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ABSTRACT 
We predict the transport of gaseous MCC>2 from a nuclear waste repository in unsaturated rock using a 
porous-medium model. This model is justified if the appropriate modified Peclet number, which indicates 
equilibrium between gas in fractures and liquid in rock pores, is much less than unity. Numerical illustrations 
are given which are applicable to the proposed repository at Yucca Mountain which is 350 m underground. 
Maximum predicted concentrations of 1 4 C02 near the ground surface are comparable to the USNRC limit 
for unrestricted areas. Maximum predicted dose rates above ground are less than one percent of background. 
Travel times are predicted to be hundreds to thousands of years. For some cases, we show that the release 
rate from the source has negligible effect on concentrations at the ground surface 
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1. INTRODUCTION 

Radioactive gases released from nuclear waste would have a direct pathway to the biosphere if such 
wastes were placed in unsaturated rock. This presents a new problem in assessing the potential health 
impacts of such releases and in complying with regulations. 

We analyze the transport of gaseous 1 4 C 0 2 in an unsaturated, fractured, porous medium with gas-phase 
advection and dispersion. Gases released into partially saturated, fractured rock tend to move in fractures, 
while vadose water is held inside the rock matrix. Strong convection flows are expected during the thermal 
phase of repository operation, carrying " C O j toward the ground surface. 

The region around the proposed repository at Yucca Mountain consists of a few alternating layers of 
welded and nonwelded tuff. The welded tuff layers are highly fractured while the nonwelded layers are 
sparsely fractured. Porosities are near 0.1 and liquid saturation is near 0.8. Most of the permeability in the 
welded layers is due to fracture flow. Capillary action plays a large role in the fluid-flow system. Liquids 
tend to be bound by capillary force into the smaller pores, away from the fracture spaces, thus leaving the 
fractures open for gases to flow through. Other factors in the fluid-flow system are the recharge rate, heating 
from radioactive decay, and periodic changes (weather) at the ground surface. 

In our analysis we first assess the interaction of 14CC>2 with vadose water as a possible retardation 
mechanism. Then we treat the combined fracture and pore matrix as an equivalent porous medium and 
predict 1 4 C concentrations, fluxes, travel times, and above-ground concentrations and dose rates. 

This analysis differs from that proposed by Ross [1] in that we provide new support for the distribution-
equilibrium assumption by analyzing a discrete-fracture system; also, we provide complete analytic solutions 
to the equivalent porous medium problem with constant coefficients. We neglect calcite precipitation, thereby 
simplifying the equations given by Ross. Unlike Amter, Behl and Ross [2] and Knapp [3], who have also 
estimated 1 4 C travel-time, we include gas-phase dispersion and demonstrate its importance. We obtain 
essentially the same results as Knapp with a simpler formulation, but we do not see 1 4 C shock fronts. We 
use an atmospheric box-dispersion model after Schiager [4] to estimate above-ground concentrations and 
dose rates. 

Parts of this work have been published previously [5]. This analysis has also been applied in a coupled 
analysis oi' 1 4 C leaked from nuclear waste containers [6]. 

2 . ANALYSIS 

Our goal is to develop a model that can reliably estimate the release of 1 4 C to the accessible environment 
and the potential dose due to exposure above ground. We choose a simple mechanistic approach that will be 
reliable in extrapolating repository performance to the thousands of years required for the disposal of high 
level waste and will aid in understanding the qualitative behavior of the repository system. 

The main force driving the transport of gaseous radionuclides to the biosphere is the convective flow 
of gas caused by radioactive-decay heat. Near the repository, this flow will be directed upward from the 
waste toward the ground surface. A steady-state gas flow model with constant, uniform upward gas flow 
will therefore capture the most important details for suitably short time windows. 

We assume that I 4 C is released from failed waste canisters as 1 4 C 0 2 ( g ) . Because C 0 2 dissolves readily 
in water, we expect transport of 1 4 C to be retarded by dissolution into vadose water. Some 1 4 C will react 
to form calcite and other minerals but the fraction in solid phases is difficult to predict and the amount is 
probably not significant compared to the fraction in gas and liquid phases. Thus we neglect precipitation 
into solid phases. 

The degree to which CO2 dissolves in water is well known and the reaction rate is relatively fast. For 
1 4 C 0 2 , we adopt the equilibrium values for CO2 in pure water at infinite dilution. Corrections for the 
chemical difference between 1 2 C and 1 4 C , capillary effects, and varying air and water compositions are small 
relative to other model uncertainties. The four aqueous species—CO2, carbonic acid, and bicarbonate and 
carbonate ions—account for almost all of the inorganic liquid-phase carbon. Using the equilibrium values 
for these species, a good approximation can be made of the ratios of concentrations of 1 4 C(g) to 1 4 C(aq) in 
adjoining gas and liquid as a function only of temperature and pH. 
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We define the gas-liquid distribution coefficient 

_ molar concentration of inorganic carbon in liquid 
molar concentration of inorganic carbon in gas 

Taking into account the four major aqueous species and CO2 in the gas phase 

„ [CQ 2(aq)j + [H 2 C0 3 (aq)] + [HCOJ] + [COJ-] ,„. 
hD - icOT ( 2 ) 

In terms of the gas constant R, the temperature T, the hydrogen ion concentration [H + ] and the equilibrium 
constants A'H, KJ and A'2 

wlicre 

. . [CO,(aq)] + [H,COa(aq)] [ H + P C O J ] _ [H+j[COJ-] . . . 
" ~ Pco , ' [C0 2(aq)] + [H 2 C0 3 (aq)] "^ [HCOJ] W 

and pcOa is the partial pressure of C 0 2 in atmospheres. 
Equilibrium data from Stumm and Morgan [7] and Phillips, Phillips and Skeen [8] were used to plot 

the curves in Fig. 1 showing KD as a function of pH for various fixed temperature values. Depending on 
uhe pH and temperature, KD may be as low as 2 or as high as 400 for geologic conditions surrounding the 
repository. For numerical illustrations, we use K'D = 3, which corresponds to 50 °C and pH 7. 

2 . 1 . D i scre te Fracture Analys i s 

The main purpose of the fracture model is to investigate whether gas-phase carbon in the fractures is at 
equilibrium with liquid-phase carbon in the rock between the fractures. The tendency of the gas and liquid 
to equilibrate will be offset by the different flow velocities of the two phases and the physical separation 
between fractures and rock pores. 

We consider a single vertical planar fracture filled with gas, adjacent to a fully saturated porous medium, 
as shown in Figure 2. Once we demonstrate local equilibrium using this model, we can infer local equilibrium 
for a partially saturated rock matrix. 

We neglect dispersion in the fracture and assume that the gas is well-mixed over the width of the fracture 
so that the concentration is uniform in the fracture in the y-direction. We also assume uniformity in the 
i-direction for concentrations in the fracture and rock matrix, as well as a constant, upward gas velocity 
in the fracture. The governing equation for the fracture domain, incorporating the interaction with the 
adjacent porous medium, is then 

dC9 , _ dCs <D, dC,\ „ 
dt s dz b dy \ y = k

 v ; 

where Cg is the molar concentration of 1 4 C in gas, C| is the molar concentration in liquid, v} is the fracture-
gas velocity, c is the rock-matrix porosity, Di is the pore-liquid diffusion coefficient, b is the half width of the 
fracture ar.d A is the decay constant. 

Within the porous matrix, the only transport mechanism considered is transverse diffusion; diffusion 
parallel to the fracture and advection are neglected. For a constant scalar diffusion coefficient, the mass 
balance in the rock matrix is 

- ^ + AC, -D,-gQ- = 0 y>b z>0 i>0 (6) 

The 2-axis is defined to be in the upward vertical direction with the repository horizon at z = 0. We prescribe 
at z — 0 the gas-phase concentration of 1 4 C 0 2 in the fracture as a function of time representing a gaseous 
release from the waste containers, 

C , (0 ,0 = l W < > 0 (7) 
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Figure 1. A'D as a function of pH and temperature. 
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Figure 2. Fracture-model geometry showing a vertical planar fracture next to a porous 
rock matrix. 
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At the fracture-wall interface where gas meets liquid, we assume the ratio between gas and liquid-phase 
concentrations to be giver by KD , 

C,(b,z,t) = KDCg(z,;) 2 > 0 t > 0 (8) 

The remaining initial and boundary conditions are 

C , ( 2 , 0 ) = 0 2 > 0 (9) 

C,(!/,2,0) = 0 y>b * > 0 (10) 
C s(oo,«) = 0 « > 0 (11) 

Ci(oo,z,t) = 0 J > 0 t > 0 (12) 

The solution to this equation system is derived in Appendix A and written here in terms of the dimensionless 
parameters V, Z, T and A. The concentration of " C O j in the fracture is given by 

CJZ,T) = e-*zh(T-Z) f </»(T - Z - r ) f— exp ( —— - AT ] dr Z>0 T>0 
J 2 W T 3 \ 4T / 
o 

and in the rock matrix 

T-z 
C,{Y,Z,T) = KDe-AZh(T-Z) f i>(T - Z - T ) - ^ = ^ e x p [ ~ ( Z . + ^ - A T ] dr Y,Z,T>0(U) 

o 

where 

y = , K B S Z » Z ^ - ^ i r = ^ f A = _ £ - (15) 

At this point we choose to consider a delta-function impulse in time for the concentration of 14CC>2(gl 
flowing into the fracture at z = 0. That is we prescribe <I>(T) as follows 

<1>(T) = 2C6(T) (16) 

where C is a constant with units of concentration. We can express C in terms of the amount released by 
integrating the release rate over time and equating that to the total amount released Io- The release rate is 
equal to the cross-sectional area of the fracture, A, times the gas velocity, vg, times the concentration, i>(T), 
leading to the equation 

/ Avgipdl = h 
o 

Recalling from the definition of T that 

(17) 

^skm*1, < 1 8> 
we can change the variable of integration and substitute tj)(T) from (16) to get 

oo 

Io<2I<lD, 
Av.b* 

(20) 



The impulse-release form of solutions (13) and (14) is obtained by substituting il>(T) from (16) and 
integrating using the sifting property of the delta function to get the gas concentration in the fracture 

CZ T — Z2 1 
CAZ,T) = k(T-Z)2MT_z)3eXp[w-YrAT\ Z>0 T > 0 (21) 

and the liquid-phase concentration in the matrix 

C,(Y, Z, T) = h(T - Z) *^-Zr 6 X P [~4(7-- V) ~ A T ] y > ° 2 > ° T > ° ( 2 2 ) 

A quantity of 1 4 C released as an impulse into the fracture will be advected upward in the fracture and 
will diffuse transversely in the matrix. The transverse diffusion causes the impulse to spread in both the y 
and z directions. The location of the peak of the concentration wave in the fracture, Zpts&(T), is obtained 
by maximizing Cs in (21) with respect to Z. This involves finding the proper root of the cubic polynomial 

Z3 - 2( 1 + T)Z2 - 2TZ + AT2 = 0 (:>3) 

At early times both T and Z are very small. The asymptotic behavior of Z p e a i i (T) at early times can be 
found by dropping the cubic terms from (23) and solving the resulting quadratic polynomial 

-2Z2 - 2TZ + 4T2 = 0 (24) 

The roots are — 2T and T. The positive root gives the early-time asymptote 

H m Z p e a k ~ T (25) 

In other words, the pulse, at early times, moves at a velocity dZ/dT ~ 1. Substituting the definitions of Z 
and T into this equation yields the real (dimensional) velocity dz/dt ~ vg. 

The solution to the original cubic equation is derived in Appendix B. The root corresponding to £ p e ak 

v., • j(T * •>+j varum.. f > - [•£ ^ ^ f ] * f) « 
The asymptotic limit of (26) for large time is given by 

^lin^ .Zp e a k ~ y/W (27) 

From this we see that the velocity of the concentration peak in the fracture decreases like 1/y/t for 
T » l . 

Another interesting result, obtained from the solution for the concentration in the matrix, Ci(Y,Z,T) 
in (22), is the location of the I 4 C peak in the rock matrix, where Ci is maximized with respect to Y for given 
Z and T values. The result, denoted Yp eai,, is given by 

_ f 0, T < Z + \Z2 

p e a k ~ 1 S/2(T-Z)-Z, T>Z + ±Z2 ( 2 8 ) 

The asymptotic limit as T goes to infinity is 

jlim^Vpeak ~ \ / 2 T ' - Z (29) 

From this equation we see that the wave peak develops into a straight line in the rock matrix region with 
slope dYpeay/dZ = - 1 . The slope in the dimensional y-z plane is given by -1/P where P is the modified 
Peclet number defined 

' = n & ( » ) 
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Wh»n P is much less than unity, the asymptote intersects the fracture at nearly right angles. Furthermore, 
the concentration along this asymptote is constant in the asymptotic limit (T S> 1) as determined by taking 
the limit of the ratio of peak concentration in the matrix (Q) to the peak concentration in the fracture (Cg) 

,. Qpeak ,. C|(Ypeak, %> T) . . 
hm — E — = hm —f- — = KD (31) 

T—oo C 9 peak T—°° L$ ( ̂ peak • J .) 
We expect the result to be a function of Z; however, we discover that for a fixed but large time the concen­
tration along the wave crest in the matrix region is constant and equal to Ko times the peak concentration 
in the gas phase in the fracture. 

We can do a similar calculation for a partially saturated matrix instead of the fully saturated matrix 
above if we assume local equilibrium between gas and liquid-phase concentrations throughout the matrix. 
The asymptotic limits are then valid for t S> 6 2 / ( f j + el^D)(^gDg + C|A'rjD|) and the asymptotic wave-peak 
slope Sypeak/d* >s given by the negative inverse of the modified Peclet number redefined 

P = 6"» f 3 .» 
e,D, + eiKDD, ( ' 

The significance of this result is that when P is very small (P < 1) the asymptote in the matrix intersects 
the fracture at nearly right angles. This leads us to conclude that if P is, in fact, much less than unity, we can 
assume that gas-phase concentrations of 14CC>2 in the fracture tend to be at equilibrium with concentrations 
in laterally adjoining rock matrix. For the real case with multiple fractures, we use this result to infer that 
concentrations in the fractures will be to a good approximation at equilibrium with concentrations in the 
rock matrix in directions transverse to the fractures. 

2.2. Equivalent Porous Medium Analysis 
The transport of a species in a porous medium with both gas and liquid phases may be described using 

the following two equations. 

(JF + A ) e'c'+ v ' ^q'Ct) ~ v ' { e s ° s •V C j ) + s*'= fs 

(£•»)• 

(33) 

and 

ViCi + V-(q,C,)-V-(£,D,-VC,)-S„ = /, (34) 

where A is the decay constant, (g is the gas-filled porosity, f| is the liquid-filled porosity, Cg is the molar 
concentration of 1 4 C in the gas phase, Ci is the nvlar concentration of 1 4 C in the liquid phase, q s is the 
gas Darcy velocity, q ( is the liquid Darcy velocity, D s is the dispersion coefficient in the gas phase, D | is 
the dispersion coefficient in the liquid phase, Sgi is the net reaction rate from gas phase to liquid, fs is the 
gas-phase source term and ft is the liquid-phase source term. 

If there is equilibrium between 1 4 C in the fractures and in the rock-matrix pore liquid at a given z, we 
can treat the whole as an equivalent porous medium without regard to fracture details. Equations (33) and 
(34) can be added together to eliminate the gas-liquid reaction rate term S3i with the result 

(ji + A ) {e°C> + C , C , ) + V ' ( q » C * + q , C , ) " V ' ( < r » D » • V C » + f , D ' ' V C , ) = f 

where f = fs + fi is the total source strength. 
Assuming local equilibrium, we replace Ci(r,() with KoC3(T,t) yielding 

(Ft + A ) [ ( £ » + C , K D ^ + V • Kl» + t'KD)C,] - V • [ e ,D , • VC„ + t ,D, • V(KDC„)] = f 

(35) 

(36) 

Generally the coefficients are functions of space and time. We assume here that they are constant and 
tiiat the dispersion coefficients are scalar. We divide through by (<g + (.IKD) to get 
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g + A ) c , ( , . 0 + v . V C f ( r , 0 - Z > V ' C f ( r , 0 = ̂ _ (37) 

where „ „ „ „ 
v _ 13+<1IKD D _ CgDg+eihpDl ,gg> 

Here q } is the gas Darcy velocity and q; is the liquid Darcy velocity. The scalar diffusion coefficients Ds 

and Di have been used in place of dispersion tensors. 
Solutions to this equation are well known for various source terms, boundary conditions and initial 

conditions. We assume an infinite domain with the concentration equal to zero initially and vanishing at 
infinity for all time. This assumption does not allow for a boundary condition at the ground surface. In 
reality, the , 4 C gas concentration at the ground surface ip near zero because of diffusion into the atmosphere. 
Therefore, the 1 4 C flux may be greater than predicted here due to the increased concentration gradient at 
the ground surface. 

We consider solutions to the problems of both a point source and an infinite plane source. For both of 
these geometries we consider release rates described by impulse, band and decaying-band functions of time. 
For a given release .-ate M(t), a point-source term can be written 

f(t,t) = S(t)M(t) (39) 

and an infinite-plar.e-source term can be written 

f(t,t) = jS(x)M{t) (40) 

where A is the area normal to z over which the release rate M occurs. The band release rate is given by 

M(t) = ^[h(t-t,)-h(t-tt-tr)} (41) 

where 7/ = Ite~x'' is the releasable inventory at the failure time t = (/, Ie is the releasable inventory at the 
time of emplacement £ = 0, h is the unit step function, tj is the time between emplacement and failure, and 
tr is the time between failure and the end of release. A decaying band release is given by 

M(t) = -!—- [h(t - t , ) - h ( t - t , - tr)} (42) 

The impulse release rate is obtained by taking the limit as tr goes to zero and can be written 

M(t) = I,6(t-t,) (43) 

The solution for the point-source case (39) is 

; A f ( r ) e x p [ - < — i ' t : l f - X ( t - r ) } 

o 

Similarly, the solution for the infinite-plane-source case (40) is 

o 

where 

O(,.0 = = e £ M ( 4 6 ) 



For impulse releases, the point-source solution simplifies to 

C9(x,y, z,t) : 
Ije-*'-") 

and the infinite-plane-source solution simplifies to 

exp 
• ( s 2 + y ' + [ z - t ; ( i - t / ) ] a ) 

4D(t - tf) 

C^^^ZZA^-*-1^-^ 

(47) 

(48) 

From these solutions we are interested in obtaining additional information about the behavior of the 
system. In particular, we would like to know the maximum concentration at the ground surface, the flux 
at the ground surface, the maximum flux at the ground surface and the cumulative flux at the grounu 
suiface. Our models deal with an infinite domain. We assume that the conditions predicted by our models 
approximate the real conditions between the rer "jtory horizon and the ground surface. To obtain the 
maximum values at the ground surface (or any other z value), we take partial derivatives with respect to 
time and set them equal to zero. Here we restrict ourselves to the infinite-plane cases. 

For the infinite-plane, impulse release case, the time at which the concentration peaks at a given distance 
z from the source plane is determined by taking the partial derivative of (48) with respect to t, setting it 
equal to zero and solving for t. The result, denoted ( 

ta :t,+ 
y/\+z2v2/D* + 4z*\/D-l 

For the decaying-band case, consider first the solution form 

C i(*,«) = 
he' 

((g+e,KD)Atr I G(z- vT,r)dT, t > tf 

(49) 

(50) 
Mavjn.t-tj-t,.] 

The integral in (50) can be expressed in terms of complementary er:or functions as given by Berman tt ai 
[9] 

J G(z- lr'~~ ~2v [ » ( * ' & ) - » ( * • ' 

where 

An alternate form is 

where 

g(z, t) — erfc te£Y yvm-tj e x p ( ^ ) e r f c ( ^ r ) 

g(z, t) = erfc ( , ) 

F(x) 

(-(z-vt)2\ „fz + vt\ 

erfc(i) 

(51) 

(52) 

(53) 

(54) 

The function F(x) monotonically decreases from unity at x = 0 to zero at x = +00 and can be accurately cal­
culated by rational approximation [10]. This is especially useful for large z calculations when the exponential 
term in (52) causes numerical overflow problems. 

The solution (50) for a decaying band release from an infinite plane source can be written 

C„(z,t)=t 

Uf 
2v(es+i,KD)AtT 

9(z,t-t,), t; <t <tf + tr 

(55) 

. 2v{e, + t,KD)At - \g(z,t- tf) - g(z, t-tf-tr)], t>t, + tr 



For this case, tcmax is determined by solving /(() = 0 where f(t) is given by 

/(*) = 
-x V~'J 

—g(z, T) + G(z - VT, T)\ , tj<t<tj + tr 

*v Jo 
g (z, r) + G(z — vr, T) 

Jt-tj-tr 

(56) 
i > tj + tr 

Knowing the concentration, we can calculate the flux as the sum of an advective term and a diffusive term 

<Kz,0 = («* + 1iKD)Cg(z, t) - (isDs + C,D,KD)—Cs(z,t) 

= (t, H €,KD) (vC,(z,t) - D^Cs(z, I)) (57) 

For an impulse release from an infinite plane source, the expression simplifies to 

K*,t) = lt, + t,KD)*^lt

t,)C,i*,t) 

.4£ 0 (.-<,-„„-w{££Ez ?l} •>„ (58) 

The time at which the flux at a given location is maximum, (p mox. is givpn by a root of the cubic polynomial 

(D 3 + 4vD\)(t - t;)3 + (zv2 + 2vD + izDX)(t -t,f + (6zD - vz2)(t - tj) - z 3 = u (59) 

For a decaying-band release from an infinite plane source, the the expression simplifies to 

0 ( 2'' ) = ^£" / G(2-«r,r){i±^}dr, t > t, (60) 
MaxIO,!-!/-!,.] 

The integral in (60) can be simplified by changing the integration variable to p = (z — VT)/V4DT with 
the result 

/<*-...ft=}*-SK5S)--*(;K)] < 6 " 
The solution (60) for a decaying band release from an infinite plane source is then 

<Kz,t)--
1AU \y/4D(t-tt)J 

he-
1Atr 

erfc 
(z-v(t-ts)\ _ e r f c (z-v(t-t,-tr)X 
\y/4D(t-t,)J \^4D(t-tj-tr)J 

t, <t<tj+tr 

t>tj+tr 

(62) 

For this case, the time at which the flux is at its peak is given by the root of /(<) = 0 where f(t) ie 
given by 

/ « = h^erfc ( s ) + G ( z - VT' T) { ^ 1 1 „ * • tf * ' - ( /+ t r 

(63) 
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2.3. Atmospheric Diffusion and Dose Calculation 

The above-ground 1 4 C 0 2 concentration c is estimated by a method after Schiager [4] for estimating 
radon concentrations near uranium mill tailings piles 

where L is the lateral extent of the repository, U is the mean wind speed and at is the mean vertical 
mixing height. The vertical flux <j> is evaluated at 350 m above an infinite plane source using the equivalent 
porous medium model. To convert above-ground 1 4 C 0 2 concentration to dose, we use the dose factor 
10 s (mrem/y)/( / jCi/cm 3 ) from a recent NCRP report [11]. 

3 . NUMERICAL ILLUSTRATIONS 

We illustrate the analytic results of the previous section using parameter values for a potential nuclear 
waste repository in unsaturated tuff at Yucca Mountain. The quick release of 1 4 C from waste containers 
is most likely during the thermal period when waste temperatures are high. Also associated with the 
thermal period are large thermally-driven gas velocities. One estimate for the gas velocity in fractures due 
tu repository heating is 22 m/y (0.04 m/y Darcy velocity) [12]. We assume zero liquid velocity. Other 
parameters include c„ = 0.02, a = 0.08, KD = 3, Dg = 50m 2 / y , and D, = 3 x 1 0 - 3 m 2 / y - The diffusion 
parameters are based on measured values for molecular diffusion in gas [13] and liquid continuums and 
include ten-fold reductions due to tortuosity. Hydrodynaniic dispersion is neglected. The value for the 
fracture half-width, 10~ 5 m, is characteristic of reported values [14]. The half-life of 1 4 C is 5730 years. 

The modified Peclet number (32) is approximately 2 x ! 0 - 4 . This indicates that l 4 C flowing in fractures 
will spread quickly into the rock matrix between fractures and thus be retarded in accordance with the 
local-equilibria assumptions used in the equivalent-porous-medium model. Retardation by the liquid phase 
is incorporated in the advective transport velocity v given by (38). This yields the speed that a 1 4 C plume 
would travel independent of dispersion. For the given set of values, v is about 0.015 m/y, suggesting a time 
of 2300 y for 1 4 C to travel 350 m from the repository to ground surface. However, dispersion will cause the 
plume to spread and the leading edge will arrive at the ground surface more quickly. 

The concentration and flux at the surface depend on the strength of the source. The total amount of 
H C is estimated to be 1.5 Ci/Mg U fuel at the time of emplacement; 1% is assumed'to be available for quick 
release [15]. Given 1.5 Mg U fuel per canister, there will be 0.02 Ci of the available l 4 C inventory per failed 
canister. For a total of 70,000 Mg U fuel in a filled repository, this corresponds to approximately 1,000 Ci 
of I 4 C available for quick release if all containers fail. If we assume 20% container failure, an inventory 
of 200 Ci (about 40 g or 3 moles) could be available for quick release for the entire repository [15]. This 
estimate neglects source decay between emplacement and failure times, which will be unimportant during 
the thermal period. 

Figure 3 shows the gas-phase concentration of 1 4 C as a function of distance above a single failed container 
as predicted by the point-source impulse solution for a release of 0.02 Ci. Note how the plume moves and 
spreads in time. At 1500 years, much of the 1 4 C has reached the surface (350 m), demonstrating the effect 
of dispersion on travel time. The maximum concentration in the plume decreases significantly as the plume 
spreads. This results almost entirely from gas-phase dispersion because little decay occurs in 1500 years. We 
conclude therefore that dispersion has an important effect on both the travel time and the concentration at 
the ground surface for this data set. 

Figure 4 shows the gas-phase concentration above an infinite-plane source with an impulse source 
strength, characteristic of 20 percent container failures distributed over the entire repository. Only lon­
gitudinal dispersion is active in transport from the plane source in Figure 4, resulting in less dispersive 
attenuation than shown for the point-source release in Figure 3. 

In Figure 5, the same infinite-plane source is used to show the gas-phase concentration 350 m above 
the source for three different values of the gas Darcy velocity: the reference value of 0.04 m/y, as well as 
0.004 and 0.4 m/y. For qs — 0.04 m/y, the leading edge reaches the ground surface in about 700 years. 
The concentration peaks in 2,000 years at 3 x 1 0 - 7 p C i / c m 3 , and the wave passes after about 6,000 years. 
With the slower velocity of 0.004 m/y, it takes only slightly longer for the leading edge to reach the ground 
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Figure 3 . 1 4 C 0 2 concentration vs. distance for impulse release of 0.02 Ci from a point 
source. Gas Darcy velocity is 0.04 m/y, release at time zero. 
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Figure 4. 14CC>2 concentration vs. distance for impulse release of 200 Ci per 7 x 106 m 2. 
Gas Darcy velocity is 0.04 m/y, release at time zero. 
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surface, but the peak concentration is lower due to decay and dispersion. In addition, it takes much longer 
for the wave to pass through the ground. In contrast, when the velocity is 0.4 m/y, the wave passes through 
in 200-300 y and the wave peak is much less attenuated by dispersion and decay, reaching 10~ 6 / iCi /cm 3 at 
230 years. 

Figure 6 shows the gas-phase concentration 350 meters above an infinite-plane source due to a band 
release of 200 Ci from a planar surface of 7 x 10 6 m 2 for a duration of 1,000 years. This figure differs from 
Figure 5 in that the release is gradual; the x-axis shows elapsed time from the beginning of the release. 
Curves are plotted for the same three gas Darcy velocities as those used in Figure 5. For 0.04 m/y, the 
leading edge reaches the ground surface after about 1,000 years. The concentration peaks at a little over 
10 _ 7 / iC i / cm 3 and the wave passes after about 7,000 years. For both 0.04 and 0.004 m/y, the curves are only 
slightly different from the impulse-release curves in Figure 5, the latter being more dispersed and retarded. 
When the velocity is 0.4 m/y, the curve becomes flat on top because there is less time for dispersion. The 
wave takes less time to travel to the ground surface, approximately 230 years, and takes less time to pass 
through, about 230 years after the last release from the waste. At this liow rate, dispersion becomes less 
important. 

Figure 7 shows what happens to the peak concentration at the ground surface when the band-release 
duration is varied from 1 to 1,000 years while the total amount released is held constant at 200 Ci. For 
qg = 0.04 m/y and 0.004 m/y, the peak concentration is not affected by the band-release duration. At 
the higher gas Darcy velocity, qg = 0.4 m/y, the peak concentration is decreased by the longer band-release 
duration. If the release duration is shorter than the travel time, as is true where the curves are flat, dispersion 
will attenuate the peak of the concentration wave as it travels and will tend to minimize differences caused 
by varying release durations. If the release duration is longer than the travel time, as is true where the 
qg = 0.4 m/y curve slopes down, dispersion does not attenuate the concentration and the smaller release 
rate of longer duration results in a lower peak concentration. 

The cumulative release at the ground surface through 10,000 years is shown in Figure 8 for the plane-
source, impulse release. All of the 1 4 C released from an impulse source is predicted to escape to the atmos­
phere in 300 years if qg = 0.4m/y. For the velocity 0.04 m/y, 70 percent will escape in 5,000 years, the rest 
having decayed. If the velocity is 0.004 m/y, about 10 percent will escape after 10,000 years and later. 

To estimate above-ground I 4 C 0 2 concentration, we choose L = 3000 m, a, = 20 m and U = l m / s in 
(64). This is intended to produce a conservatively high estimate. The value for the vertical mixing height is 
consistent with atmospheric stability class F (near stagnant) at a travel distance of 3000 m as extrapolated 
from Figure 9 in Schiager [4]. The flux at the ground surface is also needed. We have calculated the flux 
for impulse and decaying band releases using (58) and (62) for KD = 3 and 250, qg = 2.0, 0.4, 0.04 and 
0.004 m/y, and tr = 0, 300, 1000, 5000 and 10,000 years. The amount released is based on an initial 1000-Ci 
releasable inventory. For the decaying band releases, the total amount released is less than 1000 Ci due to 
decay. 

The results from the flux calculations in terms of the maximum dose to an individual downwind of the 
repository are summarized in Table 1. There we see that the maximum dose predicted by this model is 
1 0 - 2 mrem/y for an impulse release with KD — 3 and qg — 2.0m/y. Fur A'c = 250, the doses are much 
smaller. 

Figure 9 shows the repository-average fractional release rate of 1 4 C at the ground surface based on the 
initial inventory. The right-hand scale shows the corresponding inhalation dose to an individual at the top 
of Yucca Mountain as a function of the release duration tr and the gas Darcy velocity qg. The center curve, 
for a release duration of 1000 years and a calculated qg = 0.04 [12], is the most likely of the five cases in 
this figure. The peak dose is about 10~ 4 mrem/y, or about 10~ 6 of background radiation dose. Increasing 
the release duration from 1000 to 10,000 years results in a peak dose about one order of magnitude lower. 
Note the sharp drop in dose following the end of the release period. For the release duration of 10,000 years, 
a lower average gas Darcy velocity is likely, hence we use qg = 0.004 m/y for the rightmost curve. Here 
the peak dose to an individual is about 2 x 1 0 - 6 mrem/y. The leftmost curve with the highest peak is for 
an instantaneous release with qg =• 0.4. The peak dose is about 5 X 10~ 3 mrem/y, or 1 0 - 4 of background 
radiation. Figure 9 shows that for qg < 0.4 and tr > 1000, the repository-average fractional release rate at 
the ground surface is equal to or less than 10~ 5 per year, the USNRC release rate criterion for the engineered 
barrier system. 
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Figure S. H C02 concentration 350 m above an infinite plane source releasing 200 Ci per 
7 x 106 m 2 in an impulse at time zero. 
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Figure 6. 1 4 COj concentration 350 m above an infinite plane source releasing 200 Ci per 
7 x 106 m2 over 1000 years, release starting at time zero. 
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Figure 7. Peak 1 4 C02 concentration 350 m above infinite plane source as a function of 
the band release duration for 200 Ci released per 7 x 10 6m 2. 
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Figure 8. Cumulative release 350 m above infinite plane source for impulse release of 
200 Ci per 7 x 106 m 2 (0.003 Ci/Mg U fuel). 
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Figure 9. Inhalation dose and release rates 350 m above infinite plane source for various 
release durations and gas Darcy velocities. 
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Table 1 . Maximum dose above ground (mrem/y) as a function of gas Darcy velocity and 
band release duration for an infinite plane source with a releasable inventory of 1000 Ci 
released as a decaying band in time over an area of 7 x 10 6 m 2 . KD = 3. 

Release Duration 
(years) 2.0 

Gas Darcy Velocity (m/y) 
0.4 0.004 0.0004 

0 1 x 10" 2 1 x 10" 3 3 x 10" 5 1 x 10" 6 

300 2 x 10" 4 2 x l 0 ~ ' 1 3 x l 0 " 5 1 x 10" 6 

1000 7 x 10" 5 7 x l 0 " 5 2 x l 0 ~ 5 1 x 10 - 6 

5000 1 x 10" 5 1 x 10" 5 8 x 10" 6 8 x 10" 7 

10000 7 x 10" 6 7 x 10 - 6 4 x 10" 6 5 x 10" 7 

4 . CONCLUSION 

We have demonstrated a simple technique for estimating H C transport in the partially saturated, 
fractured medium at Yucca Mountain, requiring only a small set of well-defined parameter values. 

Predicted gas concentrations approaching the ground surface are comparable to the unrestricted-area 
USNRC limit of 10~ 7 / iCi/-:m 3 in air. Dilution near the ground surface as the 14CC>2 enters the atmosphere 
will lower the concentration by several orders of magnitude. Predicted maximum dosages above ground are 
much lower than background radiation at sea level. For some gas velocities, the concentrations and fluxes 
at the ground surface are independent of the rate of release from the source and depend only on the total 
amount released. We estimate the travel time to the surface at Yucca Mountain to be hundreds to thousands 
of years, but caution that estimates are critically sensitive to the Darcy gas velocity and the distribution 
coefficient. If local equilibrium is not maintained, retardation may be less than predicted and concentration 
greater than predicted. For more definitive calculations the time-c pendent gas velocities, temperatures, 
and local pH must be considered. 

Solutions to porous medium equations are powerful but not always applicable to problems in fractured 
media. Our technique of determining suitability using the modified Peclet number will make it easier to 
defend the use of such solutions in many different systems. 
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NOMENCLATURE 

a, b dummy variables 
A area of repository 
6 half-width of fracture 

C source term constant (16,20) 
Cs molar concentration of 1 4 C in the gas phase 
C\ molar concentration of 1 4 C in the liquid phase 
D effective diffusion coefficient (38) 

D s , D i dispersion coefficient in gas,liquid phase 
Dg, D( diffusion coefficient in gas.liquid phase with tortuosity 

/ total source strength fg + ft 
fg< h gas,liquid-phase source term 

F function defined by (54) 
g function defined by (52) 
G function denned by (46) 
h uni t s tep function 

7o inventory of 1 4 C released (17,19,20) 
Ic releasable inventory of 1 4 C a t emplacement 
/ / releasable inventory of 1 4 C at failure 

Ki first dissociation equilibrium constant (3) 
Ki second dissociation equilibrium constant (3) 

KD gas-liquid distribution coefficient (1,2,1) 
KK Henry's law constant (3) 

L lateral extent of repository (64) 
M release rate at the source 
P modified Peclet number (30,32) 

q j , q3 gas Darcy velocity vector, scalar 
qi, qi liquid Darcy velocity vector, scalar 

r position vector originating at point source 
Sgi net reaction rate from gas phase to liquid 
t,T time, dimensionless time (15) 

tj time at failure 
tT duration of release 
U mean wind speed (64) 
v effective advection velocity (38) 

ti5 gas velocity in fracture 
y, Y horizontal distance, dimensionless horizontal distance 
z, Z vertical distance, dimensionless vertical distance 

6 delta function 
( total porosity 

(g gas-filled porosity 
(I liquid-filled porosity 
4 vertical flux of 1 4 C (57) 

A, A decay constant, dimensionless decay constant 
a, vertical mixing distance (64) 

T dummy variable 
if> boundary condition source term (7,16) 
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Appendix A. Derivation of Discrete-Fracture Solution 
In dimensionless variables the equation system (5)-(12) becomes 

1 PC, 
KD OY Z > 0 T> 0 

ac, 
dT 

+ AC- a2c, 
8Y* = 0 y >o z>o T>Q (it.2) 

C,(2,0) = 0 Z > 0 
ci(y,z,o) = o y>o z>o 

ct.(o,r) = ̂ (r) r > o 
Cj(oo,T) = 0 T > 0 

c,(o,z,r) = /<:DC,(z,T) 2>o r > o 
Ci(oo,/,T) = 0 Z>0 T>0 

(A.3) 
(AA) 
(A.5) 
(A.6) 
(-4-7) 
M-8) 

The solution is obtained using Laplace transforms. First (A.l) and (A.2) are transformed with respect to T 
using the initial conditions (A.3) and (A.4) 

az+ip+Ws- KD d Y 

a2c, 

z>o (A.9) 

^ - - ( p + A)C, = 0 y > 0 Z>0 (A10) 

The solution to the ordinary differential equation (A.10), using boundary conditions (A.7) and (A.8) is 

C, = KD C, exp [-y s/p + A] y > 0 Z > 0 (J4.11) 

Substituting (A.ll) into (A.9) gives 

^- + (p + \)Cy = -Ji+\Cg Z>0 (AM) 

We need boundary conditions (A.5) and (A.6) to solve this equation with the result 

Cg=j>exp [-Z (p + A + \ / P T A ) | Z > 0 (A.13) 

To get the inverse Laplace transform if (A. 13) we break it into factors and apply the convolution theorem. 
First let 

fii(Z,p) = exp [-^(p + A + \/P + A)] Z>0 (AM) 

The inverse of (A.13) can then be written as the convolution integral 

Cg(Z,T,= jxl>(T-T)^(Z,T)dr 

To get ui(Z,T) use the p-shift property to get 

Ul(z,:r) = e-ATu2(z,:r) 
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where 
i2(Z,p) = exp[-Z(p+^/p)] (4.17) 

This in turn is reduced using the T-shift property to 
u2(Z,T) = h(T - Z)ua(T - Z) (4.18) 

where 
u3(Z,p) = exp[-ZJp\ (A.19) 

The inverse Laplace transform of (A.19) is 

U3(2'T) = drF e x p ( i?) ( A 2 0 ) 

Putting the last several equations together gives us 
T 

C,(Z,T) = Jw-T)e-"hlT-Z)*—ev(J^)<lT Z > 0 T > 0 
o 2j*(T-zy (A.21) 

or, after rearranging 
T-Z 

Cg(Z,T)-e-^zh(T-Z) j rl>{T-Z-T)-^=exp(-~-\T'\ dr Z>0 T>0 (4.22) 
o 

Substituting Cs from (A. 13) into (A. 11) gives 

C,(Y,Z,p) = Xc^exp[~Z(p + A)]exp \-(Z + Y)y/p + A] y > 0 Z > 0 (4.23) 
To invert this we use the same method as before obtaining first the convolution integral 

T 

Q(Y,Z,T) = KD Jxl>(T- T)Ul(Y,Z,T)dr (A.24) 
o 

where 
fiI(y,Z,p) = exp[-.Z(p + A)]exp[-(Z + y)v'pTlv] (4.25) 

then by the p-shift property 
U l (V,2,T) = e - A T

U 2 ( y , Z , r ) (4.26) 
where 

S2(y, Z,p) = exp(-Zp)exp (-(Z + Y)y/p) (4.27) 
then by the T-shift property 

u2(Y,Z,T) = h(T-Z)u3(T-Z) (4.28) 
where 

u3(YlZ,p) = exp(-(Z + Y)Jp) (4.29) 
This is inverted as before to give 

Putting it all together gives the result 
T 

C,{Y,Z,T) = KB h(T-r)e-^h(r-Z) Z + Y exp (~jf + Y ? ) dr Y>0 Z>0 T>0 
J 2S/*(T-Z)3 \ i(r-Z) J 

(4.31) 
or alternatively 

T-z 
C,(Y,Z,T) = KDe-AZh(T-Z) j ^(T-Z-r)^^exp \~{Z£ Y)* - AT] dr Y>0 Z>0 T>0 

o 
(4.32) 
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Appendix B. Cubic Polynomi < Root Finding 
The following polynomial theory is from CRC Standard Mathematical Tables, 27th Edition, by William 

H. Beyer, CRC Press, Inc., Boca Raton, Florida, 1984. 
Any cubic polonomial 

y3+py2 + qy + r = 0 (5.1) 

can be transformed by setting y = x — p/3 to 

x3 + az + b = 0 (5.2) 

with 

For p, q, r real then 

*=\(3°-P2) b = ^ ( 2 p a - 9p? + 27r) (5.3) 

b2 a3 

— + — > 0 —• 1 real, 2 conjugate complex roots 
62 a3 

— + — = 0 —• 3 real roots, at least 2 equal 

— + — < 0 —• 3 real, unequal roots 

For a6 ^ 0 the roots can be obtained by letting x — m cos $ to get 

x3 + ax + b = m3 cos3 0 + am cos0 + 6 
= 4cos 3 0-3cos0-cos(30) = 0 (5.4) 

Hence 

The roots are 

4 _ - 3 _ -cos(30) 
m 3 am b (5.5) 

m = 2 \ T ? c o s ( 3 t f ) = :^ ( B 6 ) 

: = 2^cos(0) 2^cos(fi + ^ ) 2^cos(e + ̂ fj (5.7) 

where 0 is a solution to (B.6). 
We have 

p = - 2 ( 1 + 7-) q = -2T r = 4Ts (5.8) 
which leads to 

a = ^ - (2T 2 + 7T + 2) b= ^ ( 4 T 3 - 6 T 2 + 21T+4) (5.9) 

It can then be determined by substitution and much pencil work that ^- + ^ < 0 for T positive leading to 
the conclusion that our original cubic polynomial has three distinct, real roots. Going back to (B.6) we have 

m = 2 V 3 = | V 4 T 2 + 14T + 4 (5.10) 

and 
, , . . 36 [ 8 r 3 - 1 2 r 2 + 4 2 r + 8l , „ , „ 

cos(30) = — = [ (4T2 + 14T + 4) 3 / 2 J ( B U ) 
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We can now look at the early time limit to see which root gives us Zpeak- The early time limit for m in 
(B.10) is 

l i m m = i (B.12) 
T-o 3 

and for cos(30) in (B. l l ) 
lim cos(30) = 1 (fl.13) 

polynomial x = mcosff are then x = | , ^ - , -£ and from this the roots to the original polynomial in the 
early-time limit 

l i m Z = l i m ( x - p / 3 ) = 1 + 2/3 = 2,0,0 (B.14) 

This narrows our choice for Zp<:ay to the second or third root corresponding to 0 = —• or 4f. We can write 
the root in terms of an arccos function but we do not know yet which branch of this multivalued function to 

By trial and error we determine that (|Arccos() + 4p) is the correct branch to use so we have 

The following alternate form is better suited for numerical evaluation when T is greater than one. 

^W = f(T+l) y / 4 + U/T + 4/-n / I [8-12/7 + 42/7*+ 8/7*1 4* \ 
1 + 1 + 1/T C ° S { 3

A t c c o s [ (4 + 14/T + 4/T=)3/2 J + 3 J (fl.17) 
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Appendix C. Derivation of Equivalent Porous Medium Solutions 

Solutions to (37) for transport of a radionuclide in a porous medium with advection, diffusion and 
retardation can be obtained with the use of Kelvin's function for various source terms, boundary conditions 
and initial conditions. This method follows the more general treatment given by P. L. Chambre et al. in 
Chapter 10 of "Mass Transfer and Transport in a Geologic Environment", LBL-194S0, Lawrence Berkeley 
Laboratory, University of California, 1985. 

We restrict ourselves to solutions of an infinite domain with a concentration of zero initially and zero at 
infinity for all time. Solutions will be given for a point source and an infinite plane source with a constant 
velocity v in the z direction. Mathematical expressions for the source terms are given by (39)-(43). 

To remove the decay term, the dependent variable Cs is replaced by 

c(r, t) = e A , C s ( r ,< ) (C.l) 

to yield 

i ( r , ! ) + v . V c ( r , l ) - D V !

C ( r , f ) = - ^ M ( C . 2 ) 
at i s + 11 KD 

or, in cartesian space coordinates with v in the z direction 

•v-»(S+0*ft)==?£§? 
For a point source term (39) the right hand side of (C.3) is homogeneous away from the source point. 

Solutions can be written in the product form 

c(x,y,z,t) = ci(x,t)c2(y,t)ca(z,t) (C.4) 

where ci, c 2 and c3 satisfy respectively 
dci *fe = o (O di dx 
dc2 n 9 2 c 2 

at DW = ° W 
dc3 dc3 d2c3 

To remove the advection term in (C.7) the dependent variable z is replace by 

C = z-vt (C.8) 

with 
c 3(*,0 = G>(C,0 (C.9) 

yielding 

The Green's function for (CIO) is the solution to 

with a one-dimensional point source singularity of unit strength at £ = 0, t = 0 and is given by the well 
known Kelvin function 
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Thus the Green's functions for (C-'>) and (C.6) are similarly 

/AnDt 
and 

i f - y 2 \ 
= exD < > 

S^,t) = -^=^p{~] (C.l 3) 

5>M=7miexpm} < a i 4 > 
and the Green's function for (C.7) from (C.12) is 

The Green's function for (C.3) is the solution to 

with a three-dimensional point source singularity of unit strength at the origin and is given by the product 
of the Green's functions for (C.5)-(C7) 

or, in vector notation 
9{T't) = ^eA±^r1} (C18) 

In turn, the solution due to a point source at the origin, releasing the amount M(T)(1T at time r during 
the time span dr, creates the contribution at time t 

,mount released c 

j ( eXTM(r) ' 

Hence the total contribution due to the amount released during the time span 0" < r < ( is given by the 
superposition integral 

c(x,y,z,t)= / \/ )g(x,y,z,t-r)dT (C.20) 
0 - v ' 

Substitution for c (C.l) and g (C.18) leads directly to the solution (44) for a point source with a time 
dependent release rate. 

In the case of an infinite plane source, (C.3) reduces to 

dc dc &c ex'f(z,t) 
^ + B— - D-^ - "• '> (C.21) 
at dz dz2 £j, + HKD 

The solution due to an infinite plane source at the origin, releasing the amount per unit area (M(T)/A)dr 
at time r during the time span dr, creates the contribution at time t 

/ e ^ ^ \ , _ r ) f > T 

The total contribution due to the amount released during the time span 0~ < r < t is given by the 
superposition integral 

o- v ' 
Substitution for c (C.l) and g3 (C.15) lead to the solution (45) for the infinite plane source with time 
dependent release rate. 
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