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ABSTRACT

We predict the transport of gaseous '*CO, from a nuclear waste repository in unsaturated rock using a
porous-medium model. This model is justified if the appropriate modified Peclet number, which indicates
equilibrium between gas in fractures and liquid in rock pores, is much Jess than unity. Numerical ilJustrations
are given which are applicable to the proposed repository at Yucca Mountain which is 350 m underground.
Maximum predicted concentrations of !*CQO; near the ground surface are comparable to the USNRC limit
for unrestricted areas. Maximum predicted dose rates above ground are less than one percent of background.
Travel times are predicted to be hundreds to thousands of years. For some cases, we show that the release
rate from the source has negligible eflect on concentrations at the ground surface.
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1. INTRODUCTION

Radioactive gases released from nuclear waste would have a direct pathway to the biosphere if such
wastes were placed in unsaturated rock. This presents a new problem in assessing the potential health
impacts of such releases and in complying witb regulations.

We analyze the transport of gaseous *CO; in an unsaturated, fractured, porous medium with gas-phase
advection and dispersion. Gases released into partially saturated, fractured rock tend to move in fractures,
while vadose water is held inside the rock matrix. Strong convection flows are expected during the thermal
phase of vepository operation, carrying 1*COj toward the ground surface.

The region around the proposed repository at Yucca Mountain consists of a few alternating layers of
welded and nonwelded tuff. The welded tuff layers are highly fractured while the nonwelded layers are
sparsely fractured. Porosities are near 0.1 and liquid saturation is near 0.8. Most of the permeability in the
welded layers is due to fracture flow. Capillary action plays a large role in the fluid-flow system. Liguids
tend to be bound by capiliary force into the smaller pores, away fror the fracture spaces, thus leaving the
fractures open for gases to flow through. Other factors in the fluid-flow system are the recharge rate, heating
from radioactive decay, and periodic changes (weather) at the ground surface.

In our analysis we first assess the interaction of !CQ, with vadose water as a possible retardation
mechanism. Then we treat the combined fracture and pore matrix as an equivalent porous medium and
predict 14C concentrations, fluxes, travel times, and above-ground concentrations and dose rates.

This analysis differs from that proposed by Ross [1] in that we provide new support for the distribution-
equilibrium assumption by analyzing a discrete-fracture system; also, we provide complete analytic solutions
to the equivalent porous medium problem with constant coefficients. We neglect calcite precipitation, thereby
simplifying the equations given by Ross. Unlike Amter, Behl and Ross [2] and Knapp [3], who have also
estimated '4C travel-time, we include gas-phase dispersion and demonstrate its importance. We obtain
essentially the same results as Knapp with a simpler formulation, but we do not see !4C shock fronts. We
use an atmospheric box-dispersion model after Schiager [4] to estimate above-ground concentrations and
dose rates.

Parts of this work have been published previously [5]. This analysis has also been applied in a coupled
analysis of 14C leaked from nuclear waste containers [6].

2. ANALYS:S

Our goal is to develop a model that can reliably estimate the release of 14C to the accessible environment
and the potential dose due to exposure above ground. We choose a simple mechanistic approach that will be
reliable in extrapolating repository performance to the thousands of years required for the disposal of high
level waste and will aid in understanding the qualitative behavior of the repository system.

The main force driving the transport of gaseous radionuclides to the biosphere is the convective flow
of gas caused by radioactive-decay heat. Near the repository, this flow will be directed upward from the
waste toward the ground surface. A steady-state gas flow model with constant, uniform upward gas flow
will therefore capture the most important details for suitably short time windows.

We assume that 14C is released from failed waste canisters as 19COy(g). Because CO, dissolves readily
in water, we expect transport of 14C to be retarded by dissolution into vadose water. Some 14C will react
to form calcite and other minerals but the fraction in solid phases is difficult to predict and the amount is
probably not significant compared to the fraction in gas and liquid phases. Thus we neglect precipitation
into solid phases.

The degree to which CO; dissolves in water is well known and the reaction rate is relatively fast. For
14C0O,, we adopt the equilibrium values for CO3 in pure water at infinite dilution. Corrections for the
chemical difference between 2C and 4C, capillary effects, and varying air and water compositions are small
relative to other model uncertainties. The four aqueous species—CQ3, carbonic acid, and bicarbonate and
carbonate ions—account for almost all of the inorganic liquid-phase carbon. Using the equilibrium values
for these species, a good approxiniation can be made of the ratios of concentrations of 14C(g) to **C(aq) in
adjoining gas and liquid as a function only of temperature and pH.
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We define the gas-liquid distribution coefficient

K molar concentration of inorganic carbon in liguid )
D= "molar concentration of inorganic carbon in gas

Taking into account the four major aqueous species and CO; in the gas phase
= [CO2(ag)] + [H2CO3(aq)] + [HCO3] + [CO3”]
[CO2(g)]

In terms of the gas constant R, the temperature T, the hydrogen ion concentration {H*] and the equilibrium
constants Ky, Ky and K

K )

K, KK,

Kp=RThy|l+ m + W (3)
where
. _ [CO2(aq)] + [12C0s(aq)] - [H*][HCO5 ] _ [H*)icoi-
K = Pco, K= [CO2(aq)] + [12CO3(aq)] 2T [HCO3] “

and pco, is the partial pressure of COz in atmospheres.

Equilibrium data from Stumnm and Morgan [7] and Phillips, Phillips and Skeen [8] were used to plot
the curves in Fig. 1 showing Kp as a function of pH for various fixed teraperature values. Depending on
vhe pH and temperature, Kp may be as low as 2 or as high as 400 for geologic conditions surrounding the
repository. For numerical illustrations, we usec K'p = 3, which corresponds to 50°C and pH 7.

2.1. Discrete Fracture Analysis

The main purpose of the fracture model is to investigate whether gas-phase carbon in the fractures is at
equilibrium with liquid-phase carbon in the rock between the fractures. The tendency of the gas and liquid
to equilibrate will be offset by the different flow velocities of the two phases and the physical separation
between fractures and rock pores.

We consider a single vertical planar {racture filled with gas, adjacent to a fully saturated porous medium,
as shown in Figure 2. Once we demonstrate local equilibrium using this model, we can infer local equilibrium
for a partially saturated rock matrix.

We neglect dispersion in the fracture and assume that the gas is well-mixed over the width of the fracture
so that the concentration is uniform in the fracture in the y-direction. We also assume uniformity in the
z-direction for concentrations in the fracture and rock matrix, as well as a constant, upward gas velocity
in the fracture. The governing equation for the fracture domain, incorporating the interaction with the
adjacent porous medium, is then

BCg 3Cg _ Dy 0C
ot +4\Cg+vgaz =% by -, z>0 t>0 (5)

where C, is the molar concentration of '¥C in gas, C; is the molar concentration in liquid, g is the fracture-
gas velocity, ¢ is the rock-matrix porosity, D; is the pore-liquid diffusion coefficient, b is the half width of the
fracture ard A is the decay constant.

Withiu the porous matrix, the only transport mechanism considered is transverse diffusion; diffusion
parallel to the fracture and advection are neglected. For a constant scalar diffusion coefficient, the mass
balance in the rock matrix is

2
%%'F’\C'I—‘Dl%!%:() y>b z2>0 >0 (6)
The 2-axis is defined to be in the upward vertical direction with the repository horizon at z = 0. We prescribe
at z = 0 the gas-phase concentration of 1#CO, in the fracture as a function of time representing a gaseous
release from the waste containers,

C,(0,0=v(t) >0 O]
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Figure 1. Kp as a function of pH and temperature.
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At the fracture-wall interface where gas meets liquid, we assume the ratio between gas and liquid-phase
concentrations to be giver by Kp,

Cib,2,t) = KpCy(z,i)  2>0 t>0 (8)

The remaining initial and boundary conditions are

Cy(2,0)=0 >0 9
Ci(350)=0 y>b z>0 (10)
Cyloo,t) =0 t>0 (1)
Ci{oo,z,t) =0 2>0 t>0 (12)

The solution to this equation system is derived in Appendix A and written here in terms of the dimensionless
parameters Y, Z, T and A. The concentration of 14CQ, in the fracture is given by

T-2
) z _z?
C)(2,T) = e Mh(T - 2) o/ WT -2 - ) exp (_4;. - AT) dr 250 T>0 (13)

and in the rock matrix

T-2
_ zZ+Y —(Z+Y)?
, =K AZ _ - Z- —_ 14
Ci(Y,Z,T) = Kpe KT - 2) -u/ YT -2 7)2\/7r_exp[ yp Ar| dr Y,Z,T>0 (14)
Where b 2K3D, 2K D Ab?
— = _Z8pha _ KD -
Y =¢Kp b Z = ub? T= & A= KD, (15)

At this point we choose to consider a delta-function impulse in time for the concentration of C0O;(g)
flowing into the fracture at z = 0. That is we prescribe ¥(T) as follows

$(T) = 2C6(T) (16)

where C is a constant with units of concentration. We can express C in terms of the amount released by
integrating the release rate over time and equating that to the total amount released 7y. The release rate is
equal to the cross-sectional area of the fracture, A, times the gas velocity, vy, times the concentration, ¥(T),
leading to the equation

[Avpa=1o (17)
[}
Recalling from the definition of T that
b?
= ——
d kI, (18)

we can change the variable of integration and substitute #(T’) from (16) to get

o0
24v,CH?
(m) /6(T)dT—- Iy (19)
0
or 2502 D
C= In*Kp Dy (20)

Avgh?
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The impulse-release form of solutions (13) and (14) is obtained by substituting ¥(T") from (16) and
integrating using the sifting property of the delta function to get the gas concentration in the fracture

cz -2’
Cy(Z,T)=h(T—Z)2\/ﬂ,(—T_Z)3 *p [4(T—Z)

—AT] Z>0 T>0 (21)

and the liquid-phase concentration in the matrix

ooz -sr- S e [

—AT] Y>0 Z2>0 T>0 (22)

A quantity of 'C released as an impulse into the fracture will be advected upward in the fracture and
will diffuse transversely in the matrix. The transverse diffusion causes the impulse to spread in both the y
and z directions. The location of the peak of the concentration wave in the fracture, Zpeak(T), is obtained
by maximizing C, in (21) with respect to Z. This involves finding the proper root of the cubic polynomial

Z2 -1+ T)Z -T2 +4T? =0 (23)

At early times both T and Z are very small. The asymptotic behavior of Zp.ax(T') at early times can be
found by dropping the cubic terms from (23) and solving the resulting quadratic polynomial

-22° —2TZ +4T? =0 (24)
The roots are —~2T and T. The positive root gives the early-time asymptote

Jim Zpew ~ T (25)

In other words, the pulse, at early times, moves at a velocity dZ/dT ~ 1. Substituting the definitions of Z
and T into this equation yields the real (dimensional) velocity dz/dt ~ v,.
The solution to the original cubic equation is derived in Appendix B. The root corresponding to Zpeak

9 9 1 873~ 12T2+ 42T + 8] 4«
=S(T+1)+oV4T? + 14T + dcos [ -A e |t
Zpeak 3(T+ )+ 3 + +4cos (3 rccos [ (@T? + 4T 1 47 ] + 3 ) (26)

is

The asymptotic limit of (26) for large time is given by

Jim Zpear ~ ver (27)

From this we see that the velocity of the concentration peak in the fracture decreases like 1/v/% for
T>1

Another interesting result, obtained from the solution for the concentration in the matrix, C)(Y, Z,T)
in (22), is the location of the *C peak in the rock matrix, where C; is maximized with respect to Y for given
Z and T values. The result, denoted Ypeax, is given by

v _{ 0, T<Z+iz® o8
ek =\ AT -2) -2, T>Z+iz (28)

The asymptotic limit as T goes to infinity is

Am Yoeai ~ V2T - Z (29)

From this equation we see that the wave peak develops into a straight line in the rock matrix region with
slope 0Ypeak/3Z = —1. The slope in the dimensional y-2 plane is given by —1/P where P is the modified

Peclet number defined
buy

= (KD D,

(30)
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When P is much less than unity, the asymptote intersects the fracture at nearly right angles. Furthermore,
the concentration along this asymptote is constant in the asymptotic limit (7" 3> 1) as determined by taking
the limit of the ratio of peak concentration in the matrix (C;) to the peak concentration in the fracture (Cy)

lim Clpeak = lim CI(Ypeak- Z)T) —

= =K 31
T00 Cypenk  T—00 Cy(Zpeaks T) D (1)

We expect the result to be a function of Z; however, we discover that for a fixed but large time the concen-
tration along the wave crest in the matrix region is constant and equal to Kp times the peak concentration
in the gas phase in the fracture.

We can do a similar calculation for a partially saturated matrix instead of the fully saturated matrix
above if we assume local equilibrium between gas and liquid-phase concentrations throughout the matrix.
The asymptotic limits are then valid for ¢ 3> ?/(¢; + €1/Cp)(€; Dy + €K p Dy) and the asymptotic wave-peak
slope Oypeak /07 is given by the negative inverse of the modified Peclel number redefired

by ,
p= Dy + e KpDy (32

The significance of this result is that when P is very small (P « 1) the asymptote in the matrix intersects
the fracture at nearly right angles. This leads us to conclude that if P is, in fact, much less than unity, we can
assume that gas-phase concentrations of 1*CQ4 in the fracture tend to be at equilibrium with concentrations
in laterally adjoining rock matrix. For the real case with multiple fractures, we use this result to infer that
concentrations in the fractures will be to a good approximation at equilibrium with concentrations in the
rock matrix in directions transverse to the fractures.

2.2. Equivalent Porous Medium Analysis

The transport of a species in a porous medium with both gas and liquid phases may be described using
the following two equations.

4]
(§+,\) €gCy+ V -(qeCq) = V - (¢gDy - VCy) + Sg1 = [, (33)
and s
(a"’l\) (1C{+V'(q'C1)—v-(tlD1~VC1)-—Sg, =f1 (34)

where ) is the decay constant, ¢, is the gas-filled porosity, ¢ is the liquid-filled porosity, C, is the molar
concentration of 1*C in the gas phase, C; is the mrlar concentration of C in the liquid phase, q, is the
gas Darcy velocity, q; is the liquid Darcy velocity, D, is the dispersion coefficient in the gas phase, Dy is
the dispersion coefficient in the liquid phase, Sy is the net reaction rate from gas phase to liquid, f; is the
gas-phase source term and f; is the liquid-phase source term.

If there is equilibrium between C in the fractures and in the rock-matrix pore liquid at a given z, we
can treat the whole as an equivalent porous medium without regard to fracture details. Equations (33) and
(34) can be added together to eliminate the gas-liquid reaction rate term Sy; with the result

a
(—a—t + /\) (chy + GIC{) +V. (q,C, + q;C,) -V (Eng . VC, + Dy - VC') =f (35)

where f = f, + fi is the total source strength.
Assuming local equilibrium, we replace Ci(r,t) with KpCy(r,¢) yielding

(g + A) f(eg +aKp)C )+ V - [(ag + K p)Cq) — V- [¢,Dy - VCy + Dy - V(KpCy)l = f (36)

Generally the coefficients are functions of space and time. We assume here that they are constant and
taat the dispersion coefficients are scalar. We divide through by (e, + ;K p) to get

7



(gt_ + A) Col,8) + v - VCy(r,t) — DVACy(r ) = f,_f-iquI)(D_ (37)

where qq +q,KD (yDg +aKpD,;

v=LTWED  p L THODA (38)
e+ aKp g+ aKp

Here q, is the gas Darcy velocity and q is the liquid Darcy velocity. The scalar diffusion coefficients D,

and D; have been used in place of dispersion tensors.

Solutions to this equation are well known for various source terms, boundary conditions and initial
cenditions. We assume an infinite domain with the concentration equal to zero initially and vanishing at
infinity for all time. This assumption does not allow for a boundary condition at the ground surface. In
reality, the 14C gas concentration at the ground surface ie near zero because of diffusion into the atmosphere.
Therefore, the '*C flux may be greater than predicted here due to the increased concentration gradient at
the ground surface.

We consider solutions to the problems of both a point source and an infinite plane source. For both of
these geometries we consider release rates described by impulse, band and decaying-band functions of time.
For a given release rate M(t), a point-source term can be written

f(r,t) = 6(r)M(2) (39)

and an infinite-plane-source term can be written
1(0,) = 38 (40)
where A is the area normal to z over which the release rate M occurs. The band release rate is given by
M) = e -ty = We =ty =) (a1)

where I; = I.e~*% is the releasable inventory at the failure time ¢ = t;, I, is the releasable inventory at the
time of emplacement ¢ = 0, h is the unit step function, ¢; is the time between emplacement and failure, and
t, is the time between failure and the end of release. A decaying band release is given by

e At-tr)
L j'——[h(t—tj)—h(t—lj—lr)} 42)

o

M(t) =

The impulse release rate is obtained by taking the limit as ¢, goes to zero and can be written
M(t) = I;8(t — tg) (43)

The solution for the point-source case (39) is

F M(r)exp [~ =Rl e - )]
C, t) =
s(r) / (& +akp)arD—nprr 47 1>0 (49)
0
Similarly, the solution for the infinite-plane-source case {40} is
t .
M(r)exp{-A(t — 1))
C, t) = _— - —_ -
o(z,1) (s +akp)A Gz—v(t—7),t—1)dr, (>0 (45)
where ,
Glzt) = exp{—z2/4Dt] (46)

Vdr Dt



For impulse releases, the point-source solution simplifies to

Iye~2-1) (22 + ¥+ [z —v(t—tp)]?) 4
Co2v 1Y) = R p Y D = 1) - 1) “n
and the infinite-plane-source solution simplifies to
—A(t-ty)
Cylent) = 218 Gz —v(t—t;)t 1)) (48)

(e, + aKp)A

From these solutions we are interested in obtaining additional information about the behavior of the
system. In particular, we would like to know the maximum concentration at the ground surface, the flux
at the ground surface, the maximum flux at the ground surface and the cumulative flux at the grouna
suiface. Our models deal with an infinite domain. We assume that the conditions predicted by our models
approximate the real conditions between the rer-sitory horizon and the ground surface. To obtain the
maximum values at the ground surface (or any other z value), we take partial derivatives with respect to
time and set them equal tc zero. Here we restrict ourselves to the infinite-plane cases.

For the infinite-plane, impulse release case, the time at which the concentration peaks at a given distance
z from the source plane is determined by taking the partial derivative of (48) with respect to ¢, setting it
equal to zero and solving for ¢. The result, denoted tcmax, is

1+ 2202/D? 4+ 4220 /D - 1

femae = 1y + v?/D+ 4 (49)
For the decaying-band case, consider first the solution form
Ie= ¢ 7
)y ——————— -
Cy(z,t) (& + aKo) AL, Gz—vr,r)dr, t>1 (50)

Mav[0,e—~t,-1,]

The integral in (50) can be expressed in terms of complementary er:or functions as given by Berman ef al.

9

5
/G(z —or, T, dr= % [9(2,b) — g(z,4)}] (61)
a
where )
g(z,t) = erfc (;;Tv:) —exp (%) erfc (i/:_;’t) (52)
An alternate form is I —(z— vt)? 2+ ot
g9(z,t) = erfc (m) — exp ( aDi ) F (m) (53)
where Fz) = e”erfc(::) (54)

The function F(x) monotonically decreases from unity at z = 0 to zero at # = +00 and can be accurately cal-
culated by rational approximation [10]. This is especially useful for large z calculations when the exponential
term in (52) causes numerical overflow problems.

The solution (50) for a decaying band release from an infinite plane source can be written

I.e~ 2
39(e, + aRp)AL St )

T.e=
T yTe 9zt —t)) —g(zt—ty —4,)], t>¢5+1s

ty<t<ty+t,

Cylet) = (55)



For this case, tcmax is determined by solving f(t) = 0 where f(t) is given by

— =
[?:\-g(z,r)+G(z—vr,r)] , ly<t<ty+t,
)= (56)
[—g(z )+ G(z — vr, r)] , t>tp+t,
t—ty~1,

Knowing the concentration, we can calculate the flux as the sum of an advective term and a diffusive term

. 8
#(2,8) = (95 + 61 KD)Cy(2,t) - (¢g Dy + a1 DiKp) 7-Co(2,1)

= (¢ 4 0 KD) (ng(z,t) -~ D5-Gyla, :)) 57)

For an impulse release from an infinite plane source, the expression simplifies to

8a,) = (¢g + ak’n)%(f‘_‘—‘—;ﬂcg(z,t)
1,« LG (2=t =)yt - z,){’—;—(%’—(jt‘T;’)} t>t (58)

The time at which the flux at a given location is maximum, ¢pmax, 18 given by a root of the cubic polynomial
(v + 4vDX)(t — t;)3 + (202 + 20D + 42DA)(t — t;)* + (62D ~ v2¥)(t —t;) — 2" = v (59)

For a decaying-band release from an infinite plane source, the the expression simplifies to

t—ty
z4vr

oz 1) = L=

G(z —vr, f){ } dr, t>1 (60)

Max[0,1—t,—1,]

The integral in (60) can be simplified by changing the integration variable to p = (z — vr)/v/4 D7 with

the result

/G(z vT, T){z+v'r} dr = [erf (—vb) erfc (Z-M)] (61)

2r B 4Db v4Da

The solution (60) for a decaying band release from an infinite plane source is then

Le~ z—=v(t —ty)

rfc ty<t<t;+1,
2AL, VAD(t—1;) /' y<isty+
9(z,1) = (62)

Te™™ z—v(t —1y) z=v(t—ty—t,)
fo | ~m—oxor= ] —erfc | —m———e—xooL )|, (>t +1,

24, |\ Jaba-1) ) T \VaDa-1y =1, 1+

For this case, the time at which the flux is at its peak is given by the root of f(t) = 0 where f(2) ic
given by

_ t=1y
[TAerfc(Z )-!-G(z—vr,r){z-:vr}] , ty<t<tp+t,
0

V4Dr
z+or )]V
)+G(z vr,r){ 57 }] , t>tp+t,

t—tp—t,

fty= (63)

2 (372
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2.3. Atmospheric Diffusion and Dose Calculation

The above-ground *CO, concentration c is estimated by a method after Schiager [4] for estimating
radon concentrations near uranium mill tailings piles

L
c= ::U (64)

where L is the lateral extent of the repository, U is the mean wind speed and o, is the mean vertical
mixing height. The vertical flux ¢ is evaluated at 350 m above an infinite plane source using the equivalent
porous medium model. To convert above-ground 14CQO, concentration to dose, we use the dose factor
108(mrem/y)/(uCi/cin®) from a recent NCRP report [11].

3. NUMERICAL ILLUSTRATIONS

We illustrate the analytic results of the previous section using parameter values for a potential nuclear
waste repository in unsaturated tuff at Yucca Mountain. The quick release of !*C from waste containers
is 1nost likely during the thermal period when waste temperatures are high. Also associated with the
thermal period are large thermally-driven gas velocities. One estimate for the gas velocity in fractures due
tw repository heating is 22 m/y (0.04 m/y Darcy velocity) [12]. We assume zero liquid velocity. Other
parameters include ¢, = 0.02, ¢ = 0.08, Kp = 3, D, = 50m?%/y, and D; = 3 x 10~3m?/y. The diffusion
parameters are based on measured values for molecular diffusion in gas [13] and liquid continuums and
inciude ten-fold reductions due to tortuosity. Hydrodynamic dispersion is neglected. The value for the
fracture half-width, 10=5 m, is characteristic of reported values [14]. The half-life of C is 5730 years.

The modified Peclet number (32) is approximately 2 x 10~7. This indicates that C flowing in fractures
will spread quickly into the rock matrix between fractures and thus be retarded in accordance with the
local-equilibria assumptions used in the equivalent-porous-medium model. Retardation by the liquid phase
is incorporated in the advective transport velocity v given by (38). This yields the speed that a **C plume
would travel independent of dispersion. For the given set of values, v is about 0.015 m/y, suggesting a time
of 2300 y for 'C to travel 350 m from the repository to ground surface. However, dispersion will cause the
plume to spread and the leading edge will arrive at the ground surface more quickly.

The concentration and flux at the surface depend on the strength of the sourge. The total amount of
!1C is estimated to be 1.5 Ci/Mg U fuel at the time of emplacement; 1% is assumed ‘to be available for quick
release [15]. Given 1.5 Mg U fuel per canister, there will be 0.02 Ci of the available '*C inventory per failed
canister. For a total of 70,000 Mg U fuel in a filled repository, this corresponds to approximately 1,000 Ci
of YC available for quick release if all containers fail. If we assume 20% container failure, an inventory
of 200 Ci (about 40 g or 3 moles) could be available for quick release for the entire repository [15]. This
estimate neglects source decay between emplacement and failure times, which will be unimportant during
the thermal period.

Figure 3 shows the gas-phase concentration of C as a function of distance above a single failed container
as predicted by the point-source impulse solution for a release of 0.02 Ci. Note how the plume moves and
spreads in time. At 1500 years, much of the '4C has reached the surface (350 m), demonstrating the effect
of dispersion on travel time. The maximum concentration in the plume decreases significantly as the plume
spreads. This results almost entirely from gas-phase dispersion because little decay occurs in 1500 years. We
conclude therefore that dispersion has an important effect on both the travel time and the concentration at
the ground surface for this data set.

Figure 4 shows the gas-phase concentration above an infinite-plane source with an impulse source
strength, characteristic of 20 percent container failures distributed over the entire repository. Only lon-
gitudinal dispersion is active in transport from the plane source in Figure 4, resulting in less dispersive
attenuation than shown for the point-source release in Figure 3.

In Figure 5, the same infinite-plane source is used to show the gas-phase concentration 350 m above
the source for three different values of the gas Darcy velocity: the reference value of 0.04 m/y, as well as
0.004 and 0.4 m/y. For g, = 0.04 m/y, the leading edge reaches the ground surface in about 700 years.
The concentration peaks in 2,000 years at 3 x 10~ 7uCi/cm®, and the wave passes after about 6,000 years.
With the slower velocity of 0.004 m/y, it takes only slightly longer for the leading edge to reach the ground
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Figure 3. *CO; concentration vs. distance for impulse release of 0.02 Ci from a point
source. Gas Darcy velocity is 0.04 m/y, release at time zero.
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surface, but the peak concentration is lower due to decay and dispersion. In addition, it takes much longer
for the wave to pass through the ground. In contrast, when the velocity is 0.4 m/y, the wave passes through
in 200-300 y and the wave peak is much less attenuated by dispersion and decay, reaching 10~° xCi/cm?® at
230 years.

Figure 6 shows the gas-phase concentration 350 meters above an infinite-plane source due to a band
release of 200 Ci from a planar surface of 7 x 10% m? for a duration of 1,000 years. This figure differs from
Figure 5 in that the release is gradual; the z-axis shows elapsed time from the beginning of the release.
Curves are plotted for the same three gas Darcy velocities as those used in Figure 5. For 0.04 m/y, the
leading edge reaches the ground surface after about 1,000 years. The concentration peaks at a little over
10~7uCi/cm?® and the wave passes after about 7,000 years. For both 0.04 and 0.004 m/y, the curves are only
slightly different from the impulse-release curves in Figure 5, the latter being more dispersed and retarded.
When the velocity is 0.4 m/y, the curve becomes flat on top because there is less time for dispersion. The
wave takes less time to travel to the ground surface, approximately 230 years, and takes less time to pass
through, about 230 years after the last release from the waste. At this fiow rate, dispersion becomes less
important.

Figure 7 shows what happens to the peak concentration at the ground surface when the band-release
duration is varied from 1 to 1,000 years while the total amount released is held constant at 200 Ci. For
g, = 0.04 m/y and 0.004 m/y, the peak concentration is not affected by the band-release duration. At
the higher gas Darcy velocity, g = 0.4 m/y, the peak concentration is decreased by the longer band-release
duration. If the release duration is shorter than the travel time, as is true where the curves are flat, dispersion
will attenuate the peak of the concentration wave as it travels and will tend to minimize differences caused
by varying release durations. If the release duration is longer than the travel time, as is true where the
gy = 0.4 m/y curve slopes down, dispersion does not attenuate the concentration and the smaller release
rate of longer duration results in a lower peak concentration.

The cumula.ive release at the ground surface through 10,000 years is shown in Figure 8 for the plane-
source, impulse release. All of the **C released from an impulse source is predicted to escape to the atmos-
phere in 300 years if ¢, = 0.4m/y. For the velocity 0.04 m/y, 70 percent will escape in 5,000 years, the rest
having decayed. If the velocity is 0.004 m/y, about 10 percent will escape after 10,000 years and later.

To estimate above-ground *CO, concentration, we choose L = 3000m, o, = 20m and U = 1m/s in
(64). This is intended to produce a conservatively high estimate. The value for the vertical mixing height is
consistent with atmospheric stability class F (near stagnant) at a travel distance of 3000 m as extrapolated
from Figure 9 in Schiager [4]. The flux at the ground surface is also needed. We have calculated the flux
for impulse and decaying band releases using (58) and (62) for Kp = 3 and 250, ¢, = 2.0, 0.4, 0.04 and
0.004 m/y, and ¢, = 0, 300, 1000, 5000 and 10,000 years. The amount released is based on an initjal 1000-Ci
releasable inventory. For the decaying band releases, the total amount released is less than 1000 Ci due to
decay.

The results from the flux calculations in terms of the maximum dose to an individual downwind of the
repository are summarized in Table 1. There we see that the maximum dose predicted by this model is
10~2 mrem/y for an impulse release with Kp = 3 and ¢, = 2.0m/y. Fur Kp = 250, the doses are much
smaller.

Figure 9 shows the repository-average fractional release rate of !4C at the ground surface based on the
initial inventory. The right-hand scale shows the corresponding inhalation dose to an individual at the top
of Yucca Mountain as a function of the release duration ¢, and the gas Darcy velocity qg. The center curve,
for a release duration of 1000 years and a calculated g; = 0.04 [12), is the most likely of the five cases in
this figure. The peak dose is about 10~* mrem/y, or about 10~% of background radiation dose. Increasing
the release duration from 1000 to 10,000 years results in a peak dose about one order of magnitude lower.
Note the sharp drop in dose following the end of the release period. For the release duration of 10,000 years,
a lower average gas Darcy velocity is likely, hence we use ¢, = 0.004 m/y for the rightmost curve. Here
the peak dose to an individual is about 2 x 10~® mrem/y. The leftmost curve with the highest peak is for
an instantaneous release with g, = 0.4. The peak dose is about 5 x 10~3 mrem/y, or 10~% of background
radiation. Figure 9 shows that for ¢; < 0.4 and ¢, > 1000, the repository-average fractional release rate at
the ground surface is equal to or less than 10~® per year, the USNRC release rate criterion for the engineered
barrier system.
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Table 1. Maximum dose above ground (mrem/y) as a function of gas Darcy velocity and
band release duration for an infinite plane source with a releasable inventory of 1000 Ci
released as a decaying band in time over an area of 7 x 10°m?. Kp = 3.

Release Duration Gas Darcy Velocity (m/y)
(years) 2.0 0.4 0.004 0.0004

0 [ 1x1072 1x10"% 3x10"% 1x10°¢
300 2x 10-1 2 x 101 3x 105 1x10-¢
1000 [ 7x107%  7x10%  2x10"% 1x10"¢
5000 | 1x10~* 1x107® 8x10=® 8x10°7

10000 7x10°° 7x10°8 4 x 10~ 5 x 10~7

4. CONCLUSION

We have demonstrated a simple technique for estimating !*C transport in the partially saturated,
fractured medium at Yucca Mountain, requiring only a small set of well-defined parameter values.

Predicted gas concentrations approaching the ground surface are comparable to the unrestricted-area
USNRC Jimit of 10~7 4Ci/=m3 in air. Dilution near the ground surface as the 14CO; enters the atmosphere
will lower the concentration by several orders of magnitude. Predicted maximum dosages above ground are
much lower than background radiation at sea level. For some gas velocities, the concentrations and fluxes
at the ground surface are independent of the rate of release from the source and depend only on the total
amount released. We estimate the travel time to the surface at Yucca Mountain to be hundreds to thousands
of years, but caution that estimates are critically sensitive to the Darcy gas velocity and the distribution
coefficient. If local equilibrium is not maintained, retardation may be less than predicted and concentration
greater than predicted. For more definitive calculations the time-¢ pendent gas velocities, temperatures,
and local pH must be considered.

Solutions to porous medium equations are powerful but not always applicable to problems in fractured
media. Our technique of determining suitability using the modif.cd Peclet number will make it easier to
defend the use of such solutions in many different systems.
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NOMENCLATURE

a,b
A

b

C
G,
G
D
DgyDl
Dy, Dy
f

fy- fl
F

Y

G

h

Iy

Ie

4
K,
K,
Kp
Ku
L

M
P
Qg 49y
Qi qt
r

Sa
t, T
7

dummy variables

area of repository

half-width of fracture

source term constant (16,20)

molar concentration of '4C in the gas phase
molar concentration of C in the liquid phase
effective diffusion coefficient (38)

dispersion coefficient in gas,liquid phase
diffusion coefficient in gas,liquid phase with tortuosity
total source strength f; + f

gas liquid-phase source term

function defined by (54)

function defined by (52)

function defined by (46)

unit step function

inventory of !C released (17,19,20)
releasable inventory of 4C at emplacement
releasable inventory of C at failure

first dissociation equilibrium constant (3)
second dissociation equilibrium constant (3)
gas-liquid distribution coefficient (1,2,3)
Henry’s law constant (3)

lateral extent of repository (64)

release rate at the source

modified Peclet number (30,32)

gas Darcy velocity vector, scalar

liquid Darcy velocity vector, scalar

position vector originating at point source
net reaction rate from gas phase to liquid
time, dimensionless time (15)

time at failure

duration of release

mean wind speed (64)

effective advection velocity (38)

gas velocity in fracture

horizontal distance, dimensionless horizontal distance
vertical distance, dimensionless vertical distance
delta function

total porosity

gas-filled porosity

liquid-filled porosity

vertical flux of 14C (57)

decay constant, dimensionless decay constant
vertical mixing distance (64)

dummy variable

boundary condition source term (7,16)
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Appendix A, Derivation of Discrete-Fracture Solution

In dimensionless variables the equation system (5)-(12) becomes

9C, ac, 1 8G

—3 —_—tm A.
6T+AC’+BZ Ko BY |y, Z>0 T>0 (A1)
ac 8 _ \
_ﬁ-i-AC'—W_O Y>0 Z2>0 T>C (A2}
Cy(2,00=0 20 (A3)
G(Y,2,00=0 Y>0 Z>0 (Ad)
C0,T)=wT) T>0 (A5)
Cy(0,T)=0 T>0 (A.6)
(0, 2,T)= KpCo(Z,T) Z2>0 T>0 (AT)
Ci(0,2,T)=0 Z>0 T>0 (A.8)

The solution is obtained using Laplace transforms. First (A.1) arnd (A.2) are transformed with respeci to T'
using the initial conditions (A.3) and (A.4)

aC, A~ 1 86

B_Z_+(p+A)Cg—E ¥1% . Z>0 (A9)
8%G .
3}',—2'—(114'1\)01:0 Y>0 Z>0 (A.10)

The solution to the ordinary differential equation (A.10), using boundary conditions {A.7) and (A.8) is
Ci=KoCyexp [-YVp+A|  Y>0 Z>0 (A.11)
Substituting (A.11) into (A.9) gives
aC,

ﬁ+(p+A)é,, =—p+AC, Z>0 (A.12)

We need boundary conditions (A.5) and (A.6) to solve this equation with the result
Cy=dexp[-Z(p+A+VPTh)|  Z>0 (4.13)
Tg get the inverse Laplace transform f (A.13) we break it into factors and apply the convolution theorem.
Flrst et @(Z,p) = exp [—Z(p A+ \/M)] Z>0 (A.14)

The inverse of (A.13) can then be written as the convolution integral
T
Cy(Z2, Ty = /¢(T—T)U1(Z, T)dr (A.15)
v

To get u3(Z,T') use the p-shift property to get
ul(Z,T) = e~ Muy(2,T) (A.18)
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where
(2, p) = exp[-Z(p + vP)|
This in turn is redvced using the T-shift property to
ug(Z,T) = h(T - Z2)us(T - 2)

where
ii3(Z, p) = exp [~ Z/P]
The inverse Laplace transform of (A.19) is

uy(2,T) = _Z_ ex ——Zz
a(s, 1) = 2T p T
Putting the last several equations together gives us

A ex ( A
war=2p T\Ar-2)

T
Cy(Z,T) = /¢(T—1’)e""h(r— Z) ) dr Z>0 T>0
0

or, after rearranging
T-7

Ay gL e (ZE )
Cy(2,T) - e A2K(T Z)O/¢(T Z-nye (G- Ar) dr 250 T>0

Substituting C, from (A.13) inta (A.11) gives
Gi(Y,Z,p) = Kpfexp[~Z(p + A)exp [~(Z + Y)/o + A] Y>0 Z>0

To invert this we use the same method as before obtaining first the convolution integral
T
C(Y,Z,T)=Kp / Y(T - ryu (Y, 2, 7)dr
0

where

01(Y,2,9) = exp [~ Z(p+ N)lexp [~(Z + Y)V/p + 4]

then by the p-shift property
w(Y,2,T) = e AT uy(Y, 2,T)
where
#2(Y,2,p) = exp(—Zp) exp (~(Z +Y)/p)
then by the T-shift property
u2(Y,Z,T) = h(T — Z)ua(T - 2Z)
where

3(Y, Z,p) = exp (—(Z + Y}/D)
This is inverted as before to give

U3(Y, Zu T) =

Z+Y ox (—(Z + Y)"’)
a/rrs P\T ar
Putting it all together gives the result

Z+Y N (-(Z +Y)?

ovmr=zr i 2)

T
Gi(Y,2,T)= Kp / YT —r)e Mh(r-2Z
0

or alternatively

Z+Yex
Wars P

T-2
Ci(Y,2,T) = Kpe *?K(T-2) / WT—Z-7)
[}
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)d-r Y>0 Z>0

—(Z 2
[ (;y) —A'r] dr Y>0 Z>0

(A.17)

(A.18)

(A.19)

(4.20)

(A21)

(A4.22)

(4.23)

(A.24)

(4.25)
(A.26)
(4.27)
(4.28)

(A.29)

(4 30)

T>0

(A.31)

T>0

(A4.32)



Appendix B. Cubic Polynomi + Root Finding

The following polynomial theory is from CRC Standard Mathematical Tables, 27th Edition, by William
H. Beyer, CRC Press, Inc., Boca Raton, Florida, 1984.

Any cubic polonomial

YHpltyt+r=0 (B.1)
can be transformed by setting y = z — p/3 to
4az+b=0 (B.2)
with 1 1
a= 5(3q -p?) b= ﬁ(2p3 —~9pg + 27r) (B.3)
For p, g, r real then
2 o
T + 5 >0 — 1 real, 2 conjugate complex roots
2 ad al ]
T + 7= 0 — 3 real ronts, at least 2 equal
2 a®
T + i <0 — 3 real, unequal roots

For ab # 0 the roots can be obtained by letting 2 = m cos# to get

23 tar+b=m3cos®0+amcosf+b

=4cos30 — 3cosd — cos(30) = 0 (B4)
Hence 4 3 (36)
- —cos
m3 am b (B5)
or

m= 2@ cos(36) = % (B.6)
z= 2\/¥cos(0) 2\/¥cos (a + %") 2\/¥cos (a + %") (B.T)

where 8 is a solution to (B.6).
We have

The roots ace

p=-214+T) qg=-2T r=4T? (B8)

which leads to 9 4
a= —3-(2T2+7T+2) b= ;—7(4T3—6T2+21T+ 4) (B.9)

It can then be determined by substitution and much pencil work that 'f‘—’ + ;—; < 0 for T positive leading to
the conclusion that our original cubic polynomial has three distinct, real roots. Going back to (B.6) we have

m=2 _‘3_" = g\/n? +14T 1+ 4 (B.10)

and 3 [8T®— 1272
_3b _ [ST®—12T2+42T+38
cos(30) = o = [ (4T + 1T 1 47572 ] (B.11)
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We can now look at the early time limit to see which root gives us Zpeax. The early time limit for m in

(B.10) is .
}l_r%m =3 (B.12)

and for cos(36) in (B.11)
’Il‘im’J cos(30) =1 (B.13)

4x | etc. The early-time limits of the roots to the transformed
2

Solutions to this equation are § = 0, &,
polynomial z = mcos# are then z = 3, "Tz, =% and from this the roots to the original polynomial in the
(B.14)

early-time limit
}'l.%z =%l_r51()(: -p/3)=z+2/3=2,0,0

This narrows our choice for Zpeax to the second or third root corresponding to f =2~ or 531. We can write
the root in terms of an arccos function but we do not know yel which branch of this multivalued function to

take
= /AT 4T T dcos | 873 — 1277 4 42T 4 8 2 .
Z= 3 4T? 4+ 14T + 4 cos [garccos< @723 14T 3 477 +§(1+T) (B.15)
By trial and error we determine that (3Arccos() + 42) is the correct branch to use so we have
879 — 12T2 4+ 42T+ 8
+ + 41r> (B.16)

2 2 3 1
7z = —(7 - T 147 _ —_— —
peak—S( +1)+3\/4 + +4cos(3Arccos[ @+ 14 4)3/2 ‘+ 3

The following alternate form is better suited for numerical evaluation when T is greater than one.

2 VA + 14T + 4/T? 1 8—12/T +42/T?+8/T3] 4r¢
Zpeak = §(T+ N1+ 151/ cos §Arccos s 14T 4 47T + 3 (B.17)
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Appendix C. Derivation of Equivalent Porous Medium Solutions

Solutions to (37) for transport of a radionuclide in a porous medium with advection, diffusion and
retardation can be obtained with the use of Kelvin’s function for various source terms, boundary conditions
and initial conditions. This method follows the more general treatment given by P. L. Chambré et al. in
Chapter 10 of “Mass Transfer and Traasport in a Geologic Environment”, LBL-19430, Lawrence Berkeley
Laboratory, University of California, 1985.

We restrict ourselves to solutions of an infinite domain with a concentration of zero initially and zero at
infinity for all time. Solutions will be given for a point source and an infinite plane source with a constant
velocity v in the z direction. Mathematical expressions for the source terms are given by (39)-(43).

To remove the decay term, the dependent variable Cy is replaced by

c(r,t) = eMCy(r,t) (c.n
to yield
a eMf(r,t)
—c(r, t - Ve(r,t) = DVZe(r,t) = ——1~ .
atc(r, )+ v Ve(r,t) - DVc(r,t) < Fako (C2)
or, in cartesian space coordinates with v in the 2z direction
dc  Oc dc 9% 8% eMf(z,y,2,0)
AT (F %2 ﬁ) = T takp (€3

For a point source term (39) the right hand side of (C.3) is homogeneous away from the source point.
Solutions can be written in the product form

c(z,y,2,t) = c1(z,t)ca(y, t)es(z, ) (C4)

where ¢y, ¢co and c3 satisfy respectively

ot " Paz =0 (€5)
Ocqy 0%¢cy _
5~ D =0 (C6)
2
des L, _ pPa ko)

ot 9z FI
To remove the advection term in (C.7) the dependent variable 2 is replace by

{=z—uvi (C8)
with
es(z,t) = Go((, ) (c9)
yielding
dC3 3*Cs _
T D—‘-a—CT =0 (C.10)
The Green’s function for (C.10) is the solution to
jile} 9*c
W - D—a‘z—z— = §(¢)8(t) (C.11)

with a one-dimensional point source singularity of unit strength at ¢ = 0, ¢t = 0 and is given by the well

known Kelvin function )
1 ~(
7ETTN { 1D } (€.12)
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Thus the Green’s functions for (C.5) and (C.6) are similarly

1 —z?
7.0 = Zsexp {m} (C.13)
and N

=1 -y
gz(y,t)—mexp{ Dt} (C.14)

and the Green’s function for (C.7) from (C.12) is
_ 1 —(z — vt)? }
ga(z,?) = T exp{ 1Dt (C.15)

The Green’s function for (C.3) is the solution to

B0 (2,0, 7).
S +vee =D (62:2 + 557+ 537 ) = BB (C.16)

with a three-dimensional point source singularity of unit strength at. the origin and is given by the product
of the Green’s functions for (C.5)-(C.7)

1 ~ (=2 + 2+ (2 —v1)?)
g(z,y,2,8) = o) exp{ 1Di (C17)
or, in vector notation )
1 —(r —vt)
70 = (4rDt)*'? exp{ 4Dt } (©18)

In turn, the solution due to a point source at the origin, releasing the amount M(r)dr at time 7 during
the time span dr, creates the contribution at time ¢

AT M(7)
- —— 7.4 —
de (cg Taks T | 9(z,y,2,t—7) t>r (C.19)

Hence the total contribution due to the amount released during the time span 0~ < 7 < ¢ is given by the

superposition integral

1 .

eMM(r)

t) = _— —

dennt= [ (wﬂﬁb o202, = 7)dr (C20)
o

Substitution for ¢ (C.1} and g (C.18) leads directly to the solution (44) for a point source with a time
dependent release rate.
In the case of an infinite plane source, (C.3) reduces to
dc  Oc 9% _ eMf(z,1)

— 4y -

at 0z 5? - ¢+ aKp (c21)

The solution due to an infinite plane source at the origin, releasing the amount per unit area (M (7)/A)dr
at time 7 during the time span dr, creates the contribution at time ¢

AT (M(r
de= (%(—f((ll){i)ﬁdr) alzt—1) t>7 (C22)

The total contribution due to the amount released during the time span 0~ < 7 < ¢ is given by the
superposition integral
1 -
AT
e (M(r)/4)
t) = —_— -
e(z,t) /( < +akp ga(z,t —1)dr (C.23)
o=

Substitution for ¢ (C.1) and g3 (C.15) lead to che solution (45) for the infinite plane source with time
dependent release rate.
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