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Abstract

The distribution of moisture beneath a two-dimensional strip source is analyzed by applying the
quasi-linear approximation. The source is described by specifying either the moisture content or
the infiltration rate. A water table is specified at some depth, D, below the surface, the depth
varying from shallow to semi-infinite. Numerical solutions are determined, via the boundary
integral equation method, as a function of material sorptivity, a, the width of the strip source,
2L, and the depth to the water table. The moisture introduced at the source is broadly spread
below the surface when al <C 1, for which absorption by capillary forces is dominant over
gravity-induced flow. Conversely, the distribution becomes finger-like along the vertical when
al > 1, where gravity is dominant over absorption. For a source described by specifying
the moisture content, the presence of a water table at finite depth influences the infiltration
through the source when aD is less than about 4; infiltration rates obtained when the water
table depth is semi-infinite are of sufficient accuracy for greater values of aD. When the source is
described by a specified infiltration flux, the maximum allowable value of this flux for which the
material beneath the source remains unsaturated is determined as a function of nondimensional
sorptivity and depth to the water table.
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1 Introduction

In this paper we consider the steady infiltration of moisture from a strip surface
source of width 2L into a homogeneous, porous half-plane. The porous layer is unsat-
urated for some depth D below the surface, where a horizontal water table exists. The
hydraulic conductivity, K, of the porous material is assumed to vary with pressure head
according to

K(il>) = Kaexp(axl)) , 0 <0, (1.1)

where Ks is the saturated conductivity, a is a material parameter, and 1) is capillary
pressure head. With this specification for hydraulic conductivity, the Kirchhoff transfor-
mation renders a linear field equation for a potential, which is equivalent to the relative
permeability. This approach is referred to as a quasi-linear analysis after Philip (1968),
who has vigorously pursued this approximation (see for example Philip, 1969; Philip,
1984a; Philip, 1989a; Philip, et ah, 1989a; Philip, et ah, 1989b; Waechter and Philip,
1985; and references therein).

Our purpose here is to investigate the steady distribution of moisture beneath a
strip source as a function of the material sorptivity, a, a term coined by Waechter and
Philip (1985), and the depth to the water table, D. Localized surface sources arise due
to topographic relief or from shallow ponds (Weir, 1986; Wooding, 1968). The problem
is prototypical of steady surface infiltration and the subsurface redistribution of the
moisture as a function of the type of porous material. The problem is also relevant to the
distribution of surface moisture introduced for irrigation (e.g., drip systems) or for dust
control, and will describe the maximum wetting possible because the source is constant
in time.

1.1 Previous Work

A rather complete review of infiltration from surface sources is given by Pullan
(1990), however for completeness we review some of the more relevant works here. The
axisymmetric version of the problem, when the moisture is specified at the source and
the water table is deep, was considered by Wooding (1968), however, his solution method
failed to converge for large values of al.. More recently, Weir (1986) considered the region
local to the step change in boundary condition type, viz., the region about |[Ari = L, and
derived an expression, deduced earlier by Wooding, for the net infiltration when al is
large. Pullan and Collins (1987) applied a boundary integral method to various problems
of two- and three-dimensional infiltration from buried and surface cavities, also assuming
a deep water table. Pullan and Collins computed the net flux through the source area
of a two-dimensional source for a specified-moisture boundary condition; however, no
discussion of the distribution of moisture beneath the surface was offered. Philip (1989b)
recently considered the effect of a water table at finite depth below a buried source and
finds the deep water table solutions to apply if the depth is greater than about 8/cv.



Steady infiltration from a periodic array of line sources was considered by Raats
(1970), and subsequently Batu (1978) considered steady infiltration from single and pe-
riodic strip sources. Batu’s solution for the single strip source is rather formal, given in
terms of a Fourier integral, and numerical evaluation is performed only for al = 0.2 and
0.5. These investigations are also based on the quasilinear assumption and the sources are
described by specifying the strength of the line source (Raats, 1970; Zachmann, 1978),
or the infiltration rate on the strip, (Batu, 1978). These specified infiltration problems
can also be formulated in terms of a stream function, as shown by Raats (1970). Batu
(1980), and Batu and Gardner (1978) also present solutions for periodic strip sources
with nonuniform infiltration formulated in terms of a stream function. However, Philip
(1984b), points out the danger of specifying the problem solely in kinematic terms, which
can lead to physically untenable solutions if the flow dynamics are not considered in tan-
dem. Zachmann (1978) considered infiltration from a line source into an inclined porous
layer and presents series solutions for moisture potential and a stream function.

Here, we apply a boundary integral equation method to the quasi-linear version of the
problem, as do Pullan and Collins (1987) for the case of a deep water table; we consider
the effects of a shallow water table as well. Moreover, we also discuss the problem where
the source is described by specifying the infiltration flux rather than the moisture and
determine the maximum infiltration allowable such that the underlying material remains
unsaturated. This latter bound on the allowable infiltration is not discussed in the study
by Batu (1978) of this problem for a deep water table. Our discussion of this problem
also includes the effects of a shallow water table.

Finally, we point out that our work with the boundary integral equation method,
although similar to Pullan and Collins (1987), is formulated in a slightly different man-
ner; they work with a transformed equation utilizing a transformation apparently due to
Oseen (see Lamb, 1945; p. 611). These differences are minor; the major point is the ease
with which numerical solutions of the quasilinear equation for steady, unsaturated flow
can be obtained, over a large range of a, via the boundary integral equation method.
Solutions for large values of a nondimensional o, to be introduced shortly, have been
a source of difficulty in the summing of series solutions. Asymptotic treatment of this
problem has been studied by Waechter and Philip (1985) who recognized the analogy
with scattering of plane pulses and harmonic waves in hydrodynamics; a recent review is
given by Philip (1989a). We also demonstrate that interior values of potential and flux
can be computed using this method. Indeed, the method provides solutions for the flux
vector that are of the same order of approximation as the potential itself. More conven-
tional numerical methods, such as finite-difference or finite-element, in general provide
a lower-order approximation for fluxes, since they involve finite-difference approxima-
tions to the potential gradient. We do point out, however, that the boundary integral
equation method is restricted to problems governed by linear partial differential equa-
tions, although boundary conditions may be nonlinear, and that methods which preserve
the accuracy for the fluxes obtained by finite-element techniques have been investigated



(Carey, 1982; Yeh, 1981).

2 Problem Statement

Two problems will be considered; both involve infiltration from a wetted source
of width 2L into a relatively dry, homogeneous, porous material. The problems are
distinguished by the depth to a water table below the source. The first problem considers
the simpler case of a deep water table, in which the only parameter in the problem is
a nondimensional sorptivity. In the second problem, the water table is located at finite
depth below the surface and two more parameters arise, involving the depth and the
specified moisture level (or flux) on the surface.

The flow is described by the steady Richards equation,
V-[/v(0)(VV>-e2)] = 0, (2.1)

where el is the unit vector in the vertical direction (positive downward). The boundary
condition on the wetted strip is

0=V XI\<L, Z—o, (2.2)

and, assuming evaporation is negligible, zero vertical flux is prescribed over the remaining
surface area (Wooding, 1968),

2, =AW (H - ") =° [*]| > A Z =0. (2.3)

The related problem, where the source is described byspecifying an infiltration flux
rather than the moisture potential, is described by replacing (2.2) with

M= \X\<L,Z = 0. (2.4)

A water table is assumed to be located at a depth D below the surface, which is described
by specifying
& =1iPw, forall X, Z = D. (2.5)
The pressure head at depth D is prescribed arbitrarily as ipw for purposes of generality
in the problem statement; however, ipw = 0 will properly describe a water table. If the
water table is ‘deep’ beneath the surface, the capillary pressure far below the source,
and yet above the water table, approaches a constant value,
— V>0, as |X| — oo, (2.6)
where X = (X,Z) (two-dimensional flow). We further assume that K(ipoc)/K(tp0) <C 1,
and hence the far-field condition (2.6) can also be stated as
gz — 0, as |X| — oo. (2-7)
The two cases, defined by a deep and shallow water table, are discussed fully in the

following.

*This terminology is clarified in Section 6 which treats a shallow water table



3 Quasi-Linear Analysis

As was shown previously (Philip, 1968; Raats, 1970; Wooding, 1968), the Richards
equation can be transformed into a linear form when the conductivity varies exponentially
with capillary pressure. By introducing the Kirchhoff transformation,

s—r (3.1)

J—00
the steady Richards equation becomes

" d<&

v *-Qaz=¢° (32)

when the conductivity is exponential in the capillary pressure as defined in (1.1). Also,
= K(xj)), and v/ = In < (3-3)

where () = K(ip)/Ks = exp(a'ip) = a<b/Ks is the relative permeability, which also satisfies
(3.2). Furthermore, under the Kirchhoff transformation, the Darcy flux,

q = -A'(V)VV> + K(iJ>)ez, (34
becomes
q=——V4 + aSez (3.5)

so that the flux is also a linear function of the potential $ (or <) Essential and natural
boundary conditions for the steady Richards equation also remain linear under the trans-
formation for homogeneous materials. Owing to the relations given in (3.3), a contour
level of constant potential is also a contour level of constant capillary pressure and mois-
ture content (0). This relation indicates that the potential 4 in (3.1) is uniquely related
to the moisture content. It is noted that the retention curve for the material, specifying
the function 0("0, is n°t required for solution of the steady Richards equation.

In terms of the transformed variables, the boundary conditions (2.2) and (2.6) be-

come
$ =Q 1A'(M0) = fo, |A| <1, Z =0, (3.6)

and
$ = cr'A”o00) = $00, X — o0, (3.7)

respectively, and the impermeable condition (2.3) becomes

~FIL +a$ =0, 1*l >1> Z=0. (3.8)

Also, the shallow water table is specified by

$ = a-1Ks, forall X, Z = D. (3.9)

10



4 Numerical Solution by the Boundary Integral Equation Method

4.1 Boundary Integral Equation Formulation

A number of numerical methods are available for the solution of (3.2). Here we
consider the boundary integral equation (BIE) method. The application of this method is
suggested by the fact that fundamental solutions are known for (3.2) in both two and three
dimensions, and by favorable previous experience with the method in various branches of
mathematical physics, e.g. (Brebbia, 1978; Cruse, 1969; Ingham and Kelmanson, 1984;
Jaswon and Symm, 1977; Liggett and Liu, 1982). Boundary integral methods reduce
the dimension of the problem by one, which is an appealing feature in general, and is
especially useful for semi-infinite problems and some interface problems (Liggett and
Liu, 1982; Martinez and Udell, 1989). Thus, in the present study, the two-dimensional
boundary value problem is reduced to a one-dimensional BIE defined on the boundary
of the two-dimensional domain. Here we consider only two-dimensional problems, but
emphasize that another attractive aspect of the approach is that its extension to three
dimensions, while not easy, is straightforward (Pullan and Collins, 1987).

The boundary integral formulation can be motivated through Green’s second iden-
tity,

_ (4.D

Here, the volume U is bounded by the surface F, and, in the classical theory, $ and G are
nonsingular in fL Also, d(-)ldn = V(-) ' n, where n is the outward-pointing unit normal
to the boundary. To generate the boundary integral, we use the free-space fundamental
solution to (3.2) for G. The free-space Green’s function satisfies

DC
V2G'(x) - a— = -6(x%), 4.2)
oz

where 2 is the vertical coordinate (positive in the direction of gravity) and § is the Dirac
delta function. The two-dimensional solution can be found on p.267 of Carslaw and
Jeager (1978) as the solution for a line source of unit strength placed at the origin:

G(x) = "exp (¥) Ao (¥), (4.3)

where r2 = a:2-f22, and A'o is the modified Bessel function of the second kind of order zero.
The boundary integral equation results if we substitute the free-space Green’s function
(4.3), written with respect to the difference vector x — y, into (4.1), and integrate with
respect to y, to get

<KX) + /r -——~-m-frCyWy) = jrG(x,yv)(-gn(y))dT, x e H, (4.4)

where gqn(y) = —d”dn + a<P>?, is the flux normal to the boundary surface F, and
n2 = n el is the vertical component of the normal to F. This identity gives the value

11



uf the potential at any point in J7, if the boundary values of potential and flux are
known. However, in a well-posed boundary value problem, either the potential or flux
(or some combination of these) is specified and the other is to be determined. A boundary
integral equation can be formulated for these unknowns by taking the limit x — F from
1); the limit is indicated because the flux kernel dG/dn suffers a jump as x passes to
the boundary from the interior. The resulting BIE, applied to a smooth point x on the
boundary (i.e., one having a well-defined local tangent plane), is the same as (4.4) above
if we multiply the first term on the left-hand side by one-half. Pullan and Collins (1987)
show the values taken on by the principal value when x is on a corner of the boundary.

4.2 Numerical Solution

In this preliminary investigation of the quasi-linear method, the simplest of numerical
approximations is used to facilitate coding of the algorithm. Higher order approximations
(Martinez and Udell, 1989; Pullan and Collins, 1987) can be incorporated later if desired.
The first step in the numerical approximation of (4.4) is to subdivide the boundary F
into a number of discrete boundary elements, Fn ( n = 1,..,./V). In the present version,
the boundary elements are all straight line segments. Next, the variation of $ and gn
over each segment is approximated by its value at the center of the boundary element,
hence the numerical approximation to the BIE becomes

UIO + 2 AG", = @5)
I J
where <hj = $(xj), gy = qn{"yj), and

Jt = /r dG(x,.y) dTey),
dn

Gij = J G(x,,y)c/r(y).

The coefficients Gi: and G'%/ are computed using 4-point Gauss-Legendre quadrature.
When a;, G Fj the kernels are improper and these coefficients are computed by subtracting
the singularity, integrating it analytically and summing with the numerical integral of
the remainder.

Upon applying the boundary integral equation to each of the N boundary elements,
using the boundary conditions (which specify half of the 2/V point values of potential and
flux), and rearranging, we get the linear system Au” = f where contains the unknown
potential or flux on the boundary and f contains the inner product of specified boundary
values (i.e., boundary conditions) and kernel coefficients. Once the boundary values are
determined, by solving the linear system by Gaussian elimination, the BIE (4.4) can be
used to compute the potential at any interior point. The flux vector in the interior can
also be computed by operating on (4.4) according to

q(x) = —V<I>f Q$Vz, (4-6)

12



5 Inmfiltration into Unsaturated Material Above a Deep Water
Table

5.1 Specified Moisture
Dimensionless Variables

Here we nondimensionalize variables according to

$ X
5.1
I I (5.1)
Hence (3.2) becomes
Vip-a™ =°, (5.2)

where a = al, and the gradient operator is understood to apply with respect to the
nondimensional coordinates (x,z). In addition, the nondimensional flux vector is given
by a
u = %r- = -Vp + apez, (5.3)
o

where Kl = K(tp0). The boundary conditions on the surface become

p=1 <1, 2=0, (5.4)
— +ap=0, M>1, z=0, (5.5
oz
and the far-field condition is
p—0, x— oo. (5.6)

We have invoked the approximation that

K"oo)

00) <c |
I<{rl>0)

in arriving at the far-field condition. As noted previously, this form of the far-field
condition assumes a deep water table and it also assumes a negligible average recharge
into the material, other than through the strip. One-dimensional steady recharge through
an unsaturated layer, with conductivity as in (1.1), to a water table sX Z = Zw is described

by

) 900 Act(Z—Zw)
0 e (57)
where > () ls the recharge and () = exp(a”™>), as before. For distances above the water

table such that a(Z — Zw) <C 0 the potential approaches g”V/Ks or

. 00
aip — In as a(Z — Zw) — —oo,

13



showing that the moisture content approaches a constant value for distances of order a-1
above the water table. This condition is assumed in prescribing (2.6) and (5.6) above,
together with negligible recharge (q”VKs 1).

If the recharge is not negligible, i.e., K(V'oo) = O(K(ipo)), then we replace (5.5) with

gz =<loo, M >1, 2=0. (5.8)
However, if we define
$ ~ $00 (5.9)
30 ~ s00

then we arrive again at the previous problem, viz., (5.2) subject to (5.4) through (5.6).
The only modification is that the flux is now defined by

u”™N V,+tape, =a —— (5.10)

Thus, through this definition of variables, the problem is formally reduced to the previous
one, although here we solve for the disturbance potential; i.e., the far-field potential has
been subtracted off. It is remarkable that, through the quasi-linear transformation,
superposition can be applied to a problem that is, in its original form, highly nonlinear.

Results and Discussion

Numerical solutions to this boundary value problem were obtained by applying the
boundary integral code described in Section 4 to the transformed versions of the prob-
lems discussed above. In these problems the flux is (weakly) singular near x| = | in
consequence of the step change in boundary condition type. The results given below
were computed using the mesh grading algorithm investigated by Yan and Sloan (1989).
This technique provides quadratic convergence of the numerical method with systematic
reduction in boundary element size. Finally, it is noted that the problem as stated is sym-
metric with respect to X = 0. However, because the numerical method is quite efficient,
this symmetry was not exploited, and hence twice as many unknowns were computed
than were necessary.

The only parameter appearing in the problem is a (— al), the nondimensional
sorptivity, which is the ratio of the length scale over which capillary effects are active to
the breadth of the wetted strip. Large values of a correspond to coarsely graded porous
material, (e.g., a bead pack composed of a narrow range of bead sizes or a sandy material),
whereas small values of a correspond to well-graded material with a large range of pore
size (e.g., loamy soil or some welded tuff). Accordingly, large values of a correspond to
well-sorted porous material or to a relatively large wetted area on the surface. Hence,
the distribution of moisture beneath the wetted source will be gravity-dominated for
large a, and the wetted lobe is expected to be in the form of a highly elongated “finger.”
Conversely, the wetted lobe is expected to be broadly spread for small a, where capillary
effects manifest themselves.

14



This description of the potential (or moisture) distribution is borne out in the solu-
tions as illustrated in Figures 5.1 through 5.3, showing contour plots of the potential p
for 16 1 < a < 16. Gravity acts in the direction of increasing 2 in these figures. The
contours approach a circular form as a — 0, as described earlier. However, even for small
values of a, the contours for the smaller values of potential (e.g., p < 0.4 in Figure 5.1a )
become increasingly elongated showing that the body force is always dominant far from
the source. Higher values of the contours approach a circular form near the source. The
broad spread of the contours decreases with increasing a, and the contours take a highly
elongated form, in the vertical direction, for large a. Figure 5.2b for a = | already shows
that most of the contours take on a “finger-like” form, although contours near the source
must return to a more circular form in consequence of the surface boundary condition.
Thus, for large a, the moisture introduced at the surface falls nearly vertically with little
lateral diffusion.

For a — 0, the boundary value problem becomes increasingly of the potential type,
satisfying Laplace’s equation. There are no solutions for a = 0, however, because of
the no-flux boundary on the surface for |a:] > 1. This is easily seen by referring to the
conformal mapping indicated in Figure 5.4. In the (%,v) domain, the potential must
go linearly from unity at u = 0 to zero at infinity, an untenable requirement. The
approach to this solution is evident in Figures 5.1 for a <C 1. Consider the contour
level 0.5 in Figures 5.1 through 5.3 for example: the physical extent of this level is
minimum for a fa 1/2, while for larger values the depth to this contour level increases
along the symmetry line, a2 = 0. However, for smaller values of a the level also increases
in extent, more or less uniformly with respect to the origin. Mapping Figure 5.1a through
¢ conformally, according to Figure 5.4 for example, would show the approach to a linear
profile for the potential for decreasing a.

For large a, capillary effects are significant only near the source, and, as was shown
by Weir (1986) in a similar problem, for a — oo capillary effects are significant only
near (x,z) — (=1,0). This is illustrated in Figures 5.3b and c, for example, showing the
isopotentials emanating from this location. Futhermore, when ¢ — o0, the potential is
asymptotically governed by a heat equation as shown by Weir (1986),

d2p dp —
—_— a_gz_ ==

with diffusivity a-1. This equation represents the lowest-order problem in an asymp-
totic outer expansion for large a. This is an outer expansion since this form is not
uniformly valid, due to neglect of the vertical diffusion term in the field equation for the
potential, (5.2). The asymptotic equation represents a balance of horizontal diffusion
and vertical buoyancy-driven flow and is equivalent to the high Peclet number limit in
a convection-diffusion equation. The boundary conditions remain the same, except that
(5.5) is replaced with

p=0, |x|>1, z—0, (5.11)

15



Figure 5.1. Isopotentials for various values of the nondimensional sorptivity. Gravity
acts along the direction of increasing 2; (a) a — 16_1, (b) a = 8-1, (¢)
a=4 1



== 10 == 10 0 2 4 6 8

Figure 5.2.

Isopotentials for various values of the nondimensional sorptivity. Gravity
acts along the direction of increasing z\| (a) a = 2-1, (b) a= 1, (c) a = 2.
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Figure 5.3. Isopotentials for various values of the nondimensional sorptivity. Gravity

acts along the direction of increasing 2; (a) a =4, (b) a = 8, (c) a = 16.



Figure 5.4. Conformal mapping of the analogous potential problem. This is Figure 9
in Appendix 2 of Churchill, et. al. [29]



since vertical diffusion is asymptotically smaller than the gravity term for large a. The
solution to this heat equation (Carslaw and Jaeger, 1978, p. 55), is given by

1 +x \
erf + erf IsjTfa)

Contours of p for this approximate solution are shown in Figure 5.5 for a = 8 and 16. The
comparison with Figures 5.3b and c is quite good except near the plane a: = 0 where the
asymptotic solution underestimates the penetration of the potential by a slight amount.
This is further illustrated in Figure 5.6 showing the potential variation with depth along
the symmetry line, ¢ = 0. The discrepancy between the asymptotic solution and the
full solution will be greatest along this line because of the neglect of vertical diffusion
in the asymptotic solution. Indeed, the asymptotic solution is seen to lag along a. = 0
in Figure 5.6a; otherwise the comparison is excellent. It is also of interest to point out
the very slow decay of the potential from unity at the source to the far-field value as
indicated in Figure 5.6b. This slow decay affirms the utility of the boundary integral
method for half-plane problems. Use of a finite difference or finite element technique
would require either a very large domain to satisfy the far-field condition, or the use of
solution approximations on a truncated domain. In general, the latter technique requires
some knowledge of the solution behavior in the far field.

The variation of potential and vertical infiltration flux along the surface, z = 0, is
shown in Figures 5.7 and 5.8, respectively, for some selected values of @. The moisture
diffuses away from the source for a substantial distance for small a. On the other hand,
the potential decreases rapidly along the surface when a 1, as assumed in the bound-
ary condition (5.11) for the asymptotic problem discussed above. The step change in
boundary condition at |a; = | results in a singularity in the surface flux at that point,
as shown in Figure 5.8. The singularity becomes increasingly localized about | T| = 1 as
a — oo; the profile for a = 16 shows almost constant flux except in a region very near
this point. Physically, this singularity models the large lateral gradient in potential near
this transition from specified potential to a no-flux surface.

The nondimensional flux through the surface is given by
F) = 2a (5.12)

where
qgo = \ [Lqz(X,Z = 0)dX.

L Jo
Computed values are given in Table 5.1 and plotted in Figure 6.3 as the curve labeled
d — o0o. As was shown by Weir (1986), the flux is accurately described by the simple
relation,

4
F* = 2q —
i
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Figure 5.5. Isopotentials of p given by the asymptotic solution for large a, (a) a
(b) a = 16.
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100.0 200.0 300.0 400.0 500.0

Figure 5.6. Comparison between the asymptotic solution (solid curve) and the
boundary integral solution (symbols) for the potential profile along 2! = 0
for a=16. Figure 5.6a shows that the asymptotic solution lags the
numerical solution and Figure 5.6b illustrates the slow decay of the

potential far from the source.
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Figure 5.7. Profiles of potential along the surface (z = 0) for various values of
a = al, for the Dirichlet source.
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Figure 5.8. Profiles of infiltration flux along the surface (2 = 0) for various values of
a = alL, for the Dirichlet source.
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Table 5.1. Nondimensional Flux

al Fl Qo/Ks (F;, — F,))/t;
16-1  0.9469 7.575 3.23 x 10"
8-1 1.181 4.723 2.25 x 10-]
41 1.543 3.087 1.30 x 10-I
2-1 2.146 2.146 5.60 x 10~2
| 3.224 1.612 1.50 x 10~

2 5.257 1.314 3.08 x 10~3
4 9.265 1.158 8.89 x 10
8 17.26 1.079 7.66 x 10-4

16 33.26 1.039 3.98 x 10"
32 65.21 1.019 9.69 x 10-4

for large a. The numerical results show this relation is accurate for a > 1, and is in error
by at most 6% for 0.5 < a < |. It is also of interest to note that the average Darcy flux
through the wetted strip, g0, approaches Ki for a | (Table 5.1). When the moisture
level at the source is saturated, i.e., Vo = 0, and K() — Ks, the results indicate that the
net infiltration approaches the saturated conductivity for large a. This is not surprising
because, for gravity dominated flow, the material can transport fluid only at about the
rate of the saturated conductivity and still remain unsaturated everywhere (except at
the source if 00 = 0). For small values of a, however, the material can absorb at a rate
many times Ka, and still remain unsaturated. This is because capillary forces are able
to spread the moisture laterally as well as vertically, allowing the material to absorb at
a high rate, compared to the saturated conductivity.

5.2 Specified Flux
Dimensionless Variables

If the flux of moisture is to be specified rather than the moisture itself, we replace
the condition (2.2) with (2.4) while conditions (2.3) and (2.6) remain as before. We also
use the same nondimensional variables as before, expressed in (5.1), except we define

ct<bl) = q0. (5.13)

The nondimensional field equation for the potential is again (5.2) and the flux is given
by (5.3), if we replace K0 with ¢( in the latter. The boundary condition at the source is

now given by

d,
S A ap=a, [ <1, 2=0, (5-14)
Oz
and the impermeable condition is again (5.5) and the far-held condition is (5.6). In

terms of these nondimensional variables, the problem is again parameterized entirely by
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the nondimensional sorptive length, a, although the dimensionless potential is measured
here in terms of the applied flux.

Results and Discussion

These nondimensional variables render this problem in a form very similar to the
previous problem. Indeed, the solutions for various values of ¢ are also similar, both
qualitatively and quantitatively, if the potential were rescaled, to their counterparts for
the Dirichlet problem. For example, a contour plot of potential for a given value of a can
be made to match reasonably well with a corresponding solution for which the moisture
is specified on the strip, if the potential in the present problem were rescaled such that
p(0,0) = 1. The variation of potential along the surface is shown in Figure 5.9 for some
selected values of a. Again, these profiles exhibit a similar relation to a as compared
to their counterparts for the Dirichlet source, shown in Figure 5.8, if the potential is
scaled such that p(0,0) = 1. Indeed, the lateral diffusion of potential is substantial when
a <C 1, and the potential profiles approach the approximation (5.11) made for the large
a asymptote for the Dirichlet problem. Comparison of our results with the solutions for
a — 0.2 and 0.5 presented by Batu (1978) is good, i.e. within the error introduced in
extracting points from the contour plots of potential shown in Figure 3 of (Batu, 1978).

Implicit in the quasi-linear analysis is that © < 0 everywhere in the solution domain.
Obviously, for given a, there is a unique g0, above which this condition is violated. The
limit on the capillary potential can also be expressed as, $ < Ks/(* or in terms of
dimensionless variables, p < Ks/g0. Hence, for given a, the maximum flux the material
can transport and yet remain unsaturated below the source is

~ =1 (5.15)

where p* is the maximum value of potential in the half-plane 2 > 0 determined for
the boundary condition (5.14). Any flux greater than ¢* will produce a saturated bulb
beneath the source. In consequence of the symmetry in the current problem (and also in
the Dirichlet problem), p* = p(0,0). Values of the maximum flux are listed in Table 5.2
and plotted in Figure 6.7 (curve labeled d = 00) as a function of a. These maximum
values are slightly lower than the corresponding flux values in Table 5.1 for the Dirichlet
source; however, their relationship with a is similar.
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Figure 5.9. Profiles of potential along the surface (z = 0) for various values of
a = al, for the specified flux source.
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Table 5.2. Maximum Flux for Unsaturated Flow.

al p* q-JK,

16-1 0.1435 6.968
8-1 0.2337 4.278
4-1 0.3643  2.745
2~ 0.5345 1.871

1 0.7237  1.382
2 0.8849  1.130

0.9743  1.026
8 0.9982  1.002

16 1.0002  0.9998

6 Infiltration into Unsaturated Material Above a Shallow Wa-
ter Table

6.1 Specified Moisture
Dimensionless Variables

We use the same dimensionless variables defined for the case of a deep water table,
viz., Equation (5.1), except we replace <>, with the value of potential at the water
table,

afU = Ka. (6.1)

The field equations for potential and flux are again (5.2) and (5.3), respectively, replacing
Kl with Ks in the latter equation. The surface boundary conditions are

p(J-)=Po, M <1, 2-0, (6.2)

and (5.5) over the remainder of the surface. The boundary condition on the water table
is
p=1, forall x, z = d. (6-3)
Because the boundary integral formulation requires that p — 0 as x — 00, it is convenient
to solve for the disturbance potential, representing the deviation from the capillary fringe
solution. Thus, we write
p = p'+ P00, (6.4)
where p(0 satisfies
deO
dz

CcOo

+up =0,
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subject to pl) = 1 when z = d. Thus,

.00 __ ea(z-d) (6.5)

The disturbance potential, p', satisfies the operator in (5.2) subject to

p = Po~ce~ad |a <1, 2=0, 6.6)
%W

u'z = -- ap' — o, x| > 1, 2=o, (6.7)
oz

p' = o, for all x,z = d 6.8

In the investigations to follow, only a saturated source is considered, i.e., p) = 1.
However, because the remaining boundary conditions on the disturbance potential are
homogeneous, solutions for arbitrary values of p) can be obtained from the solutions
determined herein for pl = 1 by rescaling the disturbance potential, thus eliminating p/
as a parameter. Hence, consideration of a shallow water table introduces two additional
parameters in the problem; these are the dimensionless depth to the water table, d —
D/L, and ad — aD, which modifies the source strength for the disturbance potential.

The boundary condition on the strip source, (6.6), suggests the length scale over
which the water table will affect the potential field. If ad | (actually, if ad > 2,
say), the capillary fringe thickness is small and the boundary value at the source for
the disturbance potential is unaffected by the capillary fringe. The infiltration is also
unaffected, relative to results for the deep water table when ad 1 as shown in the
following. In this case we say that the water table is ‘deep’ below the surface, and the
boundary value problem for the disturbance potential is nearly identical to the problem
discussed in Section 5.1, except here the capillary fringe is superposed over a distance of
O(a~[) above the water table.

The boundary value problem for the disturbance potential is solved numerically via
the boundary integral equation method discussed above. In this problem, the line 2 = d
is discretized along with the surface, 2 = 0. The lateral extent of the mesh on these lines
depends on a and on d, although to a weaker degree. The lateral extent was as much as
|x] = 300 for @ = 32-1 and as small as |[x| = 2 for a = 16. The full solution is given by
superposing the numerical results with (6.5).

Results and Discussion

The influence of the depth to the water table depends on the nondimensional sorp-
tivity for the material, as illustrated in Figure 6.1, which shows contours of potential,
p = p' -fp00, for various values of ¢ and fixed depth. These figures can be compared to
the corresponding plots for a deep water table, Figures 5.1 through 5.3. For a = 16, the
distribution of potential is virtually identical to the distribution for the deep water table,
Figure 5.3c, except for the boundary layer adjustment for distances O(a-1) above the
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Figure 6.1. Isopotentials for = 20 and (a) a= 16 x, (b) a= 1, and (¢) a — 16.



water table. This is the characteristic thickness of the capillary fringe, as indicated in
Equation (6.5). The capillary fringe thickens for decreasing a and fixed d as illustrated
in Figure 6.1. For a = 1, the contours are still similar to those for d — oo (shown in
Figure 5.2b) for 2 < 15 but deviate for locations closer to the water table. Finally, for
a — 16-1, the dimensionless capillary fringe thickness is 0(16) and the potential dis-
tribution departs significantly from those for the deep water table, the presence of the
shallow water table resulting in much a wetter material throughout. For example, in
Figure 5.1a the lowest contour level is 0.3, while in Figure 6.1a, contours lower than 0.5
are not present in the domain shown. Similar conclusions can be drawn from Figure 6.2,
showing contours of potential for d = | and a = | and 16. The capillary fringe occupies
only a thin boundary layer above the water table when a — 16, while the capillary fringe
pervades the entire depth of material when a = 1. A contour plot for a = 16-1 is not
included because the layer of material is at a potential higher than 0.93 throughout. The
dominance of gravity flow over diffusion of moisture is strikingly displayed in Figure 6.2b
indicating nearly vertical flow of moisture, resulting in the region |;ff < 1 being nearly
saturated while the region [x| > 1 is relatively dry, these regions being separated by
a diffusion zone which thickens with depth. Even at this shallow depth, however, the
capillary fringe is too thin to have any effect on the net infiltration into the source area
for a = 16; the computed value of F( for this case agrees with the value computed when
d — oo to five significant figures.

The effects of variation in ¢ and d on the average dimensionless infiltration through
the source, F(0, are summarized in Figure 6.3. F( is defined in Equation (5.12). The
results from Section 5.1 are included as the curve labelled d = oo. The shallow water
table influences the infiltration only for smaller values of a. If a is sufficiently large,
gravity flow dominates and the capillary fringe is thin compared to the depth d and the
infiltration is unaffected. The infiltration is independent of d for a > 5 (in the range of
d considered in Figure 6.3) and is proportional to a as discussed by Weir (1986). The
figure also illustrates that influence of the water table is manifest when ad — o(1); thus,
for a given material type and source width (ctL), the water table affects the infiltration
if D = O¢a~1). This is evident in Figure 6.3 where, for given d, the deviation from the
deep water table results begins roughly when ad ss 4. Moreover, the value ad = 2 is
where the capillary fringe reduces p' in (6.6) by about 10% (p) = 1). For larger ad, the
infiltration is given, with good accuracy, from the results assuming d — oo. For fixed
a, Figure 6.3 shows that the infiltration is a monotonically increasing function of d; the
maximum flux is given by the deep water table results (d = 00).

The distribution of vertical flux at the water table is shown in Figure 6.4 as a function
of nondimensional depth and sorptivity. The maximum flux occurs on the symmetry
axis, x = 0, and is approximately proportional to a. The effect of increasing depth, for
fixed a, is to spread the flux distribution at the water table. Conversely, as the depth
decreases, the flux is more closely confined to the region about the symmetry axis. The
spreading also increases with decreasing a, for fixed d, as diffusion becomes important
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Figure 6.2.
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Isopotentials for d = / and (a) a — 1, and (b) a — 16.
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Figure 6.3. Variation of the total infiltration through source area with
nondimensional sorptivity, a = aL, and depth to the water table,
d= D/L.
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Figure 6.4. The normal flux (scalar product with the outward pointing normal) at
the water table for various values of depth from the surface and (a)
a=16_1, (b) a= 1, and (c) a = 16.
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and finally dominant for a — 0. This is especially notable in Figure 6.4a for d = 60.
The distribution of flux is nearly constant on the scale shown, and the numerical mesh
included the portion of the line |[x| = 250 on both z — ) and z = d in order to extend the
mesh into the undisturbed region. This is another example of the utility of the current
technique over domain methods (e.g., finite difference or finite element) for problems
which are semi-infinite in extent. Such an increase in the size of the computational
domain would greatly increase the number of unknowns for a domain method, since the
mesh would have to be extended in two-dimensions rather than simply along a line as in
the present method.

The spreading of moisture introduced at the source is also illustrated by computing
the pathline taken by a fluid particle introduced at the source. Pathlines are computed
by numerically integrating the equations

Hf(é():<1z)ch 0\ gz )

for each pathline, subject to an initial coordinate location, (x0,z(0). The fluxes are given
by (5.3), and the moisture content must be specified as a function of pressure head.
For purposes of illustration in the examples shown, the moisture content was set to
unity, thereby allowing computation of the particle path, although the travel time cannot
be correctly obtained. If O(") is specified, the pressure head can be calculated from
Equations (6.4), (5.1), and (3.3). Hence, the interstitial velocity, v (=q/0), can be
obtained from the flux vector, thereby allowing evaluation of the elapsed time for the
particle to travel along the path.*

The lateral diffusion of moisture in its travel towards the water table is illustrated
in Figure 6.5 for a — 16-1 and 1; Figure 6.6 shows the same results over a larger domain.
The lateral spreading increases with decreasing sorptivity and is substantial when a =
16*1. The particle that departs from (x0,z0) = (1.5,0.1) near the surface moves laterally
to ar « 100 before arriving at the same depth below the surface (see Figure 6.6). By
contrast, when a = 1, the lateral dispersion of the same particle is only about one-fourth
this value at a depth 2 = 100. Hence, the lateral dispersion decreases as a increases
because gravity comes to dominate diffusion. The depth to the water table also influences
the particle dispersion, but this effect is dependent on a as well. When the water table
is at a depth of 20 units of L below the surface, the lateral displacement of the particle
for a = 161 is about x & 30, compared to x « 44 for d — oo. For a = 1, however,
the water table influence is much reduced and the lateral displacements of pathlines for
d — 20 are virtually identical to those for a deep water table.

Once again, the influence of the water table on the pathlines is characterized in
terms of the characteristic capillary fringe thickness, ad. The presence of the water table

’If only the pathline is desired, without regard for the travel time, it is computationally expedient to
integrate the single equation dz/dx = vz/vx for each pathline rather than the pair indicated above.
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Figure 6.5. Pathlines for particles introduced at the source for (a) a = 16 1, and (b)

a= 1;—d = oc; 111d = 20. The initial particle coordinates for the
pathlines shown are (x0,z0) — (0.5,0.1), (1.0,0.1), and (1.5,0.1), from left
to right.
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Figure 6.6. Pathlines for particles introduced at the source for (a) a = 16 1, and (b)

a = 13-—d = oc; *11d = 20. The initial particle coordinates for the
pathlines shown are (x0,z0) = (0.5,0.1), (1.0,0.1), and (1.5,0.1), from left
to right.
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substantially influences the pathlines for ad = 20/16 (Figure 6.5a), while the pathlines
are virtually unaffected for ad = 20 (Figure 6.5b). A plot for a = 16 is not shown
because, for d — 20, the deviation from the deep water table results is indistinguishable.
In the case a = 16-1, the deviation between pathlines for the finite and semi-infinite
water tables begins for z > 2. For fixed d, the deviation vanishes as a increases, as shown
in Figure 6.5 when a = 1. For this value of nondimensional sorptivity, the deviation
between pathlines for the finite and semi-infinite water tables is barely discernible near
z =d.

6.2 Specified Flux
Dimensionless Variables

When the source is described by specifying a uniform infiltration rate through the
strip, we use (2.4) in place of (2.2), and the remaining boundary conditions are unchanged.
We nondimensionalize the potential according to (6.1) as above with the result that on
the strip

o= m<1 2= (6.9)

with the remaining boundary conditions unchanged from above, viz. (5.5) on the re-
mainder of the surface and (6.3). The potential satisfies (5.2) and the nondimensional
flux is defined by (5.3), with Ks replacing K(0. The potential is again decomposed into
the capillary fringe solution, given by (6.5), and a disturbance potential defined by (6.4).
The disturbance potential satisfies the same field equation and flux definition as p above,
and is subject to

dp' , a
P g -] <<1, 2 =0, .10
on the source and (6.7) and (6.8) on the remainder of the domain boundaries. In the
solutions to follow, only the case u)! — a (q0/Ks = 1) is considered. Because the dis-
turbance potential satisfies homogeneous conditions otherwise, the solution for arbitrary
q0/Ks can be obtained from the solutions presented by simply rescaling p’ appropriately.*
The solution, A(x,z), for arbitrary ¢0, and hence arbitrary u'0, can be determined from
the results below by defining, for example,

h= -u .11
where p' and u' represent the solution obtained for g0 — Ks. Unfolding the dimensionless
variables according to their definitions, the corresponding pressure head is given by

aV' =In yj7~p'+ <™ d j

for general g0, in terms of p’ which satisfies g = Ks rather than (6.10). Incidentally, note
that because //(x,d) = 0, ip ~ Z — D for (D — Z) = o(a_1).

>There is, however, a maximum value of ¢ allowable, because in the present analysis ip < 0 everywhere.
This is discussed in the following.
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Results and Discussion

Once again, in analogy with the deep water table, the distribution of potential bears
a relation to a and d very similar to that found for the source described by specifying the
moisture. In fact, for given a and d, a contour plot of potential can be made to match
reasonably well with that obtained for the Dirichlet source by adjusting ¢0. There is,
however, a maximum value of ga such that the pressure head satisfies s: 0 everywhere.
Given the linear dependence of the solution on g0, the unique upper bound, «*, for
which the material is at most just saturated everywhere can be determined from the
solutions for ¢ = K,. The maximum value of potential, p*, is given by p(0,0) and
p(0,0) = ~'(0,0) + exp(—ad). Hence, owing to the linearity of the problem with respect
to the applied flux (as expressed in (6.11)), the upper bound ¢* is given by (5.15), where
p* is p(0,0) when ¢0/Ke¢ = 1, as in the present problem.

The dependence of ¢* on a and d is shown in Figure 6.7. The results from Table 5.2
are included as the curve labelled d = oo. As we noted previously for the deep water
table, q0 — Ks for large a, and Figure 6.7 shows this to persist independently of d for
sufficiently large a. Thus, when gravity dominates, the maximum steady infiltration rate
the material is able to absorb and yet remain unsaturated beneath the source is about K.
However, when «a is small and the water table is deep, the material is able to absorb many
times the saturated conductivity since the moisture is strongly absorbed laterally as well
as vertically. In a nondimensional sense, as a — 0, the source area takes on the form of
a point source, of nondimensional strength 2aqg0/Ka, on the scale |X| = O(Q-1). When d
is finite, however, there is a value of ad (ad m 4) for which the maximum infiltration rate
is decreased owing to the finite depth to the water table, i.e., at some ad, the capillary
fringe is manifest on the surface. Indeed, for a — 0, s* — Ks for all finite d, since
the capillary fringe holds moisture well above the water table, in fact to the height of
the surface. In consequence, the porous layer is uniformly ‘wet’, to the degree that the
material is able to transport only the rate produced by a unit head gradient, i.e., the
gravitational component, Ks. Between these limits, </*(a) has a maximum for fixed d.
When d is relatively small (e.g., d = 1 in Figure 6.7), the porous layer is also relatively
wet throughout, owing to the proximity of the water table. The maximum in ¢* still
persists here, although it is barely discernible in the figure.
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Figure 6.7. Variation of the maximum infiltration rate for unsaturated flow with
dimensionless sorptivity, a = alL, and dimensionless depth to the water
table, d = aD.
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7 Summary

We have analyzed the steady infiltration from a strip source, of breadth 2L, into
an unsaturated, homogeneous, porous half-plane and finite-depth layer using a boundary
integral equation method. The hydraulic conductivity is assumed to vary exponentially
with the capillary pressure potential; hence, the quasi-linear transformation is utilized.
The source region is described by either a specified moisture potential or by a specified
value of infiltration. A water table is prescribed at some depth D below the surface for
the finite-depth layer. In the half-plane problem, i.e., when the water table is deep, the
material is assumed to approach a relatively dry condition far from the surface.

When the water table is deep, the distribution of moisture beneath the source is
characterized by a single parameter, a = alL, which measures the length scale over which
capillary forces are comparable to gravitational forces. For a — 0, capillary forces are
strong and the moisture diffuses uniformly resulting in more or less circular contours of
capillary pressure potential. Indeed, the lateral dispersion of fluid particles introduced
at the source is found to increase with decreasing a. When a — oo, gravitational forces
are dominant and the wetted lobe beneath the source is in the form of a long “finger”
with maximum breadth approximately equal to the width of the source. The former
distribution can be expected if the material is well graded, such as loamy soil or some
welded tuff, while the latter distribution will characterize poorly graded sandy material.
However, for given material type (given a) the same distributions will be a consequence
of the width of the strip, 2L. For example, the wetted lobe will be “finger-like” in tuff
I L a-1. This dependence of the moisture distribution on al is qualitatively similar
to that found by Wooding (1968) for the axisymmetric pond, differing mainly in the
quantitive distribution of moisture.

The limit a — oo has a heat equation analog with an analytical solution which
compares very well with the full numerical solution. Furthermore, the average flux into
the material over the source region is given accurately for the Dirichlet source by a
simple relation determined by Weir (1986), showing that the flux is proportional to a.
The numerical solutions show the relation to be accurate for a > | and that the average
flux through the source approaches Ks, the saturated conductivity, for a >» 1. When
a <C 1, the average flux is many times Ks5 because the moisture is strongly absorbed
laterally as well as vertically.

When the source is described by a specified flux, g0, the problem can again be
parameterized solely in terms of a for the half-plane problem. The dependence of the
moisture distribution on a is similar to the previous problem where the moisture is
specified on the strip. Furthermore, there is a unique upper bound on the flux for which
the material beneath the source remains unsaturated. Values of this critical flux, </
are determined as a function of a. These values are of interest in specifying the optimal
irrigation flux for a strip source to keep the underlying porous material unsaturated, or
in specifying the minimum flux to begin to saturate the material. Our results compare
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satisfactorily with the two solutions given by Batu (1978) for ¢ = 0.2 and 0.5. No
discussion of the critical flux was offered by Batu.

The shallow water table introduces the nondimensional depth d = D/L, and ad
as additional parameters. The characteristic nondimensional capillary fringe thickness
above the water table is ad — aD. The average infiltration, when the source is described
by specifying the moisture, departs from the results for a deep water table when ad
is less than about 4. The infdtration decreases with decreasing ad, compared with the
maximum infiltration achieved when d — oo and a is finite. When the source is described
by specifying the infiltration rate, the maximum average infiltration allowable (<7*) such
that xp < 0 everywhere decreases from values attained for d — oo when d is finite.
However, ¢* — Ks for large a, independent of d. Also, as a — 0, ¢* again approaches
Ks for all finite d, because in this case the porous layer is uniformly wet to the extent
that the material is able to only transport moisture by gravity. This is in contrast to the
case d — oo, where ¢* continually increases with decreasing a. There are no solutions

for a = o0 and d — oo, however.
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Appendix A. Information from, and Candidate Information

for, the Site and Engineering Property Data
Base and the Reference Information Base

This report contains no information from the Reference Information Base and con-
tains no candidate information for the Reference Information Base.

This report contains no candidate information for the Site and Engineering Proper-
ties Data Base.
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