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Abstract

Thermal and mechanical finite element far-field models have been constructed for a 
potential repository site in the Topopah Spring Thermai/mechanical Unit at Yucca 
Mountain on the Nevada Test Site. The models reflect site-specific information 
that was available at the time of the study on the material properties and struc­
tural character of Yucca Mountain. The thermal model simulates transient heat 
transfer resulting from the emplacement of heat-generating nuclear waste in the 
repository. Simulation of boiling of the pore water is included in the model. The 
mechanical model simulates the tuff at Yucca Mountain as being an elastic/plastic, 
isotropic, heterogeneous continuum with one ubiquitous vertical joint set. The ini­
tial conditions of the mechanical model are based on a gravitational stress field. 
The model uses the temperatures predicted by the thermal finite element model as 
input to predict thermal stresses and displacements induced by the presence of the 
repository. Plasticity is incorporated in shear (fracture slip) and tension (fracture 
opening) by using a Mohr-Coulomb failure criterion.

*This report was prepared by RE/SPEC Inc. under Subcontract Nos. 37-8656 and 57-0881 with 
Sandia Corporation. The contract was administered by Sandia National Laboratories, Albuquerque, 
New Mexico, as operated by the Sandia Corporation.

DISTRi3t mO.N OF THIS DOCUMENT IS UNLiMITE



The work described in this report was performed during 1984 and 1985; at that 
time no QA control structure was in effect. The work was subsequently included in 
WBS 1.2.4.6.2 which has become WBS 1.2.1.4.3.1 under the fiscal year 1990 WBS 
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1.0 INTRODUCTION

The work described in this report was performed for Sandia National 
Laboratories (SNL) as a part of the Yucca Mountain Project (YMP). SNL is one 
of the principal organizations participating in the project, which is managed by 
the U. S. Department of Energy’s (DOE) Nevada Operations Office (NVO). The 
project is a part of the DOE’s program to safely dispose of the radioactive waste 
from nuclear power plants.

The DOE has determined that the safest and most feasible method currently 
known for the disposal of such wastes is to emplace them in mined geologic reposi­
tories. The YMP is conducting detailed studies of the Yucca Mountain area on and 
near the Nevada Test Site (NTS) in southern Nevada to determine the feasibility 
of developing a repository.

Numerical models that simulate the geologic disposal of nuclear waste have been 
traditionally divided into three scales. This division is based on the geometric detail 
of the physical phenomenon being studied. A very-near-fidd model focuses only on 
the phenomenon in the rock within a few meters of the waste container. A near-field 
model provides a prediction of a phenomenon in the rock around the disposal drift; 
the rock mass considered includes the pillar between disposal drifts and the rock 
extending several drift diameters above and below the waste disposal drift. A far- 
field model predicts a phenomenon within a geometric boundary extending vertically 
from the ground surface down several thousand meters below the repository horizon 
and laterally several thousand meters beyond the edges of the repository. Although 
each type of model is equally important in the study of geologic nuclear waste 
disposal, this report focuses on the construction of thermal and mechanical far-field 
models.

Far-field models provide information about thermomechanical effects in the rock 
induced by the presence of a repository. The thermomechanical effects are inves­
tigated in the far-field domain. The phenomena are investigated on a time scale 
that starts at the time of waste emplacement and lasts through 50,000 yr of waste 
isolation. The construction of finite element far-field models in tuff started in 1979 
as part of the YMP. The YMP is investigating a potential repository site at Yucca 
Mountain, located on and adjacent to the NTS. The early far-field models were 
generic and did not include many of the site-specific features of Yucca Mountain. 
The continuous effort to characterize this potential repository site has resulted in 
far-field models that incorporate greater detail about the geometry, stratigraphy, 
and material properties of Yucca Mountain.

As part of the YMP unit evaluation study [Johnstone et al., 1984], thermome­
chanical far-field models aided in the selection of the Topopah Spring lithologic unit 
as the horizon to host the repository at Yucca Mountain. The models described 
in this report are based on site-specific information about this potential repository 
site at Yucca Mountain and include data obtained after the unit evaluation study.
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2.0 OBJECTIVE

The objective of this effort is to construct thermal and mechanical numeri­
cal far-field models of Yucca Mountain. These models use information regarding 
mechanical properties, thermal properties, initial temperatures, thermal/mechanical 
stratigraphy, and in situ stress that has been updated since the unit evaluation study 
[Johnstone et ah, 1984]. The models will serve as a basis for planning future studies 
of rock response to the presence of the repository.
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3.0 SCOPE

The construction of the enhanced far-field models is based on information 
regarding the topography and thermal/mechanical stratigraphy at Yucca Moun­
tain [SNL, 1987] and on a previous far-field model of Yucca Mountain [Johnstone et 
ah, 1984]. The creation of the finite element mesh closely adheres to the topography 
and thermal/mechanical stratigraphy supplied. Provisions for specifying boundary 
conditions (thermal and mechanical) are built into the mesh. A check regarding 
adequate mesh refinement and appropriate boundary conditions was performed and 
is reported in Appendix A.

The thermal model constructed uses the finite element computer program 
SPECTROM-41 [D. K. Svalstad, Documentation of SPECTROM ^1: A Finite 
Element Heat Transfer Analysis Program, draft]. The data used in SPECTROM-41 
represent a conceptual model of the heat transfer problem to be analyzed. The data 
include the far-field mesh with defined boundary conditions, the material behav­
ior defined in terms of thermophysical properties, the characteristics of the nuclear 
waste type and thermal decay, and the initial temperature conditions of the model.

The mechanical model uses the finite element computer program SPECTROM- 
31 [S. W. Key and D. A. Labreche, SPECTROM-81: A Finite Element Computer 
Program for the Large Deformation, Static, and Quasi-Static Response of Planar 
and Axisymmetric Solids, draft]. The data for SPECTROM-31 represent a concep­
tual model of the mechanical problem to be analyzed. The data include the far-field 
mesh with appropriate boundary conditions defined, the material behavior defined 
in terms of mechanical properties and rock strength parameters, the definition of 
the initial (in situ) stress field, and the temperature history of the far-field domain 
supplied by the output from SPECTROM-41.

No specific analyses using these models were conducted as part of this study. 
However, with the far field models described here, studies of the effects of waste 
emplacement on the thermal and mechanical response of the repository site can 
now be conducted.
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4.0 MODEL CONSTRUCTION

4.1 MATERIAL CHARACTERIZATION

The far-field model of Yucca Mountain is based on the cross section CC shown in 
Figure 4-1. This figure shows the topography and the thermal/mechanical stratig­
raphy of the mountain, as well as the approximate location of the water table. In 
addition, Figure 4-1 also shows the location of several faults, labeled C2 through 
C7. Each stratum in Figure 4-1 is differentiated based on thermomechanical behav­
ior rather than lithology [SNL, 1987], The approximate location of the repository 
horizon within the cross section CC is also shown in Figure 4-1. The repository is 
situated in the Topopah Spring member, which has a low percentage of lithophysae. 
A map of Yucca Mountain (Figure 4-2), shows the location of the CC cross section 
and the location of various drillholes.

Material properties and model input parameters are given in Table 4-1 
[SNL, 1987] for each of the stratigraphic units of Figure 4-1. The thermal con­
ductivity, volumetric heat capacity, and coefficient of thermal expansion vary with 
temperature. This variation is provided to account for the possible boiling of the 
pore water in the rock. This phenomenon will be explained further in Section 4.3, 
which discusses the thermal model.

Although there is no site-specific information regarding the material behavior 
of the faults identified in Figure 4-1, the presence of the faults is acknowledged in 
the model by virtue of their location. If data on the material behavior of the faults 
become available at a later date, these data may be incorporated to model fault 
behavior.

The type of nuclear waste considered in this far-held model is a combination of 
10-year-old spent nuclear fuel from pressurized water reactors (PWR) and boiling 
water reactors (BWR). It is assumed that 60 percent of the initial areal power 
density (APD) of the repository is attributable to PWR spent fuel and 40 percent 
to BWR spent fuel. The thermal decay characteristics used for the 10-year-old 
PWR and BWR spent fuel are those given by SNL [1987], The thermal decay 
characteristics of the combined PWR and BWR spent fuel used in the model is 
shown in Figure 4-3, and decay and time constants are given in Table 4-2.

4.2 FINITE ELEMENT MESH

The finite element mesh shown in Figure 4-4 dehnes the geometric boundaries 
of the far-held domain. Eight-noded quadrilateral elements are used. The mesh 
was constructed on the basis of the cross section CC in Figure 4-1; however, the 
boundaries have been extended horizontally and vertically down beyond the region

7
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Table 4-1. Material Properties and Model Input Parameters of Yucca Mountain
[SNL, 1987]

Unita
Property IA2 IB IIA IIB,IIIA IIIB IVA,B,C VA VB VI VIIA,B,C VIII

TCw PTn TSwl TSw2,3 CHnlv CHnlz,2,3 PPw CFUn BFw CFMnl,2,3 TRw
Young’s modulus, 15.4 2.2h 7.36 15.1 2.4 3.5 6.05 3.8 5.4 5.4 8.8

E (GPa)
Poisson’s ratio,

V

0.10 0.18 0.18fc 0.20 0.15 0.17 0.20 0.16 0.13 0.15 0.18

Specific weight, .022555 .018632 .022163 .022849 .017456 .018534 .021084 .019025 .021868 .020496 .022751
Pbsff (MPa/m3)c

Uniaxial compressive 
strength, (Tq (MPa)

77.3 11.1 33.4 75.4 8.4 13.5 25.3 15.5 20.8 22.3 35.9

Tensile strength, 9.3 1.0 4.0 6.5 1.0 1.6 3.0 1.9 2.5 2.7 4.3
uT (MPa)

Coeff. of thermal exp., 8.7 -70.0 10.7 10.7 -70.0 6.7 8.3 6.7 8.3 6.7 8.3
x IQ-6 (°C-1) 

Temp, range (°C) <100. <100. <200. <200. <100. <100. <100. <100. <100. <100. <100.
a2 x KT6 (“Cr1) 8.7 -11.5 31.8 31.8 -11.5 -52.0 -12.0 -29.4 -12.0 -16.2 - 12.0
Temp, range (°C) 100-125 100-125 200-350 200-350 100-125 100-150 100-125 100-150 100-125 100-150 100-125
a3 x 1CT6 (“C-1) 8.7 -8.0 15.5 15.5 -8.0 -2.4 10.9 4.4 10.9 1.5 10.9
Temp, range (°C) >125. >125. 350-400 350-400 >125. >150. >125. >150. >125. >150. >125.

Matrix cohesion. 22.4 4.6 11.5 22.1 3.3 5.1 8.7 5.7 7.2 7.8 11.5
Sm (MPa)

Matrix angle of int. 29.7 11.2 20.9 29.2 13.4 15.8 21.1 17.8 21.6 20.5 24.8
friction, (deg)

Joint cohesion, 1.0 1.0 1.0 1.0 1.0 0.4 1.0 0.4 1.0 0.4 1.0
S;- (MPa)

Joint angle of int. 38.7 38.7 38.7 38.7 38.7 28.8 38.7 28.8 38.7 28.8 38.7
friction, (deg)

Joint tensile strength 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.0 0.1 0.0 0.1
(MPa)

(Table is continued on following page)



Table 4-1 (continued)

Property IA2
TCw

IB
PTn

IIA
TSwl

IIBJIIA
TSw2,3

IIIB
CHnlv

Unit0
IVA,B,C

CHnlz,2,3
VA

PPw
VB

CFUn
VI

BFw
VIIA,B,C

CFMnl,2,3
VIII
TRw

Brittle/ductile trans. 
pressure,an (MPa)

-92.7 -6.0 -25.0 -87.1 -4.1 -17.6 -18.5 -23.2 -15.3 -42.1 -31.0

Thermal conductivity,6 
/ci (T< 100°C) 
k2 (100 <T< 125°C) 
k3 (T> 125°C) 
(W/mK) * I

Volum. heat capacity,6 
pCPl (T < 100°C) 
pCP2 (100 <T< 125°C 
pCp3 (T> 125°C) 
(W-yr/m3K)

Boiling Low 100. 100. 100. 100. 100. 100. 100. 100. 100. 100. 100.
range (°C) High 125. 125. 125. 125. 125. 150. 125. 150. 125. 150. 125.

Wet bulk density,6 2300. 1900. 2260. 2330. 1780. 1890. 2150. 1940. 2230. 2090. 2320.
Pbs (kg/m3)

"The first set of unit designators was in use at the time of this study; the second set was established later.

6Value differs from SNL [1987] because it was obtained from preliminary data in a draft version of the document. 

cg — 9.8065 m/s2.
,zBrittle/ductile transition pressure (where negative values indicate compression)

/ : r = Srn + tan($m) x un (Mohr-Coulomb criterion for matrix)
II : t = Sj + tan($>j ) x an (Mohr-Coulomb criterion for failed matrix)

I — //, and solve for an :
= (S, - Sm)

|tan(^m) - tan(^j)]

2.00
1.95
1.90

1.49
1.43
1.37

1.19
1.10
1.00

1.85
1.73
1.61

1.21
1.12
1.02

1.35
1.20
1.03

1.86
1.61
1.35

1.31
1.18
1.04

2.00
1.68
1.35

1.48
1.31
1.13

2.09
1.94
1.79

0.070 0.078 0.061 0.069 0.078 0.077 0.077 0.077 0.085 0.082 0.082
0.838 0.321 0.386 0.308 0.880 0.520 0.605 0.478 0.737 0.425 0.599
0.042 0.058 0.045 0.057 0.040 0.042 0.052 0.045 0.053 0.049 0.057
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Table 4-2. Thermal Power Decay of Combined 60 Percent 
PWR and 40 Percent BWR Spent Fuel

Time
(Years)a NP6

10 1.0000
20 0.7786
50 0.4763

100 0.2618
200 0.1488
500 0.0880

1,000 0.0515
2,000 0.0276
5,000 0.0178

10,000 0.0128
20,000 0.0075
50,000 0.0027

“Years after discharge from the reactor. 

^NP denotes normalized thermal power.

of Yucca Mountain shown in Figure 4-1. This extension is necessary to avoid viola­
tion of the boundary conditions used in the thermal and mechanical models, which 
are discussed in Sections 4.3.2 and 4.4.2, respectively. The region of the far-held 
model provided by Figure 4-1 is within the dashed rectangle in Figure 4-4.

The mesh closely matches the topography, thermal/mechanical stratigraphy, 
location of the repository, and the location of the faults as laid out in Figure 4-1. 
Figure 4-5 shows the thermal/mechanical stratigraphy as it is dehned by the finite 
element mesh.

Mesh rehnement has been provided in regions of the far held most likely to be 
affected by the repository and in regions where the rates of change of temperature 
and displacement are expected to be high. The far-held mesh shown in Figure 4-4 
contains 3,281 nodal points in 1,050 elements and has a nodal bandwidth of 96. 
The issues of sufficient mesh rehnement and appropriate boundary conditions for 
this far-held model are discussed in Appendix A.

4.3 THERMAL MODEL

4.3.1 Finite Element Code SPECTROM-41

The hnite element heat transfer computer program SPECTROM-41 is an inte­
gral part of the SPECTROM (Special Purpose Engineering Codes for Thermal/-
ROck Mechanics) series of computer programs. The program is capable of solving
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two-dimensional (x-y) and axisymmetric (r-z) steady-state or transient-conductive 
heat transfer problems with a variety of boundary conditions. The program uses 
isoparametric elements, and the finite element equations involving the spatial tem­
perature distribution are obtained from a variational formulation [Wilson and 
Nickell, 1966]. The program is also capable of solving heat transfer problems in­
volving phase change, which is a phenomenon that may take place in the far field 
in the form of pore water boiling.

4.3.2 Conceptualized Thermal Model * •

The conceptual thermal model illustrated in Figure 4-6 is a two-dimensional 
(x-y) model with boundary conditions as follows.

• The two vertical boundaries are sufficiently far removed from the repository 
that they are assumed to be perfectly insulated or adiabatic.

• The modeled ground surface is a convective boundary chosen so that any 
temperature rise at the surface can be detected.

• The lower horizontal boundary is a constant flux boundary.

The convective heat transfer coefficient used is 1 W/m2oC and the air temper­
ature used is 16.5°C. This is an estimate of the annual average air temperature 
approximately 12 mi southeast of the potential repository site at Yucca Moun­
tain. The initial temperatures in the thermal far-held model are based on temper­
ature measurements from drillholes USW H-4, USW H-5, and USW G-4 at Yucca 
Mountain [Sass et ah, 1988], Figure 4-7 shows the location of these drillholes pro­
jected onto the cross section CC. Using the material characterization, stratigraphy, 
and geometry presented in Sections 4.1 and 4.2, along with the boundary conditions 
presented above, a constant upward hux of 0.040 W/m2 along the lower horizon­
tal boundary was selected to give the most reasonable match between the predicted 
steady-state temperatures in the far held and those measured in the drillholes. Some 
variation outside the immediate vicinity of the repository was accepted in order to 
optimize the comparison in the repository region. The comparison between mea­
sured and predicted temperatures for the three drillholes is given in Figures 4-8, 
4-9, and 4-10. In Figure 4-11, temperature contours illustrate the initial thermal 
conditions in the far held.

The repository is modeled as a 4-m-thick heat generating plate. The plate 
thickness is approximately equal to the length of a waste container. The repository 
is modeled as inhnitely long in the out-of-plane direction (normal to the paper), a 
consequence inherent in the two-dimensional model. In this model, it is assumed 
that all the waste is emplaced instantaneously. This assumption is conservative 
and will result in predicted rock temperatures slightly higher than those of actual 
conditions where waste is emplaced sequentially.
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Although the repository in its entirety is located above the static water table, 
the rock in this region remains about 80 percent saturated. If the rock is heated to 
temperatures beyond 100°C (assuming atmospheric conditions), the pore water in 
the rock may boil. The simulation of boiling has been included in the model and 
is shown qualitatively in Figure 4-12. To avoid ill conditioning of the heat transfer 
problem, the boiling phenomenon is simulated over a temperature range (Ti, T2). 
The boiling model illustrated in Figure 4-12 responds differently when temperatures 
increase and decrease. The thermal conductivity and volumetric heat capacity are 
changed twice as temperatures increase; i.e., first, when the temperature reaches 
the onset of boiling (Ti) and, second, when the temperature increases beyond the 
range of boiling (T2). When the temperature exceeds T2, the rock is essentially dry. 
As temperatures decrease, the thermal conductivity and volumetric heat capacity 
change at temperature Tl5 which now becomes the onset of resaturation. The 
model implies that the energy consumed during the process of boiling (i.e., the heat 
of vaporization in dehydrating the rock) does not return upon resaturation of the 
rock. This energy is assumed to be lost from the system. In reality, the heat of 
vaporization would be recovered if the vapor cooled within the modeled region.

The boiling range for each of the stratigraphic units of Figure 4-1 is given in 
Table 4-1, along with the respective values of the thermal conductivity (/cj, k^, ^3) 
and volumetric heat capacity (pCPl, pCP2, pCP3).

4.4 MECHANICAL MODEL

4.4.1 Finite Element Code SPECTROM-31

SPECTROM-31 is a finite element computer program for the large-deformation 
elastic and inelastic, static and quasi-static response of axisymmetric {r-z) solids 
and two-dimensional {x-y) solids in plane strain or plane stress. The program allows 
for pressure and displacement boundary conditions. The initial stress field can be 
caused by body forces, or the initial stress field can be prescribed. The program uses 
isoparametric elements and is based on an eight-noded biquadratic displacement 
assumption. Thermal stresses in SPECTROM-31 are computed on the basis of a 
precalculated thermal history, such as that calculated using SPECTROM-41. The 
program allows the user to choose from several material models.

4.4.2 Conceptualized Model

The conceptual mechanical finite element far-held model of Yucca Mountain is 
shown in Figure 4-13. It is a two-dimensional plane strain model that maintains 
the complex stratigraphic dehnition of Figure 4-1 in terms of element geometry, 
as well as the dehnition of the material properties of each stratigraphic unit. The 
rock is characterized as an elastic/plastic, isotropic, heterogeneous continuum with 
one ubiquitous vertical joint set. The constitutive model uses an approach similar
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to the one used by Thomas ’1980]. The onset of plastic response in the matrix 
material and of the joints is governed by a Mohr-Coulomb criterion. Plasticity of 
the joints is evaluated both in shear (fracture slip) and in tension (fracture opening). 
The graphical output from SPECTROM-31 to illustrate plasticity is “X” and “O,” 
where “X” symbolizes fracture slip and “O” symbolizes fracture opening.

The displacement boundary conditions used are illustrated in Figure 4-13, and 
are as follows

• The two vertical boundaries are placed at a sufficient distance from the 
repository to assure that perturbations on the boundary are negligible; the 
boundaries are therefore restrained from horizontal movement.

• The lower horizontal boundary is also placed at sufficient distance from the 
repository to specify that it be restrained from vertical movement.

• The lower left and right corner nodes are restrained from vertical and hori­
zontal movement, a combination of the above two boundary conditions.

• The ground surface is unrestrained (traction free).

Initial conditions are based on a gravitational stress field [Bauer et ah, 1985]; 
i.e., the vertical stress is equal to the weight of the overburden, and the horizontal 
stresses are caused by the Poisson’s effect. Figures 4-14 and 4-15 illustrate the in 
situ stress field at Yucca Mountain as it is predicted by the mechanical model for 
the particular conditions given.

The coefficient of thermal expansion, which was found to be a function of tem­
perature [SNL, 1987], will, in some instances, induce positive strain (contraction) 
with increasing temperatures. The thermal expansion coefficients of each strati­
graphic unit are given in Table 4-1, along with the respective dehydration ranges.
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5.0 ARCHIVED DATA

The specific thermal and mechanical far-held models described in the previous 
sections are preserved in terms of computer programs, update hies, and program 
input hies. These hies are archived at RE/SPEC Inc. and were also submitted to 
SNL on magnetic tape upon completion of the analysis. The two hnite element 
computer programs, SPECTROM-41 and SPECTROM-31, represent the basic 
tools used to obtain solutions to the thermal and mechanical far-held problems, 
respectively.

Update hies, which add additional capability but do not otherwise alter the 
computer programs, are sometimes necessary in order to account for special features 
of a problem not generally covered by the “basic version” of the computer program. 
For SPECTROM-41, the process of pore water boiling is an example of a special 
feature.

It is the input hies that dehne the environment within which the phenomena of 
heat transfer and material behavior are studied. The input hies tailor specific model 
characteristics by dehning the materials that are modeled, as well as by dehning 
their constitutive, structural, and geometric details.

The following paragraph identihes the hies constructed specifically to create the 
Yucca Mountain thermal and mechanical far-held models described in this report.

The hies related to the thermal far-held model are as follows.

[RSI058.017.TB.RU N41.UPD41]BOIL.UPD:26

This is an update hie containing programming that enables the com­
puter program SPECTROM-41 to simulate the process of pore water 
boiling. The updates are specihc to the thermal far-held model of 
Yucca Mountain described in this report.

[RSI058.017.TB.FFMESH]MESH41.DAT;3

This is an input hie to the program SPECTROM-41. The hie dehnes 
the far-held domain of Yucca Mountain in terms of nodal point co­
ordinates, boundary conditions, and element material type according 
to the format required by SPECTROM-41.
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[RSI058.017.TB.RU N41.41FFRUNjREAD41.DAT; 13

This is an input file to SPECTROM-41 that contains the necessary 
information to simulate the thermal response of the far field to a spent 
fuel repository at Yucca Mountain, for a time period of 50,000 yr. The 
initial APD is 57 kW/acre.

The files related to the mechanical far-field model are as follows:

[RS 1058.017. TB.F FMESHJMES FI. DAT; 1

This is an input file to the program SPECTROM-31. This file 
defines the far-field domain in terms of nodal point coordinates, 
boundary conditions, and element material type according to the 
SPECTROM-31 format.

[RSI058.017.TB.RUN31j31INPUT.DAT :12

This is an input file to SPECTROM-31 that contains the necessary 
information to simulate the in situ stress field at Yucca Mountain by 
gravitational loading. The file also contains information necessary 
to complete a thermomechanical simulation of Yucca Mountain for a 
time period of 50,000 yr.

[RSI058.017.TB.RUN41.41FFRUNJTEMP31.BIN :3

This is an input file to SPECTROM-31 used only if a thermomechani­
cal simulation of Yucca Mountain is performed. The file contains tem­
peratures of the far field at discrete times from initial waste disposal 
to 50,000 yr of waste isolation. The file was created from a thermal 
simulation using the program SPECTROM-41 for the condition of 
spent fuel disposal with an initial APD of 57 kW/acre.

These files have been stored permanently on a magnetic tape by using the 
BACKUP utility program provided for the Digital Equipment Corporation 
VAX 11/750 computer. The files are stored on the magnetic tape as a SAVE SET in 
the RE/SPEC Analysis Archive uniquely identified by the number 0588444. The 
files can be retrieved from the magnetic tape using the same BACKUP utility program 
by anyone familiar with the Digital Equipment Corporation VAX/VMS operating 
system.
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6.0 CONCLUSION

A thermomechanical finite element far-field model has been constructed that 
reflects the material properties and structural character of Yucca Mountain that 
have been updated since the unit evaluation study [Johnstone et ah, 1984]. The 
model is a result of a continuous effort to characterize a potential repository site 
at Yucca Mountain. The primary purpose of the thermomechanical far-field model 
is to aid in the understanding of the effects and consequences related to the per­
manent isolation of nuclear waste in a repository at Yucca Mountain by providing 
information about changes in temperatures, displacements, and stresses in the rock 
resulting from the presence of the repository.

Although the model is perceived to be an accurate and realistic representation of 
the potential repository site at Yucca Mountain, it remains an idealized description 
of the mountain. It is important to keep this fact in mind when interpreting the 
results provided by the model.

The work to characterize the repository site at Yucca Mountain will culminate 
with the excavation of the Exploratory Shaft Facility (ESF). As data are gathered 
from the ESF and perhaps from additional boreholes, these far-field models may be 
revised. The revisions may include updated material properties and stratigraphy 
and appropriate constitutive models to provide current results upon which decisions 
regarding design and construction of the repository may be based.
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APPENDIX A
A CHECK OF THE FAR-FIELD MESH REFINEMENT AND 

BOUNDARY CONDITIONS

The following study has been performed to investigate the influence the cur­
rent mesh refinement and adopted boundary conditions may have on the results 
predicted by the thermomechanical far-held models.

To investigate the inhuence of mesh rehnement, two finite element meshes were 
applied to the same two-dimensional far-held problem. The rehnement of each 
mesh required that (l) the repository and each layer of stratigraphy be modeled, 
and (2) the rehnement be greatest near the repository in the location of the high­
est temperature and stress gradients. Figure A-l shows Mesh I, which has close 
to the same rehnement as the mesh for Yucca Mountain dehned in Section 4.2. 
Figure A-2 shows Mesh II, which has the same vertical rehnement but twice the 
horizontal rehnement of Mesh I. In essence, the second mesh has element aspect 
ratios that are closer to one. Comparing results from both meshes reveals whether 
the aspect ratios caused by the coarseness of the first mesh significantly affected 
the performance of the element in this problem and hence signihcantly affected the 
results. For convenience, both meshes were generated in rectangular form, thus 
allowing for a vertical plane of symmetry to be used along the center of the model.

SPECTROM-41 described in Section 4.3.1, was the hnite element heat transfer 
computer program used. The conceptual thermal model shown in Figure A-3 defines 
a thermal/mechanical stratigraphy similar to that of Yucca Mountain. Boundary 
and initial conditions are the same as those described in Section 4.3.2. The model 
does not, however, take into account boiling of the pore water that exists in the 
rock. This feature was omitted to minimize computer time and cost and does not 
affect the outcome of this study. Therefore, for each stratigraphic unit in this model, 
the constant thermal conductivity (Aq) and volumetric heat capacity (pCPl) listed 
in Table 4-1 were used.

The thermal model was used to investigate a waste isolation period of 
50,000 yr using both Mesh I and Mesh II. The waste was spent nuclear fuel as 
defined in Section 4.1, and the initial APD was 57 kW/acre (14.1 W/m2). Results 
can best be illustrated as contours in the far-held domain of the difference in the 
temperature predicted with the two meshes. Figures A-4 through A-10 show this 
difference from the time 10 yr after waste emplacement to 150 yr of waste isolation. 
There is a difference of about —3°C at 10 yr after the initial waste emplacement. 
The negative sign means Mesh I “underpredicts” relative to Mesh II. A positive sign 
means Mesh I “overpredicts” relative to Mesh II. The difference at 10 yr appears in 
the vicinity of the edges of the repository and represents approximately 6 percent 
difference in the temperature predicted using the two different meshes. During the 
period from 10 to 150 yr, the difference decreases to about 1°C (less than 1 percent 
difference) and appears in the immediate vicinity of the repository. Beyond 150 yr,
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the difference in temperature predicted using the two different meshes becomes 
much less than 1°C. The difference in temperatures predicted beyond the vicinity 
of the repository is always shown to be less than 1°C.

The mechanical finite element code SPECTROM-31 discussed in Section 4.4.1 
was used to investigate the effect of mesh refinement on the mechanical results. 
The conceptual mechanical model is shown in Figure A-ll. The boundary and 
initial conditions are the same as those described in Section 4.4.2. The temper­
atures predicted by the thermal model at 10, 50, 100, and 2,000 yr were used in 
the mechanical model to predict thermomechanical effects. Contours of the pre­
dicted horizontal and vertical stress using both Mesh I and Mesh II are given in 
Figures A-12 to A-27. These figures show that there is virtually no difference in the 
predicted stress contours using the two different meshes. Figures A-28 to A-35 show 
the predicted joint activity using Mesh I and Mesh II. At 10 yr, the lateral extent of 
the joint activity predicted using Mesh II is slightly greater than the lateral extent 
predicted using Mesh I; however, the vertical extent is the same. For subsequent 
times, the amount of joint activity predicted is virtually the same for Mesh I and 
Mesh II.

Comparison of predicted horizontal and vertical displacements between Mesh I 
and Mesh II are given in Figures A-36 to A-45 for nodal locations along the ground 
surface of the model. These displacements include those that result simulating 
gravity stresses in the model at the zero solution time. The displacements predicted 
are virtually the same using both Mesh I and Mesh II.

It appears from these results that the additional refinement provided in Mesh II 
has very little effect on the predicted outcome of the thermal and mechanical models. 
Thus, for the far-held models described in the main body of this report, the thermal 
and mechanical effects induced in the rock by the radioactive waste repository 
are predicted with sufficient accuracy using the refinement of the far-field domain 
provided by Mesh I.

For a boundary value problem, the boundary conditions should be chosen so 
that no adverse effects are imposed on the events investigated. For the present 
thermal and mechanical far-field models, the boundary conditions must attempt 
to provide for models of infinite extent. Therefore, the vertical and lower hori­
zontal boundaries have been located at great distance from the region of inter­
est around the repository so that their presence will have minimal or no adverse 
effect on the prediction of temperatures, displacements, and stresses. For both the 
thermal and mechanical far-field models, temperatures, displacements, and stresses 
were investigated along the lower horizontal boundary and along the right verti­
cal boundary of models represented by Mesh I. For the thermal model, the pre­
dicted temperatures should remain constant along the lower horizontal and the 
right vertical boundaries for the period of time investigated, because these bound­
aries are expected to represent an infinite extent. In Figures A-46 to A-48, tem­
perature histories are shown for nodal points that are on the boundaries investi­
gated. Along the right vertical boundary (nodal points 46 and 1,127 in Figures A-46
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and A-47) temperatures remain constant for the time period investigated. Along 
the lower horizontal boundary immediately below the repository (nodal point 1 in 
Figure A-48), there is a temperature rise of about 1.5°C at 50,000 yr. This tem­
perature rise, however, occurs thousands of years after the maximum temperatures 
are reached in the vicinity of the repository and is of no consequence to the events 
investigated because these boundaries are expected to represent an infinite extent.

In Figures A-49 to A-58, stresses and displacements are shown along the lower 
horizontal and right vertical boundaries of the far-field model. Because stresses are 
determined at integration points only (four integration points per element located 
inside the element), they do not necessarily represent boundary values. The dis­
placements are evaluated at nodal points; thus, they do represent boundary values. 
It is assumed in the present mechanical far-field model that stresses and displace­
ments along the lower horizontal and the right vertical boundaries will remain at 
their initial values throughout the time period analyzed. For the thermal model, 
the time period analyzed was 50,000 yr. However, the time period analyzed for the 
mechanical model was 2,000 yr. With the material model (elastic/plastic with ubiq­
uitous joints) used, the mechanical events investigated have been shown to reach a 
maximum within 2,000 yr [Brandshaug and Svalstad, 1984]. Figures A-49 to A-58 
show that stresses and displacements along the boundaries remain fairly constant for 
the 2,000 yr investigated. The small variations that occur are not believed to have 
any effect on the mechanical events taking place in the vicinity of the repository.

The investigation of the thermal and mechanical events along the lower hori­
zontal and right vertical boundaries of the thermal and mechanical far-field models 
indicates that these boundaries are not affected by the events in the vicinity of the 
repository.
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Figure A-20. Contours of Predicted Vertical Stress (MPa) at 10 Yr Using Mesh I.
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Figure A-21. Contours of Predicted Vertical Stress (MPa) at 10 Yr Using Mesh II.
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Figure A-23. Contours of Predicted Vertical Stress (MPa) at 50 Yr Using Mesh II.
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Figure A-24. Contours of Predicted Vertical Stress (MPa) at 100 Yr Using Mesh I.

67



Y-
AX

IS
 (m

)

Figure A-25. Contours of Predicted Vertical Stress (MPa) at 100 Yr Using
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Figure A-26. Contours of Predicted Vertical Stress (MPa) at 2,000 Yr Using
Mesh I.
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Figure A-27. Contours of Predicted Vertical Stress (MPa) at 2,000 Yr Using
Mesh II.
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Figure A-28. Predicted Joint Activity^at 10 Yr Using Mesh I.
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Figure A-29. Predicted Joint Activity at 10 Yr Using Mesh II.
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Figure A-30. Predicted Joint Activity at 50 Yr Using Mesh I.
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Figure A-31. Predicted Joint Activity at 50 Yr Using Mesh II.
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Figure A-32. Predicted Joint Activity at 100 Yr Using Mesh I.
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Figure A-33. Predicted Joint Activity at 100 Yr Using Mesh II.
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Figure A-34. Predicted Joint Activity at 2,000 Yr Using Mesh I.
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Figure A-41. Predicted Vertical Displacement as a Function of Time for Nodal
Point 3261 of Mesh II.
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Figure A-42. Predicted Horizontal Displacement as a Function of Time for Nodal
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Figure A-43. Predicted Horizontal Displacement as a Function of Time for Nodal
Point 3269 of Mesh II.
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Figure A-44. Predicted Vertical Displacement as a Function of Time for Nodal
Point 1670 of Mesh I.
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Figure A-45. Predicted Vertical Displacement as a Function of Time for Nodal
Point 3269 of Mesh II.
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Figure A-46. Temperature History for Nodal Point 46 from Time of Waste Em­
placement to 50,000 Yr of Waste Isolation.
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Figure A-47. Temperature History for Nodal Point 1127 from Time of Waste
Emplacement to 50,000 Yr of Waste Isolation.
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Figure A-48. Temperature History for Nodal Point 1 from Time of Waste Em­
placement to 50,000 Yr of Waste Isolation.
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Figure A-49. Horizontal Displacement along the Lower Horizontal Boundary of
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of Waste Isolation.
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Figure A-50. Vertical Displacement along the Lower Horizontal Boundary of the
Mechanical Model from Time of Waste Emplacement to 2,000 Yr of
Waste Isolation.
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Figure A-51. Horizontal Stress along the Lower Horizontal Boundary of the Me­
chanical Model from Time of Waste Emplacement to 2,000 Yr of
Waste Isolation.
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Figure A-52. Vertical Stress along the Lower Horizontal Boundary of the Mechan­
ical Model from Time of Waste Emplacement to 2,000 Yr of Waste
Isolation.
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Figure A-53. Shear Stress along the Lower Horizontal Boundary of the Mechani­
cal Model from Time of Waste Emplacement to 2,000 Yr of Waste
Isolation.
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Figure A-54. Horizontal Displacement along the Right Vertical Boundary of the
Mechanical Model from Time of Waste Emplacement to 2,000 Yr of
Waste Isolation.
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Figure A-55. Vertical Displacement along the Right Vertical Boundary of the
Mechanical Model from Time of Waste Emplacement to 2,000 Yr of
Waste Isolation.
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Figure A-56. Horizontal Stress along the Right Vertical Boundary of the Mechan­
ical Model from Time of Waste Emplacement to 2,000 Yr of Waste
Isolation.
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Figure A-57. Vertical Stress along the Right Vertical Boundary of the Mechani­
cal Model from Time of Waste Emplacement to 2,000 Yr of Waste
Isolation.

100



SH
EA

R
 STR

ES
S (M

Po
)

J.O

.8

.6

A

.2

0

-.2

-A

-.6

-.8

-1.0

i | i i i | i i i i i i i i i | i | i ] i l i l i I ' i * ‘ I 1 I r

TIME = 0 TERRS ---------------------------
TIME = 10 TERRS ---------------------------
TIHE = 50 TERRS --------------------------
TIKE = 100 TERRS ....................................
TIME = 2000 TERRS ---------------------------

— -—---------r- . -.rr-r : '.-r-y ■ .

I I I 1 I I 1 1 I I I I 1 I I I I I I 1 I I I I 1 I I I t I I I I
0 200 400 600 800 1000 1200 MOO 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400

DEPTH RLONG RIGHT VERTICAL BOUNDRRY (m)

Figure A-58. Shear Stress along the Right Vertical Boundary of the Mechani­
cal Model from Time of Waste Emplacement to 2,000 Yr of Waste
Isolation.
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APPENDIX B
RELATIONSHIP OF DATA USED IN THIS ANALYSIS TO 

YMP SEPDB, DRMS, AND RIB

No data contained in this report is candidate information for the Site and 
Engineering Properties Data Base (SEPDB), the Data Records Management 
System (DRMS), and/or Reference Information Base (RIB).

The data used in this report was based on information available in 1984 and 
therefore it predates the first approved version of the RIB (Version 3.0). Much of 
the material property information was obtained from draft copies of portions of 
SNL [1987], The air temperature value predated the consensus as to the proper 
value, so an estimate based on engineering judgment was used. The cross section 
used in this report CC also predates the reference in the RIB (Version 3.0) on 
which other cross sections are based (Ortiz et ah, 1985). However, it is based on 
the same surfaces that were used to generate the cross sections reported by Ortiz 
et al. [1985], Thus, in principal, the only difference between the CC cross section 
of this report and the LL' cross section in the RIB is that CC is along a slightly 
different E-VV line through the mountain. CC is the cut used in the unit evaluation 
[Johnstone et ah, 1984].

Comparisons between the material properties used in this study and the current 
RIB (Version 4.0) values are provided in Table B-l. If data were not available in 
Version 4.0, the remark “ND” was inserted to indicate “No data.” This was true 
for the rock mass mechanical properties, for the joint properties, and for all units 
below CHn2z. A one-to-one correspondence also does not exist in the temperature 
ranges for the thermal properties. All comparisons should therefore be used only as 
a general indication of the differences. Version 4.0 of the RIB should be consulted 
for greater detail.
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Table B-l. Comparison of Model Parameters and RIB Data

Property TCw PTn TSwl TSw2 TSw3 CHnl v
Unit

CHnlz CHn2z PPw CFUn BFw CFMnl ,2,3 TRw

Young’s modulus, Moda 15.4 2.3 7.3 15.1 15.1 2.4 3.5 3.5 6.05 3.8 5.4 5.4 8.8
E (GPa) RIB'’ NDC ND ND ND ND ND ND ND ND ND ND ND ND

Poisson’s ratio, Mod 0.10 0.18 0.18 0.20 0.20 0.15 0.17 0.17 0.20 0.16 0.13 0.15 0.18
RIB ND ND ND ND ND ND ND ND ND ND ND ND ND

Specific weight, Mod .022555 .018632 .022163 .022849 .022849 .017456 .018534 .018534 .021084 .019025 .021868 .020496 .022751
Pb$g (MPa/m3) RIB .021574 .016102 .021045 .022526 .021545 .020721 .018495 .020299 ND ND ND ND ND

Uniaxial compressive
strength, Mod 77.3 11.1 33.4 75.4 75.4 8.4 13.5 13.5 25.3 15.5 20.8 22.3 35.9
<jo (MPa) RIB ND ND ND ND ND ND ND ND ND ND ND ND ND

Tensile strength, Mod 9.3 1.0 4.0 6.5 6.5 1.0 1.6 1.6 3.0 1.9 2.5 2.7 4.3
aT (MPa) RIB ND ND ND ND ND ND ND ND ND ND ND ND ND

Coefficient of thermal 
expansion
ai x 1CT6 (°C-1) Mod 8.7 -70.0 10.7 10.7 10.7 -70.0 6.7 6.7 8.3 6.7 8.3 6.7 8.3
Temp, range (°C) <100. <100. <200. <200. <200. <100. <100. <100. <100. <100. <100. <100. <100.
qi x 10-6 (“C”1) RIB ND ND 6.1 9.7 8.0 2.9 9.3 ND ND ND ND ND ND
Temp, range (°C) ND ND 50-100 150-200 100-150 50-100 50-100 ND ND ND ND ND ND

a2 x 10~6 (“C-1) Mod 8.7 -11.5 31.8 31.8 31.8 -11.5 -52.0 -52.0 -12.0 -29.4 -12.0 -16.2 -12.0
Temp, range (°C) 100-125 100-125 200-350 200-350 200-350 100-125 100-150 100-150 100-125 100-150 100-125 100-150 100-125
a2 x 10“6 ("C”1) RIB ND ND ND 35.6 ND -1.1 -15.7 ND ND ND ND ND ND
Temp, range (°C) ND ND ND 250 300 ND 100-150 100-150 ND ND ND ND ND ND

a3 x 1CT6 (°C-1) Mod 8.7 -8.0 15.5 15.5 15.5 -8.0 -2.4 -2.4 10.9 4.4 10.9 1.5 10.9
Temp, range (°C) >125. >125. 350-400 350-400 350-400 >125. >150. >150. >125. >150. >125. >150. >125.
a3 x. 10-6 (“C”1) RIB ND ND ND ND ND -1.1 ND ND ND ND ND ND ND
Temp, range (°C) ND ND ND ND ND 100-150 ND ND ND ND ND ND ND

(Table is continued on following page)



Table B-l (continued)

Property TCw PTn TSwl TSw2 TSw3 CHnlv
Unit

CHnlz CHn2z PPw CFUn BFw CFMnl,2,3 TRw

Matrix cohesion, Mod 22.4 4.6 11.5 22.1 22.1 3.3 5.1 5.1 8.7 5.7 7.2 7.8 11.5
Sm (MPa) RIB 34.2 4.9 26.1 37.8 ND 35.8 11.6 ND ND ND ND ND ND

Matrix angle of int. Mod 29.7 11.2 20.9 29.2 29.2 13.4 15.8 15.8 21.1 17.8 21.6 20.5 24.8
friction, (deg) RIB 33.8 5.4 27.0 36.5 ND 35.0 12.7 ND ND ND ND ND ND

Joint cohesion, Mod 1.0 1.0 1.0 1.0 1.0 1.0 0.4 0.4 1.0 0.4 1.0 0.4 1.0
S; (MPa) RIB ND ND ND ND ND ND ND ND ND ND ND ND ND

Joint angle of int. Mod 38.7 38.7 38.7 38.7 38.7 38.7 28.8 28.8 38.7 28.8 38.7 28.8 38.7
friction, (deg) RIB ND ND ND ND ND ND ND ND ND ND ND ND ND

Joint tensile strength Mod 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.1 0.0 0.1 0.0 0.1
(MPa) RIB ND ND ND ND ND ND ND ND ND ND ND ND ND

Brittle/ductile trans. Mod -92.7 -6.0 -25.0 -87.1 -87.1 -4.1 -17.6 -17.6 - 18.5 -23.2 -15.3 -42.1 -31.0
pressure, an (MPa) RIB ND ND ND ND ND ND ND ND ND ND ND ND ND

Thermal conductivity, 
k\ (T < 100°C) Mod 2.00 1.49 1.19 1.85 1.85 1.21 1.35 1.35 1.86 1.31 2.00 1.48 2.09

(Wet) RIB 1.51 1.61 1.51 1.91 1.30 1.20 1.27 1.56 ND ND ND ND ND
k2 (100 <T< 125°C) Mod 1.95 1.43 1.10 1.73 1.73 1.12 1.20 1.20 1.61 1.18 1.68 1.31 1.94

RIB ND ND ND ND ND ND ND ND ND ND ND ND ND
k?, (T> 125°C) Mod 1.90 1.37 1.00 1.61 1.61 1.02 1.03 1.03 1.35 1.04 1.35 1.13 1.79

(Dry) RIB 1.42 1.45 1.42 1.84 1.29 0.85 0.54 0.54 ND ND ND ND ND
(W/mK)

(Table is continued on following page)



Table B-l (continued)

Unit
Property TCw PTn TSwl TSw2 TSw3 CHnlv CHnlz CHn2z PPw CFUn BFw CFMnl,2,3 TRw

Volumetric heat capacity, i

pCP1 ' (T< 100°C) Mod 0.070 0.078 0.061 0.069 0.069 0.078 0.077 0.077 0.077 0.077 0.085 0.082 0.082
(T<95°C) RIB 0.064 0.071 0.066 0.068 .065 0.081 0.085 0.081 ND ND ND ND ND

pCP2 (100<T< 125°C) Mod 0.838 0.321 0.386 0.308 0.308 0.880 0.520 0.520 0.605 0.478 0.737 0.425 0.599
(95<T<115°C) RIB 0.297 0.929 0.389 0.332 0.143 1.121 1.063 0.727 ND ND ND ND ND

pCP3 (T> 125°C) Mod 0.042 0.058 0.045 0.057 0.057 0.040 0.042 0.042 0.052 0.045 0.053 0.049 0.057
(T> 115°C) RIB .066 .048 .064 .069 .081 .053 .050 .055 ND ND ND ND ND

(W-yr/m3K)

Wet bulk density, Mod 2300. 1900. 2260. 2330. 2330. 1780. 1890. 1890. 2150. 1940. 2230. 2090. 2320.
Pbs (kg/m3) RIB 2200 1642 2146 2297 2197 2113 1886 2070 ND ND ND ND ND

“Mod = Model in this report (SAND85-7101).
^RIB = Version 4.0 
CND = No data.
^Averages of RIB values over the temperature range are reported.
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