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Solid-liquid interfaces are at the heart of many modern-day technologies and provide a challenge to
many materials simulation methods. A realistic first-principles computational study of such systems
entails the inclusion of solvent effects. In this work, we implement an implicit solvation model that
has a firm theoretical foundation into the widely used density-functional code Vienna ab initio Soft-
ware Package. The implicit solvation model follows the framework of joint density functional theory.
We describe the framework, our algorithm and implementation, and benchmarks for small molecular
systems. We apply the solvation model to study the surface energies of different facets of semicon-
ducting and metallic nanocrystals and the SN2 reaction pathway. We find that solvation reduces the
surface energies of the nanocrystals, especially for the semiconducting ones and increases the energy
barrier of the SN2 reaction. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4865107]

I. INTRODUCTION

Recently, scientists have determined that the understand-
ing of nanoparticle synthesis and electrochemical interfaces
is crucial to designing novel materials for energy technol-
ogy and improving the performance characteristics of bat-
teries and catalysts.1–4 The physics of solid-liquid interfaces
plays a major role in the synthesis of nanoparticles, chemical
reactions at electrode surfaces,5 and in many other phenom-
ena important to energy applications. The thermodynamics
and kinetics of nanoparticle interfaces determine the particle
morphologies and surface states, which in turn affect the self-
assembly as well as optical and electronic properties of these
materials.6–8

A comprehensive understanding of nanoparticle synthe-
sis and electrochemical interfaces via experiments presents
a challenge due to the heterogeneity of the interface and
the complexities of the solid and liquid materials involved.9

Computational studies provide an alternative method to
improve our fundamental understanding of solid/liquid
interfaces and to predict properties of novel materials
interfaces.2, 10–12

There are two main ways to achieve a computational
treatment of solid/liquid interfaces. If a complete ab initio
treatment of the solute/solvent system is desired, all solvent
molecules must be considered explicitly. Thus, to reach the
equilibrium state we need to relax the electronic and ionic de-
grees of freedom of both the solute and the solvent molecules.
This treatment is quite expensive, as the number of solvent
molecules in the system required to capture the essential equi-
librium properties is huge and because of the statistical aver-
aging required for the solvent molecules.

a)Electronic mail: km468@cornell.edu
b)Electronic mail: rhennig@cornell.edu

An alternative approach is to treat the solute quantum-
mechanically and to treat the solvent as a continuum, which
means that the solute is immersed in a bath of solvent and
the average over the solvent degrees of freedom becomes im-
plicit in the properties of the solvent bath. Implicit solvation
models for plane wave density-functional theory (DFT) codes
were pioneered by Fattebert and Gygi,12 independently de-
veloped and placed into the rigorous framework of joint den-
sity functional theory (JDFT) by Arias et al.,13 and extended
by Marzari et al.14 to include a model for cavitation and dis-
persion. These methods provide a much more computation-
ally tractable way to vary the electronic and the geometric
degrees of freedom of the solute so that the ground state of
the combined solute/solvent system conforms with the equi-
librium properties of the solvent bath. Since the solute elec-
tronic structure is still being treated quantum-mechanically,
this approach can be quite accurate assuming all interactions
between the solute and the solvent are considered in proper
detail.

For polar or ionic solute systems in contact with polar
fluids, the electrostatic interaction between the solute and the
solvent is the most significant solvation effect. For nonpo-
lar solutes and solvents, the van der Waals interaction can
dominate over electrostatics. For large molecules, the energy
required to form a cavity in the solvent is the most impor-
tant contribution to the solvation energy. Thus, any solva-
tion theory which can be generally applicable to nanoparti-
cles, molecules, and surfaces must consider all of these ef-
fects. In this work, we review an implicit solvation model
which places a quantum-mechanical solute in a cavity sur-
rounded by a continuum dielectric description of the sol-
vent. Describing the dielectric response as a functional of
the solute electronic charge density leads to a self-consistent
determination of the cavity by considering the polariza-
tion of the solvent by the electronic structure of solute, the
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effects of cavitation and dispersion, and the corresponding re-
sponse of the solute system to the presence of the solvent.
This implicit solvation model provides a computationally effi-
cient and accurate technique for understanding solute/solvent
interfaces.

Following the approach of Refs. 10 and 13, we briefly re-
view the theoretical underpinnings and framework of these
implicit solvation models in Sec. II. We then describe in
Sec. III the implementation of an implicit solvation model de-
rived from joint density functional theory10, 13, 15 in the Vienna
ab initio Software Package (VASP), a widely used and multi-
featured plane-wave DFT code. Though this model was pre-
viously implemented in the open source codes DFT++16 and
JDFTx,17 implementation in VASP places this theory into the
self-consistent field (SCF) framework for the first time. Due
to the plane-wave basis, this implementation is more scal-
able for large periodic systems than solvation models which
employ Gaussian type orbitals. Additional advantages of this
new implementation include higher performance, better par-
allel scaling, and the interoperability with an extensive li-
brary of standardized ultrasoft pseudopotentials (USPP) and
projector-augmented wave (PAW) potentials. In Sec. IV, we
benchmark the accuracy of this implementation by calculat-
ing molecular solvation energies, and comparing against both
experimental and JDFTx-calculated values. Finally, in Sec. V
we apply the model to metal and semiconductor nanocrystal
interfaces and reaction pathways. We find that the implicit sol-
vation model that we have implemented into VASP provides
an efficient and accurate approach to determine solvation en-
ergies of molecular and extended systems. Also, the solvation
modifications are freely available as a patch to the original
VASP source code.18

II. THEORETICAL FRAMEWORK OF IMPLICIT
SOLVATION MODEL

Following Refs. 13 and 19, the free energy, A, of the com-
bined solute/solvent system can be written as a sum of two
terms, a universal functional F of the total electron density
and the thermodynamically averaged atomic densities of the
solvent species, and a term describing the electrostatic energy
contribution

A = F [ntot, {Ni(�r)}]

+
∫

d3r Vext(�r)

(∑
i

ZiNi(�r) − ntot(�r)

)
. (1)

Here, ntot(�r) is the total electron density, which is the sum of
the electron density of the solute and the solvent, i.e., ntot(�r)
= nsolute(�r) + nsolv(�r). Ni(�r) are the thermodynamically aver-
aged atomic densities associated with the chemical species i
in the solvent, Vext(�r) is the external potential due to the so-
lute nuclei, and F is a universal functional. The functional F
is universal in the sense that it depends only on the electron
density, the solvent atomic densities, and thermodynamic pa-
rameters such as temperature and pressure. A detailed dis-
cussion of the theoretical consequences can be found in
Ref. 20.

Next, we use the variational principle for the thermody-
namic free energy of the electron-nuclear system in a fixed ex-
ternal electrostatic potential Vext(�r) to determine the ground-
state free energy of the system

A0 = min
ntot,{Ni (�r)}

{
F [ntot, {Ni(�r)}]

+
∫

d3r Vext(�r)

(∑
i

ZiNi(�r) − ntot(�r)

)}
. (2)

Although the above formalism provides an exact DFT
treatment of the combined solute/solvent system, it is diffi-
cult to solve in practice due to the minimization involved over
the immense number of solvent degrees of freedom. In order
to make it amenable to a computational treatment, the free en-
ergy is first minimized over the solvent electron density and
then over the solute electron density to determine the ground
state free energy.13

Minimizing Eq. (1) with respect to the solvent electron
density nsolv, we obtain

Ã = G[nsolute(�r), {Ni(�r)}, Vext(�r)]

−
∫

d3r Vext(�r)nsolute(�r), (3)

where

G[nsolute(�r), {Ni(�r)}, Vext(�r)]

= min
nsolv

{
F [ntot, {Ni(�r)}]

−
∫

d3r Vext(�r)

(∑
i

ZiNi(�r) − nsolv(�r)

)}
. (4)

G is a universal functional of the electron density of the
solute nsolute(�r), the average atomic densities of the various
species in the solvent {Ni(�r)}, and the external potential of
the solute nuclei Vext(�r). The functional G can be separated as
following:

G[nsolute(�r), {Ni(�r)}, Vext(�r)]

= AKS[nsolute(�r), Vext(�r)]

+ Adiel[nsolute(�r), {Ni(�r)}, Vext(�r)], (5)

where AKS is the usual Kohn-Sham density functional for the
solute and Adiel is the term that encapsulates all the interac-
tions of the solute with the solvent and the internal energy of
the solvent. To further simplify the expression, the functional
Adiel is minimized with respect to the average atomic densities
of the solvent, Ni(�r),

Ãdiel[nsolute(�r), Vext(�r)]

= min
{Ni (�r)}

Adiel[nsolute(�r), {Ni(�r)}, Vext(�r)]. (6)
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Combining Eqs. (2)–(6) leads to the ground state free energy
of the solute/solvent system,

A0 = min
nsolute(�r)

{
AKS[nsolute(�r), Vext(�r)]

−
∫

d3r Vext(�r)nsolute(�r) + Ãdiel[nsolute(�r), Vext(�r)]

}
.

(7)

Importantly, this minimization procedure leads to a free
energy of the combined solute-solvent system written as a
functional of only the electron density of the solute, nsolute(�r),
and the external potential of the solute nuclei, Vext(�r), prop-
erties determined solely by the solute. All the solvent effects
are contained in the functional Ãdiel, which is obtained by the
minimization over the solvent electron density and the ther-
modynamically average atomic densities of the solvent. Thus,
the functional Ãdiel describes a continuum model for the sol-
vent, which has an equilibrium structure fully determined by
the properties of the solute, upon the solute electronic struc-
ture. The minimization of the functionals in Eq. (7) with re-
spect to the solute degrees of freedom leads to the ground state
free energy of the joint system. Up to this point, the theory is
exact, although the exact form of Ãdiel is unknown. Approx-
imations must be made to the functional Ãdiel for practical
calculations.

As a first approximation, we consider the electrostatic in-
teraction between the solute and the solvent, which affects
the equilibrium polarization of the solvent dipoles. Assuming
that the solvent polarization depends linearly on the electric
field for the range of fields encountered in the vicinity of the
solute, the solvent polarization can be described by the lo-
cal relative permittivity of the solvent, ε(�r). We must then in-
clude in the functional Ãdiel a term to account for the electro-
static interaction between the solute electronic structure and
the corresponding bound charge distribution induced in the
solvent.12, 13

However, an electrostatic-only approach is insufficient to
describe solvation of molecules and nanoparticles, where cav-
itation and dispersion may play a significant role. Since the
non-electrostatic effects are concentrated in the first solvation
shell, to describe these effects,21 we adopt a version of the
empirical model proposed by Marzari et al.,14 and placed into
the joint density-functional theory framework by Arias et al.15

that describes the corrections as an interface term that is pro-
portional to the solvent-accessible area. Thus, we also include
in Ãdiel an additional term to describe the free energy contri-
butions of cavitation and dispersion,

Acav = τ

∫
d3r|∇S|, (8)

where τ is the effective surface tension parameter, which de-
scribes the cavitation, dispersion, and the repulsion interac-
tion between the solute and the solvent that are not captured
by the electrostatic terms alone and S(�r) is the cavity shape
function described below.

Decoupling the electrostatic term from the Kohn-Sham
functional AKS and combining it with the interaction term and

the cavitation term, we obtain

A[nsolute(�r), φ(�r)] = ATXC[nsolute(�r)]

+
∫

d3r φ(�r) (Nsolute(�r) − nsolute(�r))

−
∫

d3r ε(�r)
|∇φ|2

8π

+ Acav, (9)

where ATXC is the free energy density functional describing
the kinetic and exchange-correlation energy of the solute and
Nsolute(�r) is the solute nuclear charge density.

We make an important distinction between the potentials
φ(�r) and Vext(�r). φ(�r) is the combined electrostatic poten-
tial due to the electronic (nsolute(�r)) and nuclear (Nsolute(�r))
charges of the solute system in a polarizable medium. Vext(�r)
is the potential due to the nuclei in the solute, and is usually
described by pseudopotentials or the projector-augmented
wave method. Outside a specified cutoff radius it has the form
Zeff
r

, where Zeff is the effective charge of the respective atom.
Since the solvent described by ε(�r) does not penetrate the core
region of the pseudopotentials, we can approximate the con-
tribution of the nuclear charges to the combined electrostatic
potential φ(�r) of the solute by a sum over terms of the form
Zeff
r

.
So far, we have described a solute system surrounded by

a dielectric medium quantified by the relative permittivity of
the solvent system, ε(�r). However, we must also determine
the form of the dielectric cavity formed in the solvent by the
solute. Implicit solvation models often differ in their approxi-
mations for this cavity. A common way to construct the cavity
is to place spheres around the solute atoms and then take the
union of these overlapping spheres.22 Inside the so-formed
cavity the relative permittivity is assumed to be that of vac-
uum, outside it takes the value of the solvent, and the induced
charges are placed on the surface of this cavity. One might
also assume a diffuse dielectric cavity such that the relative
permittivity changes continuously.

In this work, we assume a diffuse dielectric cavity that is
a local functional of the electronic charge density of the so-
lute, i.e., for the relative permittivity ε(�r) = ε(nsolute(�r)). This
assumption leads to a diffuse cavity that is implicitly deter-
mined by the electronic structure of the solute. The smooth
transition into the cavity also ensures that the derivatives of
the energy functional are continuous, thereby simplifying the
implementation of the geometric optimization of the solute
system. We assume the following functional dependence13 of
the relative permittivity of the solvent on the solute electronic
charge density:

ε(nsolute(�r)) = 1 + (εb − 1)S(nsolute(�r)), (10)

where εb is the relative permittivity of the bulk solvent and
S(nsolute(�r)) is the cavity shape function, given by

S(nsolute(�r)) = 1

2
erfc

{
log(nsolute/nc)

σ
√

2

}
. (11)

The parameter nc determines at what value of the electron
density the dielectric cavity forms, and σ is the parameter that
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solute

c

n
n

FIG. 1. Smooth variation of the relative permittivity ε from the vacuum value
of one to the value of the solvent, e.g., 80 for water.

determines the width of the diffuse cavity. We choose the log-
arithm in the shape function in order to obtain a numerically
resolvable, smoothly varying function for the usually expo-
nentially decaying charge density.13 Figure 1 illustrates the
dependence of the permittivity on the solute electronic charge
density. The above functional form of the relative permittiv-
ity ensures that the value of the relative permittivity varies
smoothly from one in the bulk of the solute to εb in the bulk of
the solvent and that for εb → 1, the free energy reduces to the
vacuum value. This gradual variation emulates the first sol-
vation shell effects, i.e., the value of the relative permittivity
of the solvent close to the solute is smaller than the equilib-
rium bulk value due to the higher electric field near the solute
surface, a phenomenon known as dielectric saturation.

As shown by Refs. 10 and 13, the functional in Eq. (9)
can be optimized by first minimizing with respect to the elec-
trostatic potential, φ(�r), and then with respect to the solute
electronic charge density, nsolute(�r). Minimization with re-
spect to φ(�r) leads to a generalized Poisson equation,12

∇ · [ε(nsolute(�r))∇φ]

= −4π {Nsolute(�r) − nsolute(�r)} , (12)

where Nsolute(�r) consists of the effective core charges approx-
imated by Gaussians as described below and nsolute(�r) is the
valence electronic charge density. Minimization of Eq. (9)
with respect to the electronic charge density, nsolute(�r), yields
the typical Kohn-Sham Hamiltonian with the following addi-
tional terms in the local part of the potential:

Vsolv = dε(nsolute(�r))

dnsolute(�r)

|∇φ|2
8π

+ τ
d|∇S|

dnsolute(�r)
. (13)

Corrections to the Hellman-Feynman force terms should
also be made due to the modifications of the Kohn-Sham po-
tential. The force corrections consist of two terms,∫

�φ
dNsolute

dRI

d3r +
∫

Vsolv
dnsolute

dRI

d3r. (14)

The first term is due to the change in the electrostatic potential
�φ, which is the difference between the solution to Eq. (12)
and the electrostatic potential when the relative permittivity

is one. The second term is due to the augmentation of the
electronic charge density with the pseudo-charge density at
the atom locations to prevent the fluid from entering in the
core region, as described in Sec. III.

III. IMPLEMENTATION OF IMPLICIT
SOLVATION MODEL

The implicit solvation model reviewed above has been
implemented into the VASP code,23 a widely used plane-wave
DFT code. Combined with VASP’s parallel scalability to large
system sizes and the availability of established and tested li-
braries of USPP24, 25 and PAW potentials,26 the message pass-
ing interface (MPI) compatible implementation extends the
capabilities of the software to study large solvated metallic
and semiconducting systems in an efficient manner.

The VASP code solves the Kohn-Sham equations through
self-consistent iterations to find the electronic ground state. To
include the description of the solvent effects, we modify the
local potential of the Kohn-Sham Hamiltonian and the expres-
sions for the total free energy and forces. The solution to the
generalized Poisson equation, given by Eq. (12), must become
part of the self-consistent loop as the valence charge density
changes in each self-consistent iteration.

The generalized Poisson equation is solved in each elec-
tronic step to obtain the electrostatic potential of the com-
bined solute electronic charge density and ionic charge den-
sity in the polarizable medium that describes the solvent.
Since VASP is a plane-wave DFT code, we take advantage of
fast Fourier transformation (FFT) methods and approximate
the nuclear point charges by Gaussians of finite width,13

Nsolute(�r) =
∑

I

ZI

(2πσ )3/2
exp

(
− (�r − �RI )2

2σ 2

)
, (15)

where σ is the width of the Gaussian, �RI and ZI are the
positions and charges, respectively, of the nuclear species I
in the solute. As long as the width, σ is sufficiently small
such that the Gaussians do not interfere with the solvent, the
interaction energy does not depend on the Gaussian width.
Figure 2 illustrates for the CO molecule that the solvation en-
ergy is independent of the choice of σ over a range of values

1 4 7 10
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-8.5
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-5.5

-4.0

S
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ti
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(m
eV
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1.15 Å 

FIG. 2. Solvation energy as function of the Gaussian ionic width for CO
molecule for two different atomic separations, where the Gaussian width, σ ,
is specified in units of the grid size.
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of σ . For small values of σ , i.e., when σ is of the order of
the grid spacing or smaller, deviations occur because of the
reduced numerical accuracy of the integration of the Gaus-
sians. For large values of σ , the deviations are caused by the
Gaussians reaching into the region of the solvent.

For DFT implementations that use pseudopotentials such
as VASP,23 PWSCF,27 ABINIT,28 JDFTx,17 etc., the elec-
tronic charge density corresponds only to the valence charge
density which tapers off close to the atomic cores. Since the
solvent effects described by the permittivity are assumed to
be a functional of the local electronic charge density, the pos-
sibility exists that, due to the reduced valence charge den-
sity near the cores, the relative permittivity could become
greater than one in the region of the atomic cores. Following
Ref. 10, in order to ward off such unphysical solvent pene-
tration into the atomic core regions, pseudo-charges centered
at the atomic cores are added to the valence charge density.
This is strictly a numerical device and has no effect on the
interaction energies as these pseudo-charges are only used in
the computation of the relative permittivity of the solvent. In
principle, one could also replace these pseudo-charges with
the partial core charges from an appropriately chosen pseu-
dopotential, as is done in the current JDFTx implementation
of the same fluid model.17

The generalized Poisson equation, Eq. (12), is solved us-
ing a pre-conditioned conjugate gradient algorithm. We use a
pre-conditioner of the form 1

G2 , where G is the nonzero recip-
rocal lattice vector. This choice of pre-conditioner gives the
exact solution to the Poisson equation in Fourier space when
the permittivity is constant.

The solution procedure using the conjugate gradient al-
gorithm is made efficient through the use of FFTs for the
evaluation of the gradient and divergence terms in Eq. (12).
First, the gradient term, ∇φ, is evaluated in Fourier space. It
is then transformed to real space and multiplied with the spa-
tially varying permittivity, ε(�r), which is given as a functional
of the charge density. Then the divergence of the term ε(�r)∇φ

is computed in Fourier space using a FFT, leading to the
complete Fourier space representation of the right hand side
of Eq. (12).

For the shape function parameters nc and σ in Eq. (11)
and the effective surface tension τ in Eq. (8), we use the
values of Ref. 15 that were obtained by a fit of the model
to experimental solvation energies for molecules in water.
The specific values are nc = 0.0025 Å−3, σ = 0.6, and

τ = 0.525 meV/Å
2
. Using a hydrogen atom in a 10 Å cubic

box as a test case, the effective surface area computed using
Eq. (14) with σ = 0.6 agrees within 2% with the geometrical
surface area at the cut-off charge density, nc. Since the param-
eters used in the model are fit together, this small deviation is
inconsequential and largely absorbed in the effective surface
tension parameter τ .

The implementation of this solvation model in VASP is
parallelized over multiple processors using MPI. To demon-
strate the efficiency of the implementation, we calculate the
surface energy of a Pt (111) surface slab with 5 layers of Pt
and a 10 Å slab spacing. The vacuum SCF calculation, start-
ing from random wave functions, converged in 39 s and re-
quired 28 self-consistent iterations. The same system solvated

in water, starting from the vacuum wave functions, converged
in 35 s and required 16 self-consistent iterations. These calcu-
lations were performed on 4 nodes, each consisting of two 8-
core Intel Xeon E5 processors, on the Texas Advanced Com-
puting Center (TACC) Stampede system.

IV. VALIDATION OF IMPLICIT SOLVATION MODEL

We validate the correct implementation of our solvation
model for the energies and forces by comparing the solva-
tion energies of several molecules with values obtained for
the same solvation model from the JDFTx code17 and with
experimental results. For the forces, we compare the values
from the implemented analytic expressions with the values
obtained by numerical differentiation of the energy.

The calculations for the validation in this section as
well as the applications in Sec. V are performed with the
modified VASP code using USPP and the PAW method, the
PBE exchange-correlation functional. For the molecular sys-
tems, we use a cutoff energy of 800 eV, the � point for k-
point sampling, and a cubic box of 10 Å edge length. The
atomic positions are obtained from the computational chem-
istry comparison and benchmark database.29 The calculations
of the surface energies use a cutoff energy of 460 eV, a
16 × 16 × 1 mesh for k-point sampling, and a vacuum spac-
ing of 10 Å. The geometry of the platinum slabs for dif-
ferent crystal facets are taken from our previous study for
copper given in Ref. 30. For PbS, the (100) surface slab
has 5 layers, the (110) slab 10 layers, and the (111) slab
9 layers (reconstructed surface with Pb termination). Fully
relaxed vacuum slab geometries were used for both Pt and
PbS solvation calculations. For the solvation model param-
eters, we use the default values of our implementation as
specified in Sec. III and the relative permittivity of water
εb = 80, which is the default solvent in the implementation.

The correctness of the VASP implementation of the sol-
vation model is verified by comparing the solvation ener-
gies of organic molecules with the values obtained from the
identical solvent model implemented in the JDFTx code.
Figure 3 shows that the solvation energies of both codes are

FIG. 3. Comparison of solvation energies for different molecules in water
calculated with VASP and JDFTx. The JDFTx calculations employed norm-
conserving pseudopotentials and the VASP calculations ultrasoft pseudopo-
tentials and the PAW method.
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FIG. 4. Experimental versus VASP calculated solvation energies for differ-
ent molecules in water.

nearly identical, indicating that the method is implemented
correctly. The small discrepancies between the VASP and
JDFTx solvation energies (on the order of 10 meV) can be
attributed to differences in the pseudopotentials used and are
well within common pseudopotential errors.31 Figure 4 com-
pares the calculated solvation energies to experimental data.
The calculated solvation energies are in good agreement with
the experimental values. The experimental and computed sol-
vation energies obtained using JDFTx and VASP are also
listed in Table I.

The implicit solvation model results in correction terms
for the forces, which are derived from the energy expression
of Eq. (9) and given by Eq. (14). We confirmed the numerical
accuracy of the forces by comparing the results of the im-
plemented analytic expressions with the values obtained by
numerical differentiation of the energy for several molecules.

V. APPLICATIONS

We apply the implemented solvation model to surfaces of
materials that are of current technological interest and study
the effect of various solvents on the surface energies of the
dominant facets of metal and semiconductor nanocrystals. In
addition, we determine the energy barrier for the nucleophilic
substitution reaction of chloromethane and compare the re-
sults with quantum chemistry calculations.

TABLE I. Molecular solvation energies in water; VASP, JDFTx, and exper-
imental values. All energies are in eV.

Molecules Eexpt Ejdftx EPAW
VASP EUSPP

VASP

Acetone −0.17 −0.19 −0.19 −0.20
Dimethyl ether −0.08 −0.07 −0.07 −0.07
Ethane +0.08 +0.03 +0.03 +0.03
Ethanol −0.22 −0.17 −0.18 −0.18
Methane +0.08 +0.01 +0.02 +0.01
Methanol −0.22 −0.20 −0.19 −0.19
Propane +0.09 +0.03 +0.03 +0.03
Propanol −0.21 −0.18 −0.17 −0.17
Water −0.27 −0.31 −0.31 −0.31
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FIG. 5. Surface energies of the (111), (100), and (110) facets of Pt nanocrys-
tals in different solvents.

A. Solvation effects on metal and semiconductor
nanocrystals

Optical, electronic, and magnetic properties of nanocrys-
tals strongly depend on their size and shape. These properties
are in turn affected by the functional groups present on the
surface and the type of solvent in which they are dispersed.
Here, we consider platinum and lead sulphide nanocrystals
to ascertain how the presence of a solvent affects the surface
energies of different nanocrystal facets and what the impli-
cations are for the nanocrystal shape. Platinum nanocrystals
have a wide range of applications in catalysis from fuel cells
to catalytic converters.32, 33 Lead sulphide nanocrystals have
exceptional optical properties34 and are considered as emerg-
ing novel materials for inorganic-organic bulk hybrid solar
cells35 and tunable near infrared detectors.36

Figures 5 and 6 show how the presence of solvent af-
fects the surface energies of the low-energy facets of Pt and
PbS nanocrystals. In all cases, the solvent reduces the surface
energies with the more polar solvents resulting in higher re-
ductions. The reduction in surface energies for Pt are up to
2 meV/Å2 and for PbS up to 7 meV/Å2.

The more significant effect of solvation on the PbS sur-
faces than the Pt surfaces is due to the nature of bonding in
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FIG. 6. Surface energies of the (100), (111), and (110) facets of PbS
nanocrystals in different solvents.
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these systems. PbS exhibits a partially ionic bonding, while
the Pt bonding is purely metallic. The presence of partially
ionic bonds on the PbS surfaces leads to stronger electric
fields at the surface experiencing solvent screening. Due to
the reasonably high electric fields present at the PbS sur-
faces, we also confirm that a linear dielectric response to the
electric field strength is sufficient for capturing the solvation
energy of these materials. For the PbS surfaces, the surface
energy differences between the linear and nonlinear model
calculated with the JDFTx code15 is less than 2%. Reference
15 has confirmed that the effect of nonlinearity is also negli-
gible for metal surfaces.

We observe that the surface energies of all facets are re-
duced by the electrostatic screening of the solvent, an effect
which is particularly noticeable for the surfaces of the ionic
PbS compound. While the absolute surface energies of PbS
are significantly reduced by the presence of water, the change
of the ratios of the surface energies with respect to the lowest
energy facet, γ(hkl)

γ(100)
, is significantly smaller. In the presence of

the solvent, the surface energies become slightly more simi-
lar to each other. However, we find that the resulting effect of
the solvent on the morphology of bare nanoparticles is neg-
ligible. In many synthesis processes, the nanoparticle mor-
phology is also determined by the nature of the passivating
ligands adsorbed on the surface and the rate at which they
are adsorbed.2, 37 The predicted change in the surface ener-
gies due to the presence of the solvents used during synthe-
sis is expected to affect the energetics and the rate of ligand
adsorption.

B. Reaction pathways

Reaction pathways and barriers are also influenced by
the presence of solvents.38, 39 To demonstrate the importance
of solvation effects in determining the reaction pathways and
to illustrate the capability of the current implementation, we
consider the nucleophilic substitution SN2 reaction of Cl− and
CH3Cl. This bimolecular nucleophilic substitution plays an
important role in physical organic chemistry and hydration in-
creases the reaction energy barrier, which lowers the transfer
rate by 20 orders of magnitude.40

Figure 7 illustrates the pathway for the SN2 reaction Cl−

+ CH3Cl ⇀↽ ClCH3 + Cl−, where Eb is the energy barrier.
We calculate the energy barriers for this reaction in vacuum
and water using VASP and Gaussian09.43 The VASP calcula-
tions employ a cutoff energy of 800 eV and our implemented
solvation model. We place the molecules in a cubic box of
25 Å size, which we found sufficient for the convergence of
the energy differences to an accuracy of 10 meV. The Gaus-

Eb

[Cl–CH3–Cl]–

Cl– + CH3Cl CH3Cl + Cl–

FIG. 7. Nucleophilic substitution SN2 reaction of a chlorine ion with
chloromethane.

TABLE II. Energy barriers for the nucleophilic substitution SN2 in vacuum
and in water calculated with VASP, Gaussian09, and constrained ab initio
molecular dynamics.

Evacuum
b (eV) Ewater

b (eV)

VASP 0.34 0.60
Fattebert and Gygia 0.61
Gaussian 09b 0.32 0.63
Gaussian 09c 0.32 0.69
ab initio molecular dynamicsd 0.82

aReference 12.
bCavity of atom-centered spheres.
cStatic isodensity model of Ref. 41.
dReference 42.

sian09 calculations use the aug-cc-pV5Z basis set and the
static isodensity solvation model,41 which is similar to the sol-
vation model we implemented in VASP.

Table II compares the energy barriers for the SN2 reaction
obtained with VASP with various other methods. We find that
the energy barriers obtained from VASP and Gaussian09 are
in good agreement. We also observe that the energy barrier in
Gaussian09 only weakly depends on the solvation model. The
energy barriers obtained with our solvation model in VASP
and with Gaussian09 also compare well with the result of
Fattebert and Gygi12 of 0.61 eV which neglected the con-
tribution from the cavitation.12 For the case of this reaction
energy barrier, neglecting the cavitation energy is a good ap-
proximation since the cavity does not change much during
the reaction. The reaction barrier obtained with constrained
ab initio molecular dynamics simulations with explicit sol-
vent is 0.82 eV,42 about 0.2 eV higher than the values for the
implicit solvation model. This difference may be due to an-
harmonic contributions to the energy barrier.

VI. CONCLUSIONS

We implemented an implicit solvation model that
describes the effect of electrostatics,13 cavitation, and
dispersion14 on the interaction between a solute and solvent
into the plane-wave DFT code VASP. The model was val-
idated by comparing the values from the VASP implemen-
tation with the values from the JDFTx implementation and
experimental data. Our implementation provides a computa-
tionally efficient means to calculate the effects of solvation on
molecules and crystal surfaces. We apply the solvation model
to determine the effects of solvation on the different facets of
metal and semiconductor nanocrystals and the energy barrier
for the nucleophilic substitution reaction of chloromethane.
Solvation significantly reduces the surface energies of the
semiconducting PbS nanocrystals and only weakly affects the
surface energies of the metallic Pt nanocrystals. For the nu-
cleophilic substitution reaction, we obtain energy barriers in
good agreement with previous calculations. The strength of
our solvation model implementation is its capability to han-
dle large periodic systems such as metal and semiconductor
surfaces and its interoperability with standard ultrasoft pseu-
dopotential and projector-augmented wave potential libraries.
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The software is freely available as a patch to the original
VASP code.18
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