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Abstract

The proposed upgrade of the Advanced Photon Source

(APS) to a multibend-achromat lattice requires shorter and

much stronger quadrupole magnets than are present in the

existing ring. This results in longitudinal gradient profiles

that differ significantly from a hard-edge model. Addition-

ally, the lattice assumes the use of five-segment longitudinal

gradient dipoles. Under these circumstances, the effects of

fringe fields and detailed field distributions are of interest.

We evaluated the effect of soft-edge fringe fields on the lin-

ear optics and chromaticity, finding that compensation for

these effects is readily accomplished. In addition, we evalu-

ated the reliability of standard methods of simulating hard-

edge nonlinear fringe effects in quadrupoles.

INTRODUCTION

The APS Upgrade (APS-U) project plans to replace the

existing 3rd-generation storage ring with a multi-bendachro-

mat (MBA) design [1] that will reduce the emittance to less

than 70 pm [2,3]. The goal is to replace the existing storage

ring and return to user operation within 12 months. One im-

portant factor in achieving this will be thorough understand-

ing of the lattice and beam dynamics with realistic models

of the magnets. This paper reports progress on this issue

with respect to modeling of quadrupole and dipole magnets.

The integrated quadrupole strength for low-emittance lat-

tices scales like Nd , where Nd is the number of dipoles

per sector [4]. One strategy for dealing with this is to use

smaller magnet apertures, which may impact field quality.

Magnets may also be operated in a more highly-saturated

condition. The latter condition in particular will increase

the difficulty of modeling linear and nonlinear edge effects.

The APS-U lattice includes several types of dipole mag-

nets, including two types of 5-segment longitudinal gradi-

ent dipoles. The former are quite unfamiliar and hence

merit close attention. Of interest is ensuring that the trajec-

tory through the magnets is correct, assessing the effect on

linear optics, and understanding the impact on chromaticity

and other nonlinear properties.

QUADRUPOLE MODELING

The initial design of the APS-U quadrupoles made use of

“mushroom” pole tips, which extend under the coils in order

to increase the effective length of the magnets. This allowed

operating with higher magnetic efficiency for a given inte-

grated gradient, without unduly increasing the magnet core

length. It also allowed making most magnets of identical
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lengths, with nearly identical cores and coils. However, the

resulting gradient profile shape depended strongly on the

level of excitation as shown in Fig. 1. With the exception

of the 98% efficiency case, corresponding to an integrated

gradient of ∼12 T, the profiles are very unusual.

Figure 1: Gradient profiles for initial APS-U quadrupoles

at various levels of magnetic efficiency.

Our first task was to assess the impact of such profiles

on beam transport. This was done using the approach de-

scribed in [5,6] for modeling soft-edge effects. For the hard-

edge nonlinear effects, we followed the standard approach

[7,8] with extensions to higher order [9]. We compared the

results of these models, as implemented in the KQUAD ele-

ment in Pelegant [10,11], with direct integration of parti-

cles through a 3D field map generated with OPERA, using

Pelegant’s BMXYZ element. The agreement of the linear

matrix elements for a single quadrupole was within 0.01%.

In spite of the unusual appearance of the gradient profiles,

subsequent rematching of the linear optics succeeded in

reducing the changes in the linear optics functions to un-

der 2%, with exact restoration of the tunes. The required

changes in magnet excitation were less than 0.6%.

Although the linear optics based on [6] agreed very well

with integration through the field map, the nonlinearities

showed poor agreement. After some investigation, we con-

cluded that this resulted from the non-Maxwellian character

of the 3D field map, which is partly a result of limitations

of the magnet code and partly a result of the use of linear in-

terpolation of the field map during integration. Hence, we

switched to use of a generalized gradient expansion [12,13],

albeit using a non-symplectic integration technique for ex-

pediency. (This is available as the BGGEXP element in the

next release of elegant/Pelegant.) Although the gener-

alized gradient expansion (GGE) uses data from the same

OPERA simulations, the GGE guarantees that the fields in

the interior of the analysis cylinder satisfy Maxwell’s equa-

tions.



Figure 2: Multipoles of the radial field component at ρ =

10mm for the 98% efficiency case as reconstructed from the

GGE.

Although use of the GGE improved agreement between

KQUAD and direct integration, it was still less than ideal. Us-

ing the GGE to reconstruct the fields corresponding to var-

ious multipoles, as illustrated in Fig. 2, indicated a path

forward. Clearly evident are the spikes in the systematic

multipoles (12-, 20-, and 28-pole) at the entrace and exit

of the magnets. Modeling the effect of these multipoles as

a distributed term throughout the body of the quadrupole,

as is commonly done, seems suspect. Based on this, we

augmented KQUAD to include separate specification of edge

and body multipoles. This provided significantly improved

agreement with BGGEXP, as illustrated in Figs. 3 and 4.

Based on these results, KQUAD with multipoles separated

into body and edge components is being adopted for model-

ing of APS-U. A symplectically-integrated implementation

of BGGEXP is under development, but is expected to be an

order of magnitude slower than KQUAD.

Finally, to be conservative, the use of mushroom pole

shapes was abandoned. Instead, quadrupole lengths are al-

lowed to vary in order to provide a minimum of 90% effi-

ciency at 10% above the planned operating point.

DIPOLE MODELING

Dipole modeling likewise began with a 3D field map gen-

erated with OPERA, in this case, for the M1 dipole. This

dipole has 5 segments of gradually decreasing field strength

and increasing length. In this case, the use of a GGE is much

more involved [14] and has not yet been attempted by us.

However, the quality of the field appears in some respects

better than for the quadrupoles, judging by the smoothness

of the residuals. We once again made use of numerical

integration through the 3D field map, this time using the

abrat program(distributed with elegant) and the BRAT el-

ement in Pelegant. These integrate through bending mag-

net field maps, with appropriate coordinate transformations

at the entrance and exit. A basic test involves tracking a

bundle of initially parallel rays with y = 0, as shown in Fig.

Figure 3: Residuals from linear fit after propagationof a line

of particles with initial x = y through a single quadrupole

(98% efficiency case) using different methods. “KQUAD-

B+E” has edge and body multipoles, whereas “KQUAD-

B” uses the uniform body-only multipole model; integrated

multipoles are the same in both cases.

Figure 4: Residuals from linear fit, 67% efficiency case.

5. Inspection of this figure shows that there is a nonlinear

variation of the deflecting field at the transitions between

the magnet segments. Figure 6 shows residuals of fits to

the final slopes, from which we see a clear indication of a

sextupole component.

To assess the impact of the linear and nonlinear trans-

port properties of the dipole, we used the analyze_map

command in Pelegant to obtain the third-order matrix by

tracking through the field map for the M1 diople, using

the method outlined in [15]. This involves tracking about

5,000 particles, which takes about 30 seconds on 20 cores.

Inserting these into the APS-U lattice gave tune erors of

∆νx/νx = 0.019% and ∆νy/νy = −0.7%, along with cor-

responding distortions of the lattice functions. These are

easily corrected using lattice quadrupoles, giving residual

lattice function changes of less than ∼ 1% with gradient

changes of less than 0.6%.

After lattice correction there are residual chromaticity er-

rors of ∆ξx = −0.19 and ∆ξy = 0.37 (compared to a target



Figure 5: Field map for the M1 dipole, along with abrat

tracking results for a bundle of initially-parallel rays. The

symbols, in order from left to right, are the nominal en-

trance, vertex, and nominal exit points.

Figure 6: Residuals of fits of various orders to final x′ vs

initial x for a bundle of parallel rays in the M1 dipole.

chromaticity of 5). Approximating the dipole by its linear

map changes these errors to ∆ξx = 0.06 and ∆ξy = 0.43,

which implies that the chromaticity change is partly due

to residual lattice changes, and partly due to higher-order

terms in the dipole itself. In any case, these are easily cor-

rected with modest adjustments of the sextupoles.

Tracking through the simulated dipole field is a numeri-

cally intensive task that is undesirable for use in lattice op-

timization and evaluations. In addition, the dipole field ap-

pears to be well-represented by a small number of low-order

multipoles. For these reasons we have begun work to repre-

sent the dipole via a “symplectified” Taylor map. The basic

idea of a symplectified Taylor map is to first find a Taylor

map expression for the element in question to a given order,

and then to compute a symplectic approximation of the map

that agrees with the Taylor map to that given order. Higher

order terms will in general deviate from the actual map, and

in fact depend on the way in which the symplectic represen-

tation is found.

The first step in finding a symplectic map is to determine

the Taylor map approximation for the dipole. For exam-

ple, we have used the fitting procedure of analyze_map

described previously to compute its third order matrix. Be-

cause the symplectification process is not unique, however,

it is important for the initial Taylor map approximation to be

(nearly) symplectic up to the order of the Taylor map itself.

Unfortunately, we have found that the dipole’s third order

Taylor map computed using BRAT and analyze_map is not

even approximately symplectic at third order; we believe

that this is primarily due to interpolation errors of the mag-

netic field that do not respect ∇ ·B = 0, although numerical

errors in the field map and the choice of a non-symplectic in-

tegration scheme may also be to blame. Overcoming these

difficulties will require a divergence-free representation of

the dipole field, which can naturally be found using general-

ized gradients. We are in the process of extending our pre-

vious use of the GGE to include elliptical boundaries [14]

which will be able to enclose all relevant trajectories though

the entire dipole field; this expansion may also find use in

representing APS-U insertion devices.

Once a faithful and divergence-free representation of the

magnetic field is found, we expect that BRAT tracking will

provide a suitable third order map of the dipole. Neverthe-

less, we also plan to compare these results with fully sym-

plectic tracking based on the implicit midpoint rule, which

will allow us to assess the impact of fourth (and higher) or-

der terms. Once we have the Taylor map in had, we must

choose our symplectification method. There are many such

methods (see, e.g., [16, 17] and references therein), but for

expediancy we will first employ the scheme described in

Ref. [18]. This method is essentially a practical implemen-

tation of previous work that employs the Baker-Campbell-

Hausdorff formula to transform the map into a product of

monomial maps that in turn have analytic representations

[19]. The code implementing the symplectification proce-

dure was freely given by the authors of Ref. [18], so that we

can now symplectify a third order Taylor map.

CONCLUSIONS

Progress has been made towards understanding how best

to model beam dynamics in quadrupoles and dipoles for

the APS upgrade. For quadrupoles, we found that sepa-

rating the systematic multipoles into edge and body terms

provides reasonable agreement with the slower but accurate

method of numerically-integrating through reconstructed

fields. For dipoles, we assessed effects of the longitudinal

gradient dipole field map on linear optics and chromaticity,

finding these to be easily compensated. Work continues on

developing a symplectic map for such dipoles.
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