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Abstract

The governing equation for steady flow in a partially saturated, porous medium can be written 
in a linear form if one adopts a hydraulic conductivity function that is exponential in the 
capillary-pressure head. The resulting linear field equation is well suited to numerical solution 
by the boundary integral equation method (BIEM). The exponential conductivity function is 
compared to a more complex form often assumed for tuffs, and is found to be a reasonable 
approximation over limited ranges of pressure head. A computer code based on the BIEM is 
described and tested. The BIEM is found to exhibit quadratic convergence with element size 
reduction on smooth solutions and on singular problems, if mesh grading is used. Agreement 
between results from the BIEM code and a finite-element code that solves the fully nonlinear 
problem is excellent, and is achieved at a substantial advantage in computer processing time.
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1 Introduction

It is apparent that many, large simulations may be required to investigate the effects 
of material heterogeneity on the hydrology of Yucca Mountain. The governing equations 
for flow in partially saturated media are, in general, highly nonlinear, and solutions 
embracing the full complexity of some current models may be prohibitively slow and 
costly. Thus, it is important to explore any approximations and/or new solution methods 
that offer the potential for greatly improved speed, while retaining the critical elements 
of the transport phenomena.

This report presents one such approach. Here, we consider steady, multidimensional 
flows, and adopt the exponential form for the hydraulic conductivity. It is recognized that 
other, more complex forms for the conductivity yield better fits to data for some materials, 
particularly when considering a broad range of capillary pressure head. However, we 
argue that, for certain classes of problems, the more complex forms offer no significant 
advantage over the exponential form, while the latter offers potentially large gains in ease 
of solution.

For the exponential conductivity model, a simple change of dependent variable ren­
ders the governing equation linear. This process is referred to as the “quasi-linear trans­
formation” following Philip (1968). The enormous simplification effected by the trans­
formation apparently was first noted by Gardner (1958), and has been exploited since by 
numerous workers, most notably Philip. Comprehensive reviews of the approach and its 
application have been presented by Philip (1969, 1989) and Pullan (1990). The linear gov­
erning equation, of course, admits of much simpler and faster solution methods than does 
the original, nonlinear equation. In this report, we explore the boundary integral equation 
method (BIEM) for obtaining numerical solutions in arbitrary two-dimensional geome­
tries. This scheme, apparently first applied in this context by Pullan and Collins (1987), 
offers a number of significant advantages over other, more conventional approaches.

• The BIEM reduces the dimension of the numerical problem by one in comparison 
to more conventional domain methods (e.#., finite difference or finite element), 
typically yielding a much smaller computational problem.

• The required data for computational purposes is significantly reduced for the BIEM 
because only the domain boundaries need be described, as opposed to requiring 
mesh data for the entire domain when using finite-difference or finite-element meth­
ods; furthermore, complicated geometry is easily accommodated because only the 
boundaries need be specified.

• The BIEM treats problems in unbounded domains naturally because the funda­
mental solutions employed satisfy far-field boundary conditions identically. •

• The BIEM yields fluxes that retain accuracy of the same order as the potential 
itself because a numerical approximation for the gradient is not required.
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Some of the limitations of the present approach are as follows:

• The exponential form for the conductivity may not give a good representation of 
data for a particular material over the pressure head range of interest.

• The transformed governing equation is valid only for heads less than or equal to 
zero; he., the system of interest must remain unsaturated.

• The computation of potential and flux at numerous internal points may be time-con­
suming compared to computing the boundary values, although it remains a post­
processing task; an interpolation scheme may be expedient if numerous internal 
points are required.

• The present formulation of the BIEM considers only homogeneous material; the 
treatment of interfaces between materials of contrasting properties requires further 
development.

Section 2 reviews the equations describing steady, unsaturated flow in porous ma­
terial and its transformation to a linear governing equation. The applicability to tuff is 
addressed in Section 3 by comparisons of the exponential conductivity function to a more 
widely used, but more complex, representation. In Section 4, insight into the behavior 
of the model is provided through exact solutions for one-dimensional, vertical flow. An 
outline of the boundary integral equation method and the numerical treatment is given 
in Section 5, and further aspects of the numerical analysis are developed in Section 6. 
Section 7 presents some test problems in which the BIEM solutions are compared to in­
dependent results for two-dimensional domains. Finally, a summary is given in Section 8.

2 The Quasi-Linear Transformation

Mass conservation for steady flow in a rigid, porous medium is given simply by

V • q = 0 , (2.1)

where q is the fluid flux (volume flow rate per unit area of the medium). The flux 
is assumed to be related to the pressure gradient and the gravitational body force by 
Darcy’s law:

q =-AWW - e.) , (2.2)

where K is the hydraulic conductivity (here taken to be isotropic), rp is the capillary 
pressure head, and e* is the unit vector in the vertical direction (positive downward). 
The combination of (2.1) and (2.2) is the steady form of the Richards equation:

V-[A'(0)(V0-e,)] = O . (2.3)
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Because the hydraulic conductivity K is a strongly varying function of ip, this equation 
is, in general, highly nonlinear. It is instructive in the present context to rearrange (2.3) 
in the form

V2^ + 1 dK
k1^ = 0 , (2.4)

showing that the slope of the conductivity function, dKas well as K(xJj) itself, enters 
into the flow equation. This form of the flow equation assumes that K(ip) is unique, he., 
hysteresis is not considered in this work.

2.1 Hydraulic Conductivity Models

An early model for the dependence of hydraulic conductivity upon pressure head 
was posed by Brooks and Corey (1966):

AW = *. (M) , . (2.5)

where Ks is the saturated conductivity, ipb is the “bubbling” or “air-entry” head, and n 
is a material parameter.1 Note that, in this model, K —► Ks as ^ > ipb, rather than as
^ 0.

A model in wide use currently is that posed by van Genuchten (1980):

K(i>) = K, (1 + KVf) <'’"1)/2', f K</f V8-1W12
\i + lo.V’P/

(2.6)

where av and [3 (/? > 1) are material constants. The van Genuchten model differs from 
the Brooks-Corey model in its asymptotic behavior for “wet” (small |i/>|) conditions, in 
that K —> Ks as ?/> —> 0, as one might expect. In fact,

I<w = K, 1 - 2\avrl>\p 1 (^-1)
2/3

\av^\P + 0(\avij>\2p x) (2.7)

&s rfi —> 0. Note, however, that the slope of K{ip) (cf. equation 2.4) is unbounded near 
saturation if /3 < 2, i.e.,

= 2a„(^- IJKV’I'1-2 + - IJKVP-1 + Oda.V’l2'’-2) • (2.8)

This feature of the van Genuchten model, for (3 < 2, can be troublesome in obtaining 
numerical solutions near saturated regions, although an empirical solution is simply to 
avoid the singular point (e.g., saturated boundaries can be specified &s ip = —e, where e 
is a suitably small number).

lrrhe exponent n is related to the parameters A and e originally introduced by Brooks and Corey (1966) 
by n = Ae = 2 + 3A.
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In the “dry” limit (large |^|), the Brooks and Corey and van Genuchten models are 
of identical form; from (2.6):

lim Kirfr) — Ks|t/'|—►OO
/?-!

P
(2.9)

The equivalent to the Brooks-Corey exponent (2.5) is then given by u = (5/3 — l)/2, and 
the equivalent to the bubbling head is given by

1^6
ft _ 4/(5/?-X)

—x— I (2.10)

Equation (2.10) shows that the bubbling head approaches a”1 f°r large values of fl, and 
vanishes as /3 approaches unity. Thus, large values of /9 correspond to conductivity curves 
exhibiting a “shoulder” where the conductivity begins to drop off rapidly with increasing
M-

A simpler form for K(ip) that is often used in soil physics is the exponential form:

A'(V>) = /Cexp(-a|V’|) , (2.11)

where c* is a material constant. Clearly, —a is simply the slope of a plot of In K vs. \ip\.

It is obvious that (2.6) is capable of representing a more complex trend than either 
of (2.5) or (2.11), if only because (2.6) is a three-parameter model, while (2.11) is a 
two-parameter model. The Brooks and Corey model, (2.5), is stricly speaking a three- 
parameter model, however it is very similar to the exponential model. The two are in 
fact of identical form in the dry limit, as noted above. They are also similar in the wet 
limit, when the exponential is written as in (2.12), to be discussed shortly. Nonetheless, 
it can be shown that (2.11) yields a reasonable approximation to (2.6) for relatively small 
values of \xp\, particularly when f3 is not large. It is worth noting here that, given this 
similarity over a limited range of pressure head, (2.11) is just as well-motivated as (2.6) 
within that range. This is particularly so in the many cases in which the choice of (2.6) 
is not based on its success in matching data. Rather, in these cases, the corollary to (2.6) 
for the pressure-saturation relationship is successful in matching data (e.g., Klavetter 
and Peters, 1986), and the extension to a functional form for K(ip) is based on a model 
advanced originally by Mualem (1976). In the absence of conductivity data, there is no 
reason to prefer one model over the other within a range of l^l in which the functions 
are of similar shape.

Often, too, one can argue that scenarios involving very low saturations, and corre­
spondingly large capillary pressures, are unlikely. Thus, an accurate representation of 
the conductivity for very dry materials may not be critical. In any case, when |0| is very 
large, the conductivity tends to zero, so essentially no flow occurs in those regions. Very 
large errors in the estimates of K in very dry regions can often be tolerated, because 
these regions do not participate in the flow.
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At higher saturations, some materials exhibit a “shoulder” in the K(ip) curve; that is, 
K remains close to Ka until |?/>| reaches some finite value, as indicated in the Brooks and 
Corey model (2.5), then falls off rapidly with increasing \ip\. This is easily accommodated 
in the exponential model by modifying (2.11) to the form

K(ip) = Ks(ipo) exp[—a(\ip\ — It/’ol)] , \ip\ > \4>o\ , (2.12)

where V’o is analogous to the bubbling, or air-entry, head. A “shoulder” in the K(ip) func­
tion can thus be approximated simply by adopting an “effective” saturated conductivity, 
K3 exp(a|0o|). Of course, one must then ensure that the magnitude of the pressure head 
does not exceed |^0| anywhere in the field of interest. In particular, when < ip < ipo 
Philip (1985) recommends the following prescription for determining a when K(ip) is 
known:

-M0o) - A'W’i)
/* A'M#

(2.13)

Philip finds that this recommendation is an optimal prescription for some particular 
geometries. This method of defining a, in combination with (2.12), is recommended for 
problems where the range of pressure head (or equivalently saturation) is known. On 
problems where the pressure range is not known a priori, the method could be used to 
improve a solution obtained with an initial estimate for a. The computed solution can be 
scanned to determine the pressure range, an improved a can be determined as described 
above, and a new, and presumedly improved, solution can be computed. This scheme is 
viable if an efficient numerical technique is available for solving (2.3), when the hydraulic 
conductivity is defined by (2.11) or (2.12), as we describe in the following sections.

2.2 The Linear Potential Problem

Combination of (2.3) and any of (2.5), (2.6), (2.11), or (2.12) yields a nonlinear 
equation for ip, as is evident from inspection of (2.4). However, consider the introduction 
of a function through the Kirchhoff transformation:

$= [* K(()d<; , (2.14)

Ji>a
where ipQ is a constant. Differentiation of (2.14) and substitution into (2.3) yields

V2$- ]_dK\ d$ 
K dip ) dz (2.15)

In general, the Kirchoff transformation renders the flow equation in a quasi-linear form, 
and in the special case when K~1dl\/dip is constant, equation (2.15) is clearly linear. 
The exponential conductivity functions given by (2.11) or (2.12) satisfy this condition.

In the present context, it is convenient to introduce a special case of the Kirchhoff 
transformation,

(2.16)<p = ex-p(aip)



which corresponds to (2.11), and is derived from (2.14) by making the identities —00 
and <f) = (a//ts)$. Substitution of (2.16) directly into (2.3) and (2.11) yields

VV-c*!j = 0 , (2.17)

which is a /inear equation in <f). Comparison of (2.16) with (2.11) shows that equation 
(2.17) may be viewed alternatively as a governing equation for the relative conductivity 
field, K/Ka. Clearly, (2.17) is much easier to solve than equation (2.4) along with 
(2.11), (2.5), (2.6), or (2.12). Equation (2.17) has in fact been studied exhaustively (see 
Carslaw and Jeager, 1978) because it is identical in form to the equation governing steady 
convection and diffusion of a quantity <j>, with a = w/V, where w is the (uniform) velocity 
in the +z direction, and V is the diffusivity. Indeed, it is convenient that fundamental 
solutions to (2.17) are known in two and three dimensions (Section 5.3).

The usual boundary conditions are also linear. A specified head simply becomes a 
specified value of (j) (e.g., tp — 0 corresponds to <^ = 1). A specified flux is also a linear 
condition; for example, for a constant vertical flux specified at some elevation Zq,

qz(zo) = Qo , (2.18)

where qo is a positive constant, (2.2) and (2.11) give

^(z0) - a<j)(zo) =-^ . (2.19)

In the general case, the flux vector is a linear function of the potential,

^ = -V<P + a(f>e2 . (2.20)
s

However, it is important to note that one penalty paid for the change of variable is 
that the new potential <f> is, in general, discontinuous at interfaces between contrasting 
materials. Consider a point X(, on a material interface. At this point, the pressure head 
must be continuous:

V’i(xfc) = M*b) , (2.21)

where tpi and ^2 are the heads in materials 1 and 2, respectively. The matching condition 
in terms of (j) then becomes, from (2.16):

= <^/Q2 at x6 , (2.22)

which is clearly nonlinear, as long as the materials have contrasting properties, 0^ ^ a2.
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3 Applicability

3.1 General Considerations

As discussed in Section 2.1, the exponential model for the unsaturated conductiv­
ity (2.11) is somewhat restrictive. It cannot describe the behavior of many materials, 
particularly when a broad range of capillary pressures is encountered. Some materials 
remain close to full saturation, with K remaining close to Ks, until |^>| reaches some finite 
value, above which the saturation and permeability drop off rapidly. In such cases, the 
exponential model can be modified slightly to account for the offset, (2.12). In the very 
dry range (large IV’I), the exponential model also may fail to represent conductivity data. 
For many problems in unsaturated-zone hydrology, however, the conductivity at very low 
saturation is so small that no significant flow takes place, and an accurate representation 
of the function K(ip) is not critical.

There are several methods to determine a if the material permeability is known. In 
the following, we discuss and compare two techniques that appear promising. The first 
method is perhaps the more general, and is based upon the fact that —a is the slope of 
a plot of In K vs. ip. Hence, a “best value,” in a least-squares sense, can be determined 
numerically by minimizing an appropriately defined error between the known data and a 
parametric representation. Here, the data from which a is determined can be respresented 
as In A' vs. ip, or, in terms of the general definition of a, as K~l dK /dip vs. ip. This latter 
definition arises upon application of the Kirchhoff transformation to the steady Richards 
equation (2.3). Another method, suggested by Philip (1985), is to define a according to 
(2.13).

3.2 Yucca Mountain Tuffs

It is emphasized again that hydraulic conductivity data for Yucca Mountain rocks 
are not available at this time. Saturated conductivities (Ks) have been measured, and 
the functional form of K/Ks is assumed to be fully determined by measurements of the 
pressure-saturation relationship following Mualem (1976) and van Genuchten (1980). As 
a starting point in estimating appropriate values for the parameter a in (2.11) for Yucca 
Mountain tuffs, and as a basis for direct comparisons between the van Genuchten and 
exponential models, the following procedure was carried out. For the sake of argument, 
the van Genuchten model (2.6) is accepted as “exact,” and typical parameters obtained 
previously for tuff, as specified for the COVE 2A benchmarking exercise (e.g., Hopkins, 
1990), are adopted (Table 3.1). Steady-state, one-dimensional solutions have been ob­
tained numerically for a number of different input fluxes (Hopkins, 1990), using the van 
Genuchten model (2.6). These simulations show that, for input fluxes of 0.1 mm/yr 
and above, the capillary pressure heads are never less than about -150 m. Thus, we 
restrict our attention to the range 0 < |^| < 150 m. We use the van Genuchten form 
(2.6), with the parameters given in Table 3.1 to create “data” for K(ip) in this range. 
Then, retaining the specified value for Ks, we fit the exponential function (2.11) to these

14



Table 3.1. van Genuchten model parameters.

Unit

Saturated
Conductivity

(m/s)
CXy

(m-1)
P

TC 9.7 x HT12 0.821 x 10~2 1.558
PT 3.9 x KT7 1.500 x IQ"2 6.872
TS 1.9 x HT11 0.567 x IQ"2 1.798
CHnv 2.7 x nr7 1.600 x 10-2 3.872
CHnz 2.0 x lO"11 0.308 x 10"2 1.602

Table 3.2. Exponential model parameters.

Unit

Saturated
Conductivity

(m/s)
a

(nr1)

TC 9.7 x IQ-12 3.820 x 10"2
PT 3.9 x 10"7 1.713 x lO-2
TS 1.9 x lO'11 1.742 x 10~2
CHnv 2.7 x 10"7 2.219 x lO'2
CHnz 2.0 x lO’11 1.406 x lO”2

“data” in order to determine a. The fits are performed with the parameter-estimation 
code ESTIM (Hills, 1987), and are based on minimizing the sum of squares of residuals,
■^exponential f^vanGenuchten-

Results are given in Table 3.2, and comparisons of the van Genuchten “data” and 
the exponential fit are shown in Figures 3.1-3.5. The fits are quite good for the Topopah 
Spring and Calico Hills zeolitic units, somewhat poorer for the Tiva Canyon, especially at 
higher values of l^l, and appear to be quite unsatisfactory for the Paintbrush and Calico 
Hills vitric tuffs. The latter is a consequence of the “shoulder” in the curves, represented 
in the van Genuchten model by relatively large values of /?. This feature cannot be 
represented with the unmodified exponential form (2.11). Although the modified form 
(2.12) could be applied as a partial remedy, we do not do so here. Both linear-linear and 
semi-log plots are shown in order to illustrate the weight that tends to be given to the 
higher values of K using this scheme.

15
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Figure 3.1. Comparison between the exponential (curves) and van Genuchten
(symbols) representations for the hydraulic conductivity of the Tiva
Canyon unit in (a) linear and (b) logarithmic coordinates.
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Figure 3.2. Comparison between the exponential (curves) and van Genuchten
(symbols) representations for the hydraulic conductivity of the
Paintbrush unit in (a) linear and (b) logarithmic coordinates.
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Figure 3.3. Comparison between the exponential (curves) and van Genuchten
(symbols) representations for the hydraulic conductivity of the Topopah
Spring unit in (a) linear and (b) logarithmic coordinates.
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Figure 3.4. Comparison between the exponential (curves) and van Genuchten
(symbols) representations for the hydraulic conductivity of the Calico 
Hills vitric unit in (a) linear and (b) logarithmic coordinates.
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Figure 3.5. Comparison between the exponential (curves) and van Genuchten
(symbols) representations for the hydraulic conductivity of the Calico
Hills zeolitic unit in (a) linear and (b) logarithmic coordinates.
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The second method of determining a utilizes Philip’s prescription, defined in (2.13). 
This method also depends on a selection of a pressure head range, tpi < i/> < ipo- The 
known functional form for hydraulic conductivity is again approximated by the van 
Genuchten function, with parameters as given in Table (3.1). Because we investigate 
the effect of the range of pressure head considered, we compute values of a for only two 
strata, the Topopah Spring and Calico Hills vitric units. In the preceding method, the 
former stratum was well represented by an exponential while the latter was not, for the 
pressure head range —150 m < ^> < 0. Figure 3.6 shows the variation of a as a function 
of ipi, the lower bound pressure head, for various values of the maximum pressure head, 
ipo- For the Topopah Spring unit, the variation of a with tp0 is modest for all values of 
xpo, with the exception of the case with ipo = 0. The large variation of a when ipi is near 
saturation (V’o = 0) on this curve reflects the divergent behavior of the van Genuchten 
function when /? < 2, as discussed earlier (Eqn. 2.8). Otherwise, the a computed by 
this method is only modestly dependent on the pressure range, which agrees with the 
“least-squares” method of determining a as discussed above. The variation of a for the 
Calico Hills vitric unit is also independent of the pressure head range if t/q < —75 m. 
This is because the largest variation of K with V’ occurs for the pressure head range 
—75 m < ip < —40 m (Figure 3.4). Hence, for given tpo, the variation of a occurs for 
fpo > tpi > —75 m. The values of a computed with this method agree well with those 
using the first method dicussed above. These correspond to ip0 = 0 and V>i = ~ 150 m, 
for which the figures show a = 0.0172 m-1 and 0.0233 m_1, for the Topopah Spring and 
Calico Hills vitric units, respectively. These compare favorably with the corresponding 
values from the “least-squares” method, viz., 0.0174 m-1 and 0.0222 m-1, respectively.

4 One-Dimensional Flow

4.1 Exact Solution for a Single Layer

A useful test problem for which an analytical solution is easily obtained is that for 
steady, vertical flow. Clearly, from (2.1), the flux is everywhere constant, say qz(z) = Qoo. 
Then one integration of (2.17) yields

d(j> . atqoo

For a specified potential at some level Zi, </>(zi) = pi, another integration yields

^ = ]T + ~ expfa(2 ~Zl^ ’ 2 < 21 • (4-2)

This solution, for z — zi—* —oo, goes asymptotically to the “unit-head-gradient” solution,

lim , (4-3)
z—z\ —oo A s

(4.1)
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or i/> —> a-1 In^oo/A's), where 0 < q^/Ks < 1. If one propagates a solution upward 
from the water table where <^> = 1 (?/> = 0), then (j) reaches some value corresponding to 
<f>i at the base of a given layer. Whether <j) increases or decreases in the overlying layer 
then depends upon the sign of — q^/Ks (i.e., whether the potential at the base of the 
layer is greater or less than the unit-head-gradient value, toward which it must adjust), 
provided 0 < qoo/Ks < 1. If the flux falls outside of these limits, (4.2) is valid only if the 
thickness of the overlying layer is such that 0 < ^ < 1.

4.2 One-Dimensional Flow in a Multilayered Region

A nontrivial test problem is steady vertical flow through a layered material as was 
studied in the COVE 2A benchmarking exercise. The results from the analytical solution 
can be compared to the results obtained by Hopkins using the code LLUVIA (Hopkins, 
1990; Hopkins and Eaton, 1990). The boundary conditions for these problems are a 
specified flux, <70 (Table 4.1), at the top of the layered region and ip = ip0 = 0, simulating 
the water table, at a 530.4 m depth. The differential equation for the potential is, in 
each layer,

dz2

d<f>i n- a. -j— = 0 dz
(4.4)

where 2 is the vertical coordinate defined here as positive in the direction of gravity, and 
the subscript refers to the zth layer. In addition to satisfying the boundary conditions, 
the flux and pressure head must be continuous across each interface between the layers. 
This latter condition requires

(<Ma- (<A.+i)“
-1 
t+1 . l,...,iV-l

for a region with N layers. Application of these matching conditions together with the 
boundary conditions yields the solution to (4.4) for each layer,

A _ r. a,2Pi — + Eite /,_! < Z < U (4.5)

Bt = go
Ki+1

+ B{+ieai+if;
a,

a.+ l
1,...,7V-1 (4.6)

Bn = (<?io - -^_)e-“"L , (4.7)
An

where (fio is the potential specified at the lower boundary, A', is the saturated hydraulic 
conductivity for the zth layer, /, is depth to the bottom of the Ah layer, and A(= In) is 
the depth of the entire region.

The pressure head values given by this analytical solution, using the material pa­
rameter values given in Table 3.2, are compared to the solutions obtained by Hopkins 
(1990) using LLUVIA in Figures 4.1 through 4.4.

23



(ui) i\\

Figure 4.1. Comparison of pressure head profiles for qo = 0.1 mm/yr, and unit Chnz 
(Case 1 of COVE 2); — LLUVIA,------- quasilinear (equation 4.5).
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Figure 4.2. Comparison of pressure head profiles for q0 = 0.1 mm/yr, and unit Chnv 
(Case 2 of COVE 2);----LLUVIA,---------quasilinear (equation 4.5).
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Figure 4.3. Comparison of pressure head profiles for qo = 0.5 mm/yr, and unit Chnz 
(Case 3 of COVE 2);----LLUVIA,-------- quasilinear (equation 4.5).
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Figure 4.4. Comparison of pressure head profiles for qo = 0.5 mm/yr, and unit Chnv 
(Case 4 of COVE 2);----LLUVIA,-------- quasilinear (equation 4.5).
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Table 4.1. COVE 2A Test Problem Conditions.

COVE 2A Case Flux (mm/yr) CHn

1 0.1 zeolitic
2 0.1 vitric
3 0.5 zeolitic
4 0.5 vitric

The analytical solution provides an effective approximation, especially in light of 
the discrepancies between the exponential and van Genuchten representations of the hy­
draulic conductivity functions. It is further noted that a more judicious fitting could be 
attempted to give better comparison between the two methods. For example, K{ could 
be specified to give a better fit to data in an interval of pressure head if the pressure 
is constrained in a given layer. This is not pursued, however, because the purpose of 
this demonstration is to illustrate the effectiveness of the quasi-linear method rather 
than to model the van Genuchten permeability function. Even though the latter can 
provide a better fit to data, given that it is a three-parameter function as compared to 
the two parameter exponential, the advantages of a quasi-linear method are substan­
tial. In particular, the piece-wise linear equations with nonlinear interface conditions are 
much easier to solve than the full nonlinear equations. Furthermore, because a free-space 
Green’s function (fundamental solution) is known for the potential <f), a boundary inte­
gral method may be a very effective solution technique for two- and three-dimensional 
steady problems including material layers. Ultimately, an efficient solution technique for 
materials with spatially varying properties (homogeneous within a subregion) would be 
highly desirable to investigate effects of locally nonhomogeneous materials on moisture 
transport and, hence, on travel times.

5 The Boundary Integral Equation Method

5.1 General Considerations

A number of numerical methods are available for the solution of (2.17). Here we 
consider the boundary integral equation method (BIEM). The application of this method 
is suggested by the fact that fundamental solutions are known for (2.17) in both two 
and three dimensions, and by favorable previous experience with the method in various 
branches of mathematical physics (e.g., Jawson and Symm, 1977; Cruse, 1969; Brebbia, 
1978; Ingham and Kelmanson, 1984; Liggett and Liu, 1983).

A remarkable feature of boundary integral methods is the reduction of the dimension
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of the problem by one, e.g., a three-dimensional problem is reduced to a two-dimensional 
integral equation defined on the bounding surface of the original problem. This reduc­
tion in dimension is appealing in general, since the relevant geometry associated with the 
problem is greatly reduced, and is especially useful for semi-infinite problems and some in­
terface problems (Liggett and Liu, 1982; Martinez and Udell, 1989 ). In the present study, 
the two-dimensional boundary-value problem is reduced to a one-dimensional boundary 
integral equation defined on the boundary of the original two-dimensional domain. As­
sociated with the reduction in dimension are much simpler requirements for specifying 
geometry in obtaining numerical solutions, which can be a large task for domain meth­
ods on problems with complex geometry. In the BIEM, only the domain boundary is 
discretized; an interior grid is not required. Here we consider only two-dimensional prob­
lems, but emphasize that another attractive aspect of the approach is that its extension 
to three dimensions, while not necessarily easy, is straightforward.

5.2 Boundary Integral Equation Formulation

The boundary integral formulation can be motivated through Green’s second iden­
tity,

IXaaI-idI)dT ■ (51)
Here, the volume H is bounded by the surface T, and, in the classical theory, $ and G 
are nonsingular in Q. The normal derivative is defined by d(-)/dn = V(-) • n, where n is 
the outward-pointing unit normal to the boundary. To generate the boundary integral, 
we use the free-space fundamental solution to (2.15) with K~idK/dip = a — constant. 
The free-space Green’s function, G, satisfies

V^G(x, y) - a— = -<5(x - y) , (5.2)

where denotes the Laplacian operating with respect to the position vector x, 2 is the 
vertical coordinate, positive in the direction of gravity, and 6 is the Dirac delta function. 
The physical interpretation of the Green’s function is that it represents the response at 
x due to a unit source acting at location y. The two-dimensional solution is given by 
Carslaw and Jaeger (1978, p. 267) as the solution for a line source of unit strength placed 
at the origin:

G*x*= sexp (t) k° (?) ’ (5-3)
where r2 = i2 -|- 22, and A'0 is the modified Bessel function of the second kind of order 
zero. The boundary integral equation (BIE) results if we substitute the free-space Green’s 
function (5.3), generalized for the source placed at an arbitrary point y = (x>C) £ 
into (5.1). Noting that with respect to y, the Green’s function satisfies the adjoint to 
equation (5.2),

rtC
VjG(x,y) + a—=-6(x-y) ,
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substitution of (5.3) into Green’s identity, applied with respect to the source point y, 
gives + / = J^G(x,y)[-qn(y)]dT, xGO , (5.4)

where qn(y) — —d$/dn + a$n2 is the flux normal to the boundary surface F, and 
n2 = n • ez is the vertical component of the normal to F. This identity gives the value 
of the potential at any point in fl, if the boundary values of potential and flux are 
known. However, in a well-posed boundary value problem, either the potential or flux 
(or some combination of these) is specified and the other is to be determined. A boundary 
integral equation can be formulated for these unknowns by taking the limit x —► F from 

the limit is indicated because the flux kernel dG/dn suffers a jump as x passes to 
the boundary from the interior. The resulting BIE, applied to a smooth point x on the 
boundary (be., one having a well-defined local tangent plane) is the same as equation 
(5.4) if we multiply the first term on the left-hand side by 1/2. Pullan and Collins (1987) 
show the values taken on by the principal value when x is on a corner of the boundary.

5.3 Numerical Solution

In this preliminary investigation of the quasi-linear method the simplest of numerical 
approximations is used in order to facilitate coding of the algorithm. Higher order ap­
proximations (Pullan and Collins, 1987; Martinez and Udell, 1989) can be incorporated 
later if deemed necessary. The first step in the numerical approximation of (5.4) is to 
discretize the boundary F into a number of boundary elements, Fn ( n = 1,.., N). In the 
present version, the boundary elements are all straight line segments. Next, the variation 
of $ and qn over each segment is approximated by its value at the center of the boundary 
element, hence the numerical approximation to the BIE becomes

+ 5] iyG', = ^(-in^Go , (5.5)
: j

where = $(xj), qnj = qn{xj), and

dG(xt,y) 
dn ^r(y) ,

^ = /

Jr,

Gij = f G(xi,y)dr(y) .
Jr,

For purposes of computing the coefficients, it is convenient to describe the geometry 
parametrically. In the present method we write

I
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with Lagrange interpolants

\ _i/ (i-0
\n2) 2 V (i + O (5.7)

The endpoint coordinates for the boundary elements are (Xi^Cfc) and £ is parametric 
distance along the element, defined such that —1 < £ < 1. An element of surface is given
by

dr = Jd{, J = (x| + C|)" •

In the present formulation, with straight-sided elements, the Jacobian is simply half the 
length of the element, J — ((xi — X2)2 + (Ci — C2)2)5/2, where the subscripts refer to the 
endpoints of a particular boundary element.

If this parameterization of the geometry is used, a general numerical algorithm can 
be written to compute the coefficients for a general boundary element, e.g.,

Gi3 = J G[xt, y(£)]Jjd£ ,

with a similar expression for G\j. The coefficients G.y and G\j are computed using four- 
point Gauss-Legendre quadrature. When a;,- £ Fj the kernels are improper, because 
of the singular nature of the Green’s function when x = y, and these coefficients are 
computed by subtracting the singularity, integrating it analytically, and summing with 
the numerical integral of the remainder. In particular, G —► Crt, as x —► y, where

G. = —ln(^|f|).

Hence, to compute G,,-, we write

G„ = / {G[x„y(0]-GI[xj,y(e)]}<ff[y(0]+ / Gt[x„y(0]<(r[y(0] .
Jr, Jr,

Now, the first integral is regular as x —> y, and can be computed accurately by four-point 
Gauss-Legendre quadrature, and the last integral is given by

(5.8)

When we apply the boundary integral equation to each of the N boundary elements, 
use the boundary conditions (which specify half of the 2N point values of potential and 
flux), and rearrange, we get the linear system Au/j = f where contains the unknown 
potential or flux on the boundary and f contains the inner product of specified boundary 
values (be., boundary conditions) and kernel coefficients. Once the boundary values are 
determined by solving the linear system by Gaussian elimination, the BIE (5.4) can be
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used to compute the potential at any interior point. The flux vector in the interior can 
also be computed by operating on (5.4) according to

q(x) = — V4> + a<I>Vz . (5-9)

The explicit statement of the flux, formed from (5.4) and (5.9), is given in Appendix A.

Pathlines can also be computed once the flux vector has been determined. Pathlines 
are computed by numerically integrating the equations

— ( X \ = f qx'\
dt\z) \v2) 0\qzJ

for each pathline, subject to an initial coordinate location (x0,z0). The moisture content 
must be specified as a function of pressure head, 9(ip), to determine the interstitial 
velocity, v (=q/0), according to the Dupuit assumption. In this way, both the particle 
path and the elapsed time for the particle to traverse a given distance along the path can 
be determined.2

6 Convergence

The preliminary version of the code described in the foregoing was written to allow 
rapid numerical solutions for assessing the utility of the quasi-linear method. Hence the 
program was written using the simplest of numerical approximations to facilitate the 
coding of the algorithm. Among these is the use of the “constant element” as the basis 
set for the unknowns. Constant elements approximate the variation of the unknown 
on each element by its value at the middle of the element, a somewhat lower-order 
interpolant. Nevertheless, we found that on problems with smoothly varying solutions, 
the convergence was quadratic with boundary element size reduction; i.e., doubling the 
number of elements on a uniform mesh reduces the solution error by one-fourth. However, 
this convergence rate is degraded significantly when there arc singularities in the problem.

Singularities can arise quite often in practice; some are inherent in the boundary 
integral formulation. Corners and ends can result in singularities, especially when the 
boundary conditions also change type at the same location. Flux boundary conditions 
can also result in singularities at corners because they depend linearly on the surface 
normal, which is discontinuous there. Usually, these can be avoided by using elements 
that do not place node points on these corners (e.g., constant elements) or that use basis 
functions that incorporate the singular behavior (Ingham and Kelmanson, 1984; Pullan 
and Collins, 1987). More generally, singularities can also arise from a step change in 
boundary condition type on a line, as we consider here. This singularity can also be 
addressed by incorporating the local behavior in the basis function. However, recent

2If only the pathline is desired, without regard for the travel time, it is computationally expedient to 
integrate the single equation dz/dx = vz/vx for each pathline rather than the pair indicated above.
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work (Yan and Sloan, 1989) indicates that this problem can be treated effectively by 
appropriate mesh grading near the singularity. We present results using the mesh grading 
algorithm suggested by Yan and Sloan (1989) for a similar problem as considered below. 
We find that the quadratic convergence seen in test problems (see, e.#., Section 7.1) can 
be restored by mesh grading.

6.1 Problem Statement

In connection with the distribution of moisture beneath a two-dimensional surface 
source,3 we consider the boundary-value problem,

V2p-a^ = 0 , (6.1)

subject to the following boundary conditions on the surface,

P = 1, M < 1, 2 = 0 , (6.2)

— tt- + ap = 0, |i| > 1, z = 0 , (6.3)
oz

and the far-held condition,
p —* 0, x —> oo . (0-4)

This boundary value problem describes the infiltration of moisture into a porous half­
space from a strip source. In this coordinate system, 2 is the vertical coordinate, which 
increases in the direction of gravity. Numerical solutions are obtained, for various values 
of the parameter a, by applying the BIEM via the “constant element” code described 
in Section 5. The far-held condition is inherent in the Green’s function formulation 
of the BIEM, and hence this condition is automatically satished far from the surface. 
Hence, boundary elements are placed only along the surface (2 = 0) over some distance 
|x| < L. We note that the solution is symmetric with respect to x = 0, and hence we 
could halve the number of unknowns by applying symmetry. We did not exploit this 
symmetry, however, because the CPU requirements are modest enough that we found it 
easier simply to use elements over —L < x < L (twice as many elements as are necessary).

The singularity arises because of the step change in boundary condition type, from 
Dirichlet to hux, at |x| = 1. The variation in potential p and normal hux qn = —dp/dz + 
ap along the surface are shown in Figures 6.1 and 6.2, respectively, for a = 1. Although 
the potential does decrease rapidly beyond x = 1, it is the flux that exhibits the singular 
behavior near x = 1. Physically, this singularity models the large lateral gradient in 
potential owing to the change from a specified potential to an impermeable surface at 
x = 1.

3We defer detailed discussion of this problem to a companion report: Martinez, M. J., and D. F. McTigue, 
The distribution of moisture beneath a two-dimensional surface source, Sandia National Laboratories 

Technical Report, SAND90-0252, February, 1991.
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6.2 Mesh Grading

Recent work by Yan and Sloan (1989) on a similar problem indicates that singulari­
ties can be treated effectively by mesh grading. Yan and Sloan consider integral equations 
with logarithmic kernels, as arise in potential problems. The kernel for the BIEM refor­
mulation of the seepage problem above is given in equation (5.3). The Bessel function 
Kq(0 also has a logarithmic singularity for £ —» 0, and hence the mesh grading may be 
useful here.

The mesh grading algorithm analyzed by Yan and Sloan was actually proposed by 
Rice (1969) and Chandler (1984). The algorithm places the mesh points, Xi, over the 
interval So < a: < Si, according to,

1
xi — 30+2 5o), 0 < i < n , (6.5)

and
Xi = Si 2n — i

n (si — So), n < i <2n (6.6)

where // is a positive real number, and 2n nodes are places over the interval. The algorithm 
increases the density of the nodes near the endpoints x = So and a; = Si- This is 
actually a special case of a more general algorithm where mesh points are placed along 
a curvilinear portion of the boundary, rather than along the straight line proposed here. 
This simplification is sufficient to illustrate the mesh grading without sacrificing any 
essential feature. The analysis of Sloan and Spence (1988) indicates that, for an open 
surface as considered here, the error norm on a uniform mesh behaves as,

llffh - jll2 = 0(hlogh ') (6.7)
where denotes the numerical solution, g the exact solution, and h is the element 
size. As noted before, these analyses are for potential problems formulated as integral 
equations of the first kind, however the quasi-linear seepage problems exhibits a similar 
kernel behavior. The error norm is defined by

IMI2 = (AY/,#), (f,g) = Jf(y)g(y)dT(y) , (6.8)

and Kg is the operator form of the boundary integral equation considered in (Yan and 
Sloan, 1989; Sloan and Spence, 1988),

(Kg)(x) = - J^\og\x-y\g(y)dT = f(x) , (6.9)

where f(x) are the boundary values of potential (given). By using the mesh grading, Yan 
and Sloan show that the convergence rate can be restored to higher order. In particular, 
they show that (see Theorem 3.1 of Yan and Sloan) if # = 2,

\\gh- g\\2 = 0[h2(logh-1)2} , (6.10)
and if ?/ > 4

Ik -sll2 = 0(A3log/i-') (6.11)
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Table 6.1. Error analysis for uniform meshes (77 = 1).

Ns = h-1 Nt F0h f^abs Erel k
1 22 2.94037 0.28398 8.81 (-2) -

2 44 3.06725 0.15710 4.87 (-2) 0.854
4 88 3.14180 0.08255 2.56 (-2) 0.928

6.3 Numerical Results

The numerical results to follow are all for a = 1; solutions for arbitrary a can be 
found in the report cited on page 33. The extent of the mesh was \L\ = 20, which, as 
illustrated in Figures 6.1 and 6.2, is sufficient to eliminate end effects. This value was 
determined by trial and error.

In Table 6.1 we show the convergence rate for mesh size reduction on uniform meshes. 
In Tables 6.1 through 6.4, Ns indicates the number of elements used over half the source 
region, e.g., 0 < z < 1, and Nj is the total number of elements over —L < x < L, 
including 2NS. The mesh spacing was uniformly halved in arriving at the convergence 
results of Table 6.1. For the mesh grading results, the mesh was graded according to (6.5) 
and (6.6) above, with nodes clustered symmetrically about |;r| = 1 over 0 < |x| < 2. The 
mesh grading was continued beyond |x| = 2 using (6.5). The absolute error definition 
which is closest in form to the definition used by Yan and Sloan is given by

Eabs = \F0 - Fo^| , (6.12)

where Foh is the numerical nondimensional flux through the source area. Ideally, F0 
should be the exact value, however since this is an unknown, we use the converged 
numerical value for g = 3, and ,/Vs = 16, given in Table 6.3. The relative error, ETei, is 
defined by Erei = Eabs/F0, and k is the convergence rate, i.e.,

Eabs = chk , (6.13)

where h = N~* for present purposes and c is a constant independent of h. Table 6.1 
indicates that the convergence rate is slightly sublinear for uniform mesh reduction. This 
agrees with the analyses of Yan and Sloan (1989) and Sloan and Spence (1988), expressed 
in (6.7), for the potential problem. In spite of the low convergence rate, the algorithm 
yields rather good results on coarse meshes for a singular problem. The mesh using only 
2 elements over the entire source region (N3 = 1) gives a flux with about 9% error.

Tables 6.2 through 6.4 list the results using mesh grading for 77 = 2, 3, and 4, 
respectively. Quadratic convergence is restored with mesh grading, as predicted by Yan 
and Sloan. However, the improvement to cubic convergence with 77 = 4 is difficult to 
confirm from Table 6.4. In fact the “exact” value of F0 was chosen from Table 6.3, and not
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Figure 6.1. Variation of potential along the surface 2 = 0, for a = 1.
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Figure 6.2. Variation of normal flux along the surface 2 = 0, for a = 1.
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from Table 6.4, because numerical values in the former appear to have better accuracy for 
Ns < 8 with respect to either of the numerical values for Ns = 16 in Tables 6.3 and 6.4. 
The convergence rates in Tables 6.2 and 6.4, for Na = 16 are likely inaccurate because 
we do not know the exact value, and these entries compare numerical values obtained 
with the same resolution as the numerical F0 from Table 6.3 used as the “exact” value.

Table 6.2. Error analysis for graded meshes (t/ = 2).

Na = h~l Nt F0h Eabs Erel k
2 16 3.12933 0.09502 2.95 (-2) -

4 28 3.19714 0.02722 8.44 (-3) 1.80
8 48 3.21775 0.00661 2.05 (-3) 2.04
16 86 3.22374 0.00062 1.91 (-4) 3.42

Table 6.3. Error analysis for graded meshes (// = 3).

7

II Nt F0h Eabs Erel k
2 16 3.14820 0.07616 2.36 (-2) -
4 28 3.20653 0.01782 5.53 (-3) 2.09
8 48 3.22132 0.00303 9.41 (-4) 2.55
16 86 3.22436 - - -

Table 6.4. Error analysis for graded meshes (rj = 4).

III Nt F0h Eabs Erel k
2 16 3.14220 0.08215 2.55 (-2) -
4 28 3.20491 0.01945 6.03 (-3) 2.08
8 48 3.22093 0.00343 1.06 (-3) 2.50
16 86 3.22425 0.00011 3.38 (-4) 4.97

This approach to treating singular problems with the BIEM is simple and effective. 
In addition, the number of boundary elements required to achieve a certain error level 
is much reduced using mesh grading. However, it appears that, based on these limited 
numerical results, quadratic convergence is about all that can be obtained from mesh 
grading for the quasi-linear boundary integral analysis using constant elements. Futher- 
more, the use of 77 = 2 in the mesh grading algorithm is sufficient to obtain quadratic 
convergence.
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7 Test Problems

In this section, we present results from two boundary-value problems considered as 
test cases for the BIEM code described in Sections 5 and 6. First, we show comparisons 
to an exact, analytical solution in a two-dimensional domain. The second test problem 
involves a comparison between solutions obtained with the BIEM code and with an 
existing finite-element code that solves the full, nonlinear problem. The latter problem 
assumes material properties typical of tuffs from Yucca Mountain.

7.1 Comparison to an Exact Solution in Two Dimensions

The code written to perform the numerical approximations using the BIEM was 
tested by comparing to some one- and two-dimensional problems with known analytical 
solutions. Both Dirichlet and flux boundary conditions have been tested satisfactorily. 
Some selective error analyses indicate approximately quadratic convergence with bound­
ary element size reduction.

The two-dimensional test problem is to solve (2.17) with Dirichlet conditions speci­
fied on the boundaries of the unit square. A contrived analytical solution for this problem 
is constructed as a product of two Fourier terms in a series solution,

^,2) = e"'cos(|x), ”> = + (^ . (7.1)

The specified values of <f) on the boundaries for the numerical solution are computed 
from (7.1). Figure 7.1 compares contours of potential (</>) obtained with the BIE code, 
using 12 boundary elements (3 nodes per side), with the analytical values for a = 0.1. 
The comparison is excellent. Figure 7.2 compares profiles of potential along the vertical 
direction obtained with the BIEM code (12 boundary nodes) with the analytical solution. 
Error analysis at selected points indicates the error in the BIEM solution, using 3 nodes 
per side, is less than 1% everywhere. A simulation using flux boundary conditions on 
part of the boundary also compared well with the analytical solution.

The deviation of the BIEM solution near the boundaries (z — 0 and 2 = 1) in 
Figure 7.2 shows that computation of interior values very near the boundaries can result 
in large numerical error. As a rule, if an interior point computation is requested at a place 
closer to the boundary than the local spacing between boundary nodes, the calculation 
should use interpolation. That is, the interior value is computed at an appropriate 
distance from the boundary and the requested value computed by interpolation using 
the interior value and the local boundary values.

7.2 Comparisons to Finite-Element Solutions for Tuff

To examine the viability of the quasi-linear method for the Yucca Mountain Project, 
some representative two-dimensional problems were examined. In these test problems we
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X
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Figure 7.1. Isopotentials in the unit square; (a) analytical values; (b) numerical 
values.
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x=1/3

x=1/2

Figure 7.2. Comparison of profiles of potential along the vertical direction for
i = l/3 and x = 1/2. The curves represent the analytical solution and 
the symbols are the numerical values.
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consider the steady unsaturated flow in the box shown in Figure 7.3. The dimensions 
of the box, 100 m by 100 m, were chosen to be of the order of a~1 for the materials of 
interest so that the pressure-gradient and body-force terms of equation (2.17) are of the 
same order. Dirichlet conditions are specified along the upper surface and along one- 
fourth of the lower boundary. Impermeable conditions are specified on the remainder 
of the boundary. Material properties (Hopkins, 1990) representative of the Topopah 
Spring (TSw) and Calico Hills (CHnv) units of Yucca Mountain are considered, and 
are designated Case 1 and Case 2, respectively (Table 7.1). In each case, we carry 
out the simulation using both the van Genuchten/Mualem model and the exponential 
model. The comparison of these two representations of permeability was shown previously 
in Figures 3.3 and 3.4. As noted in Section 3.1, the two permeability representations 
compare well for Topopah and poorly for Calico Hills.

We compare solutions to the boundary-value problem illustrated in Figure 7.3 gener­
ated with the BIEM and with the finite-element code NOMA (Bixler, 1985). Conditions 
for the problems are given in Table 7.1. Solutions using both the exponential and the 
van Genuchten representation were generated with NOMA. The purpose was twofold: 
(1) to compare the solutions using the exponential representation in NOKIA with the 
BIEM (providing a benchmark for latter); and (2) to compare the van Genuchten and 
exponential permeability models.

The conditions for Case 1 allow comparison of the quasi-linear transformation for 
solving the non-linear problem with solutions generated by NOMA using the Richards 
equation. In this case, because the exponential conductivity function is essentially iden­
tical to the van Genuchten representation, one might anticipate that the results based 
on either model or either solution method would be very similar. Case 2 was chosen to 
test a material and a range of pressure head for which the two conductivity functions 
are markedly different. The pressure boundary conditions for Case 2, = —25 m at
the outlet and ^ = —75 m at the top, straddle the steep drop in permeability with 
pressure head represented by the van Genuchten model (Figure 3.4). The conductivity 
for the exponential model is thus underestimated at values of \ip\ below about 50 m, and 
overestimated at values of \ip\ above that level.

Contour plots of pressure head for Case 1 are shown in Figure 7.4a for the van 
Genuchten permeability and in Figure 7.4b for the exponential, both generated using 
NOKIA. The pressure fields are nearly identical for this case, because both permeability 
functions are also nearly identical in this pressure head range. Figures 7.5 through 7.8 
compare pressure head and flux profiles along the vertical obtained using NOMA with 
those obtained using the BIEM. The figures demonstrate that the quasi-linear method 
yields the same results as NOMA for this case. The BIEM solutions were obtained using 
32 boundary elements (8 evenly spaced nodes per side). Solutions using 16 boundary 
elements, the minimum number of evenly spaced nodes to allow one boundary element on 
the Dirichlet segment of the lower boundary, yielded results with less than 1% difference.
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z

Figure 7.3. Schematic of the test problem using Yucca Mountain properties.
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x (m)

Figure 7.4. Contours of pressure head for Case 1 using (a) the van
Genuchten/Mualem permeability model, and (b) the exponential 
permeability model.
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x=25 m
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Figure 7.5. Comparison of pressure head profiles along the vertical direction using 
the exponential permeability in NORIA (curves) with the BIEM 
(symbols).
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Figure 7.6. Comparison of flux profiles along the vertical direction using the
exponential permeability in NORIA (curves) with the BIEM (symbols); 
(a) horizontal flux, (b) vertical flux.
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x=25 m

z (m)

Figure 7.7. Comparison of pressure head profiles along the vertical direction using 
the van Genuchten permeability in NORIA (curves) with the BIEM 
(symbols).
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Figure 7.8. Comparison of flux profiles along the vertical direction using the van 
Genuchten permeability in NORIA (curves) with the BIEM (symbols); 
(a) horizontal flux, (b) vertical flux.
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Table 7.1. Conditions for test problems.

Boundary
(m)

Exponential
Model

van Genuchten 
Model

Case Unit Top Outlet K, (m/s) a (m-1) (m-1) /?

1 TSw -75 -50 1.9 x lO"11 0.01742 0.0567 1.798

2 CHnv -75 -25 2.7 x 10"7 0.02219 0.0160 3.872

Figure 7.9 compares the pressure head contours for Case 2 using the van Genuchten 
and exponential permeability functions in NORIA. This case specifies boundary pres­
sures that accentuate the differences in the permeability functions. The pressure head 
contour maps are significantly different, as could be expected by the discrepancy in the 
permeability functions over this range of pressure head. Figures 7.10 and 7.11 compare 
the results obtained for Case 2 using NORIA and the BIEM. The comparison of solutions 
obtained using NORIA with the exponential representation and the BIEM are in good 
agreement. The comparison between using the van Genuchten representation in NORIA 
and the BIEM demonstrates the degree of discrepancy that can result from markedly 
different permeability functions.

All the NORIA solutions were computed using a uniform mesh consisting of 400 
eight-node biquadratic elements. The steady solutions were determined by computing a 
false transient from an initial pressure field to the final steady state. The initial condition 
used was a uniform pressure equal to the lower boundary pressure specified on the Dirich- 
let segment. The BIEM solutions were computed with 16 and 32 boundary elements (4 
and 8 nodes per side, respectively), which approximate the variation of the unknown over 
the element by its value at the midpoint. Results on either mesh were nearly identical. 
NORIA solutions required about 20 minutes of CPU on the CRAY-XMP to achieve the 
steady state. The BIEM solutions required about 5 seconds on the VAX 8650.

We emphasize that this does not constitute a study of the relative merits of the finite- 
element method and the BIEM in terms of run time. That comparison would require 
a finite-element code developed expressly to solve the linear problem given by (2.17), 
which would also be much faster. The results computed with NORIA for the exponential 
conductivity function are based on the nonlinear Richards equation, t.e., the code does 
not exploit the transformation given by (2.16). Furthermore, the FEM code achieves 
a steady-state solution by running through a time-consuming false transient. For the 
nonlinear problem, this guarantees a unique solution for a particular initial condition,
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Figure 7.9. Contours of pressure head for Case 2 using (a) the van
Genuchten/Mualem permeability model, and (b) the exponential 
permeability model.
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x=25 m
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Figure 7.10. Comparison of pressure head profiles along the vertical direction using 
the van Genuchten and exponential permeability in NORIA (curves) 
with the BIEM (symbols).
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Figure 7.11.
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EXPONENTIAL
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Comparison of flux profiles along the vertical direction using the van 
Genuchten and exponential permeability in NORIA (curves) with the 
BIEM (symbols); (a) horizontal flux, (b) vertical flux.
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but has no advantage for the linear problem. Nonetheless, the comparison of CPU time 
for the two solution methods is meaningful in terms of available tools. That is, should one 
encounter the need for a steady-state solution under conditions for which the exponential 
conductivity appears to be a reasonable approximation, the BIEM offers an enormous 
advantage over currently available alternatives.

8 Summary

The quasi-linear transformation of the steady-state Richards equation assumes that 
the hydraulic conductivity can be represented by an exponential function of the capillary- 
pressure head, as was noted many years ago by Gardner (1958). A comparison of the 
exponential conductivity to the widely used van Genuchten form was carried out for prop­
erties believed to be typical of the major tuff units at Yucca Mountain. The exponential 
has been fit by a simple least-squares method to conductivity “data” generated from 
the van Genuchten function over the head range from 0 to —150 m. A reasonably good 
match can be obtained in this fashion for those units that do not exhibit a “shoulder” in 
the conductivity, he., for tuffs that show a relatively small air-entry pressure, including 
the Tiva Canyon, Topopah Spring, and Calico Hills zeolitic units. In terms of the van 
Genuchten model parameters, these tuffs are characterized by relatively modest values 
of /?. For tuffs that do exhibit a “shoulder,” including the Paintbrush and the Calico 
Hills vitric units, the exponential model applied in this way yields poor fits. Signifi­
cant improvement could be obtained by constraining the fit to pressure heads less than 
that at which the break in slope occurs (for these materials, around —50 m and —25 m, 
respectively), although we have not pursued this here.

An exact solution for one-dimensional flow based on the exponential model has been 
compared to numerical solutions based on the van Genuchten model for a representa­
tive Yucca Mountain stratigraphy. The agreement is remarkably close at fluxes of 0.1 
and 0.5 mm/yr, even in those units for which the exponential conductivity is a poor 
approximation to the van Genuchten function.

The quasi-linear transformation of the steady-state Richards equation is particularly 
well suited to solution by the boundary integral equation method, as exploited recently by 
Pullan and Collins (1987). Indeed, fundamental solutions in both two and three dimen­
sions are well known because of the analog to heat conduction with uniform convection. 
A BIEM code has been written for plane, two-dimensional domains. The code computes 
values of potential and/or flux on the domain boundary. The potential and flux can also 
be computed in the interior, as a postprocessing task, and at any number of arbitrarily 
placed points. Pathlines and travel times can also be computed if the retention curve 
for the material is given. The method has shown to exhibit quadratic convergence, even 
on singular problems, with appropriate mesh grading and has been tested against both 
analytical and independent numerical solutions with excellent agreement.
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Appendix A. Calculation of the Flux

We provide here for reference the explicit terms that arise in calculation of the flux. 
Equation (5.9), in component form, can be written

— dx

3$

From (5.4), the derivatives of $ are given by

> [ ( d2G 82G \ JT, [dG, . __(x) = ~L \d^n’+ aJsc"') *dT +1 '

d2G d2Gnx + —"in,

3£
dx

&(x)=-yr
^dzdx dzd(

where x = (a:, z) and y = (y, C), and

/BG
-fc(-qn)dT ,

n(y) = ::) ^ ■

Define
x = x-x ,
2 = Z-( ,

r = + z2)'/2 ,
au — —r 
2

The fundamental solution can then be written

^ = 2^ eXP (i*) ’

and the required derivatives follow in straightforward fashion:

BG UU ax /a_\ . .fe=-^ = S7expl22)A'(ra) ’BG
dx

BG BGac = ~ = sexp (I2) [;A,(ro) _ Ko{c’)} ’

B2GBxBX ~ ^ GXP (ff) { t1 " 2 (^l W~lKl{w) ~ (^)2^o(CT)}

H=S=^exp [(' -2c7'^) ^i(c7) - ^o(a7)

(A.l)

(A.2)

(A.3)

(A.4)

(A.5)

(A.6)

(A.7)

(A.8)

(A.9)

(A.10)
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d'G
dzd(

= sexp (r) ({2;+ra"1 [' “2 (;) 1} ^(ro)" + (;) ] /<'o(ra)
(a.11)

The code described here was run on a 32 bit digital machine, representing approx­
imately 7 digits of precision. For this word size, we use the asymptotic approximations 
to Kq(£) and Ki(£) for arguments £ > 75 (this value is machine dependent):

*oK) = y|exp(-{) (l-±+iJL- + 

MO = y|e*p(--f) (! +1 - 5^1 + "

(A.12) 

(A.13)
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Appendix B. Information from, and Candidate Information
for, the Site and Engineering Property Data 
Base and the Reference Information Base

This report contains no information from the Reference Information Base and con­
tains no candidate information for the Reference Information Base.

This report contains no candidate information for the Site and Engineering Proper­
ties Data Base.
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