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Goal

 Image recognition using radiographs captured in the wild.

 Potential applications include:
 Checkpoint Security

 Component Recognition

 Nondestructive Evaluation

 Reverse Engineering

Source: https://upload.wikimedia.org/wikipedia/commons/d/d7/VACIS_Gamma-ray_Image_with_stowaways.GIF
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Challenge - Radiographs

 Object Recognition in X-rays
 Occlusion

 Perspective

 Noise
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Challenge - Database

 Database Constraints
 JPEG images - lossy compression

 Inconsistent/insufficient energy

 Unclean/modified images

 Limited/inconsistent views

 Similar Objects

 Subcomponents

 Useless Images

 Image source: http://cdn.mos.cms.futurecdn.net/26db74f7c66961368a34408c33f00f18.jpg
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So why THIS Database?

 Contains images of certain types of components

 ~17K images

 Metadata
 Type

 Main Material

 Continually updated
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Background

 Bray et al.
 “Exploring the feasibility of traditional image querying tasks for industrial 

radiographs” (2015)

 Layering approach

 David G. Lowe
 “Distinctive image features from scale-invariant keypoints” (2004)

 Scale-invariant feature transform (SIFT)

 Scale, Noise, Illumination

 Bay et al.
 “SURF: Speeded Up Robust Features” (2007)

 Faster than SIFT, but less accurate
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SIFT

 Scale invariant feature transform

 Interest points
 Convolved with Gaussian filters at various scales (expensive)

 Minima/maxima Difference of Gaussians at different scales define points

 Advantages
 Identify objects in clutter

 Partial Occlusion

 Disadvantage
 Very slow due to computational complexity

 Performance degradation with blurring

 Source: http://artofthehome.com/wp-content/uploads/2011/04/sifting-flour.jpg



Surf

 Speeded Up Robust Features (Bay et. Al.)

 Based on SIFT

 Generally several times faster than SIFT

 Three main parts:
 Interest Point Detection

 Local Neightborhood Description

 Matching

 Source: http://www.surfingindia.net/files/surf-files/u9/India_Surf_Tours_-_17__1_.jpg



IPD

 Square filters
 Approximate Gaussian Smoothing

 Detect Scale Invariant Feature Points

 Blob Detector
 Interest points found at various scales

 Hessian Matrix to get points of interest

 At point p=(i,j), the Hessian at p and scale σ

JESJ1
JESJ2
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JESJ1 Jimenez, Edward Steven Jr, 8/24/2016

JESJ2 Jimenez, Edward Steven Jr, 8/24/2016



 Local Neighborhood Descriptor
 Provides unique and robust description of an image feature

 Balance between computational complexity and robustness/accuracy

 Based on the sum of Haar Wavelet Responses

 Matching
 Compare Descriptors from different images

 Matching pairs → Matching Features



Harris-Stephens Algorithm

 Corner Detection Algorithm

 Less focused on extracting image features, but rather detecting 
edges

 Corners are defined as interest points the weighted sum of 
squared differences is high

 Not to be confused with Laplace-Harris which is more of a blob 
detection algorithm

 Tested as many objects in the database are rectangular in shape

 Sharp edges present in database as well

 Will fail on circular objects?



MSER

 Maximally Stable Extremal Regions

 Blob Detection algorithm
 Find similarities from images with different viewpoints

 Advantages
 Invariance to affine transformations (objects wrt position of image 

acquired)

 Multi-Scale Detection (x-ray magnification)

 Scale and Rotation invariant 

 Disadvantage
 Blurring (not relevant for our application)



Approach

 Compare performance of out-of-the-box algorithms
 Time

 Accuracy

 Matlab
 Computer Vision Toolbox

 SURF

 MSER

 Harris

 VLFeat

 SIFT

 Python
 OpenCV

 SIFT
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Implementation

 Running on a Dell PowerEdge R920
 4 Intel Xeon E7-4820 v2 CPUs at 2.0 GHz (64 Cores Total) 

 512 GB DDR3 RAM

 Matlab version R2016a
 Computer Vision System Toolbox

 Image Processing Toolbox

 VLFeat version 0.9.20

 Python version 3.5.2
 OpenCV version 2.4.13

 Used 3250 of ~17K images
 325 objects with 10 images each

Source: http://en.community.dell.com/cfs-file/__key/communityserver-wikis-components-files/00-00-00-01-
62/PowerEdgeR920.png 22



Results
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Results - Harris
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Results - MSER
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Results - SURF
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Results - SIFT
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Results
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Algorithm Average # of features extracted

Harris 4

MSER 10

SURF 120

SIFT 255



Results
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Results

 Blurring
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Results
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Results

Algorithm Our Results Original Results

SIFT 25% 55%

SURF 23% 50%

MSER 20% 40%

Harris 15% 25%
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Conclusion

 Accuracy Sift > SURF > MSER > Harris

 Performance is a big challenge
 All perform slowly

 ||Sift|| > ||SURF|| > ||MSER|| > ||Harris||

 There are shortcomings and there is room for improvement

 Our particular database makes computer vision challenging
 Better quality data may yield better results

 Many of the shortcomings of the various algorithms are valid in 
the x-ray imaging modality as well as many of the advantages

 These algorithms do hold a lot of promise in the x-ray modality 
for the same reasons they are valid for photography
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Future Work

 Narrow down which algorithms work best for radiographs

 Investigate more algorithms based on SIFT

 Create hybrid algorithm which will work for real-world images
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