

**41st International Conference and Expo on Advanced Ceramics and Composites**

Title: Failure analysis and sub-critical crack growth (SCG) characterization of Pt-Al<sub>2</sub>O<sub>3</sub> high temperature co-fired (HTCC) ceramics

Abstract: Miniaturization and integration of multiple functions into one component is desired for device downsizing. HTCC alumina, with its high strength and bio-compatibility, provides an option for integration and higher reliability medical devices. A 92% alumina-platinum via HTCC material was characterized for failure modes and sub-critical crack growth, and modifications to processing were implemented to obtain a material with strength and SCG characteristics similar to bulk alumina. In phase I development, this material had strength equivalent to bulk alumina, except at low stressing rates in saline, body fluid-like environments, where a novel failure mode (circumferential cracking) was encountered. Processing changes implemented for Phase II materials led to failures emanating as radial cracks from the vias with slight loss of strength. Changes made to Phase III materials led to strength and SCG characteristics that were undistinguishable from the base materials. Fractographic evidence indicates that cracking originates tangentially to the via in Phase III material

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000

Authors: Rajan Tandon, Clay S. Newton (Sandia), Andy Thom, Joyce Yamamoto, Markus Reiterer, and Gordon Munns (Medtronic); Hidekazu Otomaru, Hiroshi Matsumoto, Kengo Morioka, and Arne Knudsen, Kyocera North America Inc.

**Abstract Submission requirements:**

Titles may be a **maximum of 150 characters including spaces and symbol coding**. Enter the title in mixed case. Do not put the title in quotes. Do not bold the title. Do not end the title with a period.

- **Special Characters:** In most cases, Greek letters and other special characters will transfer from your word processing software. If you need a special character that you are unable to find in your word processor, the special character palette is available by clicking on the  $\Omega$  symbol.

**Body:**

- There is a limit of **1500** characters for the text + title of your abstract submission (including spaces). The character limit equates to approximately 200 words. You will not be able to submit the abstract if it exceeds this limit.
- **Do not include references or author names in the abstract.**
- **Do not Bold** any text.