies Facility Shaft for 57- and 80-kW/acre Equivalent APD
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1.1 EXPLORATORY STUDIES FACILITY SHAFT

The ESF shaft is an optional component of the ESF and is planned to peneu'ate the Main Test
Area (Figure 4-4 in the main text). Temperatures (Figures I-1 and 1-2) begin to increase at about
300 years, and reach maximum values at 5000 years. The Main Test Level, where the heat sources
are located, is between 3240 and 3740 ft elevation; and the Calico Hills Level is between 2700 and
3130 ft elevation. It appears from Figures I-1 and 1-2 that both levels are subject to temperature
changes.

The stresses shown in Figures 1-3 through I-14 are for the global coordinate system with x
oriented north. Horizontal stresses (Figures I-3 through 1-6) show similar patterns. Compression
dominates most parts of the shaft. For At_ (Figures 1-3 and I-4), tension appears to start at
2,000 years at about 300 ft depth from the surface, and at 10,000 years at about 400 ft depth. For
Atf, (Figures I-5 and I-6), tension starts at 5,000 years at about 400 ft depth from the surface, and
at 10,000 years at about 500 ft depth. Maximum vertical stresses occur at 500 years (Figures I-7
and 1-8). Shear stresses (Figures 1-9 through I- 14) might be of interest in shaft design. Noticeable
vertical shear stresses appear at shallower depth (Figures I-11 and 1-12) with maximum values at
500 and 1000 years.

Strain components calculated by Equation 4-1 (in the main text) are shown in Figures 1-15
through 1-25. In general, strains are linearly related to stresses. For the ESF shaft, ali six strain
components resemble their stress counterparts with only minor modifications.
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POWER DENSITY: 57KW/ACRE, ESF SHAFT

O Date plotted: 6/18/92
Temperature (degree C)
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Figure I-1. Temperature Profile for the ESF Shaft, 57-kW/acre
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POWER DENSITY: 80KW/ACRE, ESF SHAFT

Date plotted: 6/18/92 @
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Figure I-2. Temperature Profile for the ESF Shaft, 80-kW/acre
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POWER DENSITY: 57KW/ACRE, ESF SHAFT
Date plotted: 6/18/92
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Figure 1-3. Normal Stress (Ao_,)Profile for the ESF Shaft, 57-kW/acre Case
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POWER DENSITY: 80KW/ACRE; ESF SHAFI'
Date plotted: 6/18/92

4800.

t

Figure I-4. Normal Stress (Ao_,)Profile for the ESF Shaft, 80-kW/acre Case
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POWER DENSITY: 57KW/ACRE, ESF SHAFF
Date plotted: 6/18/92
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Figure I-5. Normal Stress (Ao'yy)Profile for the ESF Shaft, 57-kW/acre Case
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POWER DENSITY: 80KW/ACRE, ESF SHAFT
Date plotmd: 6/18/92

4800.

t

Figure I-6. Normal Stress (Ao_) Profile for the ESF Shaft, 80-kW/acreCase
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POWER DENSITY: 57KW/ACRE, ESF SHAFT
Date plotted: 6/18/92
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Figure 1-7. Normal Stress (Aa,,) Profile for the ESF Shaft, 57-kW/acre Case
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POWER DENSITY: 80KW/ACRE; ESF SHAFT
Date plotted: 6/18/92
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Figure I-8. Normal Stress (Ao,,)Profile for the ESF Shaft, 80-kW/acre Case
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POWER DENSITY: 57KW/ACRE, ESF SHAFT
Date plotted: 6/18/92
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Figure I-9. Shear Stress (Ao_) Profile for the ESF Shaft, 57-kW/acre Case
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POWER DENSITY: 80KW/ACRE, ESF SHAFT
Date plotte_: 6/18/92
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Figure I-10. Shear Stress (Ao_) Profile for the ESF Shaft, 80-kW/acre Case
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POWER DENSITY: 57KW/ACRE, ESF SHAFT

O Date plotted: 6/18/92
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Figure I-11. Shear Stress (Aoy,)Profile for the ESF Shaft, 57-kW/acre Case
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POWER DENSITY: 80KW/ACRE, ESF SHAFT

Date plotted: 6/18/92
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Figure I-12. Shear Stress (Aor,) Profile for the ESF Shaft, 80-kW/acre Case
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POWER DENSITY: 57KW/ACRE, ESF SHAFT

O Date plotted: 6/18/92
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Figure I-13. Shear Stress (Aa=) Profile for the ESF Shaft, 57-kW/acre Case
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POWER DENSITY: 80KW/ACRE, ESF SHAFF

Date plotteA: 6/18/92 O
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Figure I-14. Shear Stress (Ao,_)Profile for the ESF Shaft, 80-kW/acre Case
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POWER DENSITY: 57KW/ACRE, ESF SHAFT

Date plotted: 11/25/92
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Figure 1-15. Maximum Principal Stress (Ao,_x)Profile for the ESF Shaft, 57-kW/acre Case
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POWER DENSITY: 80KW/ACRE, ESF SHAFT

Date plotted: 11/25/92
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Figure 1-16. Maximum Principal Stress (A(_,) Profile for the ESF Shaft, 80-kW/acre Case
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POWER DENSITY: 57KW/ACRE, ESF SHAFT

Date plotted: 11/25/92
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Figure 1-17. Minimum Principal Stress (AOmi,)Profile for the ESF Shaft, 57-kW/acre Case
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POWER DENSITY: 80KW/ACRE, ESF SHAFT

Date plotted: 11/25/92
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Figure I-18. Minimum Principal Stress (Atom) Profile for the ESF Shaft, 80-kW/acre Case
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POWER DENSITY: 57KW/ACRE, ESF SHAFT
Date plotted: 6/18/92
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Figure1-19. Normal Strain(Ae_ Profile for the ESF Shaft, 57-kW/acreCase
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POWER DENSITY: 80KW/ACRE, ESF SHAFT
Date plotlad: 6/18/92
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Figure1-20. Normal Strain (Ae,,)Profile for tho ESF Shaft, 80-kW/acre Case
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POWER DENSITY: 57KW/ACRE, ESF SHAFF
Date plotted: 6/18/92
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Figure 1-21. Normal Strain (A_) Profile for the ESF Shaft, 57-kW/acre Case
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POWER DENSITY: 80KW/ACRE, ESF SHAFF
Date plotted: 6/18/92
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Figure 1-22. Normal Strain (z_) Profile for the ESF Shaft, 80-kW/acre Case
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POWER DENSITY: 57KW/ACRE, ESF SHAFI"

Date plotted: 6/18/92
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Figure 1-23. Normal Strain (Ae,,) Profile for the ESF Shaft, 57-kW/acre Case
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POWER DENSITY: SOKW/ACKE, ESF SHAFT
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Figure 1-24. Normal Strain (Ae.) Profile for the ESF Shaft, 80-kW/acre Case
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POWER DENSITY: 57KW/ACRE, ESF SHAFT
Date plotted: 6/18/92
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Figure 1-25. ShearStrain(z_o) Profilefor the ESFShaft,57-kW/acreCase
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POWER DENSITY: 80KW/ACRE, ESF SHAFT
Date plotted: 6/18/92 @
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Figure 1-26. Shear Strain (z_) Profile for the ESF Shaft, 80-kW/acre Case
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POWER DENSITY: 57KW/ACRE, ESF SHAFr
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Figure 1-27. Shear Strain (Ae_) Profile for the ESF Shaft, 57-kW/acre Case
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POWER DENSITY: 80KW/ACRE, ESF SHAFT
Date plotted: 6/18/92
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Figure 1-28. Shear Strain (A_) Profile for the ESF Shaft, 80-kW/acre Case
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POWER DENSITY: 57KW/ACRE, ESF SHAFr
Date plotted: 6/18/92
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Figure 1-29. Shear Strain (Ae=) Profile for the ESF Shaft, 57-kW/acre Case
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POWER DENSITY: 80KW/ACRE, ESF SHAFT
Date plotted: 6/18/92
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Figure 1-30. Shear Strain (Ae_ Profile for the ESF Shaft, 80-kW/acre Case
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APPENDIX J

Temperature and Stress and Strain Change Profiles for the
Man and Materials Shaft for 57- and 80-kW/acre Eqmvalent APD
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J.1 MAN AND MATERIALS SHAFT

The man and materials shaft is located outside the repository southern border (Figure 4-4 in
the main text) and will not be constructed until after the site characterization phase. Due to its
position away from repository heat sources, the thermomechanical effect on this shaft is much less
than on the ESF shaft. Figures J- 1and J-2 show that the temperature does not change until 2,000 years
for the 57-kW/acre case and 10,000 years for the 80-kW/aere case. The maximum temperatures
are reached at 10,000 years with only a few degrees increase from the initial states.

The distribution of horizontal stresses (Ao_,) depicts an interesting phenomenon (Figures J-3
and J-4). Except foryears 10and 10,000 for the 57-kW/acre case and 10,000 years for the 80-kW/aere
case, stresses reach the maximum values on the surface, with maximum stress at 1,000 years for
the 57-kW/aere case and 2,000 years for the 80-kW/aere case. The study of areal and cross-sectional
contours in the repository area shows that the man and materials shaft is situated outside the transition
zone where horizontal stresses (Ao'=)appear greater at shallower depth. Horizontal stresses (Ao'_)
(Figures J-5 and J-6) represent a similar trend as A_,,, except that for the 57-kW/acre case, tension
appears at 10,000 years. The vertical and shear stresses depict different profiles (Figures J-7 through
J- 14) with maximum values at 1000 to 2000 years. Horizontal shear stresses (Figures J-9 and J- 10)
resemble horizontal stresses (AO._)in their distributions.

Horizontal strain distributions (Figures J- 15 through J- 18) are similar to the corresponding
stresses. The vertical strains (Figures J-19 and J-20), however, are very different from the vertical
stresses. One obvious difference is that unlike stresses, the strains in most time spans do not vanish
on the surface. This is due to the effect of relatively large horizontal stresses (refer to Equation 4-1
in the main text). Shear strains (Figures J-21 through J-26) are similar in profile to their corre-
sponding stresses.
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Figure J-1. Temperature Profile for the Man and Materials Shaft, 57-kW/acre
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Figure J-2. Temperature Profile for the Man and Materials Shaft, 8G-kW/acre
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Date plotted: 6/18/92
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Figure J-3. Normal Stress (Ao_) Profile for the Man and Materials Shaft, 57-kW/acre Case
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POWER DENSITY: 80KW/ACRE, M&M SHAFT
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Figure J-4. Normal Stress (Act_,)Profile for the Man and Materials Shaft, 80-kW/acre Case
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Figure J-5. Normal Stress (Aoyy)Profile for the Man and Materials Shaft, 57-kW/acre Case
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POWER DENSITY: 80KW/ACRE, M&M SHAFT
Date plotted: 6/18/92
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Figure J-6. Normal Stress (At_) Profile for the Man and Materials Shaft, 80-kW/acre Case
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POWER DENSITY: 57KW/ACRE, M&M SHAFF
Date plotted: 6/18/92
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Figure J-7. Normal Stress (At_,,)Profile for the Man and Materials Shaft, 57-kW/acre Case
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POWER DENSITY: 80KW/ACRE, M&M SHAFt
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Figure J-8. Normal Stress (Aa,,) Profile for the Man and Materials Shaft, 80-kW/acre Case
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O POWER DENSITY: 57KW/ACRE, M&M SHAFTDate plotted: 6/18/92
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Figure J-9. Shear Stress (A_) Profile for the Man and Materials Shaft, 57-kW/acre Case
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POWER DENSITY: 80KW/ACRE, M&M SHAFT
Date plotted: 6/18/92
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Figure J-10. Shear Stress (Aaf) Profile for the Man and Materials Shaft, 80-kW/acre Case
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POWER DENSITY: 57KW/ACRE, M&M SHAFTDate plotted: 6/18/92
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Figure J-11. Shear Stress (Aoy,) Profile for the Man and Materials Shaft, 57-kW/acre Case
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Figure J-12. Shear Stress (AGr,) Profile for the Man and Materials Shaft, 80-kW/acre Case
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Figure J-13. Shear Stress (Ac_,_)Profile for the Man and Materials Shaft, 57-kW/acre Case
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Figure J-14. Shear Stress (Aa,_) Profile for the Man and Materials Shaft, 80-kW/acre Case
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Figure J- 15. Maximum Principal Stress (Ao,=x)Profile for the Man and Materials Shaft,
57-kW/aere Case
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POWER DENSITY: 80KW/ACRE, M&M SHAFT
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Figure J-16. Maximum Principal Stress (Ao,,,,.)Profile for the Man and Materials Shaft,
80-kW/aere Case
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POWER DENSITY: 57KW/ACRE, M&M SHAFT
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Figure J-17. Minimum Principal Stress (Aaron)Profile for the Man and Materials Shaft,
57-kW/aere Case
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Figure J-18. Minimum Principal Stress (Aa=l.) Profile for the Man and Materials Shaft,
80-kW/acre Case
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Figure J-19. Normal Strain (Ae_)Profile for the Man and Materials Shaft, 57-kW/acre Case
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Figure, J-20. Normal Strain (z_.x,)Profile for the Man and Materials Shaft, 80-kW/acre Case
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Figure J-21. Normal Strain (Ae._)Profile for the Man and Materials Shaft, 57-kW/acre Case
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Figure J-22. Normal Strain (Ae_) Profile for the Man and Materials Shaft, 80-kW/acre Case
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Figure J-23. Normal Strain (A_=)Profile for the Man and Materials Shaft, 57-kW/acre Case
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Figure J-24. Normal Strain (z_e=)Profile for the Man and Materials Shaft, 80-kW/acre Case
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Figure J-25. Shear Strain (Aeo) Profile for the Man and Materials Shaft, 57-kW/acre Case
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Figure J-26. Shear Strain (Ae_) Profile for the Man and Materials Shaft, 80-kW/acre Case
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Figure J-27. Shear Strain (Ab,) Profile for the Man and Materials Shaft, 57-kW/acre Case
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POWER DENSITY: 80KW/ACRE, M&M SHAFT
Date plotted: 6/18/92
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Figure J-28. Shear Strain (Ae._)Profile for the Man and Materials Shaft, 80-kW/acre Case
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POWER DENSITY: 57KW/ACRE, M&M SHAFT
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Figure J-29. Shear Strain (Ae,_)Profile for the Man and Materials Shaft, 57-kW/acre Case
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Figure J-30. Shear Strain (Ae_,) Profile for the Man and Materials Shaft, 80-kW/acre Case
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APPENDIX K

Temperature and Stress Change Contours for the Main Test Area
for 57- and 80.kW/acre Eqmvalent APD
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K.1 MAIN TEST AREA

Four point in time were selected for the plotting of contours of temperature and stresses in
the Main Test Area: 10, 35, 50 and 100 years after waste emplacement. Temperatures at these four
times are shown in Figures K- 1 through K-8. At 10 years, contour lines resemble the initial thermal
gradient in the Main Test Area. Starting from 35 years, steep thermal changes appear in the vicinity
of the south edge of the Main Test Area near the waste emplacement drifts. It seems that the area
affected by heating of the repository drifts is confined to approximately 250 ft from the south edge
of the Main Test Area. Little effect is observed in other areas of the Main Test Area during the
preclosure period.

Horizontal stresses are illustrated in Figures K-9 to K-12 (Aaf) and K-17 to K-20 (Aarr) for
the 57-kW/aere case, and Figures K-13 to K-16 and K-21 to K-24 for the 80-kW/acre case. Sig-
nificant stress changes occur between 10 and 35 years near the south border of the Main Test Area.
From 35 to 100 years, stress changes continue in this area, but at a lower rate of increase. For the
horizontal stresses (Ao_), some stress concentration is observed on the left (west) border as well
as along the south border of the Main Test Area.

Vertical stresses, which are distributed relatively more uniformly in the Main Test Area
(Figures K-25 through K-32), reflect a decrease in compressive stress. The peak tensile stress
changes appear mostly at the lower left corner. Dramatic stress changes both in magnitude and
profile occur for the 80-kW/acre case between 10 and 35 years (about 15 times). The rate of stress
change slows after 35 years. A maximum stress change occurs in the southwest comer of the Main
Test Area at 100 years.

The horizontal shear stresses, given in Figures K-33 through K-40, reflect a change in the
stress sign near the lower left comer. A significant change in the shear stresses occurs between 10
and 35 years. At 100 years, the shear stress magnitude is about twice that at 35 years. Vertical
shear stresses show similar changes over the preclosure period (Figures K-41 to K-56). Stress
concentration occurs primarily in the region approximately 300 ft from the bottom line that is near
the heat sources.
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Figure K-1. Temperature Contour in the Main Test Area After 10 Years of Waste Emplace-
ment, 57-kW/acre Case
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A2000_ - ._...,_

0
1500

•" 10000

0

500
0

._

0
0 500 1000 1500 2000 2500

Distance from point I in east (ft)

Optional ESF Shaft
Proposed MTL Excavations

Figure K-2. Temperature Contour in the Main Test Area After 35 Years of Waste Emplace-
ment, 57-kW/aere Case
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Figure K-3. Temperature Contour in the Main Test Area After 50 Years of Waste Emplace-
ment, 57-kW/acre Case
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Figure K-4. Temperature Contour in the Main Test Area After 100 Years of Waste Emplace-
ment, 57-kW/acre Case
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Figure K-5. Temperature Contour in the Main Test Area After 10 Years of Waste Emplace-
ment, 80-kW/acre Case
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Figure K-6. Temperature Contour in the Main Test Area After 35 Years of Waste Emplace-
ment, 80-kW/acre Case
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Temperature in test area at 50 years (F)
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Figure K-7. Temperature Contour in the Main Test Area After 50 Years of Waste Emplace-
ment, 80-kW/acre Case
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Figure K-8. Temperature Contour in the Main Test Area After 100 Years of Waste Emplace-ment, 80-kW/acre Case

@
K-10



0

Stress Sxx in test area at 10 years (MPa)
..,

° \= 1500 L- _-0.01

._ __ \
- \\.. o \

° ',•_ looo

° --\\\_ IIi.,/I....°_X
500 - \_

C)

0.02

03 ..

0 _ 0 _
0 500 1000 1500 2000 2500

Distance from point I in east (ft)

@ Optional ESF Shaft
Proposed MTL Excavations

Figure K-9. North Horizontal Stress (Aa=) Contour in the Main Test Area After 10 Years of
Waste Emplacement, 57-kW/acre Case
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Stress Sxx in test area at 35 years (MPa)

_ 2000 -_.

1500

0.04.
•"_,1000 _ 0.04

0

o 500

I71

0
0 500 1000 1500 2000 2500

Distance from point I in east (ft)

Optional ESF Shaft
------Proposed MTL Excavations

Figure K-10. North Horizontal Stress (Ao=) Contour in the Main Test Area After 35 Years of
Waste Emplacement, 57-kW/acre Case
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Stress Sxx in test area at 50 years (MPa)
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Figure K- 11. North Horizontal Stress (A_=) Contour in the Main Test Area After 50 Years of
Waste Emplacement, 57-kW/acre Case
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Stress Sxx in test area at 100 years (MPa)
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Figure K-12. North Horizontal Stress (Ao=) Contour in the Main Test Area After 100 Years of
Waste Emplacement, 57-kW/aere Case
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Figure K-13. North Horizontal Stress (Ao=) Contour in the Main Test Area After 10 Years of
Waste Emplacement, 80-kW/acre Case
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Stress Sxx in test area at 35 years (MPa)
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Figure K-14. North Horizontal Stress (Ao=) Contour in the Main Test Area After 35 Years of
Waste Emplacement, 80-kW/aere Case

. @
K-16



O
Stress Sxx in test area at 50 years (MPa)

1500 "_'_"

°p,I

- ),,.. \"" 1000 0.I0

_0.1

0

_ 500

O =,p,_l

0 500 1000 1500 2000 2500

Distance from point I in east (ft)

Optional ESF Shaft
-- '.... Proposed MTL Excavations

Figure K-15. North Horizontal Stress (Aa=) Contour in the Main Test Area After 50 Years of
Waste Emplacement, 80-kW/aere Case
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Figure K-16. North Horizontal Stress (Ao=) Contourin the Main Test Area After 100 Years of
Waste Emplacement, 80-kW/aere Case

@
K-18



Stress Syy in test area at 10 years (MPa)
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Figure K-17. West Horizontal Stress (Ao.) Contour in the Main Test Area After 10 Years of
Waste Emplacement, 57-kW/acre Case
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Figure K-18. West Horizontal Stress (Ao.) Contour in the Main Test Area After 35 Years of
Waste Emplacement, 57-kW/acre Case
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Figure K- 19. West Horizontal Stress (Aors) Contour in the Main Test Area After 50 Years of
Waste Emplacement, 57-kW/acre Case
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Figure K-20. West Horizontal Stress (Aaf) Contour in the Main Test Area After 100 Years of
Waste Emplacement, 57-kW/aere Case
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Stress Syy in test area at 10 years (MPa)
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Figure K-21. West Horizontal Stress (AG.) Contour in the Main Test Area After 10 Years of
Waste Emplacement, 80-kW/acre Case
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Figure K-22. West Horizontal Stress (Aor_)Contour in the Main Test Area After 35 Years of
Waste Emplacement, 80-kW/acre Case
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Stress Syy in test area at 50 years (MPa)
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Figure K-23. West Horizontal Stress (Aog) Contour in the Main Test Area After 50 Years of
Waste Emplacement, 80-kW/acre Case
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...2ooo___ ¼__.. __._

0 ,%1500

/If \. \
.o /I

O.t5
•_ I000 \O

\

_=_

500
u

¢1
m

,P,i

0
0 500 1000 1500 2000 2500

Distance from point I in east (ft)

OptionalESF Shaft
--------ProposedMTL Excavations

Figure K-24. West Horizontal Stress (Aaf) Contour in the Main Test Area After 100 Years of
Waste Emplacement, 80-kW/aere Case
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Stress Szz in test area at 10 years (MPa)
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Figure K-25. West Vertical Stress (AO,,) Contour in the Main Test Area After 10 Years of
Waste Emplacement, 57-kW/acre Case
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Stress Szz in test area at 35 years (MPa)
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Figure K-26. Vertical Stress (Ats,,) Contour in the Main Test Area After 35 Years of Waste
Emplacement, 57-kW/acre Case
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Figure K-27. Vertical Stress (Ao,,) Contour in the Main Test Area After 50 Years of Waste
Emplacement, 57-kW/aere Case
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Stress Szz in test area at 100 years (MPa)
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Figure K-28. Vertical Stress (Aa.) Contour in the Main Test Area After 100 Years of Waste
Emplacement, 57-kW/acre Case
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Figure K-29. Vertical Stress (Aa,,) Contour in the Main Test Area After 10 Years of Waste
Emplacement, 80-kW/acre Case
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Figure K-30. Vertical Stress (Ao,,) Contour in the Main Test Area After 35 Years of Waste
Emplacement, 80-kW/acre Case
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Figure K-31. Vertical Stress (Aa,,) Contour in the Main Test Area After 50 Years of Waste
Emplacement, 80-kW/acre Case
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Figure K-32. Vertical Stress (Ao,,) Contour in the Main Test Area After 100 Years of Waste
Emplacement, 80-kW/acre Case
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Stress Sxy in test area at 10 years (MPa)
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Figure K-33. Shear Stress (Aaf) Contour in the Main Test Area After 10 Years of Waste
Emplacement, 57-kW/acre Case
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Stress Sxy in test area at 35 years (MPa)
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Figure K-34. Shear Stress (A(_) Contour in the Main Test Area After 35 Years of Waste
Emplacement, 57-kW/acre Case
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Stress Sxy in test area at 50 years (MPa)
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Figure K-35. Shear Stress (Aa,_)Contourin the Main Test Area After 50 Years of Waste
Emplacement, 57-kW/acre Case
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Stress Sxy in test area at 100 years (MPa)
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Figure K-36. Shear Stress (Aaf) Contour in the Main Test Area After 100 Years of Waste
Emplacement, 57-kW/aere Case
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Stress Sxy in test area at 10 years (MPa)
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Figure K-37. Shear Stress (Ao_) Contour in the Main Test Area After 10 Years of Waste
Emplacement, 80-kW/acre Case
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Stress Sxy in test area at 35 years (MPa)
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Figure K-38. Shear Stress (Ao_) Contour in the Main Test Area After 35 Yearsof Waste
Emplacement, 80-kW/acreCase
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Stress Sxy in test area at 50 years (MPa)
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Figure K-39. Shear Stress (Ao_) Contour in the Main Test Area After 50 Years of Waste
Emplacement, 80-kW/aere Case

K-41



Stress Sxy in test area at 100 years (MPa)

2000

0
1500

- \
'' I000 0.`30

o 0.6

¢ 500
0

== 0.9 t .05 t .2

¢=
0

0 500 1000 1500 2000 2500

Distance from point I in east (ft)

,LEGE
Optional ESF Shaft

1,_Proposed MTL Excavations

Figure K-40. Shear Stress (Ao_) Contour in the Main Test Area After 100 Years of Waste
Emplacement, 80-kW/acre Case
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Figu.m K-41. Shear Stress (A_y,) Contour in the Main Test Area After 10 Years of Waste
Emplacement, 57-kW/acre Case
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Strees Syz in test area at 35 years (MPa)
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Figure K-42. Shear Stress (Ao_) Contour in the Main Test Area After 35 Years of Waste
Emplacement, 57-kW/aere Case
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Figure K-43. Shear Stress (Ac_y,)Contour in the Main Test Area After 50 Years of Waste
Emplacement, 57-kW/acre Case
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Stress Syz in test area at 100 years (MPa)
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Figure K-44. Shear Stress (Aoy,) Contour in the Main Test Area After 100 Years of Waste
Emplacement, 57-kW/acre Case
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Figure K-45. Shear Stress (Aaf,) Contour in the Main Test Area After 10 Years of Waste
Emplacement, 80-kW/acre Case
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Stress Syz in test area at 35 years (MPa)
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Figure K-46. Shear Stress (Aoy,) Contour in the Main Test Area After 35 Years of Waste
Emplacement, 80-kW/acre Case
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Stress Syz in test area at 50 years (MPa)
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Figure K-47. Shear Stress (A%,) Contour in the Main Test Area After 50 Years of Waste
Emplacement, 80-kW/acre Case
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Stress Syz in test area at 100 years (MPa)
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Figure K-48. Shear Stress (Affy,)Contour in the Main Test Area After 100 Years of Waste
Emplacement, 80-kW/acre Case
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Stress Szx in test area at 10 years (MPa)
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Figure K-49. Shear Stress (Aa,,) Contour in the Main Test Area After 10 Years of Waste
Emplacement, 57-kW/aere Case
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Stress Szx in test area at 35 years (MPa)
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Figure K-50. Shear Stress (Aa=) Contour in the Main Test Area After 35 Years of Waste
Emplacement, 57-kW/acre Case
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Stress Szx in test area at 50 years (MPa)
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Figure K-51. Shear Stress (Ao'=)Contour in the Main Test Area After 50 Years of Waste
Emplacement, 57-kW/acre Case
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FigureK-52. ShearStress(A¢_=)ContourintheMainTestAreaAfterI00YearsofWaste
Emplacement,57-kW/acreCase
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Stress Szx in test area at 10 years (MPa)
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Figure K-53. Shear Stress (AG=) Contour in the Main Test Area After 10 Years of Waste
Emplacement, 80-kW/acre Case
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Stress Szx in test area aL 35 years (MPa)
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Figure K-54. Shear Stress (Ao=) Contour in the Main Test Area After 35 Years of Waste
Emplacement, 80-kW/aere Case
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Stress Szx in test area at 50 years (MPa)
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FigureK-55. ShearStress(Ac_)ContourintheMain TestAreaAfter50YearsofWaste
Emplacement,80-kW/acreCase
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Optional ESF Shaft
------Proposed MTL Excavations

Figure K-56. ShearStress(Ao=) Contourin theMain TestArea After 100 Yearsof Waste
Emplacement,80-kW/acre Case
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APPENDIX L

Temperature and Stress Change Profiles for the Lines in the Main Test Area
for 57- and 80-kW/acre Equivalent APD
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L.1 LINES IN MAIN TEST AREA

lines in the specific locations depicted in Figure 4-4 (in the main text) were selected forFive
thermomechanical analysis. They partially correspond to the test drifts in the Main Test Area as
indicated in the previous contouring graphs. Ali the results were analyzed over ten time periods.
Stresses were rotated to the direction either transverse or axial to the line.

Line 1 -- of the five lines, this line is located closest to the heat sources to the south side of the
Main Test Area. Figures L-1 and L-2 depict the temperature distributions along line 1 during
different time periods for the 57- and 80-kW/acre cases. The temperatures start to increase rapidly
at about 100 years. The rate of increase slows after 300 years, and the temperatures reach maximum
values at 1000 years. Temperatures then begin to decline in a somewhat different fashion, par-
ticularly in the position near point M.

Normal stresses (A od_,) are given in Figures L-3 and L-4. Compressive stresses increase
rapidly at about 10 years, and attain maximum values at 500 years. Significant stress variation in
the position closest to point M reflects an asymmetric thermomechanical impact from both the west
and south sides of the repository drifts. Beyond 500 years, normal stresses decrease more uniformly.
For other stress components (Figures L-5 through L-14), maximum values were attained ranging
from 100 to 1000 years. In general, the center of line 1 is either the position of maximum stress or
the transition point of shear stress.

Line 2 -- Line 2 is parallel to line 1 and is further away from heat sources to the south but is
influenced by heat sources on the east side. Figures L-15 and L-16 represent the temperature
distributions along line 2. Clearly, there is very little temperature variation before closure
(100 years). The gradual increase in temperatures starts around 300 years, until they reach a peak
value at 2000 years.

Normal stresses (A (rx,,,,)depict a slightly different picture from that of line 1 (Figures L-17
and L-18). The stresses increase gradually and reach a peak value at 2000 years. In view of the
axial (A ay,y,)and vertical (A a,,,,) stresses, the change takes piace primarily at the section near the
east main drift (Figures L-19 through L-22). In other words, the stress changes are largely affected
by the heat coming from the west side emplacement drifts. Maximum stresses (A %,/) are reached
at 1000 years. Maximum shear stresses occur at 300 to 5000 years (Figures L-23 through L-28).

Line 3 -- Line 3 is actually part of the east main drift. At point I in Figure 4-4 (in the main text),
line 3 is affected by the heating from both the west and east sides. For temperature and most stresses,
maximum values occur at point I (Figures L-29 through L-42). Temperatures begin to increase
rapidly after closure (100 years) and reach a maximum value at 2000 years. The maximum normal
stress (A a_,_,)change occurs at 1000 years. Vertical stresses (A _,,,,) reach maximum values at 100
and 300 years, and the stresses almost return to their original state at 10,000 years.

Line 4 -- Line 4 parallels line 3 and is further away from the heat sources of the west side. The
temperature and stresses follow similar patterns as those in line 3, but with slightly smaller mag-
nitudes (Figures L-43 through L-56). Maximum temperature changes occur at 2000 years. The
maximum stress change is 3.6 MPa at 1000 years.

Line 5 -- Line 5 is parallel to both lines 3 and 4. The induced temperatures and stresses are
illustrated in Figures L-57 through L-70. Since it is situated closer to the center of the test area, it
is subjected to greater influence from the east side of the heated drifts, particularly at point K
(Figure 4-4). Maximum temperature changes are similar to line 3 but occur at 1000 years
(Figure L-57). The maximum stress change is 5.9 MPa at 300 years (Figure L-62).
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POWER DENSITY: 57KW/ACRE, MAIN TEST AREA LINE-1
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Figure L-1. Temperature Profile Along Line 1 in Main Test Area, 57-kW/acre APD
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POWER DENSITY: 80KW/ACRE, MAIN TEST AREA LINE-1

Date plotted: 6/11/92 @
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Figure L-2. TemperatureProfile Along Line I in Main Test Area, 80-kW/acre APD
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POWER DENSITY: 57KW/ACRE, MAIN TEST AREA LINE-1
Date plotted: 6/9/92
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Figure L-3. TransverseHorizontalStress (A%,=,)ProfileAlong Line 1 in Main Test Area,
57-kW/acreAPI)
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POWER DENSITY: 80KW/ACRE, MAIN TEST AREA LINE-1

Date ploued: 6/11/92
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Figure L-4. Transverse Horizontal Stress (Ao_,x,)Profile Along Line 1 in Main Test Area,
80-kW/aere APD

Q
L-6



POWER DENSITY: 57KW/ACRE, MAIN TEST AREA LINE-1
Date plotted: 6/9/92
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Figure L-5. Axial Horizontal Stress (Aa//) Profile Along Line 1 in Main Test Area,
57-kW/acre APD
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POWER DENSITY: 80KW/ACRE, MAIN TEST AREA LINE-I

Dateplotted:6/11/92
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FigureL-6. AxialHorizontalStress(Aaly.)ProfileAlongLineIinMainTestArea,
80-kW/acreAPD
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POWER DENSITY: 57KW/ACRE, MAIN TEST AREA LINE-1
Date plotted: 6/9/92
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Figure L-7. Vertical Stress (Ao,.,,)ProfileAlong Line I in Main Test Area, 57-kW/acreAPD

L-9



POWER DENSITY: 80KW/ACRE, MAIN TEST AREA LINE-1

Date plotted: 6/11/92
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Figure L-8. Vertical Stress (Ao,,,,)Profile Along Line 1 in Main Test Area, 80-kW/acre APE)
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POWER DENSITY: 57KW/ACRE, MAIN TEST AREA LINE-1

Date plotted: 6/9/92
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Figure L-9. Shear Stress (Ao¢/) Profile Along Line 1 in Main Test Area, 57-kW/aere API)
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POWER DENSITY: 80KW/ACRE, MAIN TEST AREA LINE-I
Date plotted: 6/11/92
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FigureL-10. ShearStress (_u:s_,_,)ProfileAlong Line 1 in Main Test Area, 80-kW/acreAPD
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POWER DENSITY: 57KW/ACRE, MAIN TEST AREA LINE-1
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Figure L-11. ShearStress (Ac/lc)ProfileAlong Line 1 in Main Test Area,57-kW/acreAPD
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POWER DENSITY: 80KW/ACRE, MAIN TEST AREA LINE-1

Date plotted: 6/11/92
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Figure L-12. Shear Stress (Ao/e) Profile Along Line 1 in Main Test Area, 80-kW/acre APD
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POWER DENSITY: 57KW/ACRE, MAIN TEST AREA LINE-1

Date plotted: 6/9/92
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Figure L-13. Shear Stress (Ao,,x,)Profile Along Line 1 in Main Test Area, 57-kW/acre APD
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POWER DENSITY: 80KW/ACRE, MAIN TEST AREA LINE-1

Date plotted: 6/11/92 @

Figure L-14. Shear Stress (Ao,,x,)ProfileAlong Line 1 in MainTest Area,80-kW/acre APD
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POWER DENSITY: 57KW/ACRE, MAIN TEST AREA LINE-2
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Figure L-15. TemperatureProfile AlongLine 2 in Main Test Area, 57-kW/acreAPD
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POWER DENSITY: 80KW/ACRE, MAIN TEST AREA LINE-2

Date plotted: 6/11/92

Temperature (degree C)

I0.0 21.1 32.2 43.3 54.4 65.6
I I , . : J• . .! : - : I. ., . : I , , , : .. .,

3000. t

2500.

_ 2000. ,

1500.
,.

I)

.,-, ]000.

k

500. z -

\

0.

50.0 70.0 90.0 110.0 130.0 150.0

Temperature (degree F)

_ 10Yearm MTBIO.OUT I 500 Years MTBS00.OUT

35 Years IvlTB35.OUT I000 Years MTB1000.OUT
50 Years MTBS0.OUT 2000 Years MTB2000.OUT

I00 Years MTB100.OUT 5000 Years MTB5000.OUT300 Years MTB300.OUT S I0000 Years MTBI0000.OUT

Figure L-16. Temperature Profile Along Line 2 in Main Test Area, 80-kW/acre APD
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POWER DENSITY: 57KW/ACRE, MAIN TEST AREA LINE-2

O Date plotted: 6/9/92
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Figure L-17. Transverse Horizontal Stress (Ao_,_,)Profile Along Line 2 in Main Test Area,
57-kW/acre APD
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POWER DENSITY: 80KW/ACRE, MAIN TEST AREA LINE-2
Date plotted: 6/11/92
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Figure L-18. Transverse Horizontal Stress (A%,_,)Profile Along Line 2 in Main Test Area,
80-kW/aere APE)
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POWER DENSITY: 57KW/ACRE, MAIN TEST AREA LINE-2

Date plotted: 6/9/92
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Figure L-19. Axial Horizontal Stress (Aoy,y,)Profile Along Line 2 in Main Test Area,
57-kW/acre APD
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POWER DENSITY: 80KW/ACRE, MAIN TEST AREA LINE-2
Date plotted: 6/11/92
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Figure L-20. Axial Horizontal Stress (Ao/y,)Profile Along Line 2 in Main Test Area,
80-kW/aere APD
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POWER DENSITY: 57KW/ACRE, MAIN TEST AREA LINE-2

Date plotted: 6/9/92
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Figure L-21. Vertical Stress (Ao,,,,)Profile Along Line 2 in Main Test Area, 57-kW/acre APD
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POWER DENSITY: 80KW/ACRE, MAIN TEST AREA LINE-2
Dateplotted:6/11/92
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Figure L-22. Vertical Stress (Ao,,,,)Profile AlongLine 2 in Main Test Area, 80-kW/acre APD
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POWER DENSITY: 57KW/ACRE, MAIN TEST AREA LINE-2
Date plotted: 6/9/92
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FigureL-23. ShearStress(Ao_,I)ProfileAlongLine2inMainTestArea,57-kW/acreAPD
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POWER DENSITY: 80KW/ACRE, MAIN TEST AREA LINE-2
Date plotted: 6/11/92
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FigureL-24. ShearStress(Aaf,/)ProfileAlongLine2 inMainTestArea,8G-kW/acreAPD
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POWER DENSITY: 57KW/ACRE, MAIN TEST AREA LINE-2
O Date plotted: 6/9/92
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Figure L-25. Shear Stress (A%,e)Profile Along Line 2 in Main Test Area, 57-kW/acre APD
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POWER DENSITY: 80KW/ACRE, MAIN TEST AREA LINE-2

Date plotted: 6/11/92 O
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Figure L-26. ShearStress (Aay.,,)ProfileAlong Line 2 in Main Test Area, 80-kW/acreAPD
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POWER DENSITY: 57KW/ACRE, MAIN TEST AREA LINE-2
Date plotted: 6/9/92
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Figure L-27. Shear Stress (Ao,.=,)Profde Along Line 2 in Main Test Area, 57-kW/acre APD
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POWER DENSITY: 80KW/ACRE, MAIN TEST AREA LINE-2 dia
Date plotted: 6/11/92
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Figure L-28. Shear Stress (Ao,,,:)Profile Along Line 2 in Main Test Area, 80-kW/acre APD
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POWER DENSITY: 57KW/ACRE, MAIN TEST AREA LINE-3
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Figure L-29. Temperature Profile Along Line 3 in Main Test Area, 57-kW/acre APD
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POWER DENSITY: 80KW/ACRE, MAIN TEST AREA LINE-3

Date plotted: 6/11/92 O
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Figure L-30. TemperatureProfile Along Line 3 in Main Test Area, 80-kW/acre APD
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POWER DENSITY: 57KW/ACRE, MAIN TEST AREA LINE-3

@ Date plotted: 6/9/92
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FigureL-3I. TransverseHorizontalStress(Ao:z)ProfileAlongLine3inMainTestArea,
57-kW/acreAPD
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POWER DENSITY: 80KW/ACRE, MAIN TEST AREA LINE-3

Date plottezl: 6/11/92 O
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Figure L-32. Transverse Horizontal Stress (Aoee) Profile Along Line 3 in Main Test Area,
80-kW/acre API)
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POWER DENSITY: 57KW/ACRE, MAIN TEST AREA LINE-3

O Dateplotted:6/9/92
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Figure L-33. Axial Horizontal Stress (A%,/) Profile Along Line 3 in Main Test Area,
57-kW/acre API)
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POWER DENSITY: 80KW/ACRE, MAIN TEST AREA LINE-3

Date plotted: 6/11/92 @
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Figure L-34. Axial Horizontal Stress (Ao/¢) Profile Along Line 3 in Main Test Area,
80-kW/acre APD
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POWER DENSITY: 57KW/ACRE, MAIN TEST AREA LINE-3

O Date plotted: 6/9/92
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FigureL-35. VerticalStress(Aa,,,,)ProfileAlongLine3inMainTestArea,57-kW/acreAPD
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POWER DENSITY: 80KW/ACRE, MAIN TEST AREA LINE-3
Date plotted: 6/11/92
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Figure L-36. Vertical Stress (Ao,,,,)Profile Along Line 3 in Main Test Area, 80-kW/acre APD
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POWER DENSITY: 57KW/ACRE, MAIN TEST AREA LINE-3

O Date plotted: 6/9/92
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Figure L-37. Shear Stress (Ao,ey,)Profile Along Line 3 in Main Test Area, 57-kW/acre APD
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POWER DENSITY: 80KW/ACRE, MAIN TEST AREA LINE-3
Date plotted: 6/11/92
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Figure L-38. ShearStress (A_dy,)ProfileAlong Line 3 in MainTest Area, 80-kW/acreAPD
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POWER DENSITY" 57KW/ACRE, MAIN TEST AREA LINE-3
Date plotted: 6/9/92
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Figure L-39. Shear Stress (Ao/e) Profile Along Line 3 in Main Test Area, 57-kW/acre APD
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POWER DENSITY: 80KW/ACRE, MAIN TEST AREA LINE-3

Date plotted: 6/11/92
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Figure L-40. Shear Stress (Aoy,,,)Profile Along Line 3 in Main Test Area, 80-kW/acre APD
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POWER DENSITY: 57KW/ACRE, MAIN TEST AREA LINE-3

O Date plotted: 6/9/92
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Figure L-41. Shear Stress (Aa,,_,) Profile Along Line 3 in Main Test Area, 57-kW/acre APD
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POWER DENSITY: 80KW/ACRE, MAIN TEST AREA LINE-3
Date plotted: 6/11/92 aL
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Figure L-42. Shear Stress (Ac_.,_,)Profile Along Line 3 in Main Test Area, 80-kW/acre APD
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POWER DENSITY: 57KW/ACRE, MAIN TEST AREA LINE-4
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Figure L-43. Temperature Profile Along Line 4 in Main Test Area, 57-kW/acre APD
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POWER DENSITY: 80KW/ACRE, MAIN TEST AREA LINE-4

Date plotted: 6/11/92 O
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Figure L-44. Temperature Profile Along Line 4 in Main Test Area, 80-kW/acre APD
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POWER DENSITY: 57KW/ACRE, MAIN TEST AREA LINE-4

O Date plotted: 6/9/92
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Figure L-45. Transverse Horizontal Stress (Ao_,e) Profile Along Line 4 in Main Test Area,
57-kW/acre APD
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POWER DENSITY: 80KW/ACRE, MAIN TEST AREA LINE-4

Date plotted: 6/11/92 O
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Figure L-46. Transverse Horizontal Stress (Aaf,d) Profile Along Line 4 in Main Test Area,
80-kW/acre APD
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POWER DENSITY: 57KW/ACRE, MAIN TEST AREA LINE-4

O Date plotted: 6/9/92
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Figure L-47. Axial Horizontal Stress (Aoy,y,)Profile Along Line 4 in Main Test Area,
57-kW/acre APD
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POWER DENSITY: 80KW/ACRE, MAIN TEST AREA LINE-4

Date plotted: 6/11/92 O
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Figure L-48. Axial Horizontal Stress (A%,/) Profile Along Line 4 in Main Test Area,
80-kW/acre APD
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POWER DENSITY: 57KW/ACRE, MAIN TEST AREA LINE-4

O Date plotted: 6/9/92
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Figure L-49. Vertical Stress (Aa,,,.)Profile Along Line 4 in Main Test Area, 57-kW/acre APD
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POWER DENSITY: 80KW/ACRE, MAIN TEST AREA LINE-4
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2500° "

"_ 1500.

.[
,

_ 100(I.
.vmi

I

500.

O. "" : : : ;
-5.00 -4.00 -3.00 -2.00 -1.00 0.(}0 1.00

Normal stress Szz (MPa)

10Years MTD10.OUT g 500Years MTDS00.OUT

_ Ye,m's MTD35.OUT 1000 Years MTD1000.OUT

Years MTD.50.OUT _ 2000 Years MTD2000.OUT
100Years MTD100.OUT 5000Years MTDS000.OUT
300Years MTD300.OUT 10000Years MTD10000.OUT

Figure L-50. Vertical Stress (A_z,,,)Profile Along Line 4 in Main Test Area, 80-kW/acre APD
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POWER DENSITY: 57KW/ACRE, MAIN TEST AREA LINE-4
Date plotted: 6/9/92
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Figure L-51. Shear Stress (Ao_,y,)Profile Along Line 4 in Main Test Area, 57-kW/acre APD
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POWER DENSITY: 80KW/ACRE, MAIN TEST AREA LINE-4

Date plotted: 6/11/92 O
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Figure L-52. Shear Stress (At_,/) Profile Along Line 4 in Main Test Area, 80-kW/acre AI:'D
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POWER DENSITY: 57KW/ACRE, MAIN TEST AREA LINE-4

O Date plotted: 6/9/92
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Figure L-53. Shear Stress (Aoy,z,)Profile Along Line 4 in Main Test Area, 57-kW/acre APD
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POWER DENSITY: 80KW/ACRE, MAIN TEST AREA LINE-4

Date plotted: 6/11/92 O
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Figure L-54. Shear Stress (A%,¢)Profile Along Line 4 in Main Test Area, 80-kW/acre APD
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POWER DENSITY: 57KW/ACRE, MAIN TEST AREA LINE-4

O Date plotted: 6/9/92
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Figure L-55. Shear Stress (Ao,,_,)Profile Along Line 4 in Main Test Area, 57-kW/acre APD
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POWER DENSITY: 80KW/ACRE, MAIN TEST AREA LINE-4
Date plotted: 6/11/92 O
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Figure L-56. Shear Stress (Ao,,e)Profile Along Line 4 in Main Test Area, 80-kW/acre APD
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POWER DENSITY: 57KW/ACRE, MAIN TEST AREA LINE-5
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Figure L-57. Temperature Profile Along Line 5 in Main Test Area, 57-kW/acre APD
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POWER DENSITY: 80KW/ACRE, MAIN TEST AREA LINE-5

Date plotted: 6/11/92 O
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Figure L-58. Temperature Profile Along Line 5 in Main Test Area, 80-kW/acre APD
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POWER DENSITY: 57KW/ACRE, MAIN TEST AREA LINE-5

O Date plotted: 6/9/92
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Figure L-59. Transverse Horizontal Stress (Ao_,e)Profile Along Line 5 in Main Test Area,
57-kW/acre APD
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POWER DENSITY: 80KW/ACRE, MAIN TEST AREA LINE-5

Date plotted: 6/11/92
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Figure L-60. Transverse Horizontal Stress (Ao_,_,)Profile Along Line 5 in Main Test Area,
80-kW/acre APD
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POWER DENSITY: 57KW/ACRE, MAIN TEST AREA LINE-5

Date plotted: 6/9/92
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Figure L-61. Axial Horizontal Stress (Ao//) Profile/dong Line 5 in Main Test Area,
57-kW/acre APD
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POWER DENSITY: 80KW/ACRE, MAIN TEST AREA LINE-5
Date plotted: 6/11/92
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Figure L-62. Axial Horizontal Stress (Aoy,y,)Profile Along Line 5 in Main Test Area,
80-kW/aere APD
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POWER DENSITY: 57KW/ACRE, MAIN TEST AREA LINE-5
Date plotted: 6/9/92
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Figure L-63. Vertical Stress (Ao,,.,)Profile Along Line 5 in Main Test Area, 57-kW/acre APD
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POWER DENSITY: 80KW/ACRE, MAIN TEST AREA LINE-5

Date plotted: 6/11/92
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Figure L-64. Vertical Stress (Ao,,,,)Profile Along Line 5 in Main Test Area, 80-kW/acre APD
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POWER DENSITY: 57KW/ACRE, MAIN TEST AREA LINE-5

Date plotted: 6/9/92
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Figure L-65. Shezr Stress (Ao_,y,)Profile Along Line 5 in Main Test Area, 57-kW/acre APD
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POWER DENS1TY: 80KW/ACRE, MAIN TEST AREA LINE-5
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Figure L-66. Shear Stress (Ao,y,)Profile Along Line 5 in Main Test Area, 80-kW/acre APD
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POWER DENSITY: 57KW/ACRE, MA1N TEST AREA LINE-5
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Figure L-67. Shear Stress (A_y,,,)Profile Along Line 5 in Main Test Area, 57-kW/acre APD
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POWER DENSITY: 80KW/ACRE, MAIN TEST AREA LINE-5

Date plotted: 6/11/92 O
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Figure L-68. Shear Stress (Aoy,e)Profile Along Line 5 in Main Test Area, 80-kW/acre APD
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POWER DENSITY: 57KW/ACRE, MAIN TEST AREA LINE-5

O Date plotted: 6/9/92
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Figure L-69. Shear Stress (AG,,_,)Profile Along Line 5 in Main Test Area, 57-kW/acre APD
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POWER DENSITY: 80KW/ACRE, MAIN TEST AREA LINE-5
Date plotted: 6/11/92
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APPENDIX M

Repository Drift Coordinates
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TABLE M-1. REPOSITORY DRIFT COORDINATES (ft)

No. Xb Yb Zb Xe Ye Ze

1 767690.90 563698.10 3244.27 769398.60 561163.60 3324.95
2 767621.80 563651.50 3248.20 769426.80 560971.70 3333.50
3 767552.80 563604.90 3252.13 769402.40 560863.20 3339.44
4 767483.70 563558.40 3256.06 769364.60 560766.30 3344.93
5 767414.60 563511.80 3259.99 769323.10 560676.90 3350.21
6 767345.60 563465.30 3263.92 769267.30 560617.90 3354.61
7 767276.50 563418.70 3267.85 769212.50 560552.10 3359.17
8 767207.40 563372.10 3271.78 769142.80 560506.40 3363.07
9 767138.40 563325.60 3275.71 769070.80 560457.80 3367.00

10 767069.30 563279.00 3279.64 769005.30 560413.70 3370.93
11 767000.30 563232.40 3283.56 768931.70 560364.10 3374.86
12 766931.20 563185.90 3287.49 768866.30 560320.00 3378.79
13 766862.10 563139.30 3291.42 768792.60 560270.40 3382.71
14 766793.10 563092.80 3295.35 768727.20 560226.30 3386.64
15 766724.00 563046.20 3299.28 768661.80 560182.30 3390.57
16 766654.90 562999.60 3303.21 768588.10 560132.60 3394.50
17 766585.90 562953.10 3307.14 768522.70 560088.60 3398.43
18 766516.80 562906.50 3311.07 768449.10 560038.90 3402.36
19 766447.80 562859.90 3315.00 768383.60 559994.90 3406.29
20 766378.70 562813.40 3318.93 768310.00 559945.30 3410.22
21 766309.60 562766.80 3322.86 768244.60 559901.20 3414.15
22 766240.60 562720.30 3326.79 768170.90 559851.60 3418.07
23 766171.50 562673.70 3330.72 768105.50 559807.50 3422.00
24 766102.40 562627.10 3334.65 768040.10 559763.40 3425.93
25 766033.40 562580.60 3338.58 767966.40 559713.90 3429.86
26 765964.30 562534.00 3342.51 767901.00 559669.80 3433.79
27 765895.30 562487.40 3346.44 767827.40 559620.20 3437.72
28 765826.20 562440.90 3350.37 767761.90 559576.10 3441.65
29 765757.10 562394.30 3354.30 767688.30 559526.50 3445.58
30 765688.10 562347.80 3358.23 767622.90 559482.40 3449.51
31 765619.00 562301.20 3362.16 767549.30 559432.80 3453.43
32 765549.90 562254.60 3366.09 767483.80 559388.80 3457.36
33 765480.90 562208.10 3370.02 767410.20 559339.10 3461.29
34 765411.80 562161.50 3373.95 767344.80 559295.10 3465.22
35 765342.80 562114.90 3377.88 767279.30 559250.90 3469.15
36 765273.70 562068.40 3381.81 767205.80 559201.40 3473.08
37 765204.60 562021.80 3385.74 767140.30 559157.30 3477.01
38 765135.60 561975.30 3389.67 767066.70 559107.70 3480.94
39 765066.50 561928.70 3393.60 767001.30 559063.60 3484.87
40 764997.40 561882.10 3397.53 766927.60 559014.00 3488.79
41 764928.40 561835.60 3401.46 766862.20 558969.90 3492.72
42 764859.30 561789.00 3405.39 766788.60 558920.30 3496.65
43 764790.30 561742.40 3409.31 766723.10 558876.30 3500.58
44 764721.20 561695.90 3413.24 766657.70 558832.20 3504.51
45 764652.10 561649.30 3417.17 766584.10 558782.60 3508.44
46 764583.10 561602.80 3421.10 766518.60 558738.50 3512.37
47 764514.00 561556.20 3425.03 766445.00 558688.90 3516.30
48 764444.90 561509.60 3428.96 766379.60 558644.80 3520.23
49 764375.90 561463.10 3432.89 766305.90 558595.30 3524.15
50 764306.80 561416.50 3436.82 766240.50 558551.10 3528.08
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TABLE M.1. REPOSITORY DRIFT COORDINATES (ft) (continued)
J ii i i ii i

No. Xb Yb Zb Xe Ye Ze
i i i i

51 764237.80 561369.90 3440.75 766166.90 558501.60 3532.01
52 764 168.70 561323.40 3444.68 766101.40 558457.40 3535.94
53 764099.60 561276.80 3448.61 766036.00 558413.40 3539.87
54 764030.60 561230.30 3452.54 765962.40 558363.80 3543.80
55 763961.50 561183.70 3456.47 765896.90 558319.70 3547.73
56 763892.40 561137.10 3460.40 765824.80 558273.80 3551.60
57 763823.40 561090.60 3464.33 765743.30 558237.80 3555.11
58 763685.30 560997.40 3472.19 765589.30 558179.80 3561.97
59 763616.20 560950.90 3476.12 765499.10 558163.30 3564.93
60 763547.10 560904.30 3480.05 765408.90 558146.80 3567.89
61 763478.10 560857.80 3483.98 765314.40 558140.80 3570.55
62 763409.00 560811.20 3487.91 765214.60 558135.30 3573.13
63 763339.90 560764.60 3491.84 765120.90 558125.60 3575.89
64 763270.90 560718.10 3495.77 765027.20 558115.80 3578.65
65 763201.80 560671.50 3499.70 764937.20 558103.90 3581.51
66 763132.80 560624.90 3503.63 764845.90 558089.30 3584.41
67 763063.70 560578.40 3507.56 764754.80 558075.30 3587.31
68 762994.60 560531.80 3511.49 764660.10 558065.60 3590.05
69 762925.60 560485.30 3515.42 764565.40 558055.90 3592.80
70 762856.50 560438.70 3519.35 764472.90 558046.00 3595.58
71 762787.40 560392.10 3523.28 764379.80 558035.90 3598.35
72 762718.40 560345.60 3527.21 764286.80 558025.90 3601.13
73 762649.30 560299.00 3531.14 764191.60 558012.40 3603.95
74 762580.30 560252.40 3535.06 764104.60 557998.20 3606.91
75 762511.20 560205.90 3538.99 764015.10 557976.70 3609.99
76 762442.10 560159.30 3542.92 763931.00 557951.00 3613.24
77 762373.10 560112.80 3546.85 763845.10 557929.80 3616.36
78 762304.00 560066.20 3550.78 763762.40 557909.70 3619.51
79 762234.90 560019.60 3554.71 763675.80 557886.30 3622.68
80 762165.90 559973.10 3558.64 763591.40 557860.60 3625.92
81 762096.80 559926.50 3562.57 763510.50 557836.00 3629.20
82 762027.80 559879.90 3566.50 763426.10 557810.30 3632.44
83 761958.70 559833.40 3570.43 763341.70 557784.60 3635.69
84 761889.60 559786.80 3574.36 763260.80 557759.90 3638.97
85 761820.60 559740.30 3578.29 763176.40 557734.20 3642.21
86 761751.50 559693.70 3582.22 763092.00 557708.50 3645.46
87 761682.40 559647.10 3586.15 763007.60 557682.80 3648.71
88 761613.40 559600.60 3590.08 762926.80 557658.10 3651.98
89 761544.30 559554.00 3594.01 762842.30 557632.40 3655.23
90 761475.30 559507.40 3597.94 762757.90 557606.70 3658.48
91 761406.20 559460.90 3601.87 762677.00 557582.10 3661.75
92 761337.10 559414.30 3605.80 762592.60 557556.40 3665.00
93 761268.10 559367.80 3609.73 762508.20 557530.60 3668.24
94 761199.00 559321.20 3613.66 762427.30 557506.00 3671.52
95 761129.90 559274.60 3617.59 762342.90 557480.30 3674.77
96 765559.80 562984.60 3333.34 764050.20 565222.30 3191.89
97 765490.80 562938.00 3337.27 763946.20 565222.90 3192.75
98 765421.70 562891.40 3341.20 763842.30 565223.60 3193.60
99 765352.60 562844.90 3345.13 763747.80 565224.10 3194.74

100 765283.60 562798.30 3349.06 763643.80 565224.80 3195.60
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TABLE M-1. REPOSITORY DRIFT COORDINATES (ft) (continued)
i i i

No. Xb Yb Zb Xe Ye Ze

101 7652i4.50 562751.80' 3352.99 763548.90 565215.60 3197.14
102 765145.40 562705.20 3356.91 763461.30 565195.50 3199.38
103 765076.40 562658.60 3360.84 763381.60 565161.50 3202.46
104 765007.30 562612.10 3364.77 763306.80 565122.90 3205.87
105 764938.30 562565.50 3368.70 763242.10 565081.00 3209.73
106 764869.20 562518.90 3372.63 763171.30 565035.00 3213.58
107 764800.10 562472.40 3376.56 763101.10 564989.40 3217.44
108 764731.10 562425.80 3380.49 763030.90 564943.80 3221.29
109 764662.00 562379.30 3384.42 762960.60 564898.20 3225.14
110 764592.90 562332.70 3388.35 762890.40 564852.60 3228.99
111 764523.90 562286.10 3392.28 762820.20 564806.90 3232.86
112 764454.80 562239.60 3396.21 762750.00 564761.40 3236.71
113 764385.80 562193.00 3400.14 762679.80 564715.80 3240.56
114 764316.70 562146.40 3404.07 762609.60 564670.10 3244.42
115 764247.60 562099.90 3408.00 762539.30 564624.60 3248.26
116 764178.60 562053.30 3411.93 762469.10 564578.90 3252.13
117 764109.50 562006.80 3415.86 762398.90 564533.30 3255.98
118 764040.40 561960.20 3419.79 762334.50 564491.50 3259.84
119 763971.40 561913.60 3423.72 762264.30 564445.90 3263.69
120 763902.30 561867.10 3427.65 762194.10 564400.30 3267.55
121 763833.30 561820.50 3431.58 762123.80 564354.70 3271.40
122 763764.20 561773.90 3435.51 762049.80 564306.60 3275.25
123 763695.10 561727.40 3439.44 761980.10 564261.40 3279.10
124 763626.10 561680.80 3443.37 761914.60 564215.10 3283.13
125 763557.00 561634.30 3447.30 761849.00 564163.80 3287.36
126 763487.90 561587.70 3451.23 761783.10 564113.40 3291.55
127 763349.80 561494.60 3459.09 761659.30 564000.60 3300.68
128 763280.80 561448.00 3463.02 761595.40 563950.50 3304.92
129 763211.70 561401.40 3466.95 761531.00 563888.50 3309.66
130 763142.60 561354.90 3470.88 761478.50 563820.00 3315.03
131 763073.60 561308.30 3474.81 761428.10 563752.40 3320.42
132 763004.50 561261.80 3478.74 761373.30 563677.80 3325.98
133 762935.40 561215.20 3482.66 761323.70 563605.50 3331.60
134 762866.40 561168.60 3486.59 761273.40 563532.90 3337.21
135 762797.30 561122.10 3490.52 761222.40 563460.80 3342.78
136 762728.30 561075.50 3494.45 761168.10 563386.10 3348.36
137 762659.20 561028.90 3498.38 761118.80 563318.10 3353.80
138 762590.10 560982.40 3502.31 761064.70 563248.80 3359.16
139 762521.10 560935.80 3506.24 761010.10 563179.30 3364.51
140 762452.00 560889.30 3510.17 760960.50 563108.50 3370.06
141 762382.90 560842.70 3514.10 760905.40 563028.80 3375.84
142 762313.90 560796.10 3518.03 760857.60 562956.90 3381.49
143 762244.80 560749.60 3521.96 760810.40 562885.10 3387.16
144 762175.80 560703.00 3525.89 760757.00 562806.10 3392.96
145 762106.70 560656.40 3529.82 760707.80 562733.90 3398.58
146 762037.60 560609.90 3533.75 760653.00 562659.40 3404.15
147 761968.60 560563.30 353/.68 760602.50 562589.30 3409.64
148 761899.50 560516.80 3541.61 760551.60 562516.90 3415.23
149 761830.40 560470.20 3545.54 760500.30 562445.80 3420.74
150 761761.40 560423.60 3549.47 760445.40 562371.20 3426.30
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TABLE M-1. REPOSITORY DRIFT COORDINATES (ft) (concluded)
I iiii i i i i i i ii ii ii iiii i II

No. Xb Yb Zb Xe Ye Ze
III iii i i i III III

I I i i

151 761692.30 560377.10 3553.40 760396.10 562304.10 3431.70
152 761623.30 560330.50 3557.33 760343.20 562227.80 3437.40
153 761554.20 560283.90 3561.26 760295.30 562148.70 3443.36
154 761485.10 560237.40 3565.19 760246.40 562071.80 3449.20
155 761416.10 560190.80 3569.12 760206.60 561991.30 3455.46
156 761347.00 560144.30 3573.05 760162.70 561908.80 3461.69
157 761277.90 560097.70 3576.98 760112.40 561823.70 3467.84
158 761208.90 560051.10 3580.91 760067.90 561741.60 3474.04
159 761139.80 560004.60 3584.84 760025.70 561662.00 3480.19
160 761070.80 559958.00 3588.77 759980.30 561577.30 3486.47
161 761001.70 559911.40 3592.70 759937.90 561485.60 3493.14
162 760932.60 559864.90 3596.63 759889.80 561408.90 3499.00
163 760863.60 559818.30 3600.56 759841.40 561328.80 3504.98
164 760794.50 559771.80 3604.49 759803.10 561244.70 3511.45

III _ I
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Drift numbering for 57 kW/acre case

X coordinate (ft)

- Direction of
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Figure M-1. Drift Numbering for 57-kW/acre Case
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APPENDIX N

Information from, and Candidate Information for, the Site and Engineering
Property Database and the Reference Information Base
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N.1 Information from the Reference Information Base Used in this Report

ThisreportisbasedoninformationfromtheRIB whereav_lable.

TabIuN-I liststhevaluesusedinthisstudy,theRIB mean value,andstandarddeviation.

N.2 CandidateInformationfortheReferenceInformationBase

ThereportcontainsnocandidateinformationfortheRIB.

N.3 CandidateInformationfortheSiteand EngineeringPropertiesDatabase

Thisreportcontainsno candidateinformationfortheSiteand EngineeringProperties
Database.

TABLE N.1. COMPARISON BETWEEN STUDY VALUES AND THE CURRENT RIB
(Version4,Revision4)VALUES

llll i l i l l L

RIB Range or
Study RIB Standard

Parameter Value Value Deviation
i i

Thermal Properties
Saturated thermal capacitance (J/m_ - C)

at 25"C 2.14E+6 2.0324E+6 NA
at 50"C 2.14E+6 2.1280E+6
at 94"C 2.14E+6 2.2638E+6 mm,

Saturated thermal conductivity (W/m - C) 2.10 2.10 :L-0.2

Mechanical Properties
Young's modulus (GPa) 13.4" 32.7 b NA
Poisson's ratio 0.25 0.25 © NA

Coefficient of thermal expansion (m/m'C)
25 to 50 9.1E-6 9.1E-6 +1.3
50 to 100 9.1E-6 8.2E-6 i0.8
100 to 150 9.1E-6 6.8E-6 i-0.5
150 to 200 9.1E-6 9.7E-6 NA

Initial Temperature
Surface Temperature ('C) 18.7 18.7d NA

" For rock mass, refer to Hardy & Bauer (1991).
b Laboratory derived value.
c Weighted average value.

Scaled from the temperature versus depth curve.
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