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Presentation Outline 
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• Introduction
• Motivation: CH4 fugitive emissions monitoring

• Silicon-photonic waveguide absorption sensor (SPWAS)
• Silicon-photonic chip sensor design
• Diagnostic test-bench and CH4 spectra

• Spectral extraction and noise analysis
• SPWAS short-term precision and stability
• CH4 spectral extraction in the presence of optical etalons

• Towards an external-cavity (EC) III-V / Si hybrid laser
• ECL noise performance and broadband tunability
• Preliminary demonstration of TDLAS

• Concluding remarks
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Motivation: CH4 fugitive emissions monitoring

9/10/2017 IBM Silicon Integrated Nanophotonics 3

US Energy Information 
Administration

• > 500,000 active oil/gas wells in USA

• 570 × 109 ft3 of CH4 leakage in 2009,
(59 % leaks during production phase)

• ~ 30% anthropogenic CH4 emissions

• Radiative forcing of CH4 is 37× greater
than CO2

Alvarez et. al., “Greater focus needed on methane
leakage from natural gas infrastructure,” Proc. Nat.
Acad. Sci., 109 (17), pp. 6435-6440, (2012).

Condensate 
Tanks

Wellhead

Separation Unit

CSU METEC Testsite

• CH4 leakage rate on oil/gas well pad
is 2-10% of total production!

Cost-effective sensor network for
localization and precise quantification
(ppmv-level) of CH4 on oil and gas
production well-pads
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Use-case for innovative sensor networks
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An Intelligent Multi-Modal Methane 
Measurement System (AIMS)

Technological driver: ARPA-E MONITOR

• Cost-effective sensor network for continuous 
CH4 leak quantification, localization, and repair

• No viable technology today: Alignment of 
performance with required cost point poses 
significant challenge

Opportunity driver: Application of physical 
analytics/IoT solutions to

• Significantly reduce fugitive CH4 emissions 
across the oil and gas industry

• Improve production efficiency, safety, and 
compliance with emissions regulations

• Harness the full potential of natural gas as a 
clean fuel

Real-time sensor mesh network 
(IBM MMT System)

Aggregate/push to Bluemix 
cloud (MQTT protocol)

Physical analytics: 
• source inference via inversion
• plume dispersion models
• machine-learned model blending



© 2017 IBM Corporation

Integrated silicon photonic chip sensor
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Silicon handle wafer

Hybrid III-V/Si Integrated 
ECL and detector
• broadband tunability
• wide temperature operability
• uncooled (low-power op.)

On-chip reference CH4 cell
• on-chip self-calibration
• autonomous long-term accuracy Waveguide confined optical path

• low-cost volume manufacturing
• no moving parts, alignment-robust

Methane (CH4) molecule
• NIR 2ν3 rovibrational band (1651 nm)
• Leverage existing telecom technology

IBM Technology Value Proposition:

• Broadband TDLAS with molecular specificity
• Low volume cost (< 250 USD / sensor)
• Low power consumption
• Leverages CMOS compatible volume 

manufacturing

ARPA-E Design Target: 6 scfh CH4 leak on 
100 m2 well pad within 18.25 days (90 % 
confidence level) with 1 m2 spatial resolution

Sensitivity Target: 10 ppmv ∙ Hz-1/2
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Silicon photonic chip sensor design
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x-section
m

ode sim
ulation

TDLAS via Beer Lambert Law:
• Molecule-specific transition wavelengths (cross-talk free)
• Extensively documented transition parameters for common 

species (e.g. natural gas constituents)

2ν3 NIR CH4 overtone band
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Diagnostic test-bench and CH4 spectra
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SPWAS acquisition bench-top for TDLAS:

• Simultaneous data acquisition of free-space 
reference/SPWAS for accuracy benchmarking

• Identical sensor physical path lengths (10 cm)
• 100 Hz current ramp of U-band DFB laser diode 
• Uncooled InGaAs amplified photodiodes
• 50 kSa/s, 16 bit resolution NI-DAQ (USB-6001)

SPWAS/reference spectral comparison:

• Target CH4 using 2ν3 overtone band at 6057 
cm-1 (1.65 μm)

• Peak absorption ratio for CH4 release:

Simulated:   Γ
Measured:   Γ

= 28.5 %
= 25.4 %
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SPWAS state-of-art short-term precision
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Allan (two-sample) variance stability analysis:

• Short-term measurements to probe SPWAS fundamental 
sensitivity (500 Hz ramps measured over 5 sec.)

• Data acquisition rates faster than external drift conditions 
(e.g. mechanical vibrations, thermal swings, etc.)

Measurement parameters:

• 30 cm waveguide, TM00 mode 
(Γ = 25 %)  →  Leff = 7.5 cm

• Voigt LMS spectral extraction 
(2nd order quadratic baseline)

• 500 kSa/s, 16-bit NI-DAQ

σadv = 6.3 ppmv ∙ Hz-1/2

→ 10 ppmv (0.4 s)

(αL)min = 3.3×10-5 Hz-1/2

Detection sensitivity:

Min. fractional absorption:

SPWAS performance 
comparable to conventional 
free-space TDLAS systems
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Adaptive spectral retrieval for etalon mitigation
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Spectral retrieval during CH4 flow measurement
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Controlled CH4 release:

• Three stage flow procedure for real-time CH4
concentration variation:

1. Zero-gas / ambient laboratory (seal chamber)
2. Controlled CH4 release (2.5 vol. % cylinder)
3. Arrest flow, seal chamber for gas trap

• Significant etalon drift during gas switching

The impact of Dynamic Etalon Fitting:

• Initial zero-gas spectral acquisition to provide a 
nominal baseline for adaptive etalon removal

• Visible spectral enhancement of CH4 R(4) 
transition (at 6057.1 cm-1) with DEF-R

• Significantly enhanced visibility of CH4 flow 
stages, and corresponding improvement of CH4
concentration retrieval
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SPWAS accuracy validation using DEF-R
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Necessity of adaptive fringe removal:

• Concentration correlation of SPWAS to free-
space reference shows true confinement factor 
only for DEF-R

• VLMS and BSLD susceptible to etalon drifts and 
accuracy offsets

• Necessary for TDLAS on a silicon platform due 
to high thermo-optic coefficient (1.8×10-4 K-1)

CH4 concentration retrieval via DEF-R:

• CH4 retrieval from 3-stage flow measurement

• Good agreement with free-space reference; 
minor deviations due to spatial nonuniformity of 
gas flow within environmental chamber

• Concentration correlation during CH4 flush
provides experimental confinement Γ = 25.2 %
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Preliminary demonstration of on-chip WMS
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Initial demonstration of Wavelength 
Modulation Spectroscopy (WMS):

• In-line reference cell (5.5 cm, 1 vol. % CH4)

• 10 cm waveguide length (Γ = 25 %) 
→  Leff = 2.5 cm

• 2fL demodulation with fL = 10.2 kHz laser 
modulation frequency (near opt. Δνmod)

• 10 Hz laser ramp for line-scanning

• 2fL WMS LMS fit + residual noise analysis

(αL)min = 8.3×10-5 Hz-1/2
Min. fractional absorption:

• Sensitivity estimate limited by fringe drifts 
during gas handling procedures

• optimize modulation depth / fringe dither for 
rejection of dominant fringe component(s)
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Packaging and improved detection sensitivity
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SPWAS packaging and design:

• First-generation optical packaging using 
fiber-pigtailed waveguide attachments

• Compact SPWAS form factor for outdoor 
field testing

• Simultaneous measurement of through 
(sample) and drop (reference) ports

• Longer path length for next generation 
samples: waveguides up to 60 cm

Mechanical considerations:

• Bench-top mechanical alignment 
via lensed fibers introduce 
significant low-frequency noise

• Imposes stringent data sampling 
requirements due to high ramp rate

Optical fiber-attach for 
compact form factor and 

improved sensitivity
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Integrated silicon photonic chip sensor
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Silicon handle wafer

Hybrid III-V/Si Integrated 
ECL and detector
• broadband tunability
• wide temperature operability
• uncooled (low-power op.)

On-chip reference CH4 cell
• on-chip self-calibration
• autonomous long-term accuracy Waveguide confined optical path

• low-cost volume manufacturing
• no moving parts, alignment-robust

Methane (CH4) molecule
• NIR 2ν3 rovibrational band (1651 nm)
• Leverage existing telecom technology

IBM Technology Value Proposition:

• Broadband TDLAS with molecular specificity
• Low volume cost (< 250 USD / sensor)
• Low power consumption
• Leverages CMOS compatible volume 

manufacturing

ARPA-E Design Target: 6 scfh CH4 leak on 
100 m2 well pad within 18.25 days (90 % 
confidence level) with 1 m2 spatial resolution

Sensitivity Target: 10 ppmv ∙ Hz-1/2



© 2017 IBM Corporation

Hybrid III-V/Si broadband ECL development
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external cavity FSR (DBR grating to RSOA back-facet) : 0.3 cm-1

HNA cleaved fiber

+ −

+ −

27.3 cm-1 ring filter FSR

External Cavity Laser 
(ECL) Configuration

Benchtop ECL demonstration:

• III-V reflective SOA (RSOA) provides 
round-trip gain

• Laser feedback cavity: DBR reflector to 
HR-coated RSOA back-facet

• Compensation for manufacturing 
tolerances and ambient temperature drift

Lasing requires spectral alignment of one ring resonance 
with a longitudinal cavity mode within the DBR pass-band

• Demonstrate single mode operation near 1650 nm
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Hybrid III-V/Si broadband ECL development
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Benchtop ECL configuration:

• RSOA facets AR coated for n = 1.48 (front) and HR-
coated (back)

• Index matching gel between EC and RSOA interface

• Optical amplification at 1660 nm ± 20 nm

• Silicon external cavity (EC) with internal DBR (~ 2 nm)

• RSOA and HNA fiber mounted on piezo-actuated 6-
axis stages for optical alignment

ECL RIN at TDLAS ramp frequencies:

• ECL relative intensity noise (RIN) measured at 
varying levels above lasing threshold 

• Comparison with a commercial U-band telecom 
diode laser: comparable performance > 10 kHz

• Low frequency noise – primarily mechanical 
alignment instabilities

• Q4 2017 – anticipate integrated ECL on a chip
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Single-mode broadband ECL tunability
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• Thermally tunable intracavity µ-ring and 
cavity phase shifter select longitudinal mode

• Single-mode operation ~ 1650 nm, with over 
50 dB side-mode suppression ratio (SMSR)

• Other λ accessible via DBR pitch variation

• Up to 1 mW ECL output power (output fiber)

Validating broadband ECL tunability:

• Performed > 2 nm mode-hop free tuning (manual)

• Coarse tuning steps using intracavity µ-ring filter, 
and fine-tuning via thermal cavity phase shifter

• Wavelength suitable for targeting CH4 2ν3 R(2) line 
at 1656.5 nm (6057 cm-1)
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ECL spectroscopy of CH4
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Preliminary sensitivity analysis:

• VLMS: Extract 15.4 % CH4, consistent 
with results with commercial DFB laser

• 100 ms acquisition time per spectral 
point: → sub-Hz effective ramp rate

• Susceptible to low-frequency noise 
contribution from mechanical instability

(αL)min = 1.4×10-3 Hz-1/2

Min. fractional absorption:

ECL for CH4 spectroscopy:

• Manual tuning of intracavity µ-ring and thermal phase 
shifter across CH4 R(2) line at 6036.7 cm-1 (1656.5 nm) 

• In-line CH4 reference cell L = 3.0 cm with parallel path 
for baseline power normalization

• R(2) line below 50 % R(4) transition line-strength

Near-term developments:
1. Initial demonstration of custom 

DAC/ADC for high-frequency 
ECL ramping

2. Hybrid III-V/Si integration on a 
single chip for mitigation of low-
frequency RIN
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Integrated silicon photonic chip sensor
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Silicon handle wafer

Hybrid III-V/Si Integrated 
ECL and detector
• broadband tunability
• wide temperature operability
• uncooled (low-power op.)

On-chip reference CH4 cell
• on-chip self-calibration
• autonomous long-term accuracy Waveguide confined optical path

• low-cost volume manufacturing
• no moving parts, alignment-robust

Methane (CH4) molecule
• NIR 2ν3 rovibrational band (1651 nm)
• Leverage existing telecom technology

IBM Technology Value Proposition:

• Broadband TDLAS with molecular specificity
• Low volume cost (< 250 USD / sensor)
• Low power consumption
• Leverages CMOS compatible volume 

manufacturing

ARPA-E Design Target: 6 scfh CH4 leak on 
100 m2 well pad within 18.25 days (90 % 
confidence level) with 1 m2 spatial resolution

Sensitivity Target: 10 ppmv ∙ Hz-1/2
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III-V gain / detector chip and reference lid attach
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IBM differential:
• Full automation in CMOS assembly tooling
• Single or multiple III-V die flip-chipped to SiPh
• Disruptive scalability in volume and cost

Innovation:
• Mode shape engineering to relax tolerance
• Solder reflow surface tension aligns III-V chip
• Superior thermal characteristics

Pick and place, then anneal to reflow

III-V die with amplifier / detector array

SiPh chip10
 u

m

Hybrid laser 
optical path

SiPh chip

Direct electronic and photonic connection 
between laser and integrated SiPh chip

III-V die(s): amplifier and detector array

Key Challenge: sub-micron 
tolerances for passive alignment solder reflow: 

formic acid + 
CH4 enclosure

T. Barwicz, et al., GFP 2015;  J.-W. Nah et al., ECTC 
2015;  Y. Martin et al., ECTC 2016.  

Functional Prototype: End of 2017
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Concluding remarks
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On-chip SPWAS for CH4 spectroscopy:
• Functional demonstration of benchtop Silicon-photonic waveguide 

absorption sensor (SPWAS) for ambient CH4 sensing

• (αL)min = 3.3 × 10-5 Hz-1/2, consistent with conventional TDLAS systems

• Adaptive dynamic etalon fitting-routine (DEF-R) for reduction of fringe noise 
and improved long-term accuracy

• Pathway to SPWAS integration for mechanical noise reduction

Demonstration of a broadband tunable actively aligned ECL:
• ~ 1 mW output power, 2 nm tuning range, > 50 dB SMSR

• Preliminary spectroscopy of CH4 R(2) transition at 1656.5 nm

• Partially integrated prototype expected at the end of 2017

Pathway towards compact, low-power, low-cost sensor nodes to facilitate 
large-scale deployment of continuously monitoring sensor networks
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