SAND2016- 8523C

Sandia
Exceptional service in the national interest @ National
Laboratories

T e G- S0
(o)

= o0
: I I'(x)- Y- b i (x, 6)dx = M(T(z;)-aao In{

3

ASC Codesign L2 Milestone 2016

Center for Computing Research
Sandia National Laboratories/NM

;""\'m"\ U.S. DEPARTMENT OF " W A} bQ’C‘.‘
aﬁ@j EN ERGY VA" NS " Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
- SR Fuilter sty sesisiaminn Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

Foreword

ASC Codesign 2015 Plan

= Laid out a rough plan to get us
to 2018 with minimal Kokkos

= Optimization and refinement
2018-2020

Significant progress in some codes

SIERRA/STK now engaging for data
structure design (for GPUs)

Porting efforts now well underway
for early cross platform results

Sandia
’11 National
Laboratories

Trinity :
Phase Il . Sierra . . Crossroads .
ﬂl : : i : : i
] Optimized OpenMP : : =
! o | LSRRI e 3
D RN s aee 8
T—r " - A g <
Kokkos Min. CPU X ¢ Kokkos Min. CPU &
> — : ‘
P 5 0 v 8 0 (@]
1 Kokkos Min. GPU K-Opt 1: K-Opt2 K-Opt'3 1
- > > mp z
. _ L4 4 @«
kRAJA Optimized CPU | RAJA GPU/Optimized GPU. 8
> > ' g
H —_— T § =
3 § : : : :
I 2017 2018 2019 2020 2021
H H H HI R T
f ; o R £
. H 1<
! g —_— o
1 —————
I . . .

Sandia ASC Codesign 2015 Proposal

Strategy for Next-Gen. Platforms

Test Bed Team
Application Performance Team
. Early Access ATDM Development Team
(@) 2|
£ Early Access Developers
; General ATDM Team
Production Computing
Broader Developer Community
53 Full Applications
© Full Testing
< Full Software Environment Broader Application + Tools
; Broader Test Suites
Full Applications Mini-Applications
Smaller/Simpler Input Decks Trilinos

Early Application Builds

Sandia
National
Laboratories

The Codesign Pieces)

Laboratories

= |n this presentation we are going to cover
using our mini-apps, proto-apps and
libraries to guide efforts in our:
= Software Environment
= Libraries and Tools
= Applications
= Hardware/Vendor Feedback

= Thisis a bit of a smorgasbord
= .. but that shows the diversity of our work

Strategy for NGP Applications

Sandia
National
Laboratories

Bring as much support as we can through our application frameworks
(SIERRA, STK, Trilinos etc.)

Reuse and share across our application portfolio

Single area can be worked on by domain/performance specialists

Develop reusable recipes across our platforms with “known good”
programming environments for prototype NGP systems

= Seen significant improvement in developer productivity
= Lowers total cost across machines

Faster time to deploy and get initial performance/testing etc

Important for packages which use CUDA, OpenMP etc. that are not in traditional
environments yet

° Sandia
Outline rh) e

= |ts been a very busy year and we have a /ot to show you...

= Part 1- Update on Application and Next-Generation Platform Porting (20 mins)
= Efforts to bring early environments on Haswell, KNL and POWER8/GPU
= Early porting for SIERRA, RAMSES and Trilinos code projects

= Part 2 - Performance Analysis tools and studies (10 mins)
= Focus on SIERRA/SD performance investigations

= Part 3 — Experiences bringing Kokkos to application portfolio (30 mins)
= Bringing lessons/experiences from our mini-applications
= Proto-applications (single physics) experiences
= Connection to ATDM and IC

Sandia
A | Netiona
Laboratories

PART 1 — APPLICATION PORTING TO NEXT
GENERATION PLATFORMS

Bringing Haswell, KNL and POWER8/GPUs to our code teams

Application Performance Team) i

Laboratories

XL
Compiler
makes
Paul
grumpy

RAMSES Application Porting and Analysis

(Jeanine Cook and Doug Pase)

Performance Analysis Tools Trilinos, Kokkos and Platform Tuning

+ Lots of Applications Teams and Support Input

Systems and Test Beds) i,

ATS-1 (Trinity) ATS-2 (Sierra) Future? ARM/AMD >

= Haswell = POWERS/NVIDIA = ARM

= Mutrino/Trinitite = Ride/White Test Beds = Sullivan Test Bed

= Trinity = K40/K80

= Shepard Test Bed = AMD APU

= General NVIDIA Test Beds = Cooper Test Bed

= Knights Landing = Shannon

= Mutrino/Trinitie = Shiller

= Trinity " Morgan

= Trinity white boxes " Hansen

= Ellis/Bowman Test Beds

Software Environments rh) teima

ATS-1 (Trinity) ATS-2 (Sierra) Future? ARM/AMD >
= |ntel 15 = GNU 4.9 Series = GNU 5.3 Series
= Generally production for
SIERRA = NVCC 7.5 and 8.0-RC = GNU 6.1 Series
= Intel 16/17 = Still remains buggy
= |n Preparation = GNUS.3 " LLVM
" Cray = IBM XL 13.1.4/5 = PathScale

= Not seriously used

= GNU = PGl

Production Applications Ported) i,

= SIERRA = RAMSES
= Aero = Xyce (Serial & Parallel)
= Aria/MiniAria = Charon2
= Adagio = |TS (using OpenMP)
= Salinas = SCEPTRE
= Lots of others... = And others...
= CTH = ATDM
= Using OpenMP = ATDM-SPARC
= CoE = EMPIRE

= NALU/NALU-Kokkos

ﬁ Utilize parts of Trilinos / Utilize some parts of Kokkos / Utilize some parts of both i

SIERRA General rh) deiea

= SIERRA Dev-Ops team and friendly users have been working on full suite
compiles with NVIDIA CUDA compiler
= Number of issues with C++ parsing etc.
= Designed to support early development toolchain in preparation for ATS2
= Significant progress

= Broadening SIERRA architecture support to include Cray-HSW, KNL and
POWERS

= Very early builds with XL still showing number of issues which need to be
worked on

S I E R RA/S D (llSa I i n a S”) Work by: Courtenay Vaughan and Paul Lin ﬂ" Eﬁ?ﬁa"‘m

Haswell POWERS Knights Landing Knights Landing 7250P
(Mutrino) (GNU) 7250P (Mutrino) (Commodity)

B30 MPI/Node NetLIB
B 16 MPI/Node NetLIB 060 MPI/Node NetLIB B60 MPI/Node NetLIB B30 MPI/Node NetLIB

030 MPI/Node MKL
ﬁ B30 MPI/Node NetLIB2 030 MPI/Node NetLIB B60 MPI/Node MKL B30 MPI/Node MKL
030 MPI/Node MKL2
1800 1800 1800 1800
: —
= | —
2 _
3 _
Uo) 1200 1200 1200 1200 - M
fo) 4 Nodes 2 Nodes
- . \— . 1
o —
i: 600 - :———QQO—-_ ————— 6-0-0--——- —_—————EQO--_: - - - - -
0 - ' 0 - 0 , 0 ' ' ' '
Haswell POWERS KNL Cache KNL KNL KNL KNL KNL
Alpha Bravo Charlie Delta Echo
(8 Nodes) (2 or 4 Nodes) (2 or 4 Nodes)

(2 or 4 Nodes)

Sandia

S I E R RA/S D (llSa I i n a S”) Work by: Courtenay Vaughan and Paul Lin rl'l National

Haswell POWERS Knights Landing Knights Landing 7250P

(Mutrino) (GNU) 7250P (Mutrino) (Commodity)

O30 MPI/Node NetLIB
030 MPI/Node MKL

B16 MPI/Node NetLIB 060 MPI/Node NetLIB 260 MPI/Node NetLIB B30 MPI/Node NetLIB

ﬁ 030 MPI/Node NetL1B2 030 MPI/Node NetLIB 60 MPI/Node MKL B30 MPI/Node MKL
030 MPI/Node MKL2
1800 1800 1800 1800
c o\ .
[s) Haswell competitive on a node for node basis 3
E _
o 1200 1200 1200 1200
fo) 4 Nodes 2 Nodes _
- r A — A 1
£ [< |
= 600 £_—_| —--=0800 ____BSSS BO0-===4 | |e==——— 600 -3 A — = b=
™
0 0 0
pha Bravo Charlie Delta Echo
(2 or4 Nodes) (8 Nodes) [~vr A NAadac) [A A Nadac)

Much bigger difference in optimized libraries for KNL than HSW ’_

SIERRA/TF (“Aero”)

Matrix Assembly

ﬂ450

__400
8 350
5 300
8 250
¥.200
@ 150
=
= 100
50
0

BHSW
BKNL-SMT1-DDR4
OKNL-SMT1-HBM
OPOWERS

300

i o 250
g

. 5 200

2150

. 2 100

8 16 32 64
Nodes

(Sec

Tim

o

Matrix Solve

BHSW
BKNL-SMT1-DDR4
OKNL-SMT1-HBM

1

1

1

1

1

1

1

1

1

1

:

OPOWERS :
1

i

!

i

!

i

!

I

1

i 1
1

1

i 1
1

1

I T T T :
8 16 32 64|
1

Nodes :

Higher Order Problem

Time (Seconds)

N
o
o

w
(&)
(@)

= 2NN W

o O
o

Work by: Paul Lin ’I‘l

Matrix Assembly

o O O
o O O o

(6)]
o O

BHSW
BKNL-SMT1-DDR4
OKNL-SMT1-HBM
OPOWERS

100

T — 20
BTN B I [

4 8 16 32

Nodes

Matrix Solve

BHSW

Sandia
National
Laboratories

BKNL-SMT1-DDR4

OKNL-SMT1-HBM

OPOWERS
4 8 16 32
Nodes

Standard Hex Mesh Problem

(o d * 7 —— Sandia
SIERRA/SM (“Adagio”) Work by: Dennis Dinge | |7l fiee
Code Improvement (HSW) Trinity Preparation

-~ B4.39.1 B4.39.6 ™ B Haswell BKNL Flat OKNL Cache

O 100000 ﬁ © 30000

3 g] Adagio Version 4.41.3
N d N d

c 75000 - c

(o) O 20000

= e —

S 50000 - =

O o

(7)) ¢ 10000 - —
O 25000 - (o)

wid wd

o o I l

E 0 _ E 0 - T T T 1
- 64 128 256 512 1024 2048 3072 - 512 1024 2048 3072

+ See effect of continued improvement in code from » Flat and Cache Mode are similar for KNL, problem
SIERRA/SM team does not fit at 512 ranks
» Greater use of well formed loops, const keyword, » This is ranks, so compare HSW = 2 x KNL

etc

SIERRA/SM (“Adagio”) oy oo] ()

Code Improvement (HSW) Trinity Preparation
B4.39.1 084.39.6 B Haswell BKNL Flat OKNL Cache
- 100000 ﬁ - 30000
8 8 Adagio Version 4.41.3
75000 -
L L 20000
= = ==
= 50000 - -_
7p) 7p)
3 3 10000 - \ —
25000 -
[} o
£ £ i
h 0 T h 0 I T T T 1
64 128 256 512 1024 2048 3072 512 1 2048 3072
+ See effect of continued improvement in code from » Flat and Cache Mode are similar for KNL, problem
SIERRA/SM team does not fit at 512 ranks
» Greater use of well formed loops, const keyword, » This is ranks, so compare HSW = 2 x KNL

etc

RAMSES - Xyce-Parallel Work by: Bob Bemer | () e,

Xyce Parallel - BSIM6/RINGOSC17

= Preliminary results from NGP platforms OSerial @ MPI 2 Ranks
| [
= Uses autoconf and so requires some
significant cross-compile fixes 4 40
Q
= Continuing source of headache for all (2]
build systems we are using today c
2 30
(autotools, CMake and BJAM) .g
Ie)
. . v 20
= KNL cache mode from Mutrino quite S
effective)
£ 10
h —‘
= Working on >800 tests now 0

POWER8 KNL-Cache Sandy Bridge

Sandia

Performance Take Aways rh) e,

= Seeing KNL is competitive (still bit slower) at comparable numbers of nodes
= Surprising given the codes do not vectorize and only have very limited/zero threading today
= Hopeful that continued work and development will get us to where we want to be

= KNL Flat/Cache modes are similar if you are all resident and can provide an
improvement today (expect more in future with improved vectorization)

= Correlates with early experiences on test beds using mini-apps and Trilinos
tests

= POWERS bit slower than Haswell but this is using GNU compiler

Trilinos rh) teima

Multi-Package Trilinos

= Significant concern regarding compile times @ (Lib + Test Build Time)

and binary sizes 180
= Trilinos testing infrastructure contains some —_ 160
miniapps (e.g. MiniFENL, Epetra-Driver etc.) g 140
= Measured compile and link times for large :|°: 120
collection of packages © 100
= Seeing this creep up significantly over time E 80
= Particular concern at high optimization level 2 60
with XL compiler ,5‘ 40
= Binary sizes for debug builds with Intel on KNL 20

are worrying (sometimes seg-fault compiler) 0 | | | |

= Trilinos is now running on every NGP test bed B A T

Opt)

Math Libraries Comparison h) i,

Library P8 ARM Model Speed BLAS LAPACK Sparse

NetLIB
OpenBLAS -
MKL
CuBLAS
CuSPARSE
ESSL

| High performing math libraries still critical to basic kernels, finding we don’t always get broad support we need/want. |

Takeaways) i,

Efforts to port whole portfolio of production codes to NGP platforms now
well underway for prototype/test bed ATS systems

= Significant angst with compilers (Intel 17.0 performance/bugs, XL compatibility and link times,
Cray still not fully working)

= Found many issues with environments (I/O libraries, compilers, configurations etc.)

Good number of these are provided to vendors with fixes either delivered on
in the works, some are on-going conversations

= NVIDIA CUDA compiler has many problems in early access CUDA-8 RC1

= Latest drops from PGI showing big improvement for threaded codes

Math libraries continue to provide significant head aches cross machines
Whole point is to grow broader lab NGP expertise which is underway

Sandia
m National
Laboratories

PART 2 — PERFORMANCE ANALYSIS

Improving our fundamental understanding of hardware performance

Background) e,

= |nthe FY15 Tri-Lab codesign report we highlighted performance analysis tools
on next-generation platforms as an area of real weakness
= Takes a long time to get initial ports completed

= Even longer to get the tool baked out for use

= Want something lightweight and simple to install across machines

= Building on our multi-year investment in counter-based analysis

= Work has continued in this area and in building baseline capabilities

= Shown in the context of the Salinas production code

PerfMiner - Overview rh) deiea

Lightweight profiling tools for our next-generation platforms

= Few dependencies = Directed analysis or continuous
= PAPI and Python monitoring modes
= Cross-platform = Dataimported into searchable DB
= Defined default analysis so user doesn’t = Historical analysis
have to = Low overhead
= Core, memory, MP] = Accurately multiplexes
= Perrank, per thread, aggregated = Configurable event list
" Modular design = Flexible, simple instrumentation
= Front-end, collector, viz back-end (PAPIEX_START()/PAPIEX_STOP())
= Viz back-end = Requires one re-compilation

= Thorough “canned” analysis
= |ntuitive drill-down displays

PerfMiner - Status

= Working and tested on:
= Shepard, Chama, White, Ride,
Mutrino test beds

= (Haswell, Sandy Bridge, POWERS and
Haswell/Cray)

intel.

<|||

Sandia
A | Netiona
Laboratories

= Defined detailed analysis for HSW, SNB/
IVB, POWERS

= Cache behavior
= Miss rates
= Pending and stall cycle histograms

= Memory latency and cycle accountability
histograms

= Execution port utilization

= Micro-op execution distribution
= Branch behavior

= Memory bandwidth estimation
= CPI (cycles per instruction)

= |nstruction retirement behavior

= Resource stall profile (Future: CPI stacks)

SIERRA Performance

Sandia
National

SIERRA Application Performance (Test Problems)

Laboratories

B Chama (SNB) BMutrino (HSW) OCielo
2500 _

3 In general these trends reflect experiences
o 2000) . "
N — | with our mini-apps, Trilinos tests and general
® 1500 benchmarking: SNB = 2X over Cielo, HSW =
E SNB but at 2X density and same-ish power
= 1000 B
9
il
2 500 - — N —
5 mal| W

O — -1

Aero-Implicit Aero-Explicit Aero Body-
Hex

Aero Body-
Mixed

Adagio TLC Adagio TLC Salinas NFN9

Refined

These are for a fixed number of MPI ranks (so are using different numbers of nodes)

Work by: Courtenay Vaughan

SIERRA Performance =
SIERRA Application Performance (Test Problems)

B Chama (SNB) BMutrino (HSW) OCielo

2500

Notice slower performance on Haswell than I
2000 Sandy Bridge, consistently between I\

different platforms (with same compiler)

—

— []

| W !

Aero-Implicit Aero-Explicit Aero Body- Aero Body- Adagio TLC Adagio TLC Salinas NFN9
Hex Mixed Refined

Solution Time (Secs)

Analyzing Why Different?) e,

= |nitial code-based times were showing that the Salinas BLKSLV routine was
where additional cost was going
= Frequent calls to small-ish DGEMM and/or DGEMV
= QOptions to link to Cray LibSClI, Intel MKL and native NetLIB implementation

= No real significant different between the libraries (small DGEMM continues to be a huge
headache)

= Requires more in-depth analysis of the solve routines from within the

application context
= Why? - turns out we don’t have a representative mini-app for this type of solve
= Good motivation for a tool that can scale to more complex applications and multi-rank

BLKSLV Analysis

* Instructions per Load/Miss (higher is
better)

= Mutrino has comparatively poor Icache,
L2, and L3 miss behavior

= Enough to explain ~10% performance
difference?

= L2 Cache Pending and Stall Cycles

= Mutrino spending more time (but not
much) on waiting for L2 pending misses
and stalling more to resolve L2 misses

= Enough to explain ~10% performance
difference?

Instructions per Load or Miss

100000

10000

1000

100

10

1

Instructions per Load or Miss

B insns/Load

M |nsns/Store
Minsns/L1D miss
M nsns/L1l miss
M insns/L2D miss
M insns/L21 miss
J M |nsns/L3 misses

Chama/MKL Mutrino/MKL Hinsns/L1 load misses

System/Math Library Hinsns/L1 store misses

% of Total Cycles

L2 Cache Pending and Stall Cycles (Data)

W 2D miss pending
H 2D miss

Chama/MKL Mutrino/MKL
System/Math Library

BLKSLV Analysis

= Uop distribution
= Mutrino characterized comparatively by
more cycles with fewer uops executing
= Could this be an artifact of the cache
behavior?

= Enough to explain ~10% performance
difference?

= Resource stall cycles

= Mutrino spending comparatively more
cycles stalled on any resource, on no
reservation station available

= Could this be explain the uop distribution?

= Enough to explain ~10% performance
difference?

Uop Distribution

L L.

Chama/MKL Mutrino/MKL
System/Math Library

B0 uops executed
B 1 uop executed

B2 uops executed
B 3 uops executed

B 4 or more uops executed

% of Total Cycles
- N w B (9] ()] ~
o o o o o o o o

Resource Stall Cycles

1L

Chama/MKL Mutrino/MKL
System/Math Library

B Q full

B Any resource

B ROB full

B No eligible RS available
B SBs full

B RAT not issuing to RS

B No retired uops

Discussion rh) deiea

= PerfMiner provides capability to analyze execution relatively easily and thoroughly
= QOther tools really don’t provide same flexibility or robustness

= Reveals problems that can either be used to explain anomalies or to drive further
architectural exploration (SST)

Identify the problem, but not the cause -> future work!
= |ssues with performance counters

Can you use them to compare cross-platform performance?
— Simulation could help answer this

= Application performance understanding really just in beginning stages
= PerfMiner capability is new
= APT team process for doing this still being ironed out

Takeaways rh)

Laboratories

= Frustrating situation is that we often don’t have performance tools on our machines
early in the cycle (VTune, virtually nothing on POWERS, etc.)

= Mini-application performance shows Haswell should out-perform Sandy Bridge which in
general is correct except for Salinas
= Almost all other applications show Haswell outperforming Sandy Bridge by around 2X

= Requires us to be able to go into the systems/applications and understand why to
reduce codesign cycle feedback times

= |Importantin very early system bring up where we can affect a lot of change

= Now baseline capabilities are developed working on how we impact application designs with
continuous performance assessment capabilities (tasking into FY17)

Sandia
A | Netiona
Laboratories

PART 3 — APPLICATION DEVELOPMENT
FOR NEXT-GENERATION PLATFORMS

Bringing experiences and best-practices to our application portfolio

Section Outline

Sandia
National
Laboratories

= Reminder — observations of performance from SIERRA/TF Aero

= What do we see in our mini-app and proto-app suite?

= Similar trends? Similar performance?

= Some findings and optimizations worked on during this codesign cycle
= Implications for other codes in our portfolio

= Broader impact

SIERRA/Aero

Matrix Assembly

B HSW
B KNL-SMT1-DDR4

OKNL-SMT1-HBM

O POWERS

ﬂSO

—;400 . M

©

c

S 300 -

[}

(2)

o 200 -

£

= 100 - J

O I T T T
8 16 32 64

Nodes

Time (Seconds)

2

= =N
o
o

300

50

U O
o O

Ul
o O

Matrix Solve

B HSW
B KNL-SMT1-DDR4

OKNL-SMT1-HBM

1

1

1

1

1

1

1

1

1

1

1

1

:

OPOWERS 1
1

!

1

!

1

!

1

1

- 1
1

1

_ 1
1

1

n T T T I
1

8 16 32 64 |
1

Nodes H

Higher Order Problem

Time (Seconds)

Sandia
Work by: Paul Li National
ork by: Paul Lin l"! laagg:gtaoﬁes
Matrix Assembly Matrix Solve
B HSW B HSW

B KNL-SMT1-DDR4

OKNL-SMT1-HBM

400 OPOWERS 160
350 - 140
300 @ 120
250 - § 100
200 - & 80
150 - E 60
100 - i= 40
50 - — e 20

0 - . . .L 0

4 8 16 32
Nodes

B KNL-SMT1-DDR4

OKNL-SMT1-HBM

O POWERS
4 8 16 32
Nodes

Standard Hex Mesh Problem

Observations rh) deiea

Assembly Solve
= Assembly is not improved in most = HBM is faster than DDR4 but not as
cases by HBM on KNL much as we would like (solve is too
simple)

= Tends to be slower than Haswell for
equivalent compute resources = See better scaling when using HBM
(at larger node counts)

= POWERS8 worse than Haswell
= Seeing similar results with Trilinos
testing and development

MiniFE) S,

[0 Assembly HESolve

= Running in MPI only mode using only cores

=

= Compiled with optimized flags on each —
)
platform E 15
T
= See little difference in Assembly times &
between DDR4 and HBM on KNL 3 1
o
>
= KNLis slower than Haswell o
§ 0.5
= Solve is faster on POWERS8 and KNL-HBM
where memory bandwidth is higher 0 | | |

KNL-DDR4 KNL-HBM Haswell POWERS

See similar behavior in HPCG benchmark runs but solve is slowed down by serial GS

NALU Proto-App) i,

= CFD code
= Real application, but simpler than full NW apps

= Fewer dependencies
= Shares data structures, algorithmic approach
and Trilinos usage with full NW apps

temperature

= Prototype Assembly Porting:
= Use of Hierarchical Parallelism: Loop over Buckets and
Elements in Buckets
= Replace temporary allocations with Kokkos scratch
memory

https://github.com/spdomin/Nalu

Optimizing Allocation in Assembly) i,

Optimized Allocation

= Optimized the allocation of variables
within the assembly

= Essentially similar to hoisting these
outside of compute intensive loops
*= Found because Kokkos prevents
users from doing this
Performance improvement is around
I 25-40%
Fix worked back into code master for
| | | standard MPI only code and already
1 2 4 8 16

delivering improvements

B HSW BEKNL OPOWERS

—>

(O8]
o

Speedup (%)
N
o

[HY
o
|

o
|

Nodes

Time (Seconds)

NALU Assembly h) i,

O HSW Master MPI-Only B HSW Kokkos MPI-Only B HSW Kokkos Threaded

P8 Master MPI-Only B P8 Kokkos MPI-Only B P8 Kokkos Threaded

O KNL Master MPI-Only O KNL Kokkos MPI-Only B KNL Kokkos Threaded
10 . i |_

NALU Solve

=
o
|
I

Time (Seconds)

O HSW Master MPI-Only
P8 Master MPI-Only
O KNL Master MPI-Only

0L

B HSW Kokkos MPI-Only B HSW Kokkos Threaded
B P8 Kokkos MPI-Only B P8 Kokkos Threaded
O KNL Kokkos MPI-Only B KNL Kokkos Threaded

Sandia
National
Laboratories

4
Nodes

Exploring Vectorization and GPUs) e,

* Explore algorithms/implementation/data structure in stand-alone assembly

. Binary dumped all input and output arrays to the kernel
. Read them in, recompute output and compare to gold values

* Base: Basically like the NALU Kokkos code
* Inline: remove Fortan, and inline physics

. Couple dead-ends explored for example putting in an explicit vectorization level over elements in
bucket (i.e. split the element loop into two, one with hardcoded 16)

GPUAIg: Interleave Scratch Arrays to get coalesced access on GPUs

Standalone NALU Assembly Test Case (&,

NALU Standalone Assembly

B HSW BKNL(DDR) MBKNL(HBM) BEK80 OTitan X Pascal

ﬁ 0.25

0.2

0.15
0.1

Base Inline GPU Alg

0.0

u

Why are GPUs bad at this?) i

Laboratories

= Fundamental Problem: Too little cache on GPUs

= Require 7 kB temporary space per element in flight

= On Haswell/KNL/Power: one element per thread How do we expose more
parallelism?

= On GPUs: one element per “vector lane”

HSW KNL K80 (Kepler) GP102 (Pascal)
Aggregate (Data) L1 in kB 2*16*32 =2048 68*32 = 13 * (16+112) = 1664 | 56 * (24+64) = 4928
2176
Per Thread L1 in kB 16 8 8 11
Per Vector Lane L1 in kB 4 1 0.25 0.34
HBM Bandwidth (Measured by 120 GB/s 360 GB/s 165 GB/s 360 GB/s
<y|Ax>)

Sandia
|"| National
Laboratories

BROADENING THE IMPACT

Broadening the Impact

Sandia
National
Laboratories

= Reality is that we see these patterns a /ot in our code portfolio
= Means we can try to reuse these patterns in multiple codes
= One of the advantages of a “framework” approach to our code base

= SIERRA and ATDM primary focus

= So we have been working with various code groups to look at issues which are
either similar or relate to this kind of kernel design

SIERRA/SM (“Adagio”))i,

= Enable the following SIERRA/SM capabilities on GPU (with Kokkos):
= Linear beam element
= Fixed displacement BC
= @Gravity BC
= Results Output
= Supporting core algorithms (i.e. central difference time integration)

= Results:
= Serial CPU runtime (X86 Sandy Bridge): 366 minutes
= CPU + GPU runtime (Haswell + K80): 17 minutes
= Speedup is 22X for compute kernels (data movement still hurts)

—‘ Work by: SIERRA/SM Team Nate Crane, Mark Mereweather, Mike Tupek, Kendal Pierson ’-

SIERRA STK Team (Mesh Structures) rh) i,

= STK mesh structures are pervasive in SIERRA Nodal Volume Calculation
applications ﬁ 25

= SIERRA STK team exploring “mesh wrappers” which
insulate code teams from future changes
= Need to be “low overhead” '
= Easy to integrate
= Qpportunity to simplify some internals

OSTK Mesh

Runtime (s)
= N
(§,] o

=
o

Ul

o

= Prototype single node evaluations underway
= Exploring with Kokkos on CPU, GPU, KNL etc.

E Wrapped STK Mesh + Wrapped STK Field

B Wrapped STK Mesh + Static Field

Work by: SIERRA/STK Team (now led by Kendal Pierson)

SIERRA STK Team (Mesh on GPU) rh) i,

512K Field Subsetting

= Focused sprint on using STK meshes on GPU w/ Kokkos Cost
1.2
= Different types of data structure layouts 1
= Utilize different types of Kokkos-Views underneath ;@ 0.8
= Different iteration schemes and mesh auras § 0.6
& 04
. . . o
= Different performance characteristics as a result £ 02
5 o
04 X e 2
N . .. @ S &
®= Finding more consistent timings across GPU <& A@ &
Q;Q\\ \Q)bQ ,\00$
° \Odb 006\
= Still part of the STK “Learning” product for additional studies <® 6@’5 \Qﬁ}\
<<‘\e>°b o

Work by: SIERRA/STK Team (now led by Kendal Pierson)

SIERRA/TF Aria) s,

= |dentified area of weakness in SIERRA/TF team room discussions

= Expression system in Aria is a complicated area which is not well represented
in any existing mini-app

= Extracted core Expression system used for matrix assembly in Aria into non-export
controlled Ariamini.

= Serves as a smaller test bed for determining how to integrate Kokkos for thread-
parallel matrix assembly in Aria that can be shared with Trilinos+Kokkos developers
in 1400

= Only dependency is Trilinos (STK)

= Plan to use Ariamini as a new codesign vehicle during the next FY

Assembly Time [s]

512

256

128

64

32

ATDM/SPARC (Assembly

GRV 4.1M Cell Grid - Assembly Strong Scaling
T

2k/16k Cells/Rank T [

16k/8k Cells/Rank

8k/4k Cells/Rank

Collected on Mutrino (100 32 core HSW nodes & 100 68 core KNL nodes)

Is/Rank

K

= 4k/2k Cells/Rank
L - 4
NS> e =~ ~
~ o= < o S
SO Sa i T \(Ideal)
~ L Se S
- ~ ~ ~
~ Vs SeS
~ = ~ S
“On ~ o SN
~ ~ - <o
~ ="
~ = I~

=—©— PI- HSW 32 ranks/node, 1 thread/rank S e

—¢— PI - KNL 64 ranks/node, 1 thread/rank So.

~— PI - KNL 64 ranks/node, 4 threads/rank S o

=#— PI - KNL 32 ranks/node, 8 threads/rank ~

= O~ LI-HSW 32 ranks/node, 1 thread/rank

= %= LI - KNL 64 ranks/node, 1 thread/rank

== LI- KNL 64 ranks/node, 4 thread/rank

— #— LI - KNL 32 ranks/node, 8 thread/rank

1 1 1
4 8 16 32 64
Nodes

Work by: Micah Howard

GRV 4.1M Cell Grid - Assembly Strong Scaling

Sandia
National
Laboratories

34 TT T T T T

50 - =—©— P| - HSW 32 ranks/node, 1 thread/rank
=—#¢t— P| - KNL 64 ranks/node, 1 thread/rank
56 | | == Pl - KNL 64 ranks/node, 4 threads/rank
—#— PI - KNL 32 ranks/node, 8 threads/rank
52 | =0= LI-HSW 32 ranks/node, 1 thread/rank
= %= LI - KNL 64 ranks/node, 1 thread/rank ,
18 - | =D~ LI-KNL 64 ranks/node, 4 thread/rank ’
= #= LI - KNL 32 ranks/node, 8 thread/rank 7

Speedup Relative to 4 nodes

Nodes

Still the case that HSW out performs KNL on Assembly (mini-apps and proto experiences still correlate)

Solve Time [s]

4096

2048

1024

512

256

128

. Sandia
A I D M S PA R‘ SO Ive Work by: Micah Howard and Andrew Bradley National
Laboratories
GRV 4.1M Cell Grid - Solve Strong Scaling 64 GRV 4.1M Cell Grid - Solve Strong Scaling 1
T T T T T T T T
241k CallsRark e, | mesdrane 00 || S T o, e
=& P| - KNL 64 ranks/nodez 4 threads/rank 7 56 |- | =& PI- KNL 64 ranks/node: 4 threads/rank ‘ 14
(603 ol | g AL et s nessrk oo || o - s e s treacons .’
~ = %= LI-KNL 64 ranks/node,’1 thread/rank 1 = %= LI - KNL 64 ranks/node, ’1 thread/rank ’ // 4 -
S S ~ == LI- KNL 64 ranks/node, 4 thread/rank 48 - | == LI - KNL 64 ranks/node, 4 thread/rank / o, 12
SN o = #= LI - KNL 32 ranks/node, 8 thread/rank 44 = #= LI - KNL 32 ranks/node, 8 thread/rank »
~ * (0]
L -~ i 3
~
~ o 4k/2k Cells/Rank 40 - 10 2
-~ ~ <
L ~N o ells/Rank 55 | >
~)
- « (Ideal) a2l g 2
~ ~ 1 <
: >~ S S ~ >
- -~ T~ S o 7 28 - T
~ - & ~ Qo
-~ ~ ~ ~
S oS ST ~ 24 - 6 3
~ ~
. S ™ ~ D
. SO~ S o 20 L 13
-~ -~ U~ 9 o
~ ~T o~ ~ w
~ ~ ~
~ Vo~ 16 F 4
~ ~
[N S ~
~ T~ ~
T3 2r
:*
P~ . L
ST 8 2
Collected on Mutrino (100 32 core HSW nodes & 100 68 core KNL nodes) 4r
1 1 1 0 11 o
4 8 16 32 64 12 4 8 16 32 64
Nodes Nodes

KNL now faster for solve phase although scaling needs to be improved, strong thread performance

ATDM / EMPIRE Work by: Matt Bettencourt | = |
2 : Elljl?:?l-(';iios 1
57 o—e KNL-Kokkos
= PIC-based code developed as a future capability 7
for RAMSES suite Z
= Written using Kokkos and Trilinos entirely
= Works entirely on CPU, KNC, KNL and GPU Fraction of Machine

o—e Assembly
e—e Advection Kernel

e—e Matrix and RHS Scater
eo—e Cubature Basis with Vector
e—e Basis Evaluation

o—e Gradient Of Variable

e—e Gather Solution

= MiniPIC variant (including Kokkos and Trilinos)
used for APEX/ATS-3 procurement

= Results show similar performance for assembly and solve

= Significant focus this FY on analyzing kernel
performance using the Kokkos profiling hooks

Takeaways and Discussion) e,

= Continued development and refinement of abstractions in code to permit
greater portability (see these are usually relatively cheap)

= Significant diversity in how applications teams/developers want to evaluate
performance (rank-for-rank, node-for-node, etc.)

= Need to set clear expectations for what is to be expected

= Still very diverse set of benchmarking platforms used so not always easy to get a
definitive cohesive picture
= Application Performance Team at SNL working hard to address this issue
= Greater availability of test resources will help

= Stronger engagement in FY16 with much broader interest and activities at SNL

Sandia
|"| National
Laboratories

SUMMARY AND THOUGHTS

Meeting the Milestone Requirements...

i\

Sandia
National
Laboratories

“Improvements from proxy applications from each lab have been
identified and evaluated for applicability in IC or ATDM codes”

= Showed connections from our production applications, mini-apps and proto-apps to
some issues we see in other production applications and broad range of platforms

= Used mini-apps as a testing and bring up environment for NGP systems

= And yes, they have solved issues which do impact our codes

= Showed that we do observe some weaknesses but also that our mini-apps are a huge

aid in our prototyping, our proto-apps are filling some of the gaps

= Seeing our application teams realizing value of mini-apps and creating their own —

many are more complex that our initial output into Mantevo

Meeting the Milestone Requirements... (@)=,

“The team has reported how the proxy applications are
representative and where they could be improved. ”

= Already working on a number of fixes and newer mini-apps that can be used as
exemplars for more complex issues

= Pushing some changes to Github Mantevo (ready for SC)

= Seeing new mini-apps from application teams as a way to experiment with
programming models and data structure changes (Ariamini and STK)

= Also seeing where these can direct our platform bring ups/environments

So how are we doing?) i,

= Clear we have been some significant steps forward on getting initial code
ports onto new platforms and tool chains
= Historically this has been a huge problem and long delays

= Seeing wide variety of issues with environment, compilers, code, libraries
= Mini-apps have really helped us to work on basic problems and base performance metrics

= Substantial use of Kokkos and growing use of Trilinos functions across
application portfolio
= Seeing this drive new features, greater performance focus
= Many issues relating to numerical reproducibility and variances between platforms

= Much stronger engagement with application community

What are we struggling with?

= Still long lead times to see fixes from vendors coming into production
= This is getting better but it could also be improved (CUDA in particular)

= Effects on numerics of FMA, vectorization are not always consistent
= Create concern across our code teams that we may have bugs
= Use of atomics and threads exacerbate this and create further worry

= Compile and link times continue to remain a problem for developer
productivity

= Very significant problem on POWERS8 with XL compiler but see elsewhere

Sandia
National
Laboratories

Working with Vendors

h

Sandia
National
Laboratories

= |ntel, IBM, NVIDIA and PGl

= Large number of bugs and performance issues reported (some fixed)

= FY16 has seen huge engagement with vendors on compilers and software stack

some with NVIDIA

ARM test beds

= Presented many results at conferences and in private feedback to vendors

= Seeing strong collaboration with ARM on numerical libraries area using our

= Shared significant performance studies and information with Intel, IBM and

Coming Year...) i,

= Focus on improving our KNL and GPU performance
= KNL environment beginning to strengthen
= POWER8+/GPU should be easier with arrival of Pascal/NVLINK systems

= Emerging look at ARM64 systems

= Already underway but still basic environment at this stage

= Application shift to support more detailed analysis within ATDM project as
codes come online

= Strong IC engagement as porting ramps up

Thank You... rh) teima

= Sandia Application Performance Team (“APT”)
= ASC Advanced Test Bed Team

= SIERRA, RAMSES and CTH Code Groups

= Trilinos Developers

= ATDM Code Groups

= ATDM Software Environment Team

= |2 Milestone Review Team!

Sandia
National
Laboratories

Sandia
"1 National
Laboratories

Wall time versus CPU time
Link times horrendous
Compiler bugs

FMA still a problem?

. Sandia
Assembly in NALU rh) e
1.4 “lIntel Haswell IBM RQWERS, 1 tor Intel KNL (HBM)
1.2 =@=\iaster MPI-Only MP-L'Q@(LVS MPI-Only
41 e okkos ThreadwdHS\WV Kokkos
ﬁ ' MPI-Only o——o——o
os “ HSW Kokkos
7 &— —@——Fhrdnded-@
$d6 T il - “ P8 Master MPl- meeeeeeofeceeee.m
()
-lq—Jl 0.4 @ .-. .P.g kkOS PI-
S 002.2
8 .00 u P8 Kokkos
192 p 84 1 g o Ihrepded o 2 4 8
of Nodes # of Nodes # of Nodes

Sandia
ﬂ'| National
Laboratories

4 HSW Master MPI-Only L HSW Kokkos MPI-Only
“HSW Kokkos Threaded “ P8 Master MPI-Only
& P8 Kokkos MPI-Only & P8 Kokkos Threaded
“ KNL Master MPI-Only “ KNL Kokkos MPI-Only
KNL Kokkos Threaded
1.4
1.2

