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Abstract

The distribution of moisture beneath a two-dimensional strip source is analyzed by applying the 
quasi-linear approximation. The source is described by specifying either the moisture content or 
the infiltration rate. A water table is specified at some depth, D, below the surface, the depth 
varying from shallow to semi-infinite. Numerical solutions are determined, via the boundary 
integral equation method, as a function of material sorptivity, a, the width of the strip source, 
2L, and the depth to the water table. The moisture introduced at the source is broadly spread 
below the surface when aL <C 1, for which absorption by capillary forces is dominant over 
gravity-induced flow. Conversely, the distribution becomes finger-like along the vertical when 
aL » 1, where gravity is dominant over absorption. For a source described by specifying 
the moisture content, the presence of a water table at finite depth influences the infiltration 
through the source when aD is less than about 4; infiltration rates obtained when the water 
table depth is semi-infinite are of sufficient accuracy for greater values of aD. When the source is 
described by a specified infiltration flux, the maximum allowable value of this flux for which the 
material beneath the source remains unsaturated is determined as a function of nondimensional 
sorptivity and depth to the water table.
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1 Introduction

In this paper we consider the steady infiltration of moisture from a strip surface 
source of width 2L into a homogeneous, porous half-plane. The porous layer is unsat­
urated for some depth D below the surface, where a horizontal water table exists. The 
hydraulic conductivity, K, of the porous material is assumed to vary with pressure head 
according to

K(il>) = Kaexp(axl)) , 0 < 0, (1.1)

where Ks is the saturated conductivity, a is a material parameter, and xj) is capillary 
pressure head. With this specification for hydraulic conductivity, the Kirchhoff transfor­
mation renders a linear field equation for a potential, which is equivalent to the relative 
permeability. This approach is referred to as a quasi-linear analysis after Philip (1968), 
who has vigorously pursued this approximation (see for example Philip, 1969; Philip, 
1984a; Philip, 1989a; Philip, et ah, 1989a; Philip, et ah, 1989b; Waechter and Philip, 
1985; and references therein).

Our purpose here is to investigate the steady distribution of moisture beneath a 
strip source as a function of the material sorptivity, a, a term coined by Waechter and 
Philip (1985), and the depth to the water table, D. Localized surface sources arise due 
to topographic relief or from shallow ponds (Weir, 1986; Wooding, 1968). The problem 
is prototypical of steady surface infiltration and the subsurface redistribution of the 
moisture as a function of the type of porous material. The problem is also relevant to the 
distribution of surface moisture introduced for irrigation (e.g., drip systems) or for dust 
control, and will describe the maximum wetting possible because the source is constant 
in time.

1.1 Previous Work

A rather complete review of infiltration from surface sources is given by Pullan 
(1990), however for completeness we review some of the more relevant works here. The 
axisymmetric version of the problem, when the moisture is specified at the source and 
the water table is deep, was considered by Wooding (1968), however, his solution method 
failed to converge for large values of aL. More recently, Weir (1986) considered the region 
local to the step change in boundary condition type, viz., the region about |Ar| = L, and 
derived an expression, deduced earlier by Wooding, for the net infiltration when aL is 
large. Pullan and Collins (1987) applied a boundary integral method to various problems 
of two- and three-dimensional infiltration from buried and surface cavities, also assuming 
a deep water table. Pullan and Collins computed the net flux through the source area 
of a two-dimensional source for a specified-moisture boundary condition; however, no 
discussion of the distribution of moisture beneath the surface was offered. Philip (1989b) 
recently considered the effect of a water table at finite depth below a buried source and 
finds the deep water table solutions to apply if the depth is greater than about 8/cv.
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Steady infiltration from a periodic array of line sources was considered by Raats 
(1970), and subsequently Batu (1978) considered steady infiltration from single and pe­
riodic strip sources. Batu’s solution for the single strip source is rather formal, given in 
terms of a Fourier integral, and numerical evaluation is performed only for aL = 0.2 and 
0.5. These investigations are also based on the quasilinear assumption and the sources are 
described by specifying the strength of the line source (Raats, 1970; Zachmann, 1978), 
or the infiltration rate on the strip, (Batu, 1978). These specified infiltration problems 
can also be formulated in terms of a stream function, as shown by Raats (1970). Batu 
(1980), and Batu and Gardner (1978) also present solutions for periodic strip sources 
with nonuniform infiltration formulated in terms of a stream function. However, Philip 
(1984b), points out the danger of specifying the problem solely in kinematic terms, which 
can lead to physically untenable solutions if the flow dynamics are not considered in tan­
dem. Zachmann (1978) considered infiltration from a line source into an inclined porous 
layer and presents series solutions for moisture potential and a stream function.

Here, we apply a boundary integral equation method to the quasi-linear version of the 
problem, as do Pullan and Collins (1987) for the case of a deep water table; we consider 
the effects of a shallow water table as well. Moreover, we also discuss the problem where 
the source is described by specifying the infiltration flux rather than the moisture and 
determine the maximum infiltration allowable such that the underlying material remains 
unsaturated. This latter bound on the allowable infiltration is not discussed in the study 
by Batu (1978) of this problem for a deep water table. Our discussion of this problem 
also includes the effects of a shallow water table.

Finally, we point out that our work with the boundary integral equation method, 
although similar to Pullan and Collins (1987), is formulated in a slightly different man­
ner; they work with a transformed equation utilizing a transformation apparently due to 
Oseen (see Lamb, 1945; p. 611). These differences are minor; the major point is the ease 
with which numerical solutions of the quasilinear equation for steady, unsaturated flow 
can be obtained, over a large range of a, via the boundary integral equation method. 
Solutions for large values of a nondimensional o, to be introduced shortly, have been 
a source of difficulty in the summing of series solutions. Asymptotic treatment of this 
problem has been studied by Waechter and Philip (1985) who recognized the analogy 
with scattering of plane pulses and harmonic waves in hydrodynamics; a recent review is 
given by Philip (1989a). We also demonstrate that interior values of potential and flux 
can be computed using this method. Indeed, the method provides solutions for the flux 
vector that are of the same order of approximation as the potential itself. More conven­
tional numerical methods, such as finite-difference or finite-element, in general provide 
a lower-order approximation for fluxes, since they involve finite-difference approxima­
tions to the potential gradient. We do point out, however, that the boundary integral 
equation method is restricted to problems governed by linear partial differential equa­
tions, although boundary conditions may be nonlinear, and that methods which preserve 
the accuracy for the fluxes obtained by finite-element techniques have been investigated
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(Carey, 1982; Yeh, 1981).

2 Problem Statement

Two problems will be considered; both involve infiltration from a wetted source 
of width 2L into a relatively dry, homogeneous, porous material. The problems are 
distinguished by the depth to a water table below the source. The first problem considers 
the simpler case of a deep water table, in which the only parameter in the problem is 
a nondimensional sorptivity. In the second problem, the water table is located at finite 
depth below the surface and two more parameters arise, involving the depth and the 
specified moisture level (or flux) on the surface.

The flow is described by the steady Richards equation,

V-[/v(0)(VV>-e2)] = O, (2.1)

where e2 is the unit vector in the vertical direction (positive downward). The boundary 
condition on the wetted strip is

0 = V>o, \X\ < L, Z — 0, (2.2)

and, assuming evaporation is negligible, zero vertical flux is prescribed over the remaining 
surface area (Wooding, 1968),

?, = -AW (H - ') = °- 1*1 > A. Z = 0. (2.3)

The related problem, where the source is described by specifying an infiltration flux
rather than the moisture potential, is described by replacing (2.2) with

?* = <7o, \X\<L,Z = 0. (2.4)

A water table is assumed to be located at a depth D below the surface, which is described 
by specifying

4> = iPw, for all X, Z = D. (2.5)

The pressure head at depth D is prescribed arbitrarily as ipw for purposes of generality 
in the problem statement; however, ipw = 0 will properly describe a water table. If the 
water table is ‘deep’* beneath the surface, the capillary pressure far below the source, 
and yet above the water table, approaches a constant value,

—> V>oo, as |X| —► oo, (2.6)

where X = (X,Z) (two-dimensional flow). We further assume that K(ipoc)/K(tp0) <C 1, 
and hence the far-field condition (2.6) can also be stated as

qz —> 0, as |X| —> oo. (2-7)

The two cases, defined by a deep and shallow water table, are discussed fully in the 
following.

’This terminology is clarified in Section 6 which treats a shallow water table
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3 Quasi-Linear Analysis

As was shown previously (Philip, 1968; Raats, 1970; Wooding, 1968), the Richards 
equation can be transformed into a linear form when the conductivity varies exponentially 
with capillary pressure. By introducing the Kirchhoff transformation,

$=r (3.i)
J—oo

the steady Richards equation becomes

„ d<&
v * - Qaz = °’ (3'2)

when the conductivity is exponential in the capillary pressure as defined in (1.1). Also,

= K(xj)), and cvi/j = In <^, (3-3)

where (j) = K(ip)/Ks = exp(a'ip) = a<b/Ks is the relative permeability, which also satisfies 
(3.2). Furthermore, under the Kirchhoff transformation, the Darcy flux,

q = -A'(V’)VV> + K(iJ>)ez, (3.4)

becomes
q=—V4> + a$ez, (3.5)

so that the flux is also a linear function of the potential $ (or <f>). Essential and natural 
boundary conditions for the steady Richards equation also remain linear under the trans­
formation for homogeneous materials. Owing to the relations given in (3.3), a contour 
level of constant potential is also a contour level of constant capillary pressure and mois­
ture content (0). This relation indicates that the potential 4> in (3.1) is uniquely related 
to the moisture content. It is noted that the retention curve for the material, specifying 
the function 0(^0, is n°t required for solution of the steady Richards equation.

In terms of the transformed variables, the boundary conditions (2.2) and (2.6) be­
come

$ = Q!_1A'(^0) = ‘fo, |A| <1, Z = 0, (3.6)

and
$ = cr'A^oo) = $oo, X —> oo, (3.7)

respectively, and the impermeable condition (2.3) becomes

-H + a$ = 0, 1*1 >!> Z = 0. (3.8)

Also, the shallow water table is specified by

$ = a-1Ks, for all X, Z = D. (3.9)
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4 Numerical Solution by the Boundary Integral Equation Method

4.1 Boundary Integral Equation Formulation

A number of numerical methods are available for the solution of (3.2). Here we 
consider the boundary integral equation (BIE) method. The application of this method is 
suggested by the fact that fundamental solutions are known for (3.2) in both two and three 
dimensions, and by favorable previous experience with the method in various branches of 
mathematical physics, e.g. (Brebbia, 1978; Cruse, 1969; Ingham and Kelmanson, 1984; 
Jaswon and Symm, 1977; Liggett and Liu, 1982). Boundary integral methods reduce 
the dimension of the problem by one, which is an appealing feature in general, and is 
especially useful for semi-infinite problems and some interface problems (Liggett and 
Liu, 1982; Martinez and Udell, 1989). Thus, in the present study, the two-dimensional 
boundary value problem is reduced to a one-dimensional BIE defined on the boundary 
of the two-dimensional domain. Here we consider only two-dimensional problems, but 
emphasize that another attractive aspect of the approach is that its extension to three 
dimensions, while not easy, is straightforward (Pullan and Collins, 1987).

The boundary integral formulation can be motivated through Green’s second iden­
tity,

= (4.D

Here, the volume U is bounded by the surface F, and, in the classical theory, $ and G are 
nonsingular in fL Also, d(-)ldn = V(-) • n, where n is the outward-pointing unit normal 
to the boundary. To generate the boundary integral, we use the free-space fundamental 
solution to (3.2) for G. The free-space Green’s function satisfies

DC
V2G'(x) - a— = -6(x), (4.2)

oz

where 2 is the vertical coordinate (positive in the direction of gravity) and 8 is the Dirac 
delta function. The two-dimensional solution can be found on p.267 of Carslaw and 
Jeager (1978) as the solution for a line source of unit strength placed at the origin:

G(x) = ^exp (y) A'o (y) , (4.3)

where r2 = a:2-f 22, and A'o is the modified Bessel function of the second kind of order zero.
The boundary integral equation results if we substitute the free-space Green’s function 
(4.3), written with respect to the difference vector x — y, into (4.1), and integrate with 
respect to y, to get

<KX) + /r -^-■-frCyWy) = jrG(x,y)(-qn(y))dT, x e H, (4.4)

where qn(y) = —d^/dn + a<I>?i, is the flux normal to the boundary surface F, and 
n2 = n • e2 is the vertical component of the normal to F. This identity gives the value
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uf the potential at any point in J7, if the boundary values of potential and flux are 
known. However, in a well-posed boundary value problem, either the potential or flux 
(or some combination of these) is specified and the other is to be determined. A boundary 
integral equation can be formulated for these unknowns by taking the limit x —> F from 
1); the limit is indicated because the flux kernel dG/dn suffers a jump as x passes to 
the boundary from the interior. The resulting BIE, applied to a smooth point x on the 
boundary (i.e., one having a well-defined local tangent plane), is the same as (4.4) above 
if we multiply the first term on the left-hand side by one-half. Pullan and Collins (1987) 
show the values taken on by the principal value when x is on a corner of the boundary.

4.2 Numerical Solution

In this preliminary investigation of the quasi-linear method, the simplest of numerical 
approximations is used to facilitate coding of the algorithm. Higher order approximations 
(Martinez and Udell, 1989; Pullan and Collins, 1987) can be incorporated later if desired. 
The first step in the numerical approximation of (4.4) is to subdivide the boundary F 
into a number of discrete boundary elements, Fn ( n = 1,..,./V). In the present version, 
the boundary elements are all straight line segments. Next, the variation of $ and qn 
over each segment is approximated by its value at the center of the boundary element, 
hence the numerical approximation to the BIE becomes

UfxO + 2 ^G",. = (4.5)

J j

where <hj = $(xj), qnj = qn{^j), and

dG(x,,y)
dn

dT(y),Jt = /r

Gij = J G(x„y)c/r(y).

The coefficients Gi: and G'tJ are computed using 4-point Gauss-Legendre quadrature. 
When a:, G Fj the kernels are improper and these coefficients are computed by subtracting 
the singularity, integrating it analytically and summing with the numerical integral of 
the remainder.

Upon applying the boundary integral equation to each of the N boundary elements, 
using the boundary conditions (which specify half of the 2N point values of potential and 
flux), and rearranging, we get the linear system Au^ = f where contains the unknown 
potential or flux on the boundary and f contains the inner product of specified boundary 
values (i.e., boundary conditions) and kernel coefficients. Once the boundary values are 
determined, by solving the linear system by Gaussian elimination, the BIE (4.4) can be 
used to compute the potential at any interior point. The flux vector in the interior can 
also be computed by operating on (4.4) according to

q(x) = — V<I>-f q$Vz. (4-6)
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5 Infiltration into Unsaturated Material Above a Deep Water 
Table

5.1 Specified Moisture 

Dimensionless Variables

Here we nondimensionalize variables according to

(5.1)

Hence (3.2) becomes
V2p-a^ = °, (5.2)

where a = aL, and the gradient operator is understood to apply with respect to the 
nondimensional coordinates (x,z). In addition, the nondimensional flux vector is given
by a

u = yr- = -Vp + apez, (5.3)
ho

where K0 = K(tp0). The boundary conditions on the surface become

$ X
L L

p = 1, |x| < 1, 2 = 0,

- + ap = 0, M > 1, z = 0,
oz

and the far-field condition is
p —> 0, x —> oo.

We have invoked the approximation that

(5.4)

(5.5)

(5.6)

K^oo)
I<{rl>0)

oo) <c 1

in arriving at the far-field condition. As noted previously, this form of the far-field 
condition assumes a deep water table and it also assumes a negligible average recharge 
into the material, other than through the strip. One-dimensional steady recharge through 
an unsaturated layer, with conductivity as in (1.1), to a water table sX Z = Zw is described
by

(j) = 9oo
~Ks

^ct(Z—Zw) (5.7)

where > 0 \s the recharge and (j) = exp(a^>), as before. For distances above the water 
table such that a(Z — Zw) <C 0 the potential approaches q^/Ks or

aip —> In ^oo as a(Z — Zw) —> —oo,
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showing that the moisture content approaches a constant value for distances of order a-1 
above the water table. This condition is assumed in prescribing (2.6) and (5.6) above, 
together with negligible recharge (q^/Ks 1).

If the recharge is not negligible, i.e., K(V'oo) = 0(K(ipo)), then we replace (5.5) with

qz = <7oo, M >1, 2 = 0. (5.8)

However, if we define
$ ~ $00 
$0 ~ $00

(5.9)

then we arrive again at the previous problem, viz., (5.2) subject to (5.4) through (5.6). 
The only modification is that the flux is now defined by

u ^ _V„ + ape, = a (^ (5.10)

Thus, through this definition of variables, the problem is formally reduced to the previous 
one, although here we solve for the disturbance potential; i.e., the far-field potential has 
been subtracted off. It is remarkable that, through the quasi-linear transformation, 
superposition can be applied to a problem that is, in its original form, highly nonlinear.

Results and Discussion

Numerical solutions to this boundary value problem were obtained by applying the 
boundary integral code described in Section 4 to the transformed versions of the prob­
lems discussed above. In these problems the flux is (weakly) singular near |x| = 1 in 
consequence of the step change in boundary condition type. The results given below 
were computed using the mesh grading algorithm investigated by Yan and Sloan (1989). 
This technique provides quadratic convergence of the numerical method with systematic 
reduction in boundary element size. Finally, it is noted that the problem as stated is sym­
metric with respect to X = 0. However, because the numerical method is quite efficient, 
this symmetry was not exploited, and hence twice as many unknowns were computed 
than were necessary.

The only parameter appearing in the problem is a (— aL), the nondimensional 
sorptivity, which is the ratio of the length scale over which capillary effects are active to 
the breadth of the wetted strip. Large values of a correspond to coarsely graded porous 
material, (e.g., a bead pack composed of a narrow range of bead sizes or a sandy material), 
whereas small values of a correspond to well-graded material with a large range of pore 
size (e.g., loamy soil or some welded tuff). Accordingly, large values of a correspond to 
well-sorted porous material or to a relatively large wetted area on the surface. Hence, 
the distribution of moisture beneath the wetted source will be gravity-dominated for 
large a, and the wetted lobe is expected to be in the form of a highly elongated “finger.” 
Conversely, the wetted lobe is expected to be broadly spread for small a, where capillary 
effects manifest themselves.
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This description of the potential (or moisture) distribution is borne out in the solu­
tions as illustrated in Figures 5.1 through 5.3, showing contour plots of the potential p 
for 16_1 < a < 16. Gravity acts in the direction of increasing 2 in these figures. The 
contours approach a circular form as a —► 0, as described earlier. However, even for small 
values of a, the contours for the smaller values of potential (e.g., p < 0.4 in Figure 5.1a ) 
become increasingly elongated showing that the body force is always dominant far from 
the source. Higher values of the contours approach a circular form near the source. The 
broad spread of the contours decreases with increasing a, and the contours take a highly 
elongated form, in the vertical direction, for large a. Figure 5.2b for a = 1 already shows 
that most of the contours take on a “finger-like” form, although contours near the source 
must return to a more circular form in consequence of the surface boundary condition. 
Thus, for large a, the moisture introduced at the surface falls nearly vertically with little 
lateral diffusion.

For a —» 0, the boundary value problem becomes increasingly of the potential type, 
satisfying Laplace’s equation. There are no solutions for a = 0, however, because of 
the no-flux boundary on the surface for |a:| > 1. This is easily seen by referring to the 
conformal mapping indicated in Figure 5.4. In the (u,v) domain, the potential must 
go linearly from unity at u = 0 to zero at infinity, an untenable requirement. The 
approach to this solution is evident in Figures 5.1 for a <C 1. Consider the contour 
level 0.5 in Figures 5.1 through 5.3 for example: the physical extent of this level is 
minimum for a fa 1/2, while for larger values the depth to this contour level increases 
along the symmetry line, a: = 0. However, for smaller values of a the level also increases 
in extent, more or less uniformly with respect to the origin. Mapping Figure 5.1a through 
c conformally, according to Figure 5.4 for example, would show the approach to a linear 
profile for the potential for decreasing a.

For large a, capillary effects are significant only near the source, and, as was shown 
by Weir (1986) in a similar problem, for a —> oo capillary effects are significant only 
near (x,z) — (±1,0). This is illustrated in Figures 5.3b and c, for example, showing the 
isopotentials emanating from this location. Futhermore, when a —» oo, the potential is 
asymptotically governed by a heat equation as shown by Weir (1986),

d2p dp
- a-zr- = 0 Oz

with diffusivity a-1. This equation represents the lowest-order problem in an asymp­
totic outer expansion for large a. This is an outer expansion since this form is not 
uniformly valid, due to neglect of the vertical diffusion term in the field equation for the 
potential, (5.2). The asymptotic equation represents a balance of horizontal diffusion 
and vertical buoyancy-driven flow and is equivalent to the high Peclet number limit in 
a convection-diffusion equation. The boundary conditions remain the same, except that 
(5.5) is replaced with

p = 0, |x| > 1, z — 0, (5.11)
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Figure 5.1. Isopotentials for various values of the nondimensional sorptivity. Gravity 
acts along the direction of increasing 2; (a) a — 16_1, (b) a = 8-1, (c)
a = 4 1.
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Figure 5.2. Isopotentials for various values of the nondimensional sorptivity. Gravity 
acts along the direction of increasing z\ (a) a = 2-1, (b) a = 1, (c) a = 2.
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Figure 5.3. Isopotentials for various values of the nondimensional sorptivity. Gravity 
acts along the direction of increasing 2; (a) a = 4, (b) a = 8, (c) a = 16.
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Figure 5.4. Conformal mapping of the analogous potential problem. This is Figure 9 
in Appendix 2 of Churchill, et. al. [29]



since vertical diffusion is asymptotically smaller than the gravity term for large a. The 
solution to this heat equation (Carslaw and Jaeger, 1978, p. 55), is given by

erf + erf
1 + x \

‘IsjTfa)

Contours of p for this approximate solution are shown in Figure 5.5 for a = 8 and 16. The 
comparison with Figures 5.3b and c is quite good except near the plane a: = 0 where the 
asymptotic solution underestimates the penetration of the potential by a slight amount. 
This is further illustrated in Figure 5.6 showing the potential variation with depth along 
the symmetry line, cr = 0. The discrepancy between the asymptotic solution and the 
full solution will be greatest along this line because of the neglect of vertical diffusion 
in the asymptotic solution. Indeed, the asymptotic solution is seen to lag along a: = 0 
in Figure 5.6a; otherwise the comparison is excellent. It is also of interest to point out 
the very slow decay of the potential from unity at the source to the far-field value as 
indicated in Figure 5.6b. This slow decay affirms the utility of the boundary integral 
method for half-plane problems. Use of a finite difference or finite element technique 
would require either a very large domain to satisfy the far-field condition, or the use of 
solution approximations on a truncated domain. In general, the latter technique requires 
some knowledge of the solution behavior in the far field.

The variation of potential and vertical infiltration flux along the surface, z = 0, is 
shown in Figures 5.7 and 5.8, respectively, for some selected values of a. The moisture 
diffuses away from the source for a substantial distance for small a. On the other hand, 
the potential decreases rapidly along the surface when a 1, as assumed in the bound­
ary condition (5.11) for the asymptotic problem discussed above. The step change in 
boundary condition at |a;| = 1 results in a singularity in the surface flux at that point, 
as shown in Figure 5.8. The singularity becomes increasingly localized about |.t| = 1 as 
a —> oo; the profile for a = 16 shows almost constant flux except in a region very near 
this point. Physically, this singularity models the large lateral gradient in potential near 
this transition from specified potential to a no-flux surface.

The nondimensional flux through the surface is given by

F0 = 2a (5.12)

where
qo = \ [Lqz(X,Z = 0)dX.

L Jo
Computed values are given in Table 5.1 and plotted in Figure 6.3 as the curve labeled 
d — oo. As was shown by Weir (1986), the flux is accurately described by the simple 
relation,

4
F* = 2a -i—,

7T
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Isopotentials of p given by the asymptotic solution for large a, (a) a 
(b) a = 16.
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Figure 5.6. Comparison between the asymptotic solution (solid curve) and the
boundary integral solution (symbols) for the potential profile along a? = 0 
for a=16. Figure 5.6a shows that the asymptotic solution lags the 
numerical solution and Figure 5.6b illustrates the slow decay of the 
potential far from the source.
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5.7. Profiles of potential along the surface (z = 0) for various values of 
a = aL, for the Dirichlet source.
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X

Figure 5.8. Profiles of infiltration flux along the surface (2 = 0) for various values of 
a = aL, for the Dirichlet source.
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Table 5.1. Nondimensional Flux

aL F0 Qo/K s (f; - F„)/r;
16-1 0.9469 7.575 3.23 x lO"1
8-1 1.181 4.723 2.25 x 10-1
4_1 1.543 3.087 1.30 x 10-1
2-1 2.146 2.146 5.60 x 10~2
1 3.224 1.612 1.50 x 10~2
2 5.257 1.314 3.08 x 10~3
4 9.265 1.158 8.89 x lO'4
8 17.26 1.079 7.66 x 10-4
16 33.26 1.039 3.98 x lO'4
32 65.21 1.019 9.69 x lO-4

for large a. The numerical results show this relation is accurate for a > 1, and is in error 
by at most 6% for 0.5 < a < 1. It is also of interest to note that the average Darcy flux 
through the wetted strip, q0, approaches K0 for a 1 (Table 5.1). When the moisture 
level at the source is saturated, i.e., ^’o = 0, and K0 — Ks, the results indicate that the 
net infiltration approaches the saturated conductivity for large a. This is not surprising 
because, for gravity dominated flow, the material can transport fluid only at about the 
rate of the saturated conductivity and still remain unsaturated everywhere (except at 
the source if 0O = 0). For small values of a, however, the material can absorb at a rate 
many times Ka, and still remain unsaturated. This is because capillary forces are able 
to spread the moisture laterally as well as vertically, allowing the material to absorb at 
a high rate, compared to the saturated conductivity.

5.2 Specified Flux 

Dimensionless Variables

If the flux of moisture is to be specified rather than the moisture itself, we replace 
the condition (2.2) with (2.4) while conditions (2.3) and (2.6) remain as before. We also 
use the same nondimensional variables as before, expressed in (5.1), except we define

ct<b0 = q0. (5.13)

The nondimensional field equation for the potential is again (5.2) and the flux is given 
by (5.3), if we replace K0 with qQ in the latter. The boundary condition at the source is 
now given by

dp
— — + ap = a, |;r| < 1, 2 = 0, (5-14)

Oz
and the impermeable condition is again (5.5) and the far-held condition is (5.6). In 
terms of these nondimensional variables, the problem is again parameterized entirely by
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the nondimensional sorptive length, a, although the dimensionless potential is measured 
here in terms of the applied flux.

Results and Discussion

These nondimensional variables render this problem in a form very similar to the 
previous problem. Indeed, the solutions for various values of a are also similar, both 
qualitatively and quantitatively, if the potential were rescaled, to their counterparts for 
the Dirichlet problem. For example, a contour plot of potential for a given value of a can 
be made to match reasonably well with a corresponding solution for which the moisture 
is specified on the strip, if the potential in the present problem were rescaled such that 
p(0,0) = 1. The variation of potential along the surface is shown in Figure 5.9 for some 
selected values of a. Again, these profiles exhibit a similar relation to a as compared 
to their counterparts for the Dirichlet source, shown in Figure 5.8, if the potential is 
scaled such that p(0,0) = 1. Indeed, the lateral diffusion of potential is substantial when 
a <C 1, and the potential profiles approach the approximation (5.11) made for the large 
a asymptote for the Dirichlet problem. Comparison of our results with the solutions for 
a — 0.2 and 0.5 presented by Batu (1978) is good, i.e. within the error introduced in 
extracting points from the contour plots of potential shown in Figure 3 of (Batu, 1978).

Implicit in the quasi-linear analysis is that ^ < 0 everywhere in the solution domain. 
Obviously, for given a, there is a unique q0, above which this condition is violated. The 
limit on the capillary potential can also be expressed as, $ < Ks/(*, or in terms of 
dimensionless variables, p < Ks/q0. Hence, for given a, the maximum flux the material 
can transport and yet remain unsaturated below the source is

^ = 1 
I<S P*

(5.15)

where p* is the maximum value of potential in the half-plane 2 > 0 determined for 
the boundary condition (5.14). Any flux greater than q* will produce a saturated bulb 
beneath the source. In consequence of the symmetry in the current problem (and also in 
the Dirichlet problem), p* = p(0,0). Values of the maximum flux are listed in Table 5.2 
and plotted in Figure 6.7 (curve labeled d = oo) as a function of a. These maximum 
values are slightly lower than the corresponding flux values in Table 5.1 for the Dirichlet 
source; however, their relationship with a is similar.
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Figure 5.9. Profiles of potential along the surface (z = 0) for various values of 
a = aL, for the specified flux source.
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Table 5.2. Maximum Flux for Unsaturated Flow.

aL P* q-JK,

16-1 0.1435 6.968
8-1 0.2337 4.278
4-1 0.3643 2.745
2~1 0.5345 1.871
1 0.7237 1.382
2 0.8849 1.130
4 0.9743 1.026
8 0.9982 1.002
16 1.0002 0.9998

6 Infiltration into Unsaturated Material Above a Shallow Wa­
ter Table

6.1 Specified Moisture 

Dimensionless Variables

We use the same dimensionless variables defined for the case of a deep water table, 
viz., Equation (5.1), except we replace <!>„, with the value of potential at the water 
table,

afU = Ka. (6.1)

The field equations for potential and flux are again (5.2) and (5.3), respectively, replacing 
K0 with Ks in the latter equation. The surface boundary conditions are

p(=J-)=Po, M < 1, 2-0, (6.2)

and (5.5) over the remainder of the surface. The boundary condition on the water table 
is

p = 1, for all x, z = d. (6-3)

Because the boundary integral formulation requires that p —> 0 as x —> oo, it is convenient 
to solve for the disturbance potential, representing the deviation from the capillary fringe 
solution. Thus, we write

p = p'+ P00, (6.4)

where p00 satisfies
dp°°
dz + COup = 0,
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subject to p00 = 1 when z = d. Thus,

„oo _ ea(z-d)

The disturbance potential, p', satisfies the operator in (5.2) subject to

p = Po~ e~ad, |a;| <1, 2 = 0,

QW
u'z = --Z—ap' - 0, |x| > 1, 2 = 0, 

oz
p' = 0, for all x,z = d.

(6.5)

(6.6)

(6.7)

(6.8)

In the investigations to follow, only a saturated source is considered, i.e., pQ = 1. 
However, because the remaining boundary conditions on the disturbance potential are 
homogeneous, solutions for arbitrary values of pQ can be obtained from the solutions 
determined herein for p0 = 1 by rescaling the disturbance potential, thus eliminating p0 
as a parameter. Hence, consideration of a shallow water table introduces two additional 
parameters in the problem; these are the dimensionless depth to the water table, d — 
D/L, and ad — aD, which modifies the source strength for the disturbance potential.

The boundary condition on the strip source, (6.6), suggests the length scale over 
which the water table will affect the potential field. If ad 1 (actually, if ad > 2, 
say), the capillary fringe thickness is small and the boundary value at the source for 
the disturbance potential is unaffected by the capillary fringe. The infiltration is also 
unaffected, relative to results for the deep water table when ad 1 as shown in the 
following. In this case we say that the water table is ‘deep’ below the surface, and the 
boundary value problem for the disturbance potential is nearly identical to the problem 
discussed in Section 5.1, except here the capillary fringe is superposed over a distance of 
0(a~l) above the water table.

The boundary value problem for the disturbance potential is solved numerically via 
the boundary integral equation method discussed above. In this problem, the line 2 = d 
is discretized along with the surface, 2 = 0. The lateral extent of the mesh on these lines 
depends on a and on d, although to a weaker degree. The lateral extent was as much as 
|x| = 300 for a = 32-1 and as small as |x| = 2 for a = 16. The full solution is given by 
superposing the numerical results with (6.5).

Results and Discussion

The influence of the depth to the water table depends on the nondimensional sorp- 
tivity for the material, as illustrated in Figure 6.1, which shows contours of potential, 
p = p' -f p00, for various values of a and fixed depth. These figures can be compared to 
the corresponding plots for a deep water table, Figures 5.1 through 5.3. For a = 16, the 
distribution of potential is virtually identical to the distribution for the deep water table, 
Figure 5.3c, except for the boundary layer adjustment for distances 0(a-1) above the
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Figure 6.1. Isopotentials for = 20 and (a) a = 16 x, (b) a = 1, and (c) a — 16.



water table. This is the characteristic thickness of the capillary fringe, as indicated in 
Equation (6.5). The capillary fringe thickens for decreasing a and fixed d as illustrated 
in Figure 6.1. For a = 1, the contours are still similar to those for d —> oo (shown in 
Figure 5.2b) for 2 < 15 but deviate for locations closer to the water table. Finally, for 
a — 16-1, the dimensionless capillary fringe thickness is 0(16) and the potential dis­
tribution departs significantly from those for the deep water table, the presence of the 
shallow water table resulting in much a wetter material throughout. For example, in 
Figure 5.1a the lowest contour level is 0.3, while in Figure 6.1a, contours lower than 0.5 
are not present in the domain shown. Similar conclusions can be drawn from Figure 6.2, 
showing contours of potential for d = 1 and a = 1 and 16. The capillary fringe occupies 
only a thin boundary layer above the water table when a — 16, while the capillary fringe 
pervades the entire depth of material when a = 1. A contour plot for a = 16-1 is not 
included because the layer of material is at a potential higher than 0.93 throughout. The 
dominance of gravity flow over diffusion of moisture is strikingly displayed in Figure 6.2b 
indicating nearly vertical flow of moisture, resulting in the region |;r| < 1 being nearly 
saturated while the region |x| > 1 is relatively dry, these regions being separated by 
a diffusion zone which thickens with depth. Even at this shallow depth, however, the 
capillary fringe is too thin to have any effect on the net infiltration into the source area 
for a = 16; the computed value of F0 for this case agrees with the value computed when 
d —> oo to five significant figures.

The effects of variation in a and d on the average dimensionless infiltration through 
the source, F0, are summarized in Figure 6.3. F0 is defined in Equation (5.12). The 
results from Section 5.1 are included as the curve labelled d = oo. The shallow water 
table influences the infiltration only for smaller values of a. If a is sufficiently large, 
gravity flow dominates and the capillary fringe is thin compared to the depth d and the 
infiltration is unaffected. The infiltration is independent of d for a > 5 (in the range of 
d considered in Figure 6.3) and is proportional to a as discussed by Weir (1986). The 
figure also illustrates that influence of the water table is manifest when ad — 0(1); thus, 
for a given material type and source width (ctL), the water table affects the infiltration 
if D = 0(a~1). This is evident in Figure 6.3 where, for given d, the deviation from the 
deep water table results begins roughly when ad ss 4. Moreover, the value ad = 2 is 
where the capillary fringe reduces p' in (6.6) by about 10% (p0 = 1). For larger ad, the 
infiltration is given, with good accuracy, from the results assuming d —> oo. For fixed 
a, Figure 6.3 shows that the infiltration is a monotonically increasing function of d; the 
maximum flux is given by the deep water table results (d = oo).

The distribution of vertical flux at the water table is shown in Figure 6.4 as a function 
of nondimensional depth and sorptivity. The maximum flux occurs on the symmetry 
axis, x = 0, and is approximately proportional to a. The effect of increasing depth, for 
fixed a, is to spread the flux distribution at the water table. Conversely, as the depth 
decreases, the flux is more closely confined to the region about the symmetry axis. The 
spreading also increases with decreasing a, for fixed d, as diffusion becomes important
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Figure 6.2. Isopotentials for d = l and (a) a — 1, and (b) a — 16.
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Figure 6.3. Variation of the total infiltration through source area with
nondimensional sorptivity, a = aL, and depth to the water table, 
d= D/L.
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Figure 6.4. The normal flux (scalar product with the outward pointing normal) at 
the water table for various values of depth from the surface and (a) 
a = 16_1, (b) a = 1, and (c) a = 16.
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and finally dominant for a —» 0. This is especially notable in Figure 6.4a for d = 60. 
The distribution of flux is nearly constant on the scale shown, and the numerical mesh 
included the portion of the line |x| = 250 on both z — 0 and z = d in order to extend the 
mesh into the undisturbed region. This is another example of the utility of the current 
technique over domain methods (e.g., finite difference or finite element) for problems 
which are semi-infinite in extent. Such an increase in the size of the computational 
domain would greatly increase the number of unknowns for a domain method, since the 
mesh would have to be extended in two-dimensions rather than simply along a line as in 
the present method.

The spreading of moisture introduced at the source is also illustrated by computing 
the pathline taken by a fluid particle introduced at the source. Pathlines are computed 
by numerically integrating the equations

— ( X \ = ( Vx \dt \ z ) \vz ) 0 \ qz )

for each pathline, subject to an initial coordinate location, (x0,z0). The fluxes are given 
by (5.3), and the moisture content must be specified as a function of pressure head. 
For purposes of illustration in the examples shown, the moisture content was set to 
unity, thereby allowing computation of the particle path, although the travel time cannot 
be correctly obtained. If O(i^) is specified, the pressure head can be calculated from 
Equations (6.4), (5.1), and (3.3). Hence, the interstitial velocity, v (=q/0), can be 
obtained from the flux vector, thereby allowing evaluation of the elapsed time for the 
particle to travel along the path.*

The lateral diffusion of moisture in its travel towards the water table is illustrated 
in Figure 6.5 for a — 16-1 and 1; Figure 6.6 shows the same results over a larger domain. 
The lateral spreading increases with decreasing sorptivity and is substantial when a = 

16*1. The particle that departs from (x0,z0) = (1.5,0.1) near the surface moves laterally 
to ar « 100 before arriving at the same depth below the surface (see Figure 6.6). By 
contrast, when a = 1, the lateral dispersion of the same particle is only about one-fourth 
this value at a depth 2 = 100. Hence, the lateral dispersion decreases as a increases 
because gravity comes to dominate diffusion. The depth to the water table also influences 
the particle dispersion, but this effect is dependent on a as well. When the water table 
is at a depth of 20 units of L below the surface, the lateral displacement of the particle 
for a = 16_1 is about x & 30, compared to x « 44 for d —> oo. For a = 1, however, 
the water table influence is much reduced and the lateral displacements of pathlines for 
d — 20 are virtually identical to those for a deep water table.

Once again, the influence of the water table on the pathlines is characterized in 
terms of the characteristic capillary fringe thickness, ad. The presence of the water table

’If only the pathline is desired, without regard for the travel time, it is computationally expedient to 
integrate the single equation dz/dx = vz/vx for each pathline rather than the pair indicated above.
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Figure 6.5. Pathlines for particles introduced at the source for (a) a = 16 1, and (b)
a = 1;---- d = oc; ■ ■ ■ d = 20. The initial particle coordinates for the
pathlines shown are (x0,z0) — (0.5,0.1), (1.0,0.1), and (1.5,0.1), from left 
to right.
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Figure 6.6. Pathlines for particles introduced at the source for (a) a = 16_1, and (b)
a = 1;---- d = oc; • ■ ■ d = 20. The initial particle coordinates for the
pathlines shown are (x0,z0) = (0.5,0.1), (1.0,0.1), and (1.5,0.1), from left 
to right.

37



substantially influences the pathlines for ad = 20/16 (Figure 6.5a), while the pathlines 
are virtually unaffected for ad = 20 (Figure 6.5b). A plot for a = 16 is not shown 
because, for d — 20, the deviation from the deep water table results is indistinguishable. 
In the case a = 16-1, the deviation between pathlines for the finite and semi-infinite 
water tables begins for z > 2. For fixed d, the deviation vanishes as a increases, as shown 
in Figure 6.5 when a = 1. For this value of nondimensional sorptivity, the deviation 
between pathlines for the finite and semi-infinite water tables is barely discernible near 
z = d.

6.2 Specified Flux 

Dimensionless Variables

When the source is described by specifying a uniform infiltration rate through the 
strip, we use (2.4) in place of (2.2), and the remaining boundary conditions are unchanged. 
We nondimensionalize the potential according to (6.1) as above with the result that on 
the strip

dp (JoU , , ,
-- /ll -f aV = -j7~, M < 1, z = 0, (6.9)

with the remaining boundary conditions unchanged from above, viz. (5.5) on the re­
mainder of the surface and (6.3). The potential satisfies (5.2) and the nondimensional 
flux is defined by (5.3), with Ks replacing K0. The potential is again decomposed into 
the capillary fringe solution, given by (6.5), and a disturbance potential defined by (6.4). 
The disturbance potential satisfies the same field equation and flux definition as p above, 
and is subject to

dp' , q0a ,
|a-| <1, 2 = 0, (6.10)

on the source and (6.7) and (6.8) on the remainder of the domain boundaries. In the 
solutions to follow, only the case u'0 — a (q0/Ks = 1) is considered. Because the dis­
turbance potential satisfies homogeneous conditions otherwise, the solution for arbitrary 
q0/Ks can be obtained from the solutions presented by simply rescaling p' appropriately.* 
The solution, h(x,z), for arbitrary q0, and hence arbitrary u'0, can be determined from 
the results below by defining, for example,

h = -p -u (6.11)

where p' and u' represent the solution obtained for q0 — Ks. Unfolding the dimensionless 
variables according to their definitions, the corresponding pressure head is given by

aV’ = In yj7~p' + e<1^ d j

for general q0, in terms of p' which satisfies q0 = Ks rather than (6.10). Incidentally, note 
that because //(x, d) = 0, ip ~ Z — D for (D — Z) = o(a_1).

’There is, however, a maximum value of q0 allowable, because in the present analysis ip < 0 everywhere. 
This is discussed in the following.
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Results and Discussion

Once again, in analogy with the deep water table, the distribution of potential bears 
a relation to a and d very similar to that found for the source described by specifying the 
moisture. In fact, for given a and d, a contour plot of potential can be made to match 
reasonably well with that obtained for the Dirichlet source by adjusting qQ. There is, 
however, a maximum value of qa such that the pressure head satisfies 5: 0 everywhere. 
Given the linear dependence of the solution on q0, the unique upper bound, <7*, for 
which the material is at most just saturated everywhere can be determined from the 
solutions for qQ = K,. The maximum value of potential, p*, is given by p(0,0) and 
p(0,0) = ^'(0,0) + exp(—ad). Hence, owing to the linearity of the problem with respect 
to the applied flux (as expressed in (6.11)), the upper bound q* is given by (5.15), where 
p* is p(0,0) when q0/Ka = 1, as in the present problem.

The dependence of q* on a and d is shown in Figure 6.7. The results from Table 5.2 
are included as the curve labelled d = 00. As we noted previously for the deep water 
table, q0 —» Ks for large a, and Figure 6.7 shows this to persist independently of d for 
sufficiently large a. Thus, when gravity dominates, the maximum steady infiltration rate 
the material is able to absorb and yet remain unsaturated beneath the source is about Ks. 
However, when a is small and the water table is deep, the material is able to absorb many 
times the saturated conductivity since the moisture is strongly absorbed laterally as well 
as vertically. In a nondimensional sense, as a —► 0, the source area takes on the form of 
a point source, of nondimensional strength 2aq0/Ka, on the scale |X| = 0(q-1). When d 
is finite, however, there is a value of ad (ad m 4) for which the maximum infiltration rate 
is decreased owing to the finite depth to the water table, i.e., at some ad, the capillary 
fringe is manifest on the surface. Indeed, for a —> 0, 5* —>• Ks for all finite d, since 
the capillary fringe holds moisture well above the water table, in fact to the height of 
the surface. In consequence, the porous layer is uniformly ‘wet’, to the degree that the 
material is able to transport only the rate produced by a unit head gradient, i.e., the 
gravitational component, Ks. Between these limits, </*(a) has a maximum for fixed d. 
When d is relatively small (e.g., d = 1 in Figure 6.7), the porous layer is also relatively 
wet throughout, owing to the proximity of the water table. The maximum in q* still 
persists here, although it is barely discernible in the figure.
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Figure 6.7. Variation of the maximum infiltration rate for unsaturated flow with
dimensionless sorptivity, a = aL, and dimensionless depth to the water 
table, d = aD.
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7 Summary

We have analyzed the steady infiltration from a strip source, of breadth 2L, into 
an unsaturated, homogeneous, porous half-plane and finite-depth layer using a boundary 
integral equation method. The hydraulic conductivity is assumed to vary exponentially 
with the capillary pressure potential; hence, the quasi-linear transformation is utilized. 
The source region is described by either a specified moisture potential or by a specified 
value of infiltration. A water table is prescribed at some depth D below the surface for 
the finite-depth layer. In the half-plane problem, i.e., when the water table is deep, the 
material is assumed to approach a relatively dry condition far from the surface.

When the water table is deep, the distribution of moisture beneath the source is 
characterized by a single parameter, a = aL, which measures the length scale over which 
capillary forces are comparable to gravitational forces. For a —> 0, capillary forces are 
strong and the moisture diffuses uniformly resulting in more or less circular contours of 
capillary pressure potential. Indeed, the lateral dispersion of fluid particles introduced 
at the source is found to increase with decreasing a. When a —> oo, gravitational forces 
are dominant and the wetted lobe beneath the source is in the form of a long “finger” 
with maximum breadth approximately equal to the width of the source. The former 
distribution can be expected if the material is well graded, such as loamy soil or some 
welded tuff, while the latter distribution will characterize poorly graded sandy material. 
However, for given material type (given a) the same distributions will be a consequence 
of the width of the strip, 2L. For example, the wetted lobe will be “finger-like” in tuff 
\{ L a-1. This dependence of the moisture distribution on aL is qualitatively similar 
to that found by Wooding (1968) for the axisymmetric pond, differing mainly in the 
quantitive distribution of moisture.

The limit a —> oo has a heat equation analog with an analytical solution which 
compares very well with the full numerical solution. Furthermore, the average flux into 
the material over the source region is given accurately for the Dirichlet source by a 
simple relation determined by Weir (1986), showing that the flux is proportional to a. 
The numerical solutions show the relation to be accurate for a > 1 and that the average 
flux through the source approaches Ks, the saturated conductivity, for a » 1. When 
a <C 1, the average flux is many times Ks because the moisture is strongly absorbed 
laterally as well as vertically.

When the source is described by a specified flux, q0, the problem can again be 
parameterized solely in terms of a for the half-plane problem. The dependence of the 
moisture distribution on a is similar to the previous problem where the moisture is 
specified on the strip. Furthermore, there is a unique upper bound on the flux for which 
the material beneath the source remains unsaturated. Values of this critical flux, </*, 
are determined as a function of a. These values are of interest in specifying the optimal 
irrigation flux for a strip source to keep the underlying porous material unsaturated, or 
in specifying the minimum flux to begin to saturate the material. Our results compare
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satisfactorily with the two solutions given by Batu (1978) for a = 0.2 and 0.5. No 
discussion of the critical flux was offered by Batu.

The shallow water table introduces the nondimensional depth d = D/L, and ad 
as additional parameters. The characteristic nondimensional capillary fringe thickness 
above the water table is ad — aD. The average infiltration, when the source is described 
by specifying the moisture, departs from the results for a deep water table when ad 
is less than about 4. The infdtration decreases with decreasing ad, compared with the 
maximum infiltration achieved when d —> oo and a is finite. When the source is described 
by specifying the infiltration rate, the maximum average infiltration allowable (<7*) such 
that xp < 0 everywhere decreases from values attained for d —> 00 when d is finite. 
However, q* —» Ks for large a, independent of d. Also, as a —► 0, q* again approaches 
Ks for all finite d, because in this case the porous layer is uniformly wet to the extent 
that the material is able to only transport moisture by gravity. This is in contrast to the 
case d —> 00, where q* continually increases with decreasing a. There are no solutions 
for a = 0 and d —> 00, however.
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Appendix A. Information from, and Candidate Information
for, the Site and Engineering Property Data 
Base and the Reference Information Base

This report contains no information from the Reference Information Base and con­
tains no candidate information for the Reference Information Base.

This report contains no candidate information for the Site and Engineering Proper­
ties Data Base.
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