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ABSTRACT

A boundary integral equation method (BIEM) is de-
scribed for numerical analys.s of quasilinear steady unsat-
urated flow in homogeneous material. The applicability
of the exponential model for the dependence of hydraulic
conductivity on pressure head is discussed briefly. This
constitutive assumption is at the heart of the quasilinear
transformation. Materials which display a wide distri-
bution in pore-size are described reasonably well by the
exponential. For materials with a narrow range in pore-
size, the exponential is suitable over more limited ranges
in pressure head. |

The numerical implementation of the BIEM is used to
investigate the infiltration from a strip source to a water
table. The net infiltration of moisture into a finite-depth
layer is well-described by results for a semi-infinite layer
if aD > 4, where a is the sorptive number and D is the
depth to the water table. The distribution of moisture
exhibits a similar dependence on aD.

INTRODUCTION

Many large simulations may be required to assess the
performance of Yucca Mountain as a possible site for the
nation’s first high level nuclear waste repository. The
governing equations for flow in partially saturated media
are, in general, highly nonlinear, and obtaining numerical
solutions to some current models may be prohibitively
slow and costly. Thus, it is important to explore any
approximations and/or new solution methods that offer
the potential for greatly improved speed in obtaining so-
lutions, while retaining the critical elements of the trans-
port phenomena. Here we consider steady, multidimen-
sional flows, and adopt a model for hydraulic conductiv-

4This work was performed under the auspices of the U.S. De-
partment of Energy, Office of Civilian Radioactive Waste Manage-
ment, Yucca Mountain project under contract number DE-ACO04-
76DP00789.



ity in which the conductivity increases exponentially with
capillary pressure head. More complex forms for the con-
ductivity may yield better fits to data for some materials,
particularly when considering a broad range of capillary
pressure head. However, for those problems where the
exponential form is an adequate representation of data,
the more complex forms offer no significant advantage
over the exponential form, while the latter offers poten-
tially large ga.ms in ease of solution. Furthermore, large
relative error in estimates of conductivity in dry regions
of the problem domain can often be tolerated, since these
regions do not participate in the flow. Hence, it is more
important for the conductivity model to match data in
the moist regions than in the dryer areas.

For the exponential conductivity model, a simple change
of dependent variable renders the governing equation lin-
ear. This process is referred to as the “quasi-linear trans-
formation,” following Philip.! The enormous simplifica-
tion effected by the transformation apparently was first
noted by Gardner,? and has since been exploited by nu-
merous workers. Comprehensive reviews of the approach
and its application have been presented by Philip** and
Pullan.’ The linear governing equation, of course, pei-
mits much simpler and faster solution methods than does
the original, nonlinear equation.

In this paper, we explore the boundary integral equa-
tion method (BIEM) for obtaining numerical solutions
in arbitrary two-dimensional geometries. This scheme,
apparently first applied in this context by Pullan and
Collins,® offers a number of significant advantages over
other, more conventional approaches. The BIEM re-
duces the dimension of the numerical problem by one in
comparison to more conventional domain methods (e.9.,
finite difference or finite element), typically yielding a
much smaller computational problem. Furthermore, the
BIEM treats problems in unbounded domains naturally
because the fundamental solutions employed satisfy far-
field boundary conditions identically. The BIEM yields



fluxes that retain accuracy of the same order as the po-
tenti.! itself because a numerical approximation for the
gradient is not required. This is important for radionu-
clide transport simulations. There are however, several
limitations of the present approach which call for fur-
ther development. Among the most restrictive is that the
transformed governing equation is valid only for pressure
heads less than or equal to zero; that is, the system of in-
terest must remain unsaturated. In addition the present
formulation of the BIEM considers only homogeneous
material; the treatment of interfaces between materials
of contrasting properties requires further development.

QUASILINEAR ANALYSIS

Steady flow in an unsaturated, rigid, porous medium
is described by combining Darcy’s law with a statement
of mass conservation, '

a=-K@)Vé-e) ,V-q=0 , (1)

where q is the fluid flux (volume flow rate per unit area
of the medium), K is the hydraulic conductivity (here
taken to be isotropic), ¥ is the capillary pressure head,
and e, is the unit vector in the vertical direction (positive
downward). The combination of these equations results
‘in the steady form of the Richards equation:

V- [K(#)VY-e,))=0 . (2)

Because the hydraulic conductivity K is a strongly vary-
ing function of 9, this equation is, in general, highly non-
linear. A model for the hydraulic conductivity that is
often used in soil physics is the exponential form,

K(y)=K,exp(app), -co<p<0 ,  (3)

where K, is the conductivity at full saturation and a is

a material constant. Clearly, a is simply the slope of a
plot of In K vs. ¥.

A comparison of the exponential conductivity to the
widely used van Genuchten” function, which is a more



general model, was carried out for conductivities believed
to be typical of the major tufl units in Yucca Moun-
tain, Nevada. A reasonably good match was obtained
for units which show a relatively wide distribution of
pore-size. For materials that exhibit a narrow range in
pore-size the exponential is suitable over more limited
ranges of pressure head. Figure 1 shows a comparison
of the exponential and van Genuchten’” models for rel-
ative permeability {K(%)/K,), in which the latter uses
currently available material properties representative of
Yucca Mountain tuffs.® The range in pressure head shown
in Figure 1 was based on calculations from the COVE 2A
benchmarking exercise.? These simulations show that for
infiltration fluxes of 0.1 mm/yr or greater, pressure heads
never fall below -150 m. The Topopah Spring welded
unit, which exhibits a wide pore-size distribution relative
to the Calico Hills non-vitric unit, can be fit quite well
by the exponential. On the other hand, the Calico Hills
unit cannot be fit over the full range in pressure head
displayed in Figure 1 because of the ‘shoulder’ in the van
Genuchten model, a consequence of a narrow pore-size
distribution. However, the corollary to (3),

K(¢) = K. exp[a(il) - 'ﬁo)]v ¢ < '¢’01 (4)

yields a better match, albeit over a more limited range
of pressure head (¥, = —25m in Figure 1b). It is worth
noting here that very little data on relative permeabil-
ity for Yucca Mountain tuffs is available. The parame-
ters for the van Genuchten model used in the compari-
son with the exponential were not determined by fitting
measurements but were developed according to a theory
proposed by Mualem!® and subsequently applied by van
Genuchten.” This theory requires data on the moisture
retention function only and not on the relative perme-
ability. In the absence of data on relative permeability,
there may be no reason to prefer one model over another.

By introducing a Kirchhoff transformation,

¢=[" kg, (5



the steady Richards equation becomes

0%
V¢ -a_— =0, 6
' aaz b ( )
when the conductivity is exponential in the capillary pres-
‘sure as defined in (3). The coordinate in the direction of

gravity is Z. Furthermore, the Darcy flux becomes |
q=-V& + abe,, ' (7)

so that the flux is also a linear function of the potential ®.
Owing to the relation a® = K(3), obtained from (4), a
contour level of constant potential is also a contour level
of constant capillary pressure and moisture content (8).

BOUNDARY INTEGRAL FORMULATION

Boundary value problems associated with (6) can be
reformulated as a boundary integral equation (BIE) through
use of Green’s second idertity. To generate the bound-
ary integral, we use the free-space fundamental solution
to (6) in the Green’s identity which eventually yields,

1., 0G(x,

tagx) + [ 285N gyar(y)
r n
| (8)
= [6xy)-m(y)dr, xeT

in which T' is the bounding surface to the problem do-
main, £, and G is the free-space Green’s function satis-
fying (6) for a point source in an unbounded domain. The
normal derivative is defined by 8(-)/8n = V(:)-n, where
n is the outward-pointing unit normal to the boundary,
gn(y) = —0®/0n+adn, is the flux normal to the bound-
ary surface I', and n, = n - e, is the vertical component
of the normal to I'. This integral equation relates values
of the potential and normal flux on the boundary. Inte-
rior values of potential are given by a similar equation,
obtained by replacing the coefficient 1/2 by unity.

Once the boundary data has been determined, the
flux vector in the interior can be computed by operat-
ing on (8) (with the 1/2 replaced by unity) according



to (7). Since the gradient operation can be taken under

the integral sign, this procedure involves derivatives of

the kernels and not of the computed boundary data. For
‘this reason the BIEM yields fluxes of the same order of

approximation as the potential itself. More conventional
numerical techniques (finite-difference or finite element)

require numerical differencing of the potential to obtain

fluxes, thereby reducing the accuracy of the latter by one

order in mesh size. Pathlines and travel times can also be

computed if the retention curve for the material is given.

NUMERICAL TREATMENT

Analytical solution of the BIE is not possible in gen-
eral; hence, numerical methods are applied. The first
step in the numerical approximation of (8) is to discretize
the boundary I into a number of boundary elements, I'y,
(n=1,.,N). In the present version, the boundary ele-
ments are all straight line segments. Next, the variations
of ¢ and g, over each segment are approximated by their
values at the center of the boundary element, hence the
numerical approximation to the BIE becomes

%Q(X.') + Z ®,G; = Z(ani)GiJ ) (9)

J

where ®; = $(x;), gn; = gn(x;), and

‘ ' 8G(xiv}')
Gy = [ )

Gi; = [ G(x,y)dI(y)

For purposes of computing the coefficients, it is conve-
nient to describe the geometry parametrically. In the
present method we refer the boundary segments to a set
of piece-wise linear basis functions, as in the finite ele-
ment method. The coefficients are then computed with
four-point Gauss-Legendre quadrature. The coefficient
integrals are improper when the considered point and



boundary element coincide. These coefficients are com-
puted by subtracting the singularity, integrating it ana-
lytically and summing with the numerical integral of the
remainder. |

When we apply the boundary integral equation to
each of the N boundary elements, use the boundary con-
ditions (which specify half of the 2N point values of po-
tential and flux), and rearrange, we gei the linear system
Au, = f where u, contains the unknown potential or
flux on the boundary and f contains the inner product of
specified boundary values (i.e., boundary conditions) and
kernel coefficients. Once the boundary values are deter-
mined by solving the linear system by Gaussian elimina-
tion, the BIE (8) can be used to compute the potential
at any interior point. As noted earlier, the flux vector
in the interior can also be computed once the boundary
data is determined. ‘

The numerical implementation of the BIE has been
- tested by comparison with analytical and independent
numerical solutions: excellent agreement was found. Con-
vergence studies of the algorithm have shown the rate to
be quadratic with uniform boundary element size reduc-
tion on smoothly varying solutions. However, this con-
vergence rate is degraded significantly if there are sin-
gularities in the problem, for example an abrupt change
in boundary condition on the boundary. We find that
the quadratic convergence rate can be restored with the
mesh grading algorithm suggested by Yan and Sloan.™

INFILTRATION TO A WATER TABLE FROM
A STRIP SOURCE

The code written to solve the quasilinear equation
has been applied to analyze the infiltration from a strip
source of breadth 2L to a water table at depth D be-
low the surface. The hydraulic conductivity of these ma-
terials was assumed to be described by the exponential
model, Equation (3). This problem is prototypical of
steady infiltration and the subsurface redistribution of
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the moisture as a function of material capillarity. It also
illustrates the advantage of the BIEM for half-space prob-
lems, which are often a good approximation to the vadose
zone in arid regions where the water table may be deep
below the surface. g

The moisture level is specified on the strip and no-
flux conditions are imposed on the remainder of the hor-

izontal surface. In the case of a deep water table, it is

assumed that the material approaches a relatively dry
condition deep below the surface. This condition is im-
posed by specifying that the potential vanishes (relative
to the source value) far below the surface. Otherwise,
the water table is described by specifying saturated con-
ditions at depth D.

Figure 2 shows the distribution of potential p = /%o,
where &, denotes the specified potential at the source, in
the half-rpace below the surface (deep water table) as a
function of the nondimensional sorptive number, ¢ = aL.
As described earlier, a contour level of potential is also a
level of moisture content and relative permeability. The
dimensionless sorptive number is a measure of the rela-
tive importance of capillary absorption to gravity forces.
Small values of a indicate capillary absorption dominates
over gravity-driven flow. This is demonstrated in Fig-
ure 2, which shows the moisture is broadly spread for
a = 16-1, and ‘finger-like’ for a = 16. That is, for large
a, the moisture introduced at the source falls nearly ver-
tically with small lateral dispersion.

Figure 3 shows the distribution of potential in the
layer between the surface and water tableford = D/L =
20 and for corresponding values of the nondimensional
sorptive number displayed in Figure 2. The role of a
is similar in this case to its role for the deep water ta-
ble. However, the figure also shows that the char: - teristic
cepillary fringe thickness above the water table, rclative
to the layer thickness, is aD (= ad). That is, forad » 1
the capillary fringe thickness is small relative to D and



the potential distribution deviates from the deep water
table results only in a thin boundary layer of thickness
O(a~1) above the water teble. This is evident upon com-
paring Figures 2 and 3 for a = 16. For small ad the capil-
lary fringe is thick (relative to the layer thickness, D) and
the potential distributions in the shallow and deep water
table regimes are much different. This is illustrated by
Figures 2 and 3 for a = 16™1. '

The net infiltration over the source area is also depen-
- dent on the value of ad. Figure 4 shows the net nondi-
mensional infiltration,

_ % L
~ K,LJo

F, ¢:(X,Z2 =0)dX

as a function of a and d. The infiltration is proportional
to a and becomes independent of d for a > 5 (in the range
- of d considered in Figure 4). Furthermore, the infiltration
to a finite-depth water table is well-described by results
for the semi-infinite layer (D — o0) if aD > 4.

CONCLUSIONS

A BIEM code has been written for steady, quasilin-
ear flow in two-dimensional domains. The code computes
values of potential and/or flux on the domain boundary.
The potential and flux can also be computed in the in-
terior, as a postprocessing task, and at any number of
arbitrarily placed points. Pathlines and travel times can
also be computed if the retention curve for the material is
given. The method has been shown to exhibit quadratic
convergence with appropriate mesh grading, even on sin-
gular problems, and has been tested against both analyt-
ical and independent numerical solutions with excellent
agreement. Future plans include further study of the ap-
plicability of the exponential model for conductivity and
development of the capability to include contiguous re-
gions with different materic! properties.



REFERENCES

1. J.R. PHILIP, “Steady infiltration from buried point
sources and spherical cavities,” Water Resources
Research, 4, 1039 (1968). ’

2. W. R. GARDNER, “Some steady-state solutions
of the unsaturated moisture flow equation with ap-
plication to evaporation from a watzr table,” Soil
Science, 85, 228 (1958).

3. J. R. PHILIP, “Theory of infiltration,” Advances in
Hydroscience, 5, 215 (1969).

4. J. R. PHILIP, “The scattering analog for infiltra-
tion in porous media,” Reviews of Geophysics, 27,
431 (1989).

5. A.J. PULLAN, “The quasilinear approximation for
unsaturated porous media flow,” Water Resources
Research, 26, 1219 (1990).

6. A. J. PULLAN, and I. F. COLLINS, “Two- and
three-dimensional steady quasi-linear infiltration from
buried and surface sources using boundary element
techniques,” Water Resources Research, 23, 1633

(1987).

7. M. TH. VAN GENUCHTEN, “A closed-form equa-
tion for predicting the hydraulic conductivity of
unsaturated soils,” Soil Scienc Society of Americal
Journal, 44 892 (1980).

8. E. A. KLAVETTER, and R. R. PETERS, “Esti-
mation of hydrologic properties of an unsaturated
fractured rock mass,” Sandia National Laboratories
Technical Report, SAND84-2642, (1986).

9. P. L. HOPKINS, “COVE 2A benchmarking calcu-
lations using LLUVIA,” Sandia National Laborato-
ries Technical Report, SANDS8S-2511, (1990).



10. Y. MUALEM, “A new model for predicting the hy-

11.

- draulic conductivity of unsaturated porous media,”
Water Resources Research, 12, 513 (1976).

Y. YAN, and I. H. SLOAN, “Mesh grading for in-
tegral equations of the first kind with logarithmic
kernel,” SIAM Journal of Numerical Analysis, 26,

574 (1989).



1.0 SNNESENNSENNES LR S

ALPHA (m™")
> —— 0.017
C os 0.0174
-
vt
(o]
<«
£
=
[+
%5}
(=W )
&= ]
> )
< ]
4 w—
m E
s
().0’1.A ,._}AA.AII“‘;'\. ‘:’AL =A n
, -150 -125 -100 -75 -50 -25 0
PRESSURE HEAD (m)
1.0 17— SR mn asn e e av,v,,,',,oow
ALPHA (m™") ie
‘ io
—0.022 fo i
b

RELATIVE PERMEABILITY

150 -125  -100 —75 -50 25 0
PRESSURE HEAD (m)
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