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Abstract

The proposed upgrade of the Advanced Photon Source
(APS) to a multibend-achromat lattice requires shorter and
much stronger quadrupole magnets than are present in the
existing ring. This results in longitudinal gradient profiles
that differ significantly from a hard-edge model. Addition-
ally, the lattice assumes the use of five-segment longitudinal
gradient dipoles. Under these circumstances, the effects of
fringe fields and detailed field distributions are of interest.
We evaluated the effect of soft-edge fringe fields on the lin-
ear optics and chromaticity, finding that compensation for
these effects is readily accomplished. In addition, we evalu-
ated the reliability of standard methods of simulating hard-
edge nonlinear fringe effects in quadrupoles.

INTRODUCTION

The APS Upgrade (APS-U) project plans to replace the
existing 3"-generation storage ring with a multi-bend achro-
mat (MBA) design [1] that will reduce the emittance to less
than 70 pm [2,3]. The goal is to replace the existing storage
ring and return to user operation within 12 months. One im-
portant factor in achieving this will be thorough understand-
ing of the lattice and beam dynamics with realistic models
of the magnets. This paper reports progress on this issue
with respect to modeling of quadrupole and dipole magnets.

The integrated quadrupole strength for low-emittance lat-
tices scales like Nz, where N, is the number of dipoles
per sector [4]. One strategy for dealing with this is to use
smaller magnet apertures, which may impact field quality.
Magnets may also be operated in a more highly-saturated
condition. The latter condition in particular will increase
the difficulty of modeling linear and nonlinear edge effects.

The APS-U lattice includes several types of dipole mag-
nets, including two types of 5-segment longitudinal gradi-
ent dipoles. The former are quite unfamiliar and hence
merit close attention. Of interest is ensuring that the trajec-
tory through the magnets is correct, assessing the effect on
linear optics, and understanding the impact on chromaticity
and other nonlinear properties.

QUADRUPOLE MODELING

The initial design of the APS-U quadrupoles made use of
“mushroom” pole tips, which extend under the coils in order
to increase the effective length of the magnets. This allowed
operating with higher magnetic efficiency for a given inte-
grated gradient, without unduly increasing the magnet core
length. It also allowed making most magnets of identical
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lengths, with nearly identical cores and coils. However, the
resulting gradient profile shape depended strongly on the
level of excitation as shown in Fig. 1. With the exception
of the 98% efficiency case, corresponding to an integrated
gradient of ~12 T, the profiles are very unusual.
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Figure 1: Gradient profiles for initial APS-U quadrupoles
at various levels of magnetic efficiency.

Our first task was to assess the impact of such profiles
on beam transport. This was done using the approach de-
scribed in [5,6] for modeling soft-edge effects. For the hard-
edge nonlinear effects, we followed the standard approach
[7,8] with extensions to higher order [9]. We compared the
results of these models, as implemented in the KQUAD ele-
ment in Pelegant [10, 11], with direct integration of parti-
cles through a 3D field map generated with OPERA, using
Pelegant’s BMXYZ element. The agreement of the linear
matrix elements for a single quadrupole was within 0.01%.
In spite of the unusual appearance of the gradient profiles,
subsequent rematching of the linear optics succeeded in
reducing the changes in the linear optics functions to un-
der 2%, with exact restoration of the tunes. The required
changes in magnet excitation were less than 0.6%.

Although the linear optics based on [6] agreed very well
with integration through the field map, the nonlinearities
showed poor agreement. After some investigation, we con-
cluded that this resulted from the non-Maxwellian character
of the 3D field map, which is partly a result of limitations
of the magnet code and partly a result of the use of linear in-
terpolation of the field map during integration. Hence, we
switched to use of a generalized gradient expansion [12,13],
albeit using a non-symplectic integration technique for ex-
pediency. (This is available as the BGGEXP element in the
next release of elegant/Pelegant.) Although the gener-
alized gradient expansion (GGE) uses data from the same
OPERA simulations, the GGE guarantees that the fields in
the interior of the analysis cylinder satisfy Maxwell’s equa-
tions.
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Figure 2: Multipoles of the radial field component at p =
10mm for the 98% efficiency case as reconstructed from the
GGE.

Although use of the GGE improved agreement between
KQUAD and direct integration, it was still less than ideal. Us-
ing the GGE to reconstruct the fields corresponding to var-
ious multipoles, as illustrated in Fig. 2, indicated a path
forward. Clearly evident are the spikes in the systematic
multipoles (12-, 20-, and 28-pole) at the entrace and exit
of the magnets. Modeling the effect of these multipoles as
a distributed term throughout the body of the quadrupole,
as is commonly done, seems suspect. Based on this, we
augmented KQUAD to include separate specification of edge
and body multipoles. This provided significantly improved
agreement with BGGEXP, as illustrated in Figs. 3 and 4.

Based on these results, KQUAD with multipoles separated
into body and edge components is being adopted for model-
ing of APS-U. A symplectically-integrated implementation
of BGGEXP is under development, but is expected to be an
order of magnitude slower than KQUAD.

Finally, to be conservative, the use of mushroom pole
shapes was abandoned. Instead, quadrupole lengths are al-
lowed to vary in order to provide a minimum of 90% effi-
ciency at 10% above the planned operating point.

DIPOLE MODELING

Dipole modeling likewise began with a 3D field map gen-
erated with OPERA, in this case, for the M1 dipole. This
dipole has 5 segments of gradually decreasing field strength
and increasing length. In this case, the use of a GGE is much
more involved [14] and has not yet been attempted by us.
However, the quality of the field appears in some respects
better than for the quadrupoles, judging by the smoothness
of the residuals. We once again made use of numerical
integration through the 3D field map, this time using the
abrat program (distributed with elegant) and the BRAT el-
ement in Pelegant. These integrate through bending mag-
net field maps, with appropriate coordinate transformations
at the entrance and exit. A basic test involves tracking a
bundle of initially parallel rays with y = 0, as shown in Fig.
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Figure 3: Residuals from linear fit after propagation of a line
of particles with initial x = y through a single quadrupole
(98% efficiency case) using different methods. “KQUAD-
B+E” has edge and body multipoles, whereas “KQUAD-
B” uses the uniform body-only multipole model; integrated
multipoles are the same in both cases.
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Figure 4: Residuals from linear fit, 67% efficiency case.

5. Inspection of this figure shows that there is a nonlinear
variation of the deflecting field at the transitions between
the magnet segments. Figure 6 shows residuals of fits to
the final slopes, from which we see a clear indication of a
sextupole component.

To assess the impact of the linear and nonlinear trans-
port properties of the dipole, we used the analyze_map
command in Pelegant to obtain the third-order matrix by
tracking through the field map for the M1 diople, using
the method outlined in [15]. This involves tracking about
5,000 particles, which takes about 30 seconds on 20 cores.
Inserting these into the APS-U lattice gave tune erors of
Avy /vy = 0.019% and Avy /vy, = —0.7%, along with cor-
responding distortions of the lattice functions. These are
easily corrected using lattice quadrupoles, giving residual
lattice function changes of less than ~ 1% with gradient
changes of less than 0.6%.

After lattice correction there are residual chromaticity er-
rors of Aé, = —0.19 and A¢, = 0.37 (compared to a target
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Figure 5: Field map for the M1 dipole, along with abrat
tracking results for a bundle of initially-parallel rays. The
symbols, in order from left to right, are the nominal en-
trance, vertex, and nominal exit points.
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Figure 6: Residuals of fits of various orders to final x” vs
initial x for a bundle of parallel rays in the M1 dipole.

chromaticity of 5). Approximating the dipole by its linear
map changes these errors to Aé, = 0.06 and A&, = 0.43,
which implies that the chromaticity change is partly due
to residual lattice changes, and partly due to higher-order
terms in the dipole itself. In any case, these are easily cor-
rected with modest adjustments of the sextupoles.

Tracking through the simulated dipole field is a numeri-
cally intensive task that is undesirable for use in lattice op-
timization and evaluations. In addition, the dipole field ap-
pears to be well-represented by a small number of low-order
multipoles. For these reasons we have begun work to repre-
sent the dipole via a “symplectified” Taylor map. The basic
idea of a symplectified Taylor map is to first find a Taylor
map expression for the element in question to a given order,
and then to compute a symplectic approximation of the map
that agrees with the Taylor map to that given order. Higher
order terms will in general deviate from the actual map, and
in fact depend on the way in which the symplectic represen-
tation is found.

The first step in finding a symplectic map is to determine
the Taylor map approximation for the dipole. For exam-
ple, we have used the fitting procedure of analyze_map
described previously to compute its third order matrix. Be-

cause the symplectification process is not unique, however,
itis important for the initial Taylor map approximation to be
(nearly) symplectic up to the order of the Taylor map itself.
Unfortunately, we have found that the dipole’s third order
Taylor map computed using BRAT and analyze_map is not
even approximately symplectic at third order; we believe
that this is primarily due to interpolation errors of the mag-
netic field that do not respect V- B = 0, although numerical
errors in the field map and the choice of a non-symplectic in-
tegration scheme may also be to blame. Overcoming these
difficulties will require a divergence-free representation of
the dipole field, which can naturally be found using general-
ized gradients. We are in the process of extending our pre-
vious use of the GGE to include elliptical boundaries [14]
which will be able to enclose all relevant trajectories though
the entire dipole field; this expansion may also find use in
representing APS-U insertion devices.

Once a faithful and divergence-free representation of the
magnetic field is found, we expect that BRAT tracking will
provide a suitable third order map of the dipole. Neverthe-
less, we also plan to compare these results with fully sym-
plectic tracking based on the implicit midpoint rule, which
will allow us to assess the impact of fourth (and higher) or-
der terms. Once we have the Taylor map in had, we must
choose our symplectification method. There are many such
methods (see, e.g., [16, 17] and references therein), but for
expediancy we will first employ the scheme described in
Ref. [18]. This method is essentially a practical implemen-
tation of previous work that employs the Baker-Campbell-
Hausdorff formula to transform the map into a product of
monomial maps that in turn have analytic representations
[19]. The code implementing the symplectification proce-
dure was freely given by the authors of Ref. [18], so that we
can now symplectify a third order Taylor map.

CONCLUSIONS

Progress has been made towards understanding how best
to model beam dynamics in quadrupoles and dipoles for
the APS upgrade. For quadrupoles, we found that sepa-
rating the systematic multipoles into edge and body terms
provides reasonable agreement with the slower but accurate
method of numerically-integrating through reconstructed
fields. For dipoles, we assessed effects of the longitudinal
gradient dipole field map on linear optics and chromaticity,
finding these to be easily compensated. Work continues on
developing a symplectic map for such dipoles.
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