
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

ASC	Codesign	L2	Milestone	2016	
Center	for	Compu9ng	Research	

Sandia	Na9onal	Laboratories/NM	

SAND2016-8523C

Foreword	
§  ASC	Codesign	2015	Plan	

§  Laid	out	a	rough	plan	to	get	us	
to	2018	with	minimal	Kokkos	

§  Op9miza9on	and	refinement	
2018-2020	

§  Significant	progress	in	some	codes	
§  SIERRA/STK	now	engaging	for	data	

structure	design	(for	GPUs)	
§  Por9ng	efforts	now	well	underway	

for	early	cross	plaTorm	results	

2015 2016 2017 2018 2019 2020 2021

Trinity
Phase I

Trinity
Phase II

Sierra Crossroads

Serial OpenMP Optimized OpenMP

Kokkos Min. CPU X Kokkos Min. CPU

Kokkos Min. GPU K-Opt 1 K-Opt 2 K-Opt 3

RAJA RAJA Optimized CPU RAJA GPU/Optimized GPU

OpenMP

CUDA

C++20 Language
Specification

Directives
C++ Abstraction

Sandia	ASC	Codesign	2015	Proposal	

Strategy	for	Next-Gen.	PlaTorms	

Production Computing
Broader Developer Community

Full Applications
Full Testing
Full Software Environment

W
ho

?	
W
ha
t?
	

Future

Early Access Developers
General ATDM Team

Test Bed Team
Application Performance Team
Early Access ATDM Development Team

Broader Application + Tools
Broader Test Suites
Full Applications
Smaller/Simpler Input Decks

Mini-Applications
Trilinos
Early Application Builds

The	Codesign	Pieces	

§  In	this	presenta9on	we	are	going	to	cover	
using	our	mini-apps,	proto-apps	and	
libraries	to	guide	efforts	in	our:	
§  So]ware	Environment	
§  Libraries	and	Tools	
§  Applica9ons	
§  Hardware/Vendor	Feedback	

§  This	is	a	bit	of	a	smorgasbord	
§  ..	but	that	shows	the	diversity	of	our	work	

Strategy	for	NGP	Applica9ons	
§  Bring	as	much	support	as	we	can	through	our	applica<on	frameworks	

(SIERRA,	STK,	Trilinos	etc.)	
§  Reuse	and	share	across	our	applica9on	porTolio	
§  Single	area	can	be	worked	on	by	domain/performance	specialists	

§  Develop	reusable	recipes	across	our	plaTorms	with	“known	good”	
programming	environments	for	prototype	NGP	systems	
§  Seen	significant	improvement	in	developer	produc9vity	
§  Lowers	total	cost	across	machines	
§  Faster	9me	to	deploy	and	get	ini9al	performance/tes9ng	etc	
§  Important	for	packages	which	use	CUDA,	OpenMP	etc.	that	are	not	in	tradi9onal	

environments	yet	

Outline	
§  Its	been	a	very	busy	year	and	we	have	a	lot	to	show	you…	

§  Part	1	–	Update	on	Applica<on	and	Next-Genera<on	PlaMorm	Por<ng	(20	mins)	
§  Efforts	to	bring	early	environments	on	Haswell,	KNL	and	POWER8/GPU	
§  Early	por9ng	for	SIERRA,	RAMSES	and	Trilinos	code	projects	

§  Part	2	–	Performance	Analysis	tools	and	studies	(10	mins)	
§  Focus	on	SIERRA/SD	performance	inves9ga9ons	

§  Part	3	–	Experiences	bringing	Kokkos	to	applica<on	porMolio	(30	mins)	
§  Bringing	lessons/experiences	from	our	mini-applica9ons	
§  Proto-applica9ons	(single	physics)	experiences	
§  Connec9on	to	ATDM	and	IC	

PART	1	–	APPLICATION	PORTING	TO	NEXT	
GENERATION	PLATFORMS	
Bringing	Haswell,	KNL	and	POWER8/GPUs	to	our	code	teams	

Applica9on	Performance	Team	

SIERRA	Applica9on	Por9ng	and	Analysis	 RAMSES	Applica9on	Por9ng	and	Analysis	

Performance	Analysis	Tools	

(Jeanine	Cook	and	Doug	Pase)	

Trilinos,	Kokkos	and	PlaTorm	Tuning	

+	Lots	of	Applica9ons	Teams	and	Support	Input	

XL
Compiler
makes
Paul
grumpy

Future?	ARM/AMD	ATS-2	(Sierra)	

Systems	and	Test	Beds	

§  Haswell	
§  Mutrino/Trini9te	
§  Trinity	
§  Shepard	Test	Bed	

§  Knights	Landing	
§  Mutrino/Trini9e	
§  Trinity	
§  Trinity	white	boxes	
§  Ellis/Bowman	Test	Beds	

§  POWER8/NVIDIA	
§  Ride/White	Test	Beds	
§  K40/K80	

§  General	NVIDIA	Test	Beds	
§  Shannon	
§  Shiller	
§  Morgan	
§  Hansen	

§  ARM	
§  Sullivan	Test	Bed	

§  AMD	APU	
§  Cooper	Test	Bed	

ATS-1	(Trinity)	

Future?	ARM/AMD	ATS-2	(Sierra)	

So]ware	Environments	

§  Intel	15	
§  Generally	produc9on	for	

SIERRA	

§  Intel	16/17	
§  In	Prepara9on	

§  Cray	
§  Not	seriously	used	

§  GNU	

§  GNU	4.9	Series	

§  NVCC	7.5	and	8.0-RC	
§  S9ll	remains	buggy	

§  GNU	5.3	

§  IBM	XL	13.1.4/5	

§  PGI	

§  GNU	5.3	Series	

§  GNU	6.1	Series	

§  LLVM	

§  PathScale	

ATS-1	(Trinity)	

Produc9on	Applica9ons	Ported	

§  SIERRA	
§  Aero	
§  Aria/MiniAria	
§  Adagio	
§  Salinas	
§  Lots	of	others…	

§  CTH	
§  Using	OpenMP	

§  CoE	
§  NALU/NALU-Kokkos	

§  RAMSES	
§  Xyce	(Serial	&	Parallel)	
§  Charon2	
§  ITS	(using	OpenMP)	
§  SCEPTRE	
§  And	others…	

§  ATDM	
§  ATDM-SPARC	
§  EMPIRE	

U9lize	parts	of	Trilinos	/	U9lize	some	parts	of	Kokkos	/	U9lize	some	parts	of	both	

SIERRA	General	

§  SIERRA	Dev-Ops	team	and	friendly	users	have	been	working	on	full	suite	
compiles	with	NVIDIA	CUDA	compiler	
§  Number	of	issues	with	C++	parsing	etc.	
§  Designed	to	support	early	development	toolchain	in	prepara9on	for	ATS2	
§  Significant	progress	

§  Broadening	SIERRA	architecture	support	to	include	Cray-HSW,	KNL	and	
POWER8	

§  Very	early	builds	with	XL	s9ll	showing	number	of	issues	which	need	to	be	
worked	on	

SIERRA/SD	(“Salinas”)	

0

600

1200

1800

KNL
Alpha

KNL
Bravo

KNL
Charlie

KNL
Delta

KNL
Echo

Knights Landing 7250P
(Commodity)

60 MPI/Node NetLIB 30 MPI/Node NetLIB

60 MPI/Node MKL 30 MPI/Node MKL

0

600

1200

1800

KNL Cache

Knights Landing
7250P (Mutrino)

60 MPI/Node NetLIB

30 MPI/Node NetLIB

0

600

1200

1800

POWER8

POWER8
(GNU)

16 MPI/Node NetLIB

0

600

1200

1800

Haswell

Ti
m

e
to

 S
ol

ut
io

n

Haswell
(Mutrino)

30 MPI/Node NetLIB
30 MPI/Node MKL
30 MPI/Node NetLIB2
30 MPI/Node MKL2

(2	or	4	Nodes)	 (8	Nodes)	 (2	or	4	Nodes)	 (2	or	4	Nodes)	

Work by: Courtenay Vaughan and Paul Lin

2 Nodes 4 Nodes

SIERRA/SD	(“Salinas”)	

0

600

1200

1800

KNL
Alpha

KNL
Bravo

KNL
Charlie

KNL
Delta

KNL
Echo

Knights Landing 7250P
(Commodity)

60 MPI/Node NetLIB 30 MPI/Node NetLIB

60 MPI/Node MKL 30 MPI/Node MKL

0

600

1200

1800

KNL Cache

Knights Landing
7250P (Mutrino)

60 MPI/Node NetLIB

30 MPI/Node NetLIB

0

600

1200

1800

POWER8

POWER8
(GNU)

16 MPI/Node NetLIB

0

600

1200

1800

Haswell

Ti
m

e
to

 S
ol

ut
io

n

Haswell
(Mutrino)

30 MPI/Node NetLIB
30 MPI/Node MKL
30 MPI/Node NetLIB2
30 MPI/Node MKL2

(2	or	4	Nodes)	 (8	Nodes)	 (2	or	4	Nodes)	 (2	or	4	Nodes)	

Work by: Courtenay Vaughan and Paul Lin

2 Nodes 4 Nodes

Much	bigger	difference	in	op9mized	libraries	for	KNL	than	HSW	

Haswell	compe99ve	on	a	node	for	node	basis	

SIERRA/TF	(“Aero”)	

0
50

100
150
200
250
300
350
400

4 8 16 32

Ti
m

e
(S

ec
on

ds
)

Nodes

Matrix Assembly

HSW

KNL-SMT1-DDR4

KNL-SMT1-HBM

POWER8

0
20
40
60
80

100
120
140
160

4 8 16 32

Ti
m

e
(S

ec
on

ds
)

Nodes

Matrix Solve

HSW

KNL-SMT1-DDR4

KNL-SMT1-HBM

POWER8

0
50

100
150
200
250
300
350
400
450

8 16 32 64

Ti
m

e
(S

ec
on

ds
)

Nodes

Matrix Assembly

HSW

KNL-SMT1-DDR4

KNL-SMT1-HBM

POWER8

0

50

100

150

200

250

300

8 16 32 64

Ti
m

e
(S

ec
on

ds
)

Nodes

Matrix Solve

HSW

KNL-SMT1-DDR4

KNL-SMT1-HBM

POWER8

Higher	Order	Problem	 Standard	Hex	Mesh	Problem	

Work by: Paul Lin

SIERRA/SM	(“Adagio”)	

0

25000

50000

75000

100000

64 128 256 512 1024 2048 3072 Ti
m

e
to

 S
ol

ut
io

n
(s

ec
s)

Code Improvement (HSW)
4.39.1 4.39.6

0

10000

20000

30000

512 1024 2048 3072 Ti
m

e
to

 S
ol

ut
io

n
(s

ec
s)

Trinity Preparation
Haswell KNL Flat KNL Cache

Adagio Version 4.41.3

•  Flat and Cache Mode are similar for KNL, problem
does not fit at 512 ranks

•  This is ranks, so compare HSW = 2 x KNL

•  See effect of continued improvement in code from
SIERRA/SM team

•  Greater use of well formed loops, const keyword,
etc

Work by: Dennis Dinge

SIERRA/SM	(“Adagio”)	

0

25000

50000

75000

100000

64 128 256 512 1024 2048 3072

Ti
m

e
to

 S
ln

. (
se

cs
)

Code Improvement (HSW)
4.39.1 4.39.6

0

10000

20000

30000

512 1024 2048 3072
Ti

m
e

to
 S

ln
. (

se
cs

)

Trinity Preparation
Haswell KNL Flat KNL Cache

Adagio Version 4.41.3

•  Flat and Cache Mode are similar for KNL, problem
does not fit at 512 ranks

•  This is ranks, so compare HSW = 2 x KNL

•  See effect of continued improvement in code from
SIERRA/SM team

•  Greater use of well formed loops, const keyword,
etc

Work by: Dennis Dinge

RAMSES	-	Xyce-Parallel	
§  Preliminary	results	from	NGP	plaMorms	

§  Uses	autoconf	and	so	requires	some	
significant	cross-compile	fixes	
§  Con9nuing	source	of	headache	for	all	

build	systems	we	are	using	today	
(autotools,	CMake	and	BJAM)	

§  KNL	cache	mode	from	Mutrino	quite	
effec9ve	

§  Working	on	>800	tests	now	
	

0	

10	

20	

30	

40	

50	

POWER8	 KNL-Cache	 Sandy	Bridge	

Ti
m
e	
to
	S
ol
u<

on
	(S

ec
s)
	

Xyce	Parallel	–	BSIM6/RINGOSC17	

Serial	 MPI	2	Ranks	

Work by: Bob Benner

Performance	Take	Aways	
§  Seeing	KNL	is	compe99ve	(s9ll	bit	slower)	at	comparable	numbers	of	nodes	

§  Surprising	given	the	codes	do	not	vectorize	and	only	have	very	limited/zero	threading	today	
§  Hopeful	that	con9nued	work	and	development	will	get	us	to	where	we	want	to	be	

§  KNL	Flat/Cache	modes	are	similar	if	you	are	all	resident	and	can	provide	an	
improvement	today	(expect	more	in	future	with	improved	vectoriza9on)	

§  Correlates	with	early	experiences	on	test	beds	using	mini-apps	and	Trilinos	
tests		

§  POWER8	bit	slower	than	Haswell	but	this	is	using	GNU	compiler	

Trilinos	
§  Significant	concern	regarding	compile	<mes	

and	binary	sizes	
§  Trilinos	tes9ng	infrastructure	contains	some	

miniapps	(e.g.	MiniFENL,	Epetra-Driver	etc.)	
§  Measured	compile	and	link	9mes	for	large	

collec9on	of	packages	
§  Seeing	this	creep	up	significantly	over	9me	
§  Par9cular	concern	at	high	op9miza9on	level	

with	XL	compiler	
§  Binary	sizes	for	debug	builds	with	Intel	on	KNL	

are	worrying	(some9mes	seg-fault	compiler)	
§  Trilinos	is	now	running	on	every	NGP	test	bed	

0

20

40

60

80

100

120

140

160

180

Intel KNL POWER8
XL (O3)

POWER8
XL (Full

Opt)

POWER8
GNU

B
ui

ld
 T

im
e

(H
ou

rs
)

Multi-Package Trilinos
(Lib + Test Build Time)

Math	Libraries	Comparison	
Library	 X86	 KNL	 NV	 P8	 ARM	 Model	 Speed	 BLAS	 LAPACK	 Sparse	

NetLIB	 Serial	

OpenBLAS	 OpenMP	

MKL	 OpenMP	

CuBLAS	 CUDA	

CuSPARSE	 CUDA	

ESSL	 OpenMP	

High	performing	math	libraries	s9ll	cri9cal	to	basic	kernels,	finding	we	don’t	always	get	broad	support	we	need/want.	

Takeaways	
§  Efforts	to	port	whole	porMolio	of	produc<on	codes	to	NGP	plaMorms	now	

well	underway	for	prototype/test	bed	ATS	systems	
§  Significant	angst	with	compilers	(Intel	17.0	performance/bugs,	XL	compa9bility	and	link	9mes,	

Cray	s9ll	not	fully	working)	
§  Found	many	issues	with	environments	(I/O	libraries,	compilers,	configura9ons	etc.)	
	

§  Good	number	of	these	are	provided	to	vendors	with	fixes	either	delivered	on	
in	the	works,	some	are	on-going	conversa9ons	
§  NVIDIA	CUDA	compiler	has	many	problems	in	early	access	CUDA-8	RC1	
§  Latest	drops	from	PGI	showing	big	improvement	for	threaded	codes	

§  Math	libraries	con9nue	to	provide	significant	head	aches	cross	machines	
§  Whole	point	is	to	grow	broader	lab	NGP	exper9se	which	is	underway	

PART	2	–	PERFORMANCE	ANALYSIS	
Improving	our	fundamental	understanding	of	hardware	performance	

Background	
§  In	the	FY15	Tri-Lab	codesign	report	we	highlighted	performance	analysis	tools	

on	next-genera9on	plaTorms	as	an	area	of	real	weakness	
§  Takes	a	long	9me	to	get	ini9al	ports	completed	
§  Even	longer	to	get	the	tool	baked	out	for	use	

§  Want	something	lightweight	and	simple	to	install	across	machines	
§  Building	on	our	mul9-year	investment	in	counter-based	analysis	

§  Work	has	con9nued	in	this	area	and	in	building	baseline	capabili9es	
§  Shown	in	the	context	of	the	Salinas	produc9on	code	

PerfMiner	-	Overview	

§  Few	dependencies	
§  PAPI	and	Python	

§  Cross-plaTorm	
§  Defined	default	analysis	so	user	doesn’t	

have	to	

§  Core,	memory,	MPI	
§  Per	rank,	per	thread,	aggregated	

§  Modular	design	
§  Front-end,	collector,	viz	back-end	

§  Viz	back-end		
§  Thorough	”canned”	analysis	
§  Intui9ve	drill-down	displays	

§  Directed	analysis	or	con9nuous	
monitoring	modes	

§  Data	imported	into	searchable	DB	
§  Historical	analysis	

§  Low	overhead	
§  Accurately	mul9plexes	

§  Configurable	event	list	
§  Flexible,	simple	instrumenta9on	

(PAPIEX_START()/PAPIEX_STOP())	
§  Requires	one	re-compila9on	

Work by: Jeanine Cook and Phil Mucci

Lightweight	profiling	tools	for	our	next-genera<on	plaMorms	

PerfMiner	-	Status	
§  Working	and	tested	on:	

§  Shepard,	Chama,	White,	Ride,	
Mutrino	test	beds	

§  (Haswell,	Sandy	Bridge,	POWER8	and	
Haswell/Cray)	

§  Defined	detailed	analysis	for	HSW,	SNB/
IVB,	POWER8	
§  Cache	behavior		

§  Miss	rates	
§  Pending	and	stall	cycle	histograms		

§  Memory	latency	and	cycle	accountability	
histograms		

§  Execu9on	port	u9liza9on	
§  Micro-op	execu9on	distribu9on	
§  Branch	behavior	
§  Memory	bandwidth	es9ma9on	
§  CPI	(cycles	per	instruc9on)	
§  Instruc9on	re9rement	behavior	
§  Resource	stall	profile	(Future:	CPI	stacks)	

SIERRA	Performance	

0

500

1000

1500

2000

2500

Aero-Implicit Aero-Explicit Aero Body-
Hex

Aero Body-
Mixed

Adagio TLC Adagio TLC
Refined

Salinas NFN9

So
lu

tio
n

Ti
m

e
(S

ec
s)

SIERRA Application Performance (Test Problems)
Chama (SNB) Mutrino (HSW) Cielo

In	general	these	trends	reflect	experiences	
with	our	mini-apps,	Trilinos	tests	and	general	
benchmarking:	SNB	=	2X	over	Cielo,	HSW	=	
SNB	but	at	2X	density	and	same-ish	power	

These	are	for	a	fixed	number	of	MPI	ranks	(so	are	using	different	numbers	of	nodes)	 Work by: Courtenay Vaughan

SIERRA	Performance	

0

500

1000

1500

2000

2500

Aero-Implicit Aero-Explicit Aero Body-
Hex

Aero Body-
Mixed

Adagio TLC Adagio TLC
Refined

Salinas NFN9

So
lu

tio
n

Ti
m

e
(S

ec
s)

SIERRA Application Performance (Test Problems)
Chama (SNB) Mutrino (HSW) Cielo

No9ce	slower	performance	on	Haswell	than	
Sandy	Bridge,	consistently	between	

different	plaTorms	(with	same	compiler)	

Analyzing	Why	Different?	
§  Ini9al	code-based	9mes	were	showing	that	the	Salinas	BLKSLV	rou9ne	was	

where	addi9onal	cost	was	going	
§  Frequent	calls	to	small-ish	DGEMM	and/or	DGEMV	
§  Op9ons	to	link	to	Cray	LibSCI,	Intel	MKL	and	na9ve	NetLIB	implementa9on	
§  No	real	significant	different	between	the	libraries	(small	DGEMM	con9nues	to	be	a	huge	

headache)	

§  Requires	more	in-depth	analysis	of	the	solve	rou9nes	from	within	the	
applica9on	context	
§  Why?	–	turns	out	we	don’t	have	a	representa9ve	mini-app	for	this	type	of	solve	
§  Good	mo9va9on	for	a	tool	that	can	scale	to	more	complex	applica9ons	and	mul9-rank	

BLKSLV	Analysis	

§  Instruc9ons	per	Load/Miss	(higher	is	
beuer)	
§  Mutrino	has	compara9vely	poor	Icache,	

L2,	and	L3	miss	behavior	
§  Enough	to	explain	~10%	performance	

difference?		

§  L2	Cache	Pending	and	Stall	Cycles	
§  Mutrino	spending	more	9me	(but	not	

much)	on	wai9ng	for	L2	pending	misses	
and	stalling	more	to	resolve	L2	misses	

§  Enough	to	explain	~10%	performance	
difference?	

1

10

100

1000

10000

100000

Chama/MKL Mutrino/MKL

In
st
ru
ct
io
ns
	p
er
	Lo

ad
	o
r	M

iss

System/Math	Library

Instructions	per	Load	or	Miss

Insns/Load

Insns/Store

Insns/L1D	miss

Insns/L1I	miss

Insns/L2D	miss

Insns/L2I	miss

Insns/L3	misses

Insns/L1	load	misses

Insns/L1	store	misses

0
5
10
15
20
25
30
35
40
45
50

Chama/MKL Mutrino/MKL
%
	o
f	T
ot
al
	C
yc
le
s

System/Math	Library

L2	Cache	Pending	and	Stall	Cycles	(Data)

L2D	miss	pending

L2D	miss

0
5
10
15
20
25
30
35
40
45
50

Chama/MKL Mutrino/MKL

%
	o
f	T
ot
al
	C
yc
le
s

System/Math	Library

Uop	Distribution

0	uops	executed

1	uop	executed

2	uops	executed

3	uops	executed

4	or	more	uops	executed

0

10

20

30

40

50

60

70

Chama/MKL Mutrino/MKL
%
	o
f	T
ot
al
	C
yc
le
s

System/Math	Library

Resource	Stall	Cycles

IQ	full

Any	resource

ROB	full

No	eligible	RS	available

SBs	full

RAT	not	issuing	to	RS

No	retired	uops

BLKSLV	Analysis	
§  Uop	distribu9on	

§  Mutrino	characterized	compara9vely	by	
more	cycles	with	fewer	uops	execu9ng	

§  Could	this	be	an	ar9fact	of	the	cache	
behavior?	

§  Enough	to	explain	~10%	performance	
difference?		

§  Resource	stall	cycles	
§  Mutrino	spending	compara9vely	more	

cycles	stalled	on	any	resource,	on	no	
reserva9on	sta9on	available	

§  Could	this	be	explain	the	uop	distribu9on?	
§  Enough	to	explain	~10%	performance	

difference?	

Discussion	
§  PerfMiner	provides	capability	to	analyze	execu9on	rela9vely	easily	and	thoroughly	

§  Other	tools	really	don’t	provide	same	flexibility	or	robustness		
§  Reveals	problems	that	can	either	be	used	to	explain	anomalies	or	to	drive	further	

architectural	explora9on	(SST)	
§  Iden9fy	the	problem,	but	not	the	cause	->	future	work!	

§  Issues	with	performance	counters	
§  Can	you	use	them	to	compare	cross-plaTorm	performance?		

–  Simula9on	could	help	answer	this	

§  Applica9on	performance	understanding	really	just	in	beginning	stages	
§  PerfMiner	capability	is	new	
§  APT	team	process	for	doing	this	s9ll	being	ironed	out	

Takeaways	
§  Frustra9ng	situa9on	is	that	we	o]en	don’t	have	performance	tools	on	our	machines	

early	in	the	cycle	(VTune,	virtually	nothing	on	POWER8,	etc.)	

§  Mini-applica9on	performance	shows	Haswell	should	out-perform	Sandy	Bridge	which	in	
general	is	correct	except	for	Salinas	
§  Almost	all	other	applica9ons	show	Haswell	outperforming	Sandy	Bridge	by	around	2X	

§  Requires	us	to	be	able	to	go	into	the	systems/applica9ons	and	understand	why	to	
reduce	codesign	cycle	feedback	9mes	
§  Important	in	very	early	system	bring	up	where	we	can	affect	a	lot	of	change	

§  Now	baseline	capabili9es	are	developed	working	on	how	we	impact	applica9on	designs	with	
con9nuous	performance	assessment	capabili9es	(tasking	into	FY17)	

PART	3	–	APPLICATION	DEVELOPMENT	
FOR	NEXT-GENERATION	PLATFORMS	
Bringing	experiences	and	best-prac9ces	to	our	applica9on	porTolio	

Sec9on	Outline	
§  Reminder	–	observa<ons	of	performance	from	SIERRA/TF	Aero	

§  What	do	we	see	in	our	mini-app	and	proto-app	suite?	
§  Similar	trends?	Similar	performance?	

§  Some	findings	and	op9miza9ons	worked	on	during	this	codesign	cycle	
§  Implica9ons	for	other	codes	in	our	porTolio	
§  Broader	impact	

SIERRA/Aero	

0	
50	

100	
150	
200	
250	
300	
350	
400	

4	 8	 16	 32	

Ti
m
e	
(S
ec
on

ds
)	

Nodes	

Matrix	Assembly	

HSW	

KNL-SMT1-DDR4	

KNL-SMT1-HBM	

POWER8	

0	
20	
40	
60	
80	

100	
120	
140	
160	

4	 8	 16	 32	

Ti
m
e	
(S
ec
on

ds
)	

Nodes	

Matrix	Solve	

HSW	

KNL-SMT1-DDR4	

KNL-SMT1-HBM	

POWER8	

0	

100	

200	

300	

400	

500	

8	 16	 32	 64	

Ti
m
e	
(S
ec
on

ds
)	

Nodes	

Matrix	Assembly	

HSW	

KNL-SMT1-DDR4	

KNL-SMT1-HBM	

POWER8	

0	

50	

100	

150	

200	

250	

300	

8	 16	 32	 64	

Ti
m
e	
(S
ec
on

ds
)	

Nodes	

Matrix	Solve	

HSW	

KNL-SMT1-DDR4	

KNL-SMT1-HBM	

POWER8	

Higher	Order	Problem	 Standard	Hex	Mesh	Problem	

Work by: Paul Lin

Observa9ons	

Assembly	

§  Assembly	is	not	improved	in	most	
cases	by	HBM	on	KNL	

§  Tends	to	be	slower	than	Haswell	for	
equivalent	compute	resources	

§  POWER8	worse	than	Haswell	

Solve	

§  HBM	is	faster	than	DDR4	but	not	as	
much	as	we	would	like	(solve	is	too	
simple)	

§  See	beuer	scaling	when	using	HBM	
(at	larger	node	counts)	

§  Seeing	similar	results	with	Trilinos	
tes9ng	and	development	

MiniFE	
§  Running	in	MPI	only	mode	using	only	cores	

§  Compiled	with	op9mized	flags	on	each	
plaTorm	

§  See	liule	difference	in	Assembly	9mes	
between	DDR4	and	HBM	on	KNL	

§  KNL	is	slower	than	Haswell	

§  Solve	is	faster	on	POWER8	and	KNL-HBM	
where	memory	bandwidth	is	higher	 0	

0.5	

1	

1.5	

2	

KNL-DDR4	 KNL-HBM	 Haswell	 POWER8	

Sp
ee
du

p	
ov
er
	H
as
w
el
l	

Assembly	 Solve	

See	similar	behavior	in	HPCG	benchmark	runs	but	solve	is	slowed	down	by	serial	GS	

NALU	Proto-App	
§  CFD	code		
§  Real	applica9on,	but	simpler	than	full	NW	apps	

§  Fewer	dependencies	

§  Shares	data	structures,	algorithmic	approach	
and	Trilinos	usage	with	full	NW	apps	

§  Prototype	Assembly	Por9ng:	
§  Use	of	Hierarchical	Parallelism:	Loop	over	Buckets	and	

Elements	in	Buckets	
§  Replace	temporary	alloca9ons	with	Kokkos	scratch	

memory	
hups://github.com/spdomin/Nalu	

Op9mizing	Alloca9on	in	Assembly	

0	

10	

20	

30	

40	

1	 2	 4	 8	 16	

Sp
ee
du

p	
(%

)	

Nodes	

Op<mized	Alloca<on	

HSW	 KNL	 POWER8	 §  Op9mized	the	alloca9on	of	variables	
within	the	assembly	
§  Essen9ally	similar	to	hois9ng	these	

outside	of	compute	intensive	loops	
§  Found	because	Kokkos	prevents	

users	from	doing	this	
§  Performance	improvement	is	around	

25-40%	
§  Fix	worked	back	into	code	master	for	

standard	MPI	only	code	and	already	
delivering	improvements	

NALU	Assembly	

1	

10	

1	 2	 4	 8	 16	

Ti
m
e	
(S
ec
on

ds
)	

Nodes	

HSW	Master	MPI-Only	 HSW	Kokkos	MPI-Only	 HSW	Kokkos	Threaded	
P8	Master	MPI-Only	 P8	Kokkos	MPI-Only	 P8	Kokkos	Threaded	
KNL	Master	MPI-Only	 KNL	Kokkos	MPI-Only	 KNL	Kokkos	Threaded	

NALU	Solve	

1	

10	

1	 2	 4	 8	 16	

Ti
m
e	
(S
ec
on

ds
)	

Nodes	

HSW	Master	MPI-Only	 HSW	Kokkos	MPI-Only	 HSW	Kokkos	Threaded	
P8	Master	MPI-Only	 P8	Kokkos	MPI-Only	 P8	Kokkos	Threaded	
KNL	Master	MPI-Only	 KNL	Kokkos	MPI-Only	 KNL	Kokkos	Threaded	

Exploring	Vectoriza9on	and	GPUs	
•  Explore	algorithms/implementa<on/data	structure	in	stand-alone	assembly	

•  Binary	dumped	all	input	and	output	arrays	to	the	kernel	
•  Read	them	in,	recompute	output	and	compare	to	gold	values	

•  Base:	Basically	like	the	NALU	Kokkos	code	
•  Inline:	remove	Fortan,	and	inline	physics	

•  Couple	dead-ends	explored	for	example	puyng	in	an	explicit	vectoriza9on	level	over	elements	in	
bucket	(i.e.	split	the	element	loop	into	two,	one	with	hardcoded	16)	

•  GPUAlg:	Interleave	Scratch	Arrays	to	get	coalesced	access	on		GPUs	

Standalone	NALU	Assembly	Test	Case	

0	

0.05	

0.1	

0.15	

0.2	

0.25	

Base	 Inline	 GPU	Alg	

Ti
m
e	

NALU	Standalone	Assembly	

HSW	 KNL	(DDR)	 KNL	(HBM)	 K80	 Titan	X	Pascal	

Why	are	GPUs	bad	at	this?	
§  Fundamental	Problem:	Too	liule	cache	on	GPUs	

§  Require	7	kB	temporary	space	per	element	in	flight	
§  On	Haswell/KNL/Power:	one	element	per	thread	
§  On	GPUs:	one	element	per	”vector	lane”	

HSW	 KNL	 K80	(Kepler)	 GP102	(Pascal)	

Aggregate	(Data)	L1	in	kB	 2*16*32	=	2048	 68*32	=	
2176	

13	*	(16+112)	=	1664	 56	*	(24+64)	=	4928	

Per	Thread	L1	in	kB	 16	 8	 8	 11	

Per	Vector	Lane	L1	in	kB	 4	 1	 0.25	 0.34	

HBM	Bandwidth	(Measured	by	
<y|Ax>)	

120	GB/s	 360	GB/s	 165	GB/s	 360	GB/s	

How	do	we	expose	more	
parallelism?	

?	

BROADENING	THE	IMPACT	

Broadening	the	Impact	

§  Reality	is	that	we	see	these	paierns	a	lot	in	our	code	porMolio	
§  Means	we	can	try	to	reuse	these	pauerns	in	mul9ple	codes	
§  One	of	the	advantages	of	a	“framework”	approach	to	our	code	base	

§  So	we	have	been	working	with	various	code	groups	to	look	at	issues	which	are	
either	similar	or	relate	to	this	kind	of	kernel	design	
§  SIERRA	and	ATDM	primary	focus	

SIERRA/SM	(“Adagio”)	
§  Enable	the	following	SIERRA/SM	capabili<es	on	GPU	(with	Kokkos):	

§  Linear	beam	element	
§  Fixed	displacement	BC	
§  Gravity	BC	
§  Results	Output	
§  Suppor9ng	core	algorithms	(i.e.	central	difference	9me	integra9on)	

§  Results:			
§  Serial	CPU	run9me	(X86	Sandy	Bridge):	366	minutes	
§  CPU	+	GPU	run9me	(Haswell	+	K80):	17	minutes	
§  Speedup	is	22X	for	compute	kernels	(data	movement	s9ll	hurts)	

Work by: SIERRA/SM Team Nate Crane, Mark Mereweather, Mike Tupek, Kendal Pierson

SIERRA	STK	Team	(Mesh	Structures)	
§  STK	mesh	structures	are	pervasive	in	SIERRA	

applica9ons	

§  SIERRA	STK	team	exploring	“mesh	wrappers”	which	
insulate	code	teams	from	future	changes	
§  Need	to	be	“low	overhead”	
§  Easy	to	integrate	
§  Opportunity	to	simplify	some	internals	

§  Prototype	single	node	evalua9ons	underway	
§  Exploring	with	Kokkos	on	CPU,	GPU,	KNL	etc.	

0	

5	

10	

15	

20	

25	

Ru
n<

m
e	
(s
)	

Nodal	Volume	Calcula<on	

STK	Mesh	

Wrapped	STK	Mesh	+	Wrapped	STK	Field	

Wrapped	STK	Mesh	+	Sta9c	Field	

Work by: SIERRA/STK Team (now led by Kendal Pierson)

0.42
0.52 0.47

0.25

0.52

0.25

0

0.2

0.4

0.6

0.8

1

1.2

R
un

tim
e

(s
ec

on
ds

)

512K Field Subsetting
Cost

SIERRA	STK	Team	(Mesh	on	GPU)	
§  Focused	sprint	on	using	STK	meshes	on	GPU	w/	Kokkos	

§  Different	types	of	data	structure	layouts	
§  U9lize	different	types	of	Kokkos-Views	underneath	
§  Different	itera9on	schemes	and	mesh	auras	

§  Different	performance	characteris9cs	as	a	result	

§  Finding	more	consistent	9mings	across	GPU	

§  S9ll	part	of	the	STK	“Learning”	product	for	addi9onal	studies	

Work by: SIERRA/STK Team (now led by Kendal Pierson)

Kokko
s::Vie
w<dou
ble*>

Kokkos
::View<
unsigne
d*>

SIERRA/TF	Aria	
§  Iden9fied	area	of	weakness	in	SIERRA/TF	team	room	discussions	

§  Expression	system	in	Aria	is	a	complicated	area	which	is	not	well	represented	
in	any	exis<ng	mini-app	

§  Extracted	core	Expression	system	used	for	matrix	assembly	in	Aria	into	non-export	
controlled	Ariamini.	

§  Serves	as	a	smaller	test	bed	for	determining	how	to	integrate	Kokkos	for	thread-
parallel	matrix	assembly	in	Aria	that	can	be	shared	with	Trilinos+Kokkos	developers	
in	1400	

§  Only	dependency	is	Trilinos	(STK)	

§  Plan	to	use	Ariamini	as	a	new	codesign	vehicle	during	the	next	FY	

Work by: SIERRA/TF Team, Jon Clausen and Victor Brunini

ATDM/SPARC	(Assembly)	

 1 2 4 8 16 32 64

Nodes

 0

 4

 8

12

16

20

24

28

32

36

40

44

48

52

56

60

64

A
ss

e
m

b
ly

 S
ca

lin
g

0

2

4

6

8

10

12

14

16

S
p
e
e
d
u
p
 R

e
la

tiv
e
 t
o
 4

 n
o
d
e
s

GRV 4.1M Cell Grid - Assembly Strong Scaling

PI - HSW 32 ranks/node, 1 thread/rank
PI - KNL 64 ranks/node, 1 thread/rank
PI - KNL 64 ranks/node, 4 threads/rank
PI - KNL 32 ranks/node, 8 threads/rank
LI - HSW 32 ranks/node, 1 thread/rank
LI - KNL 64 ranks/node, 1 thread/rank
LI - KNL 64 ranks/node, 4 thread/rank
LI - KNL 32 ranks/node, 8 thread/rank

 4 8 16 32 64

Nodes

 32

 64

128

256

512

A
ss

e
m

b
ly

 T
im

e
 [
s]

GRV 4.1M Cell Grid - Assembly Strong Scaling
32k/16k Cells/Rank

16k/8k Cells/Rank

8k/4k Cells/Rank

4k/2k Cells/Rank

2k/1k Cells/Rank

(Ideal)

Collected on Mutrino (100 32 core HSW nodes & 100 68 core KNL nodes)

PI - HSW 32 ranks/node, 1 thread/rank
PI - KNL 64 ranks/node, 1 thread/rank
PI - KNL 64 ranks/node, 4 threads/rank
PI - KNL 32 ranks/node, 8 threads/rank
LI - HSW 32 ranks/node, 1 thread/rank
LI - KNL 64 ranks/node, 1 thread/rank
LI - KNL 64 ranks/node, 4 thread/rank
LI - KNL 32 ranks/node, 8 thread/rank

Work by: Micah Howard

S9ll	the	case	that	HSW	out	performs	KNL	on	Assembly	(mini-apps	and	proto	experiences	s9ll	correlate)	

 1 2 4 8 16 32 64

Nodes

 0

 4

 8

12

16

20

24

28

32

36

40

44

48

52

56

60

64

S
o
lv

e
 S

ca
lin

g
0

2

4

6

8

10

12

14

16

S
p
e
e
d
u
p
 R

e
la

tiv
e
 t
o
 4

 n
o
d
e
s

GRV 4.1M Cell Grid - Solve Strong Scaling

PI - HSW 32 ranks/node, 1 thread/rank
PI - KNL 64 ranks/node, 1 thread/rank
PI - KNL 64 ranks/node, 4 threads/rank
PI - KNL 32 ranks/node, 8 threads/rank
LI - HSW 32 ranks/node, 1 thread/rank
LI - KNL 64 ranks/node, 1 thread/rank
LI - KNL 64 ranks/node, 4 thread/rank
LI - KNL 32 ranks/node, 8 thread/rank

 4 8 16 32 64

Nodes

 128

 256

 512

1024

2048

4096

S
o
lv

e
 T

im
e
 [
s]

GRV 4.1M Cell Grid - Solve Strong Scaling

32k/16k Cells/Rank

16k/8k Cells/Rank

8k/4k Cells/Rank

4k/2k Cells/Rank

2k/1k Cells/Rank

(Ideal)

Collected on Mutrino (100 32 core HSW nodes & 100 68 core KNL nodes)

PI - HSW 32 ranks/node, 1 thread/rank
PI - KNL 64 ranks/node, 1 thread/rank
PI - KNL 64 ranks/node, 4 threads/rank
PI - KNL 32 ranks/node, 8 threads/rank
LI - HSW 32 ranks/node, 1 thread/rank
LI - KNL 64 ranks/node, 1 thread/rank
LI - KNL 64 ranks/node, 4 thread/rank
LI - KNL 32 ranks/node, 8 thread/rank

ATDM/SPARC	(Solve)	 Work by: Micah Howard and Andrew Bradley

KNL	now	faster	for	solve	phase	although	scaling	needs	to	be	improved,	strong	thread	performance	

ATDM/EMPIRE	
§  PIC-based	code	developed	as	a	future	capability	

for	RAMSES	suite	

§  Wriuen	using	Kokkos	and	Trilinos	en9rely	

§  Works	en9rely	on	CPU,	KNC,	KNL	and	GPU	

§  MiniPIC	variant	(including	Kokkos	and	Trilinos)	
used	for	APEX/ATS-3	procurement	
§  Results	show	similar	performance	for	assembly	and	solve	

§  Significant	focus	this	FY	on	analyzing	kernel	
performance	using	the	Kokkos	profiling	hooks	

Work by: Matt Bettencourt

Takeaways	and	Discussion	
§  Con9nued	development	and	refinement	of	abstrac9ons	in	code	to	permit	

greater	portability	(see	these	are	usually	rela9vely	cheap)	

§  Significant	diversity	in	how	applica9ons	teams/developers	want	to	evaluate	
performance	(rank-for-rank,	node-for-node,	etc.)	
§  Need	to	set	clear	expecta9ons	for	what	is	to	be	expected	

§  S9ll	very	diverse	set	of	benchmarking	plaTorms	used	so	not	always	easy	to	get	a	
defini9ve	cohesive	picture	
§  Applica9on	Performance	Team	at	SNL	working	hard	to	address	this	issue	
§  Greater	availability	of	test	resources	will	help	

§  Stronger	engagement	in	FY16	with	much	broader	interest	and	ac<vi<es	at	SNL	

SUMMARY	AND	THOUGHTS	

Mee9ng	the	Milestone	Requirements…	

§  Showed	connec9ons	from	our	produc9on	applica9ons,	mini-apps	and	proto-apps	to	
some	issues	we	see	in	other	produc9on	applica9ons	and	broad	range	of	plaTorms	

§  Used	mini-apps	as	a	tes9ng	and	bring	up	environment	for	NGP	systems	
§  And	yes,	they	have	solved	issues	which	do	impact	our	codes	

§  Showed	that	we	do	observe	some	weaknesses	but	also	that	our	mini-apps	are	a	huge	
aid	in	our	prototyping,	our	proto-apps	are	filling	some	of	the	gaps	

§  Seeing	our	applica9on	teams	realizing	value	of	mini-apps	and	crea9ng	their	own	–	
many	are	more	complex	that	our	ini9al	output	into	Mantevo	

“Improvements	from	proxy	applica5ons	from	each	lab	have	been	
iden5fied	and	evaluated	for	applicability	in	IC	or	ATDM	codes”	✓

Mee9ng	the	Milestone	Requirements…	

§  Already	working	on	a	number	of	fixes	and	newer	mini-apps	that	can	be	used	as	
exemplars	for	more	complex	issues	

§  Pushing	some	changes	to	Github	Mantevo	(ready	for	SC)	
§  Seeing	new	mini-apps	from	applica9on	teams	as	a	way	to	experiment	with	

programming	models	and	data	structure	changes	(Ariamini	and	STK)	
§  Also	seeing	where	these	can	direct	our	plaTorm	bring	ups/environments	

“The	team	has	reported	how	the	proxy	applica5ons	are	
representa5ve	and	where	they	could	be	improved.	”	✓

So	how	are	we	doing?	
§  Clear	we	have	been	some	significant	steps	forward	on	gelng	ini<al	code	

ports	onto	new	plaMorms	and	tool	chains	
§  Historically	this	has	been	a	huge	problem	and	long	delays	
§  Seeing	wide	variety	of	issues	with	environment,	compilers,	code,	libraries	
§  Mini-apps	have	really	helped	us	to	work	on	basic	problems	and	base	performance	metrics	

§  Substan9al	use	of	Kokkos	and	growing	use	of	Trilinos	func9ons	across	
applica9on	porTolio	
§  Seeing	this	drive	new	features,	greater	performance	focus	
§  Many	issues	rela9ng	to	numerical	reproducibility	and	variances	between	plaTorms	

§  Much	stronger	engagement	with	applica9on	community	

What	are	we	struggling	with?	
§  S9ll	long	lead	9mes	to	see	fixes	from	vendors	coming	into	produc9on	

§  This	is	geyng	beuer	but	it	could	also	be	improved	(CUDA	in	par9cular)	

§  Effects	on	numerics	of	FMA,	vectoriza9on	are	not	always	consistent	
§  Create	concern	across	our	code	teams	that	we	may	have	bugs	
§  Use	of	atomics	and	threads	exacerbate	this	and	create	further	worry	

§  Compile	and	link	9mes	con9nue	to	remain	a	problem	for	developer	
produc9vity	
§  Very	significant	problem	on	POWER8	with	XL	compiler	but	see	elsewhere	

Working	with	Vendors	
§  FY16	has	seen	huge	engagement	with	vendors	on	compilers	and	somware	stack	

§  Intel,	IBM,	NVIDIA	and	PGI	
§  Large	number	of	bugs	and	performance	issues	reported	(some	fixed)	

§  Shared	significant	performance	studies	and	informa9on	with	Intel,	IBM	and	
some	with	NVIDIA	
§  Presented	many	results	at	conferences	and	in	private	feedback	to	vendors	

§  Seeing	strong	collabora9on	with	ARM	on	numerical	libraries	area	using	our	
ARM	test	beds	

Coming	Year…	
§  Focus	on	improving	our	KNL	and	GPU	performance	

§  KNL	environment	beginning	to	strengthen	
§  POWER8+/GPU	should	be	easier	with	arrival	of	Pascal/NVLINK	systems	

§  Emerging	look	at	ARM64	systems	
§  Already	underway	but	s9ll	basic	environment	at	this	stage	

§  Applica9on	shi]	to	support	more	detailed	analysis	within	ATDM	project	as	
codes	come	online	

§  Strong	IC	engagement	as	por9ng	ramps	up	

Thank	You…	

§  Sandia	Applica9on	Performance	Team	(“APT”)	
§  ASC	Advanced	Test	Bed	Team	
§  SIERRA,	RAMSES	and	CTH	Code	Groups	
§  Trilinos	Developers	
§  ATDM	Code	Groups	
§  ATDM	So]ware	Environment	Team	

§  L2	Milestone	Review	Team!	

§  Wall	9me	versus	CPU	9me	
§  Link	9mes	horrendous	
§  Compiler	bugs	
§  FMA	s9ll	a	problem?	

Assembly	in	NALU	

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 2 4 8

A
gg

re
ga

te
 T

im
e

(S
ec

s)

of Nodes

Intel	Haswell	

1 2 4 8
of Nodes

IBM	POWER8	

Master MPI-Only Kokkos MPI-Only

Kokkos Threaded

1	 2	 4	 8	
#	of	Nodes	

Intel	KNL	(HBM)	

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 2 4 8

HSW Master
MPI-Only
HSW Kokkos
MPI-Only
HSW Kokkos
Threaded
P8 Master MPI-
Only
P8 Kokkos MPI-
Only
P8 Kokkos
Threaded

0
0.2
0.4
0.6
0.8

1
1.2
1.4

1 2 4 8

HSW Master MPI-Only HSW Kokkos MPI-Only
HSW Kokkos Threaded P8 Master MPI-Only
P8 Kokkos MPI-Only P8 Kokkos Threaded
KNL Master MPI-Only KNL Kokkos MPI-Only
KNL Kokkos Threaded

