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Sandia National Security Mission:
Weaponization and Lifecycle

Contributing S&T to achieve engineering mastery:
» understanding underpinning science of multiple energetic
technologies

« advancing theories, diagnostics, capabilities, and comp/sim tools
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» integrating S&T into product life cycle



Az Goals:
model-based design and accelerated cycles of learning
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ALy S&T is basis for achieving goals!




A\l£s  Point design process demonstrates need for ) e
science-based understanding
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Development

Reprocessing

/ Iterative Process (Edisonian approach dominated) N
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Timing
requirements Manufacturability
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Certification

Surveillance

LLC Life after
deployment

SFI

System integration

Limited science basis knowledge

« Stick to tried/true designs

« Limit variability

 Hope no data contrary to
requirements




Physics not understood

impacting design:

 What governs energy release

« What governs the rate of Designed output energ
energy release (measureable)
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EBW Detonator Technology / Engineering / Science

=

Chemical energy is
released and the
shock transitions to
detonation

Shockwave energy is
localized by
heterogeneities
creating hot-spots

Bursting wire

imparts a stimulus

into explosive
pellet

expands (burst)
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Complex physics Underpins
component performance, safety, reliability

Reaction mechanisms
and rates.

Computational burn-
model framework.

Microstructural
characterization

Constitutive models

Explicit computational
representation

First-principles

equations of state for

energetic molecular
crystals

Metal bridge rapidly

Wire expansion
predictions and
measurements

CDU: Energy in the
capacitor is
delivered to the
bridge

First-principles
electrical conductivity
models and equations

of state for metals
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Detonation Science ETG

EBW Detonator
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Pyrotechnic (Propellant) Combustion Science ‘&£7c
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da/dt

Reactive Process in Subsonic Combustion and

Detonation

THKP Ignition/Combustion Behavior

* [dentified and reduced a complex multi-
phase reaction process pyro oxidizer to
a 3-step reaction process for kinetic
model.
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HNS Detonation Chemistry
* Time-resolved streak spectroscopy

coupled to molecular modeling
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MicroEnergetics: Advanced Concepts

\
/ Physical Vapor o = _ f Fundamental Energetics Research \

Deposition Preparation-Structure-Property Relationships
Temperature Porosity Output
Robocasting _@ Eate Grain séze IVeIocity | .
A . omposition rystal structure Initiation thresho
Direct Write i _ !
: = 7 Jll DD T in inkjet-printed
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* Tailoring material properties. \ ‘ /
* Understanding complex physics [ Initiation Mechanisms ]
underpinning performance, Tailoring and Exploiting Phenomenology
safety, reliability [ \
e Enabled new frontiers in R&D Advanced Component Development

 Enabled new concepts in

High-Energy & Power
components '

PVD Scroll

U.S. DEPARTMENT OF G’ LOW-Energy & Power
ol . YN} 4
'ENERGY VA =4




Abnormal Thermal Environments
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Before and after exposure to ATE cook-off simulation

Fuel fire accident simulation

Thermal and Thermal Decomposition > lgnition Time

Mechanical
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Conditions |_ _ __ Semi-Empirical Correlation __ __ , Violence

* Hermeticity D g * P(t)

* Confinement amage » Wall/frag velocity
* Porosity

* Temperatures
* Heating Rates

* Blast impulse
* Permeability

* Plastic work

* Phase
separation

* Extent of rxn

* Binder cross-

Complex physics
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Rapid Prototype Facility: Accelerated Cycles of Learning

Use indicator

= RPFis responsible for assembly of energetic
components:
= Design and Development = Fundamental R&D
= Diagnostic integration =  Work For Others
= Failure investigation

Battery ignitor showing

Test EBW detonator; parameter e
energetic ignition increment.

studies on powder, density, and

bridgewire
- ! \ S & Power cartridge replicator: low cost output replicator designed and
/ N - \ \‘\X produced for WFO development (modified bolt to match mechanical
‘ (- ‘ .
\\\\ interface).
Twisted wires for diagnostics during test. \

= Provides capabilities of our external production partners,
enabling SNL to maintain expertise as production agency
for non-nuclear explosive components.

= Bridgewire welding = Explosive powder pressing
= Laser welding = Process inspection
= Epoxy encapsulation = Header prototyping

= Header glassing
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“eic  Identifying critical relationships between material
properties and performance

= (CL-20 was recrystallized to study effect of 80 ’41
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= Results compared to vendor-produced
powders baselined in prototyped
detonators

: = Effect of particle size on performance (threshold
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EBW/EFI detonators Ignitors Motors
Timer/drivers Latch indicator Primers
Actuators Actuators
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ETG Closing Thoughts in Support of S&T

Why bother with energetic materials?
Why the use of energetic materials in the main charge — because...
want to weaponize substantial energy in spatially-limited configurations:

* Volume: Energy/power delivered per volume (potential to kinetic) is
HUGE

e Time delivery

e Reliability

Same principle applies for non-nuclear energetic components.
No technology to date can compete with EM!

Why bother with EM S&T?

What we know:

e How much energy comes out of an energetic material

What we can engineer:

* Energy input into a given component geometry

* Desired output of the energy

* Desired function time

What we don’t know:

 What controls the rate-of-release of the energy in the EM

* Governing processes for the energy rate-of-release in a component design
(@ ENERGY NS4




