ﬂ««;}w@

SANDIA REPORT

SAND90—2261 « UC—814
Unlimited Release
Printed September 1991

Yucca Mountain Site Characterization Project

Research Program to Develop and
Validate Conceptual Models for Flow
and Transport Through Unsaturated,
Fractured Rock

R. J. Glass, V. C. Tidwell

Prepared by

Sandia National Laboratories

Albuquerque, New Mexico 87185 and Livermore, California 94550
for the United States Department of Energy

under Contract DE-AC04-76DP00789

PRV IO
i :v;“_”[};;}{{#s




“Prepared by Yucca Mountain Site Characterization Project {YMSCP) par-
ticipants as part of the Civilian Radioactive Waste Management Program
(CRWM). The YMSCP is managed by the Yucca Mountain Project Office of
the U.S. Department of Energy, DOE Field Office, Nevada (DOE/NV).
YMSCP work is sponsored by the Office of Geologic Repositories (OGR) of
the DOE Office of Civilian Radioactive Waste Management (OCRWM).”

Issued by Sandia National Laboratories, operated for the United States
Department of Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States Govern-
ment nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States Government, any agency thereof or any of their
contractors or subcontractors. The views and opinions expressed herein do
not necessarily state or reflect those of the United States Government, any
agency thereof or any of their contractors.

Printed in the United States of America. This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from
Office of Scientific and Technical Information
PO Box 62
Oak Ridge, TN 37831

Prices available from (615) 576-8401, FTS 626-8401

Available to the public from
National Technical Information Service
US Department of Commerce
5285 Port Royal Rd
Springfield, VA 22161

NTIS price codes
Printed copy: A04
Microfiche copy: A0l



SAND--90-2261
DE92 004301

SAND 90-2261
Unlimited Release
Printed September 1991
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ABSTRACT

As part of the Yucca Mountain Project, our research program to develop and validate conceptual models for flow
and transport through unsaturated fractured rock integrates fundamental physical experimentation with conceptual
model formulation and mathematical modeling. Our research is directed toward developing and validating
macroscopic, continuum-based models and supporting effective property models because of their widespread utility
within the context of this project. Success relative to the development and validation of effective property models
is predicated on a firm understanding of the basic physics governing flow through fractured media, specifically in
the areas of unsaturated flow and transport in a single fracture and fracture-matrix interaction.
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RESEARCH PROGRAM TO DEVELOP AND VALIDATE CONCEPTUAL MODELS FOR
FLOW AND TRANSPORT THROUGH UNSATURATED, FRACTURED ROCK

R.J. Glass and V.C. Tidwell
Sandia National Laboratories
Geoscience Analysis Division, 6315
Post Office Box 5800
Albuquerque, NM 87185
(505) 844-0945

1.0 INTRODUCTION

Mounting concern over the nation's radioactive waste disposal problems has fueled interest in the development
of conceptual models for describing water flow and contaminant transport in unsaturated, fractured porous media.
Such models will play a key role in the performance assessment of the proposed Yucca Mountain waste repository.
Validation of these models within the range of their application for performance assessment requires a more
sophisticated understanding of the processes which govern flow and transport within fractured porous media than
currently exists.

In support of conceptual model development and validation, a research program has been developed at Sandia
National Laboratory for the Yucca Mountain Project to investigate mechanisms and processes that govern flow and
transport through unsaturated, fractured rock.! The research program integrates fundamental physical

experimentation with conceptual model formulation and mathematical modeling. Our approach follows five basic
steps:

- identify processes governing water flow and radionuclide transport through fractured porous media;

- develop basic scientific understanding of these processes through tundamental conceptual and mathematical
modeling, controlled experimentation, and model validation (invalidation) exercises at both the laboratory and
field scales;

- bound the importance or occurrence of various processes in terms of system parameters such as initial
conditions, boundary conditions, and distribution of properties in both time and space;

- provide informational needs for site characterization so that the probability of occurrence for each process can
be assessed and appropriate model parameters measured; and

- integrate models for important water flow and radionuclide transport processes into performance assessment
models.



Fundamental to our approach is systematic physical and numerical experimentation. Physical experimentation
takes place in two types of systems: tuffaceous systems containing all the natural complexity of the rock; and
analogue systems which are simpler and designed to maximize experimental control and resolution of data
measurement (e.g., "rocks" fabricated to specification and roughened glass plates or fabricated rocks held together
to form analogue fractures). Relative to tuffaceous experimentation, studies are in progress at both the laboratory
and field scale. Numerical experimentation addresses the simulation of physical experiments, the systematic
vanation of model parameters (sensitivity analysis), and conceptual model simplification.

In both types of experimentation, we stress concepts of dimensional analysis, scaling, and similitude to increase
understanding and generalize results.>**%¢ For systems to which these concepts are applicable, once a physical
experiment is conducted or a solution of the dimensionless form of the governing equation is formulated, the results
apply to all similar porous media and flow systems through scaling relations. The concept of similar porous media
also is exploited to allow physical experimentation in analogue materials. This can minimize the difficulties of
working with some porous materials where the time scale of the process is either too short or too long to make
measurement practical.

Questions raised in modeling, laboratory, and field studies are used to direct our research program. In general,
research is prioritized with respect to understanding water flow and radionuclide transport processes which could
signiticantly alter our current conceptual models (i.e., significantly decrease or increase water or radionuclide travel
times); testing key model assumptions; and developing new conceptual models as necessary. Fundamental research
15 stressed and 1n this sense has broad applicability within the general field of flow and transport through fractured
porous media.

A number of studies, in various stages of planning or completion, are underway as part of the research
program. In this paper, we discuss our general conceptual modeling approach for fractured media and outline our
research 1n two supporting areas:  water and nonreactive solute movement in single unsaturated fractures and
fracture-matrix interaction.

For the purpose of this paper, we limit our discussion to isothermal flow and, with regard to transport, only
consider advection/dispersion processes.

2.0 GENERAL CONCEPTUAL MODELING

Within the context of performance assessment, models for flow and transport through fractured rock will be
apphed to a myriad of problems (scenarios) at a variety of scales. It is unlikely that a single, all-inclusive,
conceptual model can be formulated. For some situations, the assumptions required by a particular conceptual
model will be violated and the model cannot be used. The vast majority of scenarios will allow the use of a
macroscopic, continuum approach for the formulation and solution of the flow and transport problem. Therefore,
the majority of our research is directed toward developing and validating continuum-based models. Application of
continuum models to flow and transport through unsaturated, fractured rock has been reviewed in a number of
papers. 7

In this approach, 1sothermal, two phase flow (air/water) through porous media is modeled by application of
continuity of mass. Mass flux is given empirically as proportional to the potential gradient, with the proportionality
factor denoted as the hydraulic conductivity, a property of the medium. For unsaturated flow, conductivity is a
nonhinear function of fluid saturation (possibly hysteretic) and saturation is a nonlinear, hysteretic function of fluid
pressure. Fluid potential is a combination of pressure (matric), gravitational, and osmotic potentials. If the gas
phase provides neghgible resistance to flow of the liquid phase, then the two-phase-flow problem is decoupled,
vielding the Richards” equation for liquid water.'” For many situations within the field of soil physics, the Richards’
equation haxs been shown to adequately model water flow in unsaturated soils.
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LABORATORY APPARATUS DEVELOPED FOR RAPID VISUALIZATION OF MOISTURE CONTENT IN THIN SLABS OF
POROUS MEDIA. Moisture content within thin slabs of sand (l-cm-thick, 50-cm-wide, 130-cm-tall)
is visualized using an optical technique that measures the transmission of light through
translucent media (the higher the transmission, the higher the moisture content). By
illuminating the back of a slab of media, the moisture content distribution integrated over the
thickness of the slab is visualized as variaticns in light intensity at the front of the slab.
Using video imaging technology, intensity fields are recorded 30 times a second and digitized

into an array of 512x512 points yielding exceptional temporal and spacial resolution. [R.J.
Glass, Div. 6315, Sandia National Laboratories]
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Using the concept of mass balance, one also can model the transport of solutes through porous media.
Nonreactive solute transport results from a combination of advective, dispersive, and diffusive processes. Advective
mass flux is given by the mean pore velocity field. Mass flux due to dispersion and diffusion processes is modeled
by a gradient law, proportional to the mean concentration gradient. For concentrations where the dilute
approximation holds, the combined proportionality factor, denoted as the dispersion coefficient, is considered a
property of the medium and a function of the saturation and mean pore water velocity. For many situations in
modeling flow of nonreacting tracers in geologic media, the advective mass flux calculated from the velocity fields
generated by flow models with average effective hydraulic properties is inadequate. Thus, the details of the velocity
distribution are required and must be measured with appropriate experiments.

To apply the continuum approach, we are faced with the standard problem: the determination of macroscopic
flow and transport properties at the scale of interest. For problems in which the scale of property measurement is
identical to the scale of model application, we may apply the approach with confidence. For problems where our
scale of application is different than our scale of measurement, we must make use of intermediate conceptual
models, or scaling laws, which define effective properties at the scale of interest. These scaling laws must. correctly
integrate over the details of the process operating at smaller scales. In unfractured porous media, this integration
requires knowledge primarily of the spatial variation of properties. For fractured porous media, this integration also
must incorporate the properties of individual fractures and the details of fracture-matrix interaction.

The two-dimensional nature of a fracture yields two distinct effects on steady-state flow and transport,
depending on whether flow is in the plane of the fracture or normal to the fracture. Thus, we must consider the
aefinition of flow and transport properties within the fracture as well as the effect of the fracture as a variable-area,
pressure-dependent connector to the matrix on the other side. For both steady and transient flows, flow paths in
a fractured rock will be controlled by both of these details as well as the variability of matrix properties, variability
of fracture properties, and connectivity of the fracture network.

Depending on the problem we wish to solve, we defire our continuum (single or multiple) and model effective
properties differently. For instance, large-scale modeling of relatively steady-state flow through a fractured media
at moderate to high pore pressures may allow the fractures and matrix to be treated as a single composite
continuum.'"'?  Here, fractures and the matrix are represented simply as a bimodal pore size distribution.
Equivalent properties can be modeled in a variety of ways depending on the connectivity within and between the
pore groups composing the fractures and matrix.'">'*!> In any case, for the approach to be valid, close to
equilibrium pressure conditions must exist across all pore groups in a control volume at all times.

For large-scale transient flow conditions, a different approach must be considered. Here, it can be convenient
to model the fractured porous media as two interacting, overlapping continua.'®'” In this dual-porosity approach,
interaction between fracture and matrix continua is modeled through a "leakage" term which is a function of a
variety of factors such as the gradient between the continua, the ratio between continua properties, matrix-block
geometry, and the surface-to-volume ratio of the blocks. Again, equivalent properties for both the fracture and
matrix continua must be modeled as well as the leakage or interaction term. Validity of the approach requires,
among others, that both the fractures and matrix are sufficiently connected that dual continua can be defined.

In order to develop and validate these and other conceptualizations of the continua as well as to develop
effective property models for the conceptualizations, we must understand the details of the flow and transport
processes at a scale smaller than the scale of application. The two most important of these are the physics of flow
in single fractures and fracture matrix interaction.

3.0 WATER AND SOLUTE MOVEMENT IN A SINGLE UNSATURATED FRACTURE

In order to correctly incorporate the influence of fracture flow into definitions of equivalent hydraulic properties
for unsaturated, fractured rock, we must first understand the basic physics of flow and transport in single fractures.
For many transient situations, flow within the fracture will be significantly influenced by the surrounding matrix.
However, in the extreme of high-flow-rate transients with very low permeability matrix (such as in highly welded,



or zeohitized tuft) or for steady tlow through fractured rock near saturation, the effect of the matrix on flow and
transport through a conducting fracture will be of second order. For all these situations, the hydraulic properties
of a fracture must be determined.

Little is known concerning the distribution of water (referred to as wetted structure) and air in an unsaturated
fracture and its influence on flow and transport through the fracture. In addition, fracture-matrix inieraction is
dependent on the wetted structure within the fracture which connects the matrix on either side of the fracture.

The following questions are being addressed by our current research effort in flow and transport through
unsaturated fractures:

- Can ma~-oscale moisture content and relative permeability characteristic curves be defined for individual
fractures? Are they a function of scale? Can they be calculated from fracture surface topology (an indirect
measure)? How important are air entrapment and hysteresis phenomena?

- Can macroscale selute diffusion/dispersion propesties be defined for individual fractures? Can a lumped
dispersion coefficient be defined for use in simple one-dimensional models? [s solute dispersion a function of
scale? Can a dispersion coefficient be calculated from fracture surface topology?

- Are there any significant differences in flow and transpart properties between cooling fractures and tectonic
fractures? What types of models for fracture surface topology apply to each?

- Is gravity-driven instability or "fingering" important in nonhorizontal, unsaturated fractures? How does the
angle of inclination of the fracture influence finger structure and air entrapment? What are the reiative
tmportance of gravity-driven "fingering" and heterogeneity-driven “channeling” on flow field structure and
solute transport? Do they act synergistically or antisynergistically?

3.1 Conceptual Modeling

In general, fluid flow through a rough-walled fracture obeys the Navier Stokes equation as long as the aperture
of the pore is sufficiently large. A major difficulty arises in the definition of problem geometry, not only in the
topology and mating of the fracture surfaces and the effect of lithostatic overburden, but in the determination of
which apertures are spanned with each fluid. To yield wetted geometry, the transient Navier Stokes equation for
each tluid must be solved. The solution requires proper boundary conditions at the moving water-air interface that
incorporate a dynamic contact angle.™'> While solution approaches based on cellular automata are in development,®
this currently is an intractable problem.

Currently, we are using several linked conceptual models to describe fluid flow and solute transport through
individual unsaturated fractures, all of which incorporate simplifications that make the problem tractable. Here we
brietly outline our modeling approaches for fracture void geometry, unsaturated-fracture wetted-region structure as
a function of pressure, and steady flow and solute transport through unsaturated-fracture wetted-region structure.
These models are run in series to calculate unsaturated fracture properties of relative permeability, saturation-
pressure relation, solute dispersivity, and wetted-region structure.

3.1.1 Modeling of fracture void s«ometry: The fracture void is modeled by simplifying the geometry to a field
ot variable apertures within a plane. The plane is divided into a checkerboard and an aperture is defined for each
discrete square. To model fracture aperture fields we have two controls: a distribution from which apertures are
chosen and the type of spatial structure used to assign apertures within the plane. Currently we have implemented
three models to represent spatial structure within the fracture aperture plane: random spatial structure; fractal spatial
structure;** and geostatistical spatial structure.®

18
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3.1.2 Modeling wetted-region structure in unsaturated fractures: To apply steady flow and transport models
to unsaturated fractures, a wetted structure for the aperture field is required as a tunction of pressure. We are using
four approaches to construct the required wetted aperture structures. All the approaches are variations of percolation
theory originally proposed by Broadbent and Hammersley* for application to pore-scale flow processes in porous
media: standard percolation with and without trapping, and invasion percolation with and without trapping.

The standard percolation process conforms to th= distribution of fluid within a network under thermodynamic
equilibrium. That is, all pores communicate with all pores and no entrapment can occur. For this to be applicable
to an unsaturated fracture, we must have very long equilibrium times where each fluid can diffuse through each
other until the entire system is in thermodynamic equilibrium. Another situation where the results may be applicable
is in finely-rough, rough-walled fractures where water film flow will occur along the walls and thus establish the
intercommunication of the water throughout the fracture. For both of these situations, the time scale for the
displacement process must be large compared to that for communication processes (either film flow or diffusion).
Standard percolation with trapping, first discussed by Dias and Wilkinson,* has application to fractures where water
enters the fracture from the matrix but communication processes do not exist and air can become entrapped in
regions of the fracture.

Invasion-percolation, introduced by Wilkinson and Willemsen,™ models an imbibition process where the
pressure potential within each fluid does not vary in space. This is a reasonable assumption in the limit of
infinitesimal flow rate where viscous forces are negligible and the system is dominated by capillary (surface tension)
forces. If trapping is included, communication processes either do not exist or displacement takes place on a time
scale that is small compared to existing communication processes. Invasion percolation is essentially a simplified
form of the pore-scale models developed in the petroleum engineering tield.?-*®* For low-flow situations,
invasion percolation should simulate the sequential development of the wetted region within the fracture.

To incorporate the effect of gravity on the wetted-region structure in nonhorizontal fractures, we have modified
the invasion percolation models to incorporate a gravity potential.*" For cases where fingers form, we are adapting
conceptual models based on linear stability analysis developed to understand the analogous problem of gravity-driven
fingering in porous media.’>*® Such models are capable of addressing the dynamical relationships for wetted-region
structure as a function of system flow rate.

3.1.3 Simplified conceptual models for steady flow and solute transport through the wetted fracture structure:
The steady-state flow of an incompressible fluid through the wetted region of a fracture is modeled by the Reynolds
equation, originally developed for lubrication applications. Assumptions required for the derivation of the Reynolds
equation are essentially that the cubic law holds locally and that mass is conserved.™* The cubic law is derived
for laminar flow between two parallel plates and simply states that the flux is proportional to the product of the
pressure gradient and the aperture cubed. A theoretical exploration of this assumption has been performed using
perturbation solutions of the Navier Stokes equation.”’

The flow field solution is used in a solute transport model using a "depth" averaged advective diffusion
equation.”*** Dispersion due to advective field variation is calculated by fitting the solute breakthrough at the end
of the fracture to the one-dimensional advective-dispersion model solution. In addition, a solution of the two-region,

mobile/immobile advection dispersion model is fit to calculate a different dispersion coefficient and the fractional
immobile wetted region.

3.2 Physical Modeling

We have developed a physical modeling or experimental capability that allows us to explore many unsaturated-
fracture-flow system parameters (see Table 1). Our experimental apparatus consists of a rotating test stand (RTS),
analogue fracture test cells, and digital imaging and processing equipment. The RTS holds within a rigid frame a
diffuse light source that backlights a test cell plane and array cameras focused on the test plane. The RTS can be

23



[s@1a03ea0qe]

TBUOTIEN PTPUBS ‘GT€9 -aTg ‘uvosdwoyl "T W Pu®e 8seIH "r£-y¥] -uoT3Nios 18pow uotsaadsTp

-3AT308ApE TRPUOTSUSWIP-8UO 8Y3j O3 8IN3DOEIJ a8yl JO pua ayjz 3e ybnoayjyjyeaaq sianios ayjz buti3ts

Ag pa3eInores ST UOT3IBTI®A DIOT] 3AT3D08ape 03 anp uortsaadstq - (3ybTa pue 3337 woljzoq) uotaenba
uoTsnNIIIp 8aT3OaApe pabeaaase ,yadep, e Hurisn Tapow 3rodsueas 93NTOE B UT pasn ST uoT3Nnios

PT8TF MOT3 &Yyl -pagno aanjazade ay3 pue juaTpeab ainsssad syj Jo 3onpoad ay3y o3 Teuor3zzodoad

ST Xn13 3yl 3eysy sajeis Ardwrs pue sajerd royreaed om3 usamiaq MOTJ JeuTwWe] I03J PaATIapP ST

MET OTQno 8yl °pdaI8sUOD ST ssew eyl pue ATTED07 SPTOY mET OTQND 9yl 3jey3y axrtnbaa suoridumsse
ay3 ArieTauessy -suotjeoridde uot3estaqny o3 padotaaap A{1eurbrao ‘uorjzenbs sprouday ay3y 4q
patapow sT (33871 doil) ain3dexry e jo uotbai pszjam ay3 ybnoayz (3ybra do3z) prnyyg arqissaadwosurt
ue jo moT3j @23e3is-Apeais a8yl -3jxodsuer], 3Inios pue MOTA 4Apeajs :ONITIAGOH TYRLIIONCO

ST zw.fu.myuN.W;.

SRR

an

 EAEEN
\Wﬁrl j ’

W ..u, i .,,., ‘,, N . .
\ ﬂ._ : ..E,ﬁ”“,u,,

v

-t

o, SR
i




TABLE 1: UNSATURATED FRACTURE FLOW AND TRANSPORT
SYSTEM PARAMETERS

1. Physical properties of the fracture
a. mean topography of roughness/aperture (microscopic length
scale)
. roughness/aperture distribution about the mean
spatial structure of aperture within fracture plane
. distance between fracture walls
mucrofractures or microporosity at fracture walls

o oo

2. Fluid properties (functions of temperature and solute concentration)
a. surface tension
b. viscosity
c. density
d. contact angle between liquid, gas, and fracture wall
(wettability)

3. Composite hydraulic and transport properties
a. conductivity

. fluid characteristic relation

. diffusivity

. sorptivity

. solute dispersivity

a o o

4. Isotropy or anisotropy of physical or cuomyosiie hydrologic and transport properties

5. Heterogeneity of physical or composite hydraulic and transport properties
a. type
b. "intensity" or level
c. length scale of heterogeneity

6. Macroscopic geometry of fracture flow system
a. macroscopic length scale
b. orientation in gravity field

7. Initial/boundary conditions
a. initial saturation
b. flux or pressure supplied at top of system
c. air pressure ahead of the wetting front
d. point or uniform fluid application
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rotated through 180 degrees to vary the orientation of the fracture with respect to the gravitational tield. The test
planc between the hight and the cameras can incorporate planar test cells up to 50x100 ecm. The analogue fracture
test cells are designed to accept exchangeable, translucent, fracture plates (two plates make a fracture) and hold the
pliates together between two thick outer glass plates with fluid pressure.  This pressure system removes long
wavelength features from the aperture distributions, and allows us to simulate and vary lithostatic overburden
pressure. Top and bottom boundary conditions on the fracture are imposed by narrow pressure plates making use
of filter paper. A reed valve within the top plate allows us to switch between two fluids evenly across the fracture
for solute transport experiments.  Side boundary conditions are either open or closed with side gaskets which may
he added or removed during an experiment. Digital images recorded during an experiment (up to 2048x2048
tesolution) are analyzed to give wetted and entrapped region structare or transient dye concentrations for transport
vypernments.

We are making use of several types of fracture plates. Preliminary experimentation focuses on existing,
manufactured glass surfaces (e.g., "obscure plate glass™) that simulate a fracture and can be modified to explore
system parameters of interest (surface topology, microroughness). Microroughness can be induced through
~andblasting the surface (the bead size of the blasting material changes the microroughness) or HF etching (exposure
time changes microroughness). We also are using fracture plates cast in epoxy and acrylic from naturally occurring
fractures.  Sol gel coating of the fracture casts to introduce microporosity, simulating microroughness, is being
evplored. In order to vary fracture aperture distribution and spatial structure systematically, methods also are being
explored to fabricate fractures to specification using model-generated aperture distributions.

The aperture field in a particular translucent analogue fracture (glass plate, cast or model-generated fabricated
fracture) is characterized by saturating the fracture with dye solution and measuring light transmission on the RTS.
Digitization of the image at a number of resolutions yields a series of aperture fields for use in numerical
experiments. Numerical simulation at these different resolutions are necessary to determine the resolution required
to predict our experiments and thus that required in aperture measurement programs planned as part of site
Charactenzation.

3.3 Physical and Numerical Experimentation

Integrated numerical and physical experiments are underway that study the effects of fracture surface roughness
(topology) and orientation with respect to gravity on the unsaturated fracture-tflow-field structure, hydraulic and
transport properties, and scaling behavior ot the properties.

Numerical expeniments are conducted to determine model parameter sensitivity, to aid in constructing physical
experiments, and to compare with physical experiments. Apertures within fracture planes are simulated using
random, fractal, or geostatistical models. The appropriateness of the three models for representing spatial structure
is being evaluated by measuring and analyzing aperture fields of both cooling and tectonic fractures from existing
vore and outcrop samples taken from Yucca Mountain.  The various percolation models are used to generate a
wetted structure as a function of pressure characterized by a saturation and fractal dimensions of wetted, nonwetted,
and entrapped regions.  Steady-state flow is simulated through the wetted structure and the hydraulic conductivity
i~ calculated. Transport of a pulse of nonreacting solute in the steady flow field is simulated and the breakthrough
of the solute at the end of the fracture calculated. The solute concentration break through curve is fit both with a
vimple one-dimensional solution of the advection dispersion equation to calculate a dispersion coefficient and with
a solution to the two-region, mobile/immobile advection dispersion model to calculate a dispersion coefficient and
the tractional immobile wetted region.

Physical experiments conducted on the RTS follow a similar sequence. For these experiments, fracture plates
will vary within the three types (glass plate, natural fracture casts, and model gencrated). For a given pair of
fricture plates, the transient horizontal water sorption and desorption processes are recorded with digital images
under both constant-flow and constant-supply (or extraction) pressure conditions. Knowledge of the flow rate as
a tunction of time 1n the constant-supply pressure sorption experiments yields the fracture sorptivity. The images
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from the transient experiments are analyzed and compared with invasion-percolation model predictions using
aperture fields measured at different spatial resolutions. This comparison allows us to assess both the ability of the
percolation-based models to generate wetted and entrapped aperture structures as a function of total infiltration and
the required spatial resolution for aperture field measurement.

Vertical rise and drainage experiments are used to measure hysteretic saturation-pressure relations. Steady-state
flows are established with the use of top and bottom pressure plates and monitored at a series of pressures to yield
a relative permeability curve. Saturations, wetted-structures, and entrapped-structures at each pressure are measured
by analyzing recorded images. At each pressure, a transient dye pulse also is monitored. Light transmission is used
to obtain concentration within the flow field as a function of time. Effluent concentration as a function of time also
is monitored for evaluation of one-dimensional fracture model transport parameters.

The influence of orientation of the fracture in the gravity field on downward infiltration of wate. and the
formation of gravity-driven fingering is explored as a function of flow rate supplied evenly across the top of the
fracture. Fingering flow-field structure is compared with those simulated using invasion-percolation, including
gravity, and predicted from linear stability analysis.

Once confidence has been built in a particular set of conceptual models through comparison to physical
experimentation, numerical experiments that address issues of property scaling will be conducted.

4.0 FRACTURE-MATRIX INTERACTION

Although unsaturated flow and transport through fractures and porous rock has received increased interest over
the last decade, the interaction between the two has received relatively little attention. We define fracture-matrix
interaction as the transfer of fluids and solutes between fractures and the porous matrix under either transient or
steady flow conditions. The nature and degree of such interaction plays a significant role in the way equivalent
hydraulic properties are defined for fractured rock. For example, flow between adjacent matrix blocks will vary

radically as a function of pressure and wetting history as pathlines either cross, flow through or circumvent fractures
thus impacting the effective permeability of the media.

There are a number of situations where the interaction between fractures and matrix may severely affect flow
and transport fields. Two important cases are (1) highly transient flow conditions, especially for infiltrating fluid
in an initially dry fracture,**? and (2) steady-state flows normal to fractures where fractures act as variable-area,
pressure dependent connectors. Other effects which must be considered include the presence of fracture coatings,
air entrapment in the fractures and matrix, and flow fingering and channeling within the fracture plane.

Our research effert concerning the basic physics that govern fracture-matrix interaction addresses the following
questions:

- What impact does fracture-matrix interaction have on flow and transport processes and how does such

interaction change as a function of media properties and flow conditions? What is role of scale in the modeling
of fracture-matrix interaction?

- What is the importance of air entrapment in both fractures and in the matrix block, the presence of fracture
coatings, and flow channeling and gravity driven fingering in the plane of a fracture on fracture-matrix
interaction and how can their effects be modeled?

- How can fracture-matrix interaction in steady or transient problems be adequately represented within
continuum-based models by means of appropriate equivalent property models? Under what conditions can the
fractures and porous media be modeled as overlapping continua with their interaction addressed through a
"leakage term?” Under what conditions can the effects of fracture-matrix interaction on flow and transport
fields be addressed through the composite continuum approach?
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4.1 Conceptual Modeling

The nature and degree to which the fractures and matrix interact dictates how we detine the computational
continuum and hence the media properties. To aid in our understanding of the basic physics governing fracture-
matrix interaction, we are making use of two modeling approaches: pore-scale and discrete, small-scale, continuum
modeling.

The pore-scale approach 1s useful in understanding effects of pore-scale connectivity and network structure on
eftective property models. Pore-scale modeling is formulated 1n a fashion similar to that discussed above for the
unsaturated fracture studies. Fracture and matrix void structure 1s assigned according to random, fractal, and
geostatistical techniques. Wetted-structures then are defined using percolation-based theories. Steady flow through
the wetted-structure is modeled using a resistor network approach and a pore-scale velocity distribution is calculated
tor use in one-dimensional solute transport models.

A second approach we use is the discrete, small-scale, continuum approach. Here the fractures and matrix are
modeled as discrete zones within the continuum characterized by very different properties. This approach essentially
treats the tractures as a structured heterogeneity within the matrix. By treating the media in this fashion, fracture-
matrix interaction 1s addressed according to the principles of mass balance at the fracture-matnx interface.
Application of this technique requires that continuum-based properties be assigned to individual fractures and matrix
blocks.

4.2 Physical Modeling

Physical modeling relies on two experimental systemis. The first makes use of tuffaceous materials similar to
that encountered at the Yucca Mountain test site.  Rock types vary from bedded nonwelded to nonbedded
nonwelded, partially welded and welded tuff with fractures. Experimental samples are taken from either Yucca
Mountain or natural analogue sites. The second type of experimental system is analogous to the tuff system but
simpler. having only certain predetermined attributes of the tuff. These analogue systems are designed to maximize
experimental control (enable systematic variation of hydraulic properties) and resolution of data measurement. Thin
slabs of sintered glass beads have been found to provide a4 good analogue for porous rock; however, addition
rescarch 1s being performed to evaluate other types of ceramics and sintered material.  Fabrication of fractures is
accomplished by mating individual ceramic plates or by inducing the formation of a fracture in a single ceramic
plate.

A Key element to the physical modeling of flow and transport through fractured media is a means of monitoring
maosture and solute content by noninvasive techniques. In sintered or ceramic analogue systems both the moisture
and solute transport fields are monitored through the application of optical techmiques.** - Alternative techniques
are necessary for use in tuft because hight cannot be passed through such systems. For thin two-dimensional tutt
systems two techniques are currently under investigation: gamma-ray densttometry and x-ray attenuation. For three-
dimenstonal systems, tomographical methods, such as x-ray and gamma-ray transmussion, nuclear magnetic
resonanve, positron emission, and radar and electromagnetic imaging, are being evaluated.  With respect to
monitoring solute transport in tuffaceous systems, a number of nonreactive tracers are being evaluated according
to their potential tor detection by the various noninvasive techniques under imvestigation.

Physical modeling of fracture-matnix interaction primarily relies on two-dimensional systems (three-dimensional
investigations will follow at a later time); one which addr-:ses flow normal to the plane of the fracture and the other
within the plane of the fracture.  For systems aimed at modeling flow normal to the fracture plane, thin slabs of
anulogue or tuftaceous matenial cut by a fracture are secured between two glass plates. This system then is
icorporated into a test cell simifar 1o that used by the unsaturated fracture program. [nvestigations mvolviny
analogue material are able to make full use of the RTS and video imaging equipment described above whereas
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tuffaceous test cells are designed to allow direct mounting in both the gamma-ray and x-iay apparatus. The x-ray
technique has the further advantage that the resulting exposures may be post-processed with the same equipment
and 1n 4 similar manner to that of the optical technique.

Modeling of tlow and transport in the plane of the fracture is being conducted in a flow cell consisting of an
impermeable plate of glass placed on top of a sintered glass plate or the open face of a natural fracture. Boundary
conditions are prescribed through the application of thin porous plates equipped with reed valves (to allow
introduction of dyes) at the edges of the flow cell. The flow cell is mounted on a table which allows the orientation
of the apparatus to vary within the gravity field. The resulting flow and transport fields then can be monitored

visually along the plane of the fracture while optical, x-ray, or gamma-ray techniques may be used to monitor flow
and transport in the matrix.

Analysis of results cbtained by laboratory experimentation will require information concerning hydraulic
properties of both the porous media and the fractures. Centrifuge and unit-gradient techniques are of particular
interest for measuring hysteretic moisture-suction characteristics, the relative permeability, and dispersion properties
of the porous matrix materials. Unit-gradient techniques also are being considered for characterizing fracture

properties. Such tests are conducted either on fracture casts or on the fracture itself (inatrix is maintained at
saturation to avoid interaction).

4.3 Physical and Numerical Experimentation

A numerical modeling program has been instituted in an effort to improve our understanding of the processes
governing fracture-matrix interaction and to aid in the design and analysis of physical experiments. Both a pore-
scale and macroscopic, continuum approach is utilized by this program. Whereas continuum-based models represent
the primary ana.ysis tool for our laboratory program, pore-scale modeling is of particular interest because it allows
direct analysis of saturation structure as a function of pore pressure and wetting history. With respect to continuum-

based models, special attention is given to the means by which the continua and media properties are defined for
a particular problem.

Physical experiments are being performed to investigate the nature of fracture-matrix interaction for a number
of flow regimes. One such group of studies is focused on the behavior of a wetting front as it percolates through
an initially dry fracture. Experimentation involves the use of both analogue and tuffaceous materials in which a
constant head or constant flow rate 1s maintained at the upper boundary of the system while monitoring the outflow
rate and the matrix pressure field (by means of tensiometry). Systematic variation of matrix and fracture properties,
flow rates, and fracture orientation is incorporated into the testing scheme. Nonreactive dyes also are used to
investigate transport processes under transient flow conditions.

Other studies are focusing on matrix-dominated flow and transport subject to steady and trapsient boundary
conditions. Such studies are aimed at investigating the role of fractures as variable-area, pressure-dependent
connectors between adjacent matrix blocks. Boundary conditions are established through the use of porous plates
at the upper and lower ends of the flow cell. Tests are conducted in both tuffaceous and analogue materials subject
to a variety of boundary conditions, fracture orientations, and media properties.

Because of the simplicity of the experimental system, a wide variety of investigations are performed by making
a few simple modifications to the base system. For example, the physics of fluid transfer between a fracture and
the surrounding porous matrix in the presence of a fracture coating or alteration zone is explored by the application
of special materials to the faces of the fabricated fractures (or use of natural fractures with coatings). The chemical
and physical properties of these special materials are varied systematically in an attempt to emulate various natural
coatings. Other modifications involve efforts to control the circulation of air in the fracture and matrix during
testing to investigate the effects of air entrapment on fracture-matrix interaction. The experimental system is also
modified to allow the investigation of fracture networks. Such networks consist of a grid of mated sintered glass
plates or tuff samples hosting multiple fractures.
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The experiments described to this point primarily focus on systems in which flow is constrained to be vertically
down the fracture or normal to the fracture; however, the path of flow along the plane of an unsaturated fracture
is also of interest. Therefore, an experimental system has been developed in which the plane of a fracture is
simulated by placing an impermeable plate of glass on top of a sintered glass plate or the open face of a natural
fracture. A variety of flow and transport studies are being conducted for both steady-state and transient flow
conditions within the plane of the fracture to investigate the effect of saturation structure on fracture-matrix
interaction. Other tests involve incremental wetting of an initially dry fracture by inducing capillary-driven flow
from a saturated matrix. Such tests provide insight into the means by which the contact area between matrix blocks
grows with decreasing pore pressure.

For those cases involving steady-state flow and transport studies, effective media properties are measured.
Pressure-saturation characteristics as well as relative permeability relationships are established for a range of wetting
and drying cycles. Dye concentration in flow-cell effluent also is monitored for evaluation of one-dimensional
fracture model transport parameters. Efforts then are made to match various empirical and numerical models to
the measured effective parameters.

5.0 CONCLUSION

Given the complex fracture system present in the fractured rock at Yucca Mountain, discrete modeling is not
realistic for most performance assessment exercises. In order to make such modeling more tractable, local- scale
variability introduced by the fracture network and porous matrix is averaged in a variety of ways through the
definition of effective media properties. To define effective media properties, assumptions concerning the nature
and degree of fracture-matrix interaction must be made.

The key issue for our research in developing and validating macroscale flow and transport models for fractured
media lizs in the definition of the continuum and the effective properties thereof at the scale of interest. Our success
will be dependent on our understanding of the basic physics governing flow and transport through fractured media
and in particular on our understanding of flow and transport in unsaturated fractures and interaction between
fractures and matrix. The research in the areas outlined in this paper will provide this required fundamental
understanding.

Our next step will be to fold this understanding into credible definitions of equivalent hydraulic property models
for use in performance assessment. This step will require the definition of individual fracture variability and
networking and the definition of matrix variability. Evaluation of the definitions wili require extensive numerical
experimentation and field-scale experiments. These and other issues including geochemical processes affecting
transport are under consideration within the context of the overall research program.

NOTE

Due to the length constraints on this paper and the fact that the majority of our figures would be photographs, we
have not included figures in this paper. Figures will be presented during the oral presentation of the paper. A copy
of this paper including the presentation figures may be obtained from the authors.
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Appendix

Information from the Reference Information Base
Used in this Report

This report contains no information from the Reference Information Base.

Candidate Iaformation
for the
Reference Information Base

This report contains no candidate information for the Reference Information Base.

Candidate Information
for the
Site & Engineering Properties Data Base

This report contains no candidate information for the Site and Engineering Properties Data
Base.
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