skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Thermomechanical Modeling of Sintered Silver - A Fracture Mechanics-based Approach: Extended Abstract: Preprint

Conference ·
OSTI ID:1379460

Sintered silver has proven to be a promising candidate for use as a die-attach and substrate-attach material in automotive power electronics components. It holds promise of greater reliability than lead-based and lead-free solders, especially at higher temperatures (less than 200 degrees Celcius). Accurate predictive lifetime models of sintered silver need to be developed and its failure mechanisms thoroughly characterized before it can be deployed as a die-attach or substrate-attach material in wide-bandgap device-based packages. We present a finite element method (FEM) modeling methodology that can offer greater accuracy in predicting the failure of sintered silver under accelerated thermal cycling. A fracture mechanics-based approach is adopted in the FEM model, and J-integral/thermal cycle values are computed. In this paper, we outline the procedures for obtaining the J-integral/thermal cycle values in a computational model and report on the possible advantage of using these values as modeling parameters in a predictive lifetime model.

Research Organization:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Organization:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office (EE-3V)
DOE Contract Number:
AC36-08GO28308
OSTI ID:
1379460
Report Number(s):
NREL/CP-5400-67908
Resource Relation:
Conference: Presented at the13th International Conference and Exhibition on Device Packaging, 6-9 March 2017, Fountain Hills, Arizona
Country of Publication:
United States
Language:
English

Similar Records

Performance and Reliability of Bonded Interfaces for High-Temperature Packaging
Conference · Wed Aug 02 00:00:00 EDT 2017 · OSTI ID:1379460

Reliability and Lifetime Prediction Model of Sintered Silver Under High-Temperature Cycling
Journal Article · Tue Oct 18 00:00:00 EDT 2022 · IEEE Journal of Emerging and Selected Topics in Power Electronics · OSTI ID:1379460

Reliability of emerging bonded interface materials for large-area attachments
Journal Article · Wed Dec 30 00:00:00 EST 2015 · IEEE Transactions on Components, Packaging and Manufacturing Technology · OSTI ID:1379460