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Motivation: Power switching, rf
Power Amplifiers and rf Switches
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Si

WBG SiC

UWBG

Power Conversion Applications

rf Power Applications

UWBG materials and devices may 
enable another order-of-magnitude 

reduction in power converter size and 
weight! 

SiC converter is 10% the volume and weight of Si 
for equivalent capability (10 kV, 100 A)

M. K. Das, ICSCRM 2011

UWBG may enable 
improved power and 

efficiency



Based on 300 K LFOM

best
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Comparison of Materials Using Lateral 
Figure of Merit (based on conduction loss)
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Lateral Devices (e.g. conventional 
MOSFET, HEMT)

Mobility 


(cm2V-1s-1

Permitivitty


(F/cm)

Bandgap 
Eg

Sheet 
Charge

ns
(cm-2)

Critical 
Electric 
Field, EC

(V/cm) 

Si 1300 11.4 1.1 2.0 x 1012 3.0 x 105

SiC 1000 9.7 2.9 2.0 x 1012 3.4 x 106

GaN 1590 9.5 3.4 1.0 x 1013 3.7 x 106

Al0.85Ga0.15N 120 8.35 5.78 1.0 x 1013 1.4 x 107

AlN 1390 8.5 6.2 1.0 x 1013 1.7 x 107

Material Parameters
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Vertical Devices (e.g. pin diode, Insulated 
Gate Bipolar Transistor, Vertical MOSFET)

Based on 500 K LFOM

best
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Model the Mobility across the AlGaN
Composition Range

Mobility is related to the average carrier-

relaxation time � , � =
� �

�∗

When more than one carrier relaxation 
mechanism is important, their contributions 
are usually combined via “Matthiessen’s Rule”
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Mobility for AlGaN Alloys

Temperature 
dependence 
at constant ns

ns dependence 
at constant 
temperature 

 plays outsized role 
in AlGaN alloy trends 
over composition & 
temperature
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Normalized Lateral Figure of Merit for 
AlGaN Alloys

• AlGaN-channel HEMTs offer meaningful LFOM 
advantage over wide bandgap semiconductors at 
elevated temperatures, but not at room temperature

ns=1e13
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Previous work

Constant ns=1e13 requires a substantial EC



8

Largest Bandgap in a Transistor Channel

Material x = y = Eg citation

AlyGa1-yN/AlxGa1-xN .85 1.0 5.84 This presentation and A.G. Baca, A.M. 
Armstrong, A.A. Allerman, E.A. Douglas, C.A. 
Sanchez, M.P. King, M.E. Coltrin, T.R. 
Fortune, and R.J. Kaplar, Appl. Phys. Lett. 
109, 033509 (2016)

AlyGa1-yN/AlxGa1-xN .6 1.0 5.23 N. Yafune, S. Hashimoto, K. Akita, Y. 
Yamamoto, H. Tokuda and M. Kuzuhara, 
Electron. Lett. 50, 211 (2014)

-Ga2O3 n/a n/a 4.3 M. Wong, K. Sasaki, A. Kuramata, S. 
Yamakoshi, and M. Higashiwaki, Electron. 
Dev. Lett. 37, 212 (2016)

Diamond n/a n/a 5.5 Promising material, but no transistor
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HEMT Structure and Geometry

Circular Geometry: 
(edge effects unimportant) 
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HEMT Material Characterization and 
Fabrication

Process Steps:
1. SiN deposition, photolithography, SiN etch, 

AlN etch, PR removal, GaN:Si regrowth, SiN
removal

2. Photolithography, ohmic metal deposition, 
litoff, RTA 

3. Gate photolithography, evaporation, liftoff
4. SiN deposition, photolithography, SiN etch 

(pads)

SiN

Al0.85Ga0.15N channel
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AlN nucleation and buffer layer

Sapphire substrate

CV Characterization

• Sheet resistance:  4200 /�

• Pinch-off voltage:  -4 V

• Sheet charge density:  6x1012 cm-2

• Inferred mobility:  250 cm2/Vs
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Al0.85Ga0.15N-Channel HEMT Shows Good 
Gate Control
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Drain current

Gate current

• Operates like Field Effect Transistor
• Good pinchoff
• Knee voltage linear with gate voltage
• Low drain and gate leakage currents

VG:

• Not Ideal in some Aspects
• Hysteresis in forward and reverse Gate 

sweeps
• Source and drain contacts more rectifying 

than Ohmic
• Large output conductance
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Al0.85Ga0.15N-Channel HEMT Shows Excellent 
Leakage and off-state Characteristics
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Vth=-4.9V

• Leakage current near measurement limit
• Similarly low gate leakage in Al0.25Ga0.75N/GaN requires insulated gate (high interface 

state density)
• Excellent subthreshold slope, 75 mV/decade
• Excellent ION/IOFF ratio >107

• Leakage current near measurement limit
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Al0.85Ga0.15N-Channel HEMT: Large 
Schottky Barrier

• Using Method in Z. Lin, Appl. Phys. Lett. 82, 4364 (2003)

• Comparison to Ni/Al0.25Ga0.75N/GaN:
• b = 0.99 eV (A. C. Schmitz, Semicond. Sci. Technol. 11 (1996) 1464–1467)
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Limitation of Al0.85Ga0.15N-Channel HEMT
(Source and Drain contacts)

Planar Source and Drain Contacts

Regrown Source and Drain Contacts

Sample Metal Anneal

1
Zr/Al/Mo/Au

15/120/35/50 (nm)
900C

2
Zr/Al/Mo/Au

15/120/35/50 (nm)
950C

3
V/Al/V/Au

15/80/20/100 (nm)
900C

4
V/Al/V/Au

15/80/20/100 (nm)
950C

5
Nb/Ti/Al/Mo/Au

20/20/100/40/50 (nm)
900C

6
Nb/Ti/Al/Mo/Au

20/20/100/40/50 (nm)
950C

Planar Source and Drain Contacts

Sample Metal Anneal

1
Ti/Al/Ni/Au

25/100/15/50 (nm)
850C

Regrown Source and Drain Contacts Rc ~ 6x103 -mm



Based on 300 K LFOMBased on 500 K LFOM
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Path to the Theoretical Line

s

(/�)

ch

(/�)

c

(cm2)

Effective 
Ecrit

Ron,sp

(cm2)
BV (V)

4200 4200 .0245 .06 .16 810

4200 4200 1x10-5 .06 .0095 810

1800 1800 1x10-5 .06 .0043 810

2650 ~104 1x10-5 .5 .003 5000

Today’s HEMT
Better contacts

Better epi

Electric field management, 
e-mode, aggressive 
lithography, 500K 

• Don’t get to the theoretical line for same reasons GaN 
won’t:
• Not at 100% Effective Ecrit

• E-mode channel has higher s than material limit
• Contacts have finite size
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Summary

• Demonstrated the first AlN/Al0.85Ga0.15N HEMT – Highest Bandgap in 
a Field Effect Transistor Channel

• Extended the Al-composition and Bandgap Range for AlxGa1-xN-
channel HEMTs to encompass the lateral figure of merit’s maximum 
value for AlxGa1-xN alloys

• Established the rationale for UWBG AlN/Al0.85Ga0.15N high-
temperature superiority over AlGaN/GaN

• Demonstrated AlGaN-channel HEMT with:
• HEMT Breakdown Voltage of 810 V (and no field plate)
• Excellent Drain & Gate Leakage Current, On/Off current ratio, and 

subthreshold Slope (75 mV/decade)
• Excellent Gate Leakage Current and b (1.74 eV)

• Modeled Drain Leakage Current with Frenkel-Poole Conduction


