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Abstract

A constitutive model that describes the response of a jointed rock mass under applied loads has 
been developed in this investigation following similar procedures used previously by the author 
for two orthogonal joint sets. However, the present model is more genera] than the orthogonal 
joint, set model because the joint sets can intersect at arbitrary angles. The mechanical behavior 
of the intact rock is considered elastic while the joint closure and slip response are nonlinear 
in nature. By using the constitutive model, the field equations have been reduced to a fourth- 
order algebraic equation for the solution of stresses; this equation is given explicitly in the text. 
Example problems have been solved to show how the rock mass responds to loads, and the 
elfects of joint sets intersecting at nonorthogonal angles have been investigated and presented.
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1. Introduction

This investigation involves the development of a general two-dimensional con­
tinuum model to describe jointed rock mass. Chen (1986,1989) recently developed a 
model for the analysis of rock mass containing two orthogonal joint sets. Development 
of the orthogonal joint set model follow’ed the general formulation of Morland (1974) 
and the special single joint set implementation of Morland’s model by Thomas (1982). 
Although the orthogonal joint set model has proven useful for analyzing field-scale 
problems (see Costin and Chen; 1988a, 1988b), it remains restrictive in terms of the 
general field conditions. In this paper, the orthogonal joint set model has been ex­
tended to a more general model w-here the orthogonality restriction has been relaxed. 
Fundamental approaches remain the same for both models. However, as the general 
model becomes capable of treating physically more complicated problems, it becomes 
mathematically more complex. This complexity^provides the potential to study more 
completely the interaction of various parameters representing the characteristics of 
jointed rock mass behavior. The equation governing the solution of the problem has 
been given, and example problems have been solved. The behavior of the rock mass 
predicted by the orthogonal joint set model has been compared to the general model.

This model has been developed to aid in characterizing the site of the repository 
at Yucca Mountain, Nevada, for the potential geologic disposal of radioactive waste. 
Disposal of high-level nuclear waste is currently being considered by the Yucca Moun­
tain Project, administered by the Nevada Operations Office of the U. S. Department 
of Energy.
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2. Constitutive Model Formulation and Solution

As has been mentioned previously, the procedure for developing the general 
model is the same as that given in Chen (1986,1989) for the orthogonal joint set 
model. The arrangement of a representative element of a jointed rock mass is shown 
in Figure 1. In this figure, two joint sets with joint spacings and <52 are inclined 
against each other with an included angle 9. The joints in a given set are assumed 
to be regularly spaced and parallel. In the plane of the joints, the orientation of 
the joint sets is characterized by the angles and 62 with respect to a reference 
Cartesian coordinate xyz system, as shown in Figure 2. The plane of the joints are 
in the xy-plane. Also given in Figure 2 are the in-plane normals rij and n2 and the 
out-of-plane normals tj and /2 to the sets of joints. Note that the directions z. . 
and f2 coincide. Following the work of Morland (1974), a continuous displacement 
field can be defined that represents the average response of the joints. While this 
displacement field cannot giye the individual responses of the joints, it captures the 
gross responses of all joints in an average sense. Based on the continuous displacement 
fields for the joints, a strain partitioning equation can be written for the rock mass 
in which the total strain is equal to the sum of the strains of the intact rock and the 
joints. The constitutive behavior for the intact rock is considered elastic. For a single 
joint, normal closure is assumed to be nonlinear elastic and to follow the empirical 
behavior given by Goodman (1976):

where Tnn and ud, the normal stress component and the corresponding displacement 
across the joint, are positive in tension. The constant A is referred to as the half­
closure stress and u^nai is the maximum amount of closure that can be sustained by 
the joint (see Figure 3 for definitions of these quantities). The joint is allowed to carry 
tension to expedite the numerical computations. Because the allowable tension is 
relatively small (maximum tension carried by the joint will not exceed the magnitude 
of the half- closure stress even for very large opening displacements), the gain in 
computation speed seems to outweigh this minor physical discrepancy. The joint slip 
behavior is defined by a bilinear shear stress-slip displacement response, shown in 
Figure 4. The onset of nonlinearity is governed by the Mohr-Columb criterion as

| Tp | = C0 - nTnn (2)

in w'hich Co and ^ are, respectively, the cohesion and the coefficient of Coulomb 
friction.
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Figure 1. Geometry of Jointed Rock Mass

Figure 2. Joint Orientation Definitions
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Figure 3. Nonlinear Normal Joint Closure Behavior
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Figure 4. Nonlinear Shear Behavior of Joints
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Because the problem is nonlinear in nature, incremental procedures are used 
to obtain solutions. The strain partitioning relationships and the above constitutiv- 
models for the intact rock and joints can be combined to establish a set of rate 
equations for calculating stress increments in terms of strain increments. This pro­
cedure is the same as that given by Chen (1986,1989) for orthogonal joint sets. In 
Chen (1986,1989), the problem was reduced to the solution of a fourth-order algebraic 
equation. In the present general case, it has been found that the problem can also be 
reduced to the solution of a fourth-order algebraic equation. However, the solution 
for the general case is more complicated because without orthogonality, coupling oc­
curs between the normal and shear stress components. Moreover, the coefficients in 
the equation become more complex because an additional parameter, the included 
angle between the two joint sets, also appears.

In the remainder of this section, the algebraic expressions necessary for numerical 
implemention of the present model are presented. Note that the resulting fourth- 
order equation can be solved by the same procedure as given in Chen (1989). Let 
the bulk modulus and the shear modulus of the intact rock be K and G, respectively. 
For joint set i. i=l,2, the half-closure stress is A,, the maximum closure is 
and the slopes of the bilinear shear stress-slip displacement curve are G„ and G'fl, 
respectively, for the initial and the hardening part. Without going into details, the 
fourth-order algebraic equation to calculate the normal stress for joint set 1 at time 
step t—1 advancing from time step t is derived as [for detailed derivation procedure, 
references are made to the work of Chen (1986. 1989) :

(3)

in which Tn = — 7^*^ and the coefficients are

4GS2(1 — Qp Q5) T 2S2a5Q6Qg -H Q1Q7 ,
CL i —---------------------------------------------------------------------------------------------------------- (4 )

252aj {2GC QpOg) + QgOy

02 = lio - bnn , 03 = (2G/?2 - 'ho pGmmaIi)63 - Qj6n - (64 - 65 -t- 6G) (5)

a4 ~ (^4 — ^5 + )^3h 1 — ^2ll0 1 Or — 62(64 — 65 -r 6c) .

In the above equations, the following contractions have been made:

(6)

Qi = K 4G/3 , q2 = K - 2G/3 , as = A'- 2G(l/3 - cos20) (7)

02<j42
07 = 05C2 + Qc, q& = 2{K + G/S) , Q9 = a]04 — 

S = sin6cos6 , C = cos29 — sin^O , = — ^4, (u^iai),/6,,

G

Otg — — Q2^3
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6i = -
4G52(l — 0:6 + 0:5) + 2S^ OlsOlgOcs + O1O7

2G(4S2aba6 + a7)

62 —
Z?1 {252Q506(Q!i + 02) + <^1^7}

452a5Q6 + oc7
63 — —

252a5 (2GC + a6a8) + 0307 
2G(4S2o:5Q6 + Q7)

64 =
/3isin26(aia4 - q2Q3)(q:6 — ^sC) 

252a5(2GC + OeOig) + 0:307

65 =

Pi =

be —
4G/?i52o5C(oi + O2)stn20 
2S2os(2GC + OgOg) + O3O7 

0*07 — 2S2a5(2GC — o6og)
2S2as(2GC + ogOg) + cizO(7 252os(2GG + ogog) + 03O7

/?i{07(ai04 - O2O3) - 4a5GCS2(ai + o2)}

P3 =

4G0iS2{ai + 252Q5(o1 + 02)} 
2S2a*l(2GC + QgQg) + 03O7

2G(1 + 05)

P4

-lo

P 2S2a5(2GC + ogOg) + 03O7

/?i{2G(oi + 252a5(o1 + 02)) — 05 G (oj o^ — 02O3)} 
2S2as(2GC + ogog) + O3O7 

= (ct4 - 02c)Ae„ini - (03 + o2C)Ae4lSl - a2GAe<ltl 

h = Oi5Afnini + 02S(Ae<l4j 4- A£(l<1) - Q3A£nil!l 

72 = Qi5A£<l4l -h 025(A£nini 4- Aetltl) — o^Afn^j 
2G{2SazC(^1 4- 72) + ^770}

73 = -

74 =

252Os(2GG 4" QgOg) 4" 03O7 

2G{5o5(25(7i 4- 72) 4- G70) 4- 71}
252a5(2GG 4" ogOg) 4* 03O7 

75 = -{2GA£ni4l 4- Q5G573 - (q6 4- Q5G2)74}/5 

2G/?2 b2
7e = 7s +

^2 - r‘2ns

77 — 7s - PiT‘ini +

7s = 74 + Sp3Tllini 4- 7^lfl 4- -j—^

Pi
^

Spi

79 = 77Stn20 - 2S78) 710 = ^2-79- 6^1

Tl

7ll = 76 +

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)

(26) 

(27)
63 ’ fc3

Because the strain increments Ac,; and the stresses at the beginning of the load step 
Tfj are known, can be obtained from Equation (3). The other stress components 
associated with joint set 1 can be found from

t::.\ = +-»+<+1 P2
Ax rrt+\njni

(28)
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(29)Kl, - spzrn~lni + >
SPA

4, - T'- 1"* n j n)

r/V = T! . -r- A7( ((jt ] 1 jt J ‘‘J
where the stress increment is given by

(30)

6/CG 0:2 , . — „ .ATijfj = ^ / n j n j — A^i*i)
08 08

(31)

Stress components in the Cartesian coordinate xyz system and in the second joint 
set ri2S2<2 reference frame can easily be determined from the above stresses through 
the stress transformation equations. There remains the question of determining the 
shear stress when the stress level exceeds the onset of nonlinearity as governed by the 
Coulomb criterion. When this happens, the shear stress increment is calculated from 
the strain partitioning equation where an analytical expression can be derived. In 
this manner, it is ensured that the strain partitioning equation is satisfied and that 
the calculated shear stress and slip displacement follow the material property curve. 
Again, the solution procedures are similar to those for the orthogonal joint sets model 
in Chen (1986.1989). A driver program has been written for the constitutive model, 
based on the above equations. This program calculates stress increments when strain 
increments are given and will be used to solve example problems to demonstrate some 
of the interesting features of the model.
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3. Example Problems

Several example problems are solved here to demonstrate the model. The follow­
ing rock properties, taken from the work of Thomas (1982), are used in all examples:

Intact Rock

K = 4.59 GPa, G = 2.76 GPa 

Joint Properties

An = 6.89 MPa, (vdmaz)n - -0.00762 cm

(G\.)„ = 0.27 GPa'em, (G'Jn = 2.71 MPa/cm

fjn = 0.7, (Co)n = 1.72 MPa, <5n = 1.27 cm

For convenience, both joint sets are assumed to have the same properties. The 
geometry of the example problems is that in Figure 5. An infinite rock mass is to be 
strained in the Cartesian coordinate xy-plane. One joint set has a fixed horizontal 
direction while the direction of the other joint set varies depending on the parameter 
6. Initial stress slates can also be imposed on the rock mass.

In the first example, the rock mass is loaded by uniaxial compression along the y- 
direction. Boundary conditions are applied such that the value for is varied linearly 
from 0.0 to -0.005 for the time history of the problem. The rock is constrained such 
that all other strain components (fr , (z , (xv ) are zero during the entire loading 
process. An initial stress state of ox = oy = oz = -1.38 MPa and Txy = 0.0 is 
assumed to prevail in the rock mass. Results have been obtained for 6 = 30c, 60", 
and 90°. The effect of the angle 6 can be seen in a plot of the variation of the normal 
stress on the joint against the applied strain for joint sets 1 and 2 (Figures 6 and 7). 
From Figure 6 it is seen that the magnitude of the normal stress increases as angle 
6 increases. This is because, as 6 increases, more load is shifted from the second 
joint set to the horizontal first joint set simply from the geometric configuration. For 
the same reason, the magnitude of the normal stress on joint set 2 should decrease 
with respect to increasing angle 6. This is the result shown in Figure 7. Note that 
the stress state in the coordinate xy-plane is the same as that for the first joint set 
because of the geometry selected for the example problems.

The second example involves the pure shear loading on the rock mass. The shear 
strain ezy is increased linearly from 0 to 0.01 over the time history of the problem while
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al! the normal strains are constrained to be zero throughout the shearing process. 
An initial stress state of o, = oz = -1.38 MPa and ov = -3.45 MPa is imposed on the 
system. Again, the results for 6 equals 30°, 60c and 90“ have been calculated. Figure 
8 shows the variations of the shear stress as a function of the applied shear strain 
for the first (horizontal) joint set. The curves are initially linear up to some applied 
strain level and then begin to deviate from linearity. The trend indicates that shear 
stress increases as the angle 6 increases. The shear stress versus applied shear strain 
plots for the second joint set are shown in Figure 9. Because of the imposed initial 
stress state, the initial shear stresses for joint sets oriented at 6 equal to 30° and 60c 
are nonzero. The magnitudes of these initial shear stresses can be calculated from 
a simple Mohr’s circle analysis. The bilinear behaviors of the curves are similar to 
those for the first joint set. However, with repect to angle 6, no obvious trend for the 
shear stresses is observed. All curves in Figures 8 and 9 exhibit nonlinear behavior. 
However, in some cases, the observed nonlinearity is due to the interaction of the 
joints rather than the occurrence of slip nonlinearity. For the first joint set. the shear 
stress versus joint slip curves are plotted in Figure 10. For 6 equal to 30c and 60c, slip 
nonlinearities have occurred. For 9 equal to 90°, the shear-slip curve remains linear. 
The opposite is true for joint set 2, as shown in Figure 11. The complex behayiors 
observed in these figures are the results of the interplays among the imposed initial 
stress state, the applied shear strain, and the interactions between the two joint sets.

Another way to comprehend the complexities is to examine the loading paths 
for the two joint sets under the applied shear strain. For 9 equal to 30c, plots of 
the shear stress magnitude versus normal stress magnitude are given in Figure 12. 
The solid curve in Figure 12 represents the Mohr-Coulomb criterion in the stress 
space. For the first joint set, because of its horizontal orientation, its initial state 
at point A consists of a normal stress value of 3.45 MPa and zero shear stress. The 
initial state at A’ of the second joint set has both nonzero normal and shear stresses 
resulting from its 30c orientation. Between points A and B and points A’ and B,' 
which correspond to the increase in shear strain from zero, the shear stress for joint 
set 1 increases while the normal stress decreases. This decrease in normal stress for 
joint set 1 is due to the interaction between the joint sets because the second joint 
set takes on more normal stress and less shear stress. The onset of slip nonlinearity 
for the first joint set occurs at point B and the loading path from B to the end 
of the applied strain point C follow's closely the Mohr-Coulomb criterion. The small 
deviation is due to the shear hardening as shown in Figure 4. For the second joint set, 
the stress path reverses its course from B’ to C’ as a result of the nonlinearity of joint 
set 1. However, it is clearly seen that the combination of the applied stresses on the 
second joint set has been below the Mohr-Coulomb criterion throughout the loading 
process and, consequently, no slip for the second joint set has occurred. Loading path 
plots for 9 equal to 60° and 90° are shown, respectively, in Figures 13 and 14. The
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behavior for 6 equals 60D is similar to that for 8 equals 30° in which the first joint set 
has reached slip nonlinearity while the second joint set remains in the linear range. 
Because the joint sets are mutually orthogonal, the normal stresses on both joint 
sets do not change during the straining process for the 6 equal 90° case. Because 
the second joint set has a lower normal stress, it reaches slip nonlinearity before the 
same can be accomplished by the first joint set. After the onset of slip nonlinearity 
(points B and B‘), equilibrium dictates that shear stresses for the two joint sets must 
be equal. Therefore, throughout the shear straining process, joint set 1 remains in 
the linear range.

It is interesting to note from Figure 10 that beyond the points of initiation of 
slip nonlinearity, the shear stresses decrease with increasing joint-slip displacement. 
This is due to the effect of changing normal stresses. Although no normal strain is 
applied to the rock mass, the normal stress on the joint sets varies during the entire 
loading process because of the nonorthogonal joint orientation. As the magnitude 
of the normal stress decreases, the shear stress magnitude governing the onset of 
slip nonlinearity calculated from the Mohr-Coulomb criterion decreases. Hence, the 
softening of the shear stress-slip displacement curve is observed. For 6 equal to 60r, 
this effect of the changing normal stress on the shear curve is shown in Figure 15.
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4. Summary

A general constitutive model that describes the response of jointed rock mass 
with nonorthogonal sets of joints has been developed. Rate equations that govern 
the solution process have been presented, and a driver program for the constitutive 
model has been written and used to solve example problems. Results from these 
examples show complex interactions resulting from the nonorthogonal orientation of 
the joint sets.
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Appendix

Information from the Reference Information Base 
Used in this Report

This report contains no information from the Reference Information Base.

Candidate Information for 
the Reference Information Base

This report contains no candidate information for the Reference Information Base.

Candidate Information for the 
Site and Engineering Properties Data Base

This report contains no candidate information for the Site and Engineering Properties 
Data Base.
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