

# Wafer Level Fabrication of Planarized Josephson Junctions with $\text{TaN}_x$ Barriers

M. David Henry, *Member, IEEE*, Steve Wolfley, John Miner, Erica Ann Douglas Travis R. Young, Charles J. Pearce, Todd Monson, Lyle Brunke, Rupert M. Lewis, Nancy Missert

**Abstract**—A planarized Nb/TaN/Nb junction technology is presented for creating wafer scale planarized SNS shunted Josephson junctions. This work characterizes reactive magnetron sputtered layers with planarized PECVD deposited silicon dioxide. Junctions and films were electrically tested at room temperature and then again 4 K. Superconductors were tested using Meissner measurements.

**Index Terms**— Josephson junction, superconducting, Wafer scale integration, niobium, tantalum nitride

## I. INTRODUCTION

Niobium and aluminum-based Josephson junctions are currently fabricated at the wafer level using CMOS fabrication techniques and statistical process control for uses such as quantum computation and superconducting computing electronics; MIT-LL and HYPRES [1-3]. However, the cornerstone Nb/Al-AlO<sub>x</sub>/Nb SIS Josephson junction technology relies on a thin aluminum oxide layer with electronic properties that are not only sensitive to the oxidation parameters, but all subsequent fabrication steps. This places firm limits on where the junctions can be placed in a fabrication process, restricts choices of wiring dielectrics, and prohibits having junctions in multiple layers. Further, Nb/Al-AlO<sub>x</sub>/Nb junctions with moderate critical current densities,  $J_c < 20 \text{ kA/cm}^2$ , require the addition of a shunt resistor, which adds complexity to both design and fabrication

Alternative junction technologies are being explored with barrier materials such as TaN<sub>x</sub> [4, 5], HfN [6], and AlN [7] with the expectation that nitrides can provide a higher level of robustness and greater thermal stability than AlO<sub>x</sub>. Other promising technologies include silicidation with Nb to create a self-shunted junction [8]. But, niobium-silicide requires a dual target sputtering technology or precision target composition matched with chamber pressures.

In this work, we advance the research into TaN<sub>x</sub> barriers [4] towards a 6 inch process. We demonstrate an early wafer level technology using niobium superconducting layers with a tantalum nitride barrier layer utilizing techniques inspired by Tolpygo et al. [1, 8, 9]. We incorporate a planarized SiO<sub>2</sub> wiring insulator and a second Nb wiring layer and demonstrate excellent planarity which allows this process to scale to multiple layers. Devices are characterized using room temperature resistance measurements on process control structures, metal serpentines, and on junctions. Cryogenic testing measured Meissner effect on films, film resistivity, and junction current—voltage (IV) characteristics.

## II. FILM CHARACTERIZATION

All films were sputter deposited at room temperature using a Denton Discovery 550 sputter tool on 150 mm, 2 – 20 Ω-cm resistivity, (100) silicon wafers with ½ micron thick thermal silicon dioxide. Previous work demonstrated a niobium film deposited under stress can prevent bulk film oxidation and limit surface oxidation approximately 5-7 nm, as predicted by Halbritter, for a demonstrated period of 17 months at atmosphere [10-13]. The conditions for this deposition were 225 W, 22.5 sccm Ar with a chamber pressure of 4.8 mTorr. The film was measured using a Quantum Designs magnetic properties measurement system (MPMS) to have a bulk film T<sub>c</sub> of 8.5 K.

To characterize the TaN<sub>x</sub> barrier material, TaN<sub>x</sub> was sputtered using a Ta target and a combination of Ar and N<sub>2</sub> gas. Deposition parameters were set to 250 W pulsed DC, chamber pressure ranged from 3.5 to 4.6 mTorr, Ar flow set to 15 sccm and N<sub>2</sub> flow varied from 4 to 16 sccm. Blanket test films were deposited approximately 100 nm thick and measured at room temperature using a VersaProbe VP10 4 probe resistivity measurement system. The films exhibit an exponential resistivity dependence with the partial pressure of N<sub>2</sub> as shown in Figure 1.

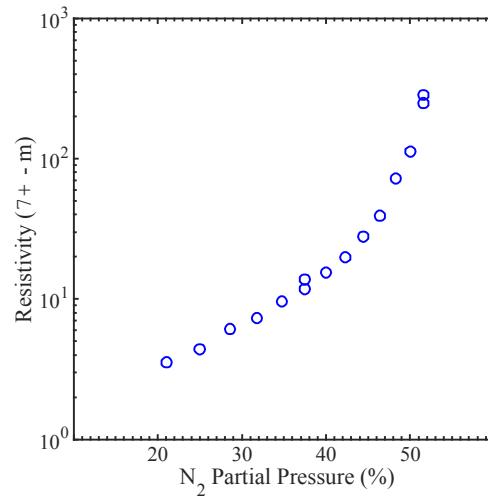



Figure 1. Four probe measurement of reactively sputtered TaN films as N<sub>2</sub> partial pressure was varied.

The same wafers were then cleaved and resistance versus temperature measurements made using a Keithley 2400 four probe measurement. Variation of the TaN<sub>x</sub> stoichiometry

tunes the film properties from superconducting to insulating [16,17]. We find similar results on our films as shown in Figures 2 and 3. For  $N_2$  flows of 4, 5, and 6 sccm, a MPMS Meissner measurement shows superconducting films with transition temperature,  $T_c$  of 6, 5, and 3.5 K respectively. For 8 sccm of  $N_2$  and higher, we observe metallic behavior, and no superconducting transition above 2 K. For still higher  $N_2$  content the films were insulating.

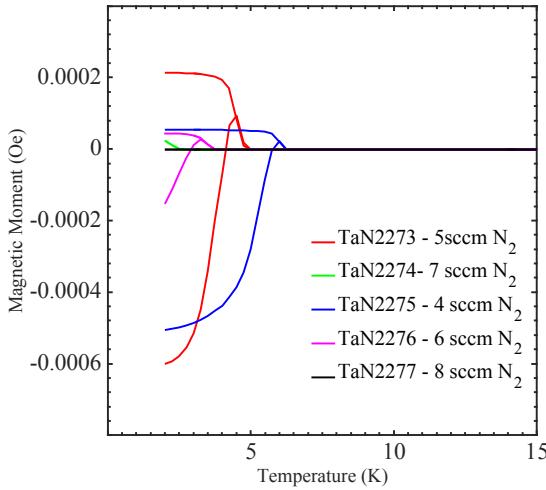



Figure 2. MPMS measurements of  $TaN_x$  films sputtered with different partial pressures of  $N_2$ . For  $Ar$  flows of 15 sccm and  $N_2$  flow of 4-6 sccm a superconductive transition was observed above 2 K.

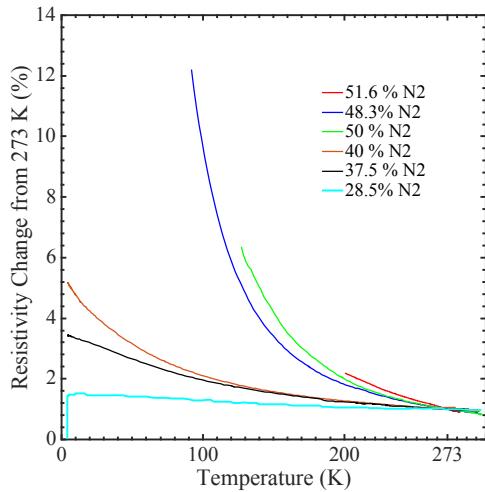



Figure 3. Four probe resistivity measurements showing the RRR of  $TaN_x$  films with different  $N_2$  partial pressures ranging from 28.5% to 51.6%

### III. DEVICE FABRICATION

Wafer level fabrication began with trilayer deposition on thermal grown silicon dioxide wafers on silicon. The full fabrication sequence is displayed in Figure 4. Niobium, tantalum nitride, niobium trilayers were deposited. The Nb films were all 200 nm thick and three different 10, 20 and 40 nm thick  $TaN_x$  films were sputtered with  $N_2$  flow set to 8 sccm. The wafers were then patterned with Az 4110 resist

and etched in a PlasmaTherm ICP RIE using fluorine etch chemistry. A micrograph of an etched Nb line is shown in figure 5. Etch parameters were set to 900 W ICP power, 15 W bias power, 15 mTorr of pressure,  $SF_6$  50 sccm,  $C_4F_8$  90 sccm, and  $Ar$  at 5 sccm. Previous work [14, 15] has shown this mixed mode Bosch etch to etch niobium and silicon while leaving a thin  $CF_x$  polymer on the sidewalls of the niobium. The first etch, defined the bottom layer Nb film, 'metal 1', and the etch landed on the silicon dioxide layer. The second etch, here termed 'mesa etch', defined the junction and stopped in the bottom Nb film of the trilayer.

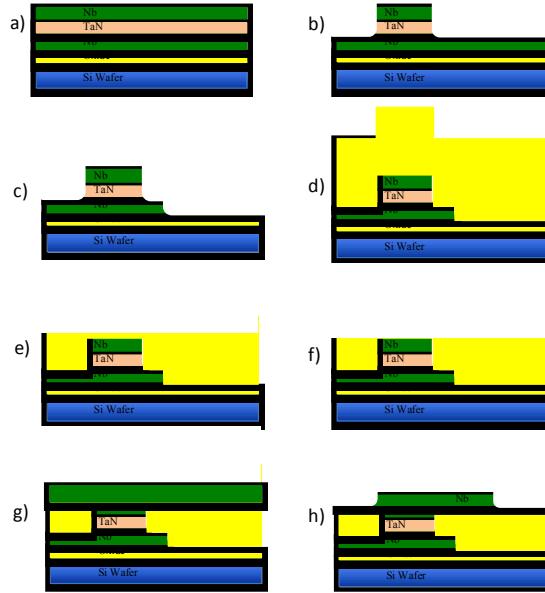



Figure 4. Wafer level fabrication sequence of the Josephson junctions. Step a) sputter deposition of the trilayer stack, b) etch coarse features and wiring layer 1, c) mesa etch to define junctions, d) PECVD oxide ( $SiO_2$ ) deposition, e) CMP planarization of the wafer, f) Ar sputter etch to reveal tops of the junctions, g) Nb metal 2 deposition, h) Nb metal 2 pattern and etch.

After etch, 600 nm of  $SiO_2$  was deposited using a Plasma-Therm Versaline plasma enhanced chemical vapor deposition at a platen temperature of 250 °C with  $N_2O$  and  $SiH_4$  flow of 550 sccm and 300 sccm, respectively. A refractive index of 1.46 was measured at 633nm with a Woollam M2000 variable angle spectroscopic ellipsometer. This provided enough  $SiO_2$  for chemical mechanical polishing (CMP) to flatten the oxide film out across the wafer. We note that to reduce dishing, the CMP did not expose any of the top junction electrode. To expose the top Nb, a third etch was performed with closely match etch rates for Nb and  $SiO_2$  which exposed the top electrode of the junction while maintaining wafer planarity. This etch was performed in a PlasmaTherm capacitively coupled plasma reactive ion etcher (CCP - RIE) using 25 sccm Ar, 400 W of platen power, and 10 mTorr of pressure on a 25 °C platen. clearing of the junction top electrodes was confirmed by resistivity measurements on test structures across the wafer.

Top layer wiring was created by sputtering 200 nm thick top niobium. This Nb was patterned and etched, as described earlier to create the metal 2 layer. Finally, Ti/Au contact pads were evaporated and patterned by lift-off. Figure 6 shows a cross section SEM of the final device.

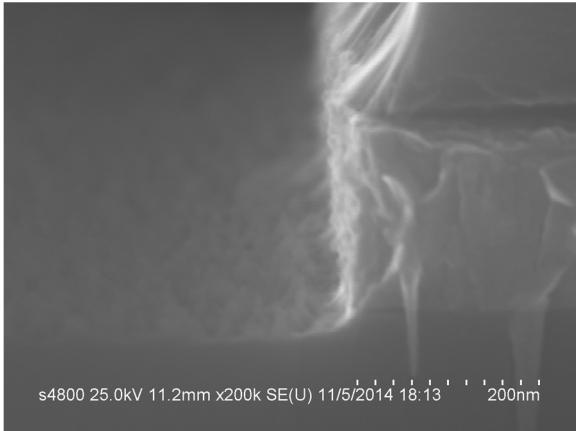



Figure 5. SEM micrograph cross section of etched Nb on  $\text{SiO}_2$ . Az 4110 photoresist and a 90 seconds  $\text{SF}_6$ ,  $\text{C}_4\text{F}_8$ , Ar etch used.

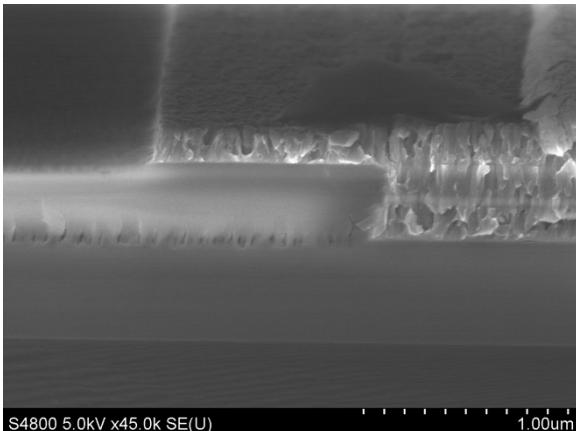



Figure 6. SEM micrograph cross section the final 200 nm Nb on a planarized Nb/TaN<sub>x</sub>/Nb junction stack. A thin TaN<sub>x</sub> layer is seen between the Nb layers.

#### IV. ELECTRICAL MEASUREMENTS

The junction wiring was designed for four probe measurements which allow device resistances to be directly probed. The resistance of the 6  $\mu\text{m}$  diameter junctions and serpentines test structures in metal 1 and metal 2 were probed using a Keithley 2400 sourcemeter, at room temperature. The serpentines resistances, measured across all three wafers, are shown in figure 9. Good uniformity in metal 2 is observed equating to an average resistivity of 246 n $\Omega$ -m. A larger variation between wafers is evident in the metal 1 ; this is attributed to a timed etch with a 5% plasma etch distribution yielding different metal 1 thicknesses and is expected. A thin fluorine etch resistant layer such as Al would greatly improve uniformity.

The resistance of the 6  $\mu\text{m}$  Josephson junction measured at room temperature from top of the wafer to the flat is shown in figure 10. The 10 nm TaN<sub>x</sub> barrier are the most

resistive, followed by 20 nm, with the 40 nm TaN<sub>x</sub> barriers offering the lowest resistance. Junctions at the wafers' edges slightly higher resistance than at the center. However, TaN<sub>x</sub> films blanket deposited without Nb and measured using a profilometer confirm uniformity from center to edge is approximately 0.1% for 40 nm films and 1% for 20 nm films. This suggests the TaN<sub>x</sub> stoichiometry varies with thickness and location on the wafer.

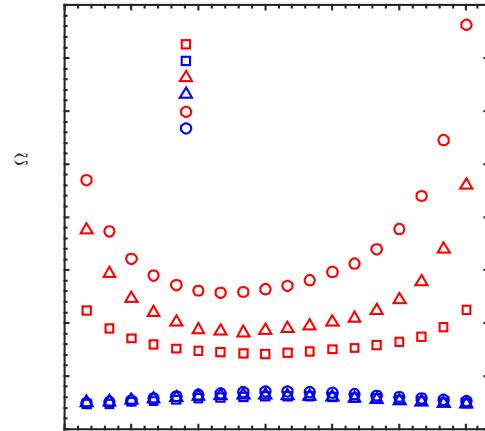



Figure 7 Room temperature resistance of serpentines in metal 1 and metal 2 using four probe on the 10, 20, and 40 nm TaN<sub>x</sub> thicknesses.

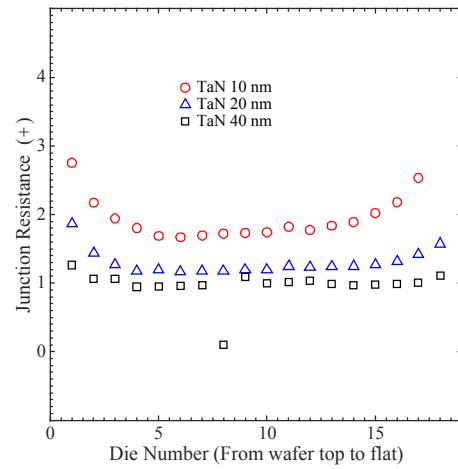



Figure 8 Room temperature resistance of the 6  $\mu\text{m}$  junction using four probe measurements for the 10, 20 and 40 nm TaN<sub>x</sub> barrier thicknesses.

Dies from each wafer were chosen the resistance of and all junctions measured, seen in figure 9 in the format of square root of resistance vs. inverse junction diameter. Although good repeatability between die is observed, some deviation from a straight line suggests electrical contribution from the perimeter of the junction.

Die from each wafer were measured in the MPMS down to  $T = 2$  K. This measurement interrogates the superconductive properties of both Nb and the TaN<sub>x</sub> films using the Meissner effect, shown in figure 10. In all samples Nb shows a robust superconducting  $T_c \approx 8.4$  K. A TaN<sub>x</sub> transition is also observed at 6 K for the 40 nm film, 4.5 K for

the 20 nm film, and a 3.5 K transition for the 10 nm film. This effect suggests that  $\text{TaN}_x$  in trilayer films deviates from that shown in bare films in Fig. 3; a result likely due to the oxidation of the bare  $\text{TaN}_x$  films. This Meissner measurement also suggests that the  $\text{TaN}_x$  films have varying stoichiometry with deposition thickness.

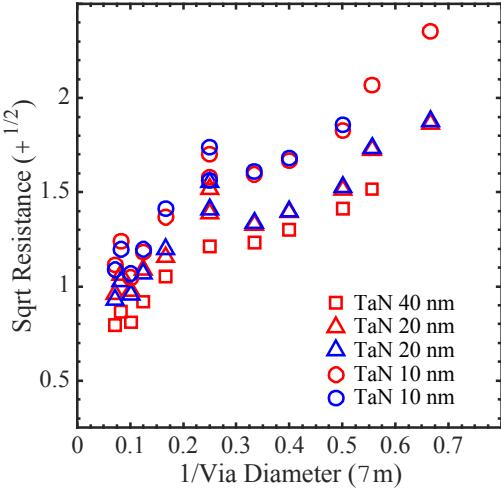



Figure 9. Room temperature resistance of all junctions taken from two adjacent die for the 10, 20 and 40 nm  $\text{TaN}_x$  thickness.

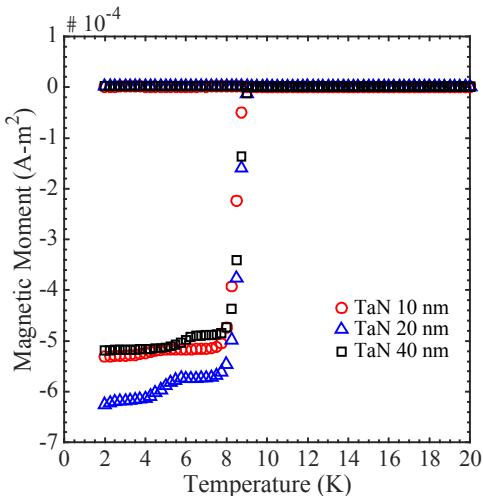



Figure 10. MPMS susceptibility (Meissner) measurements of patterned die for the three  $\text{TaN}$  wafers indicating a  $\text{Nb}$  transition and subsequent thickness dependent transition in  $\text{TaN}_x$ .

Junctions were then wire bonded and submerged in liquid helium for 4 K I-V testing. Figure 11 shows four wire measurements of a 4  $\mu\text{m}$  diameter junction performed by sweeping current while measuring voltage. Two peculiarities are evident. First, the critical current increases with the barrier thickness. Second, multiple switching events occur in the IV curves. The explanation of both phenomena is found by looking at the room temperature resistance data in Figs. 7, 8, and 9 which also show the lower resistivity of the thicker barrier[16, 17]. The Meissner effect data from figure 10

shows all three  $\text{TaN}_x$  barriers becoming superconducting close to 4 K. Put together, these data suggest that the  $\text{TaN}_x$  weak links in these devices are switching from superconducting to normal conduction and that the hysteresis we observe in some of these devices, which is not shown in figure 11, is related to resistive heating of the  $\text{TaN}_x$  barriers. It is interesting to observe that the thinnest  $\text{TaN}_x$  barrier behaves most like an SNS junction although while the thicker barriers display more hysteresis and are certainly superconducting. The solution to these difficulties will require more resistive  $\text{TaN}_x$  and a better understanding of the  $\text{Nb}/\text{TaN}_x$  interface.

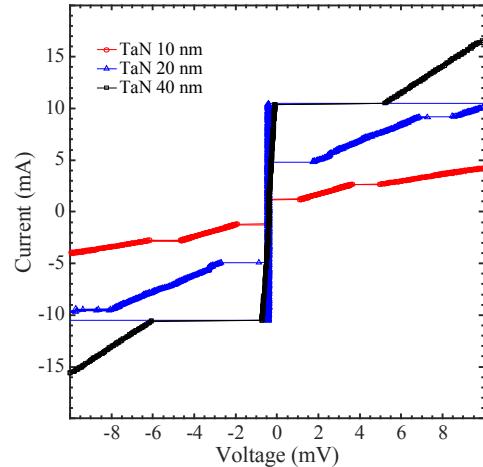



Figure 11. Conductivity of the 4  $\mu\text{m}$  JJ at 4 K for the 10, 20 and 40 nm  $\text{TaN}$  barrier thicknesses.

## V. CONCLUSIONS

This work has presented a sputtered  $\text{TaN}_x$  Josephson junction barrier technology in two metal depositions using  $\text{Nb}$  electrodes and wiring for wafer scale fabrication.  $\text{TaN}_x$  films can be tuned during deposition to exhibit superconducting or insulating properties at 4 K. A key development of this work is a planarization technique based on CMP of the  $\text{SiO}_2$  layers which will enable stacking multiple junction layers.

Electrical and Meissner measurements were made on the films and junctions at room and cryogenic temperatures to quantify uniformity and device performance. These devices show increasing  $I_c$  with barrier thickness and Meissner results on trilayers suggest that part or all of the  $\text{TaN}_x$  barrier becomes superconducting near 4 K with the critical temperature dependent on barrier thickness.

## ACKNOWLEDGMENT

The authors thank the staff of Sandia's MESA fabrication facility and Eric Shaner and Wei Pan for experimental support and equipment.

## REFERENCES

[1] S. K. Tolpygo, V. Bolkhovsky, T. J. Weir, L. M. Johnson, M. Gouker, and W. D. Oliver, "Fabrication Process and Properties of Fully-Planarized Deep-Submicron  $\text{Nb}/\text{Al}$ -Josephson Junctions for

VLSI Circuits," *Applied Superconductivity, IEEE Transactions on*, vol. 25, no. 3, pp. 1-12, 2015.

[2] P. Febvre, N. De Leo, M. Fretto, A. Sosso, M. Belogolovskii, R. Collot, and V. Lacquaniti, "Overdamped Josephson junctions for digital applications," *Physica C: Superconductivity*, vol. 484, pp. 175-178, 1/15/, 2013.

[3] D. S. Holmes, A. L. Ripple, and M. A. Manheimer, "Energy-efficient superconducting computing—power budgets and requirements," *IEEE Transactions on Applied Superconductivity*, vol. 23, no. 3, pp. 1701610-1701610, 2013.

[4] A. B. Kaul, S. R. Whiteley, T. Van Duzer, L. Yu, N. Newman, and J. M. Rowell, "Internally shunted sputtered NbN Josephson junctions with a TaN<sub>x</sub> barrier for nonlatching logic applications," *Applied Physics Letters*, vol. 78, no. 1, pp. 99-101, 2001.

[5] S. Chaudhuri, and I. J. Maasilta, "Superconducting tantalum nitride-based normal metal-insulator-superconductor tunnel junctions," *Applied Physics Letters*, vol. 104, no. 12, pp. 122601, 2014.

[6] S. i. Morohashi, T. Imamura, and S. Hasuo, "Nb Josephson junction with a Hf/HfN double overlay," *Journal of Applied Physics*, vol. 72, no. 7, pp. 2969-2972, 1992.

[7] H. Akaik, T. Funai, N. Naito, and A. Fujimaki, "Characterization of NbN tunnel junctions with radical nitrided aln barriers," *Ieee Transactions on Applied Superconductivity*, vol. 23, no. 3, 2013.

[8] S. K. Tolpygo, V. Bolkhovsky, T. Weir, L. M. Johnson, W. D. Oliver, and M. A. Gouker, "Deep sub-micron stud-via technology of superconductor VLSI circuits," *Superconductor Science and Technology*, vol. 27, no. 2, pp. 025016, 2014.

[9] S. K. Tolpygo, and D. Amparo, "Fabrication process development for superconducting VLSI circuits: minimizing plasma charging damage," *Journal of Physics: Conference Series*, vol. 97, pp. 012227, 2008.

[10] M. D. Henry, S. Wolfley, T. Monson, B. G. Clark, E. Shaner, and R. Jarecki, "Stress dependent oxidation of sputtered niobium and effects on superconductivity," *Journal of Applied Physics*, vol. 115, no. 8, pp. 083903, 2014.

[11] J. Halbritter, "On the oxidation and on the superconductivity of niobium," *Applied Physics A*, no. 43, pp. 48, 1987.

[12] J. Halbritter, "Transport in superconducting niobium films for radio frequency applications," *Journal of Applied Physics*, vol. 97, no. 8, pp. 083904, 2005.

[13] R. Ghez, "On the Mott-Cabrera oxidation rate equation and the inverse-logarithmic law," *The Journal of Chemical Physics*, vol. 58, no. 5, pp. 1838, 1973.

[14] M. D. Henry, and R. L. Jarecki, *Superconductive silicon nanowires using gallium beam lithography*, Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States), 2014.

[15] M. D. Henry, "ICP etching of silicon for micro and nanoscale devices," California Institute of Technology, 2010.

[16] T. Van Duzer, and C. W. Turner, *Principles of superconductive devices and circuits*, 2nd ed., Upper Saddle River, NJ Prentice Hall, Inc, 1999.

[17] L. Yu, R. Gandikota, R. K. Singh, L. Gu, D. J. Smith, X. Meng, X. Zeng, T. Van Duzer, J. M. Rowell, and N. Newman, "Internally shunted Josephson junctions with barriers tuned near the metal-insulator transition for RSFQ logic applications," *Superconductor Science and Technology*, vol. 19, no. 8, pp. 719, 2006.