
SHMEM-MT: A Benchmark Suite for Assessing
Multi-threaded SHMEM Performance

Hans Weeks1, Matthew G. F. Dosanjh2, Patrick G. Bridges1, and Ryan
E. Grant2

1 Department of Computer Science, University of New Mexico, Albuquerque, USA
{hansel,bridges}@cs.unm.edu

2 Center for Computing Research, Sandia National Laboratories, Albuquerque, USA
{mdosanj,regrant}@sandia.gov ?

1 Introduction

OpenSHMEM is a popular one-sided communication library for high-performance
computing systems developed around 2010 at the University of Houston [2]. It is
becoming an increasingly popular programming model for next-generation HPC
applications and systems because of its simple, intuitive interface and the pro-
liferation of one-sided communication devices such as Infiniband [1]. Despite its
increasing popularity, there are few benchmarks or mini-applications for evalu-
ating and optimizing OpenSHMEM system software and hardware performance.
This is particularly true for emerging multi-core and many-core systems on which
OpenSHMEM is particularly important.

In this paper, we present the first set of OpenSHMEM benchmarks of which
we are aware for systematically evaluating OpenSHMEM communication perfor-
mance. A key element of these benchmarks is their support for multi-threading,
based on the OpenSHMEM thread API proposed by Cray [9]. These benchmarks
are based on one-sided benchmarks and mini-applications previously developed
for MPI [4]. The initial version described in this paper focuses on simple messag-
ing micro-benchmarks and HPC mini-applications, in both cases with simple syn-
chronization strategies; support for additional benchmarks, mini-applications,
and synchronization methods is planned.

2 SHMEM-MT Benchmarking Approach

To develop a set of OpenSHMEM benchmarks for driving communication system
design and optimization, we have thus far focused on porting the MPI RMA-
MT benchmarks [4]. This work primarily focused on identifying the proper way
to port MPI RMA one-sided calls to OpenSHMEM, how the benchmarks were

? Sandia National Laboratories s a multiprogram laboratory managed and operated by
Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for
the United States Department of Energy’s National Nuclear Security Administration
under contract DE-AC04-94AL85000.

SAND2016-8434C



converted from MPI RMA to OpenSHMEM, and how threading was supported
when appropriate in the current version of these benchmarks.

The RMA-MT benchmark suite [4] was designed to provide a robust set of
tests to verify the functionality and measure the performance of MPI’s one-
sided communication implementation in a multi-threaded environment. These
benchmarks are based on previous benchmarks, including Thakur and Gropp’s
multi-threaded latency and bandwidth tests [10], the Sandia Microbenchmarks
(SMBs) [3], and a subset of the Mantevo Mini-Applications [5]. RMA-MT gener-
ally focuses on the most commonly-used subset of MPI one-sided calls. We used
the RMA-MT benchmark suite as the basis for the OpenSHMEM benchmarks
we present here.

Benchmark Conversion When replacing synchronization methods in our
benchmarks, we used the synchronization methods that best matched the com-
munication pattern used by the benchmark. In latency and bandwidth bench-
marks, we used shmem quiet because only one processing element need be in-
volved in the communication (passive target). For message-rate and mini-app
benchmarks, we used barrier all because the underlying applications already
relied on barriers to synchronize the activities of multiple processes. Importantly,
we have not yet attempted to port the lock-based versions of the RMA-MT
benchmarks for SHMEM-MT because of the significant semantic differences be-
tween these communications (active target).

In contrast to the synchronization calls, converting the MPI window man-
agement and RMA calls was straightforward. In particular, we replaced the calls
to malloc and MPI_win_create with appropriate shmem malloc calls and re-
placed MPI get/put with shmem get/put. In addition, because command line
arguments given to the benchmarks are global variables that are stored in sym-
metric memory, we were able to remove calls to broadcast these parameters that
were present in the original RMA-MT benchmarks.

It is important to note that the mini-applications still use a hybrid MPI/-
OpenSHMEM approach in some cases. As with the RMA-MT benchmarks, we
focused on converting the main halo exchange of each application to OpenSH-
MEM to test the performance-critical communications at scale in an application
setting. Other communications such as set-up and tear-down, as well as a hand-
ful (one or two) MPI_Allreduce calls per iteration in each mini-application,
are still performed using MPI. This approach is similar to that taken by other
researchers [6, 7]. We hope to convert the remaining MPI communication oper-
ations in these mini-applications to OpenSHMEM in the near future, but have
not prioritized this effort as these calls are not generally performance critical at
the scale at which we currently execute.

Threading Support Because MPI works on a per-process basis, the RMA-
MT messaging benchmarks rely on per-process synchronization and use threads
only for RMA data movement operations. In particular, these benchmarks multi-
thread operations between synchronization calls using using a fork-join threading



model. The benchmarks use this structure primarily because of the lack of fine-
grained thread-level synchronization operations in current versions of MPI, as
threads are not separate entities recognized by MPI, unlike in the OpenSHMEM
thread extensions provided by Cray.

Our initial port of the RMA-MT benchmarks to OpenSHMEM preserves
the basic fork-join threading structure of these benchmarks that results from
the lack of thread-level synchronization primitives in MPI RMA calls. In par-
ticular, we preserved synchronization methods at the processing element gran-
ularity by calling shmem_quiet or shmem_barrier_all after pthread_join at
the end of each test iteration, rather than relying on thread-level synchroniza-
tion. Converting these benchmarks to use the thread-level synchronization prim-
itives proposed for use in OpenSHMEM, for example shmem thread quiet and
shmem thread fence is an important direction for future work.

3 Initial Results

In this section we present initial results using this benchmark suite on a Cray
XC30 cluster. Each node has two Xeon Ivy Bridge 2.4 GHz 12-core processor
with hyper-threading enabled, 32 GB of memory per node, and a Cray Aries net-
work interface. SHMEM-MT benchmarks were compiled using the Cray compiler
suite and Cray shmem version 7.3.2. Each data point in this section is an average
of 10 runs with each run performing 10,000 iterations, in the case of the mes-
saging benchmarks. Each point is plotted with error bars showing the standard
deviation of the 10 runs; in a large number of cases, the standard deviation of
the ten runs was small enough not to show up on the plots.

L
a
te

n
c
y
 (

S
)

Message Size

1 Thread 4 Threads 16 Threads

 0

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

1B 2B 4B 8B 16B
32B

64B
128B

256B
512B

1KiB
2KiB

4KiB
8KiB

16KiB

32KiB

64KiB

128KiB

256KiB

512KiB

1M
iB

(a) Latency

B
a
n
d
w

id
th

 (
M

iB
/S

)

Message Size

1 Thread 4 Threads 16 Threads

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

1B 2B 4B 8B 16B
32B

64B
128B

256B
512B

1KiB
2KiB

4KiB
8KiB

16KiB

32KiB

64KiB

128KiB

256KiB

512KiB

1M
iB

(b) Bandwidth

Fig. 1. SHMEM-MT Latency and Bandwidth Performance

Figure 1 shows the latency and bandwidth tests respectively. Both tests are
setup similarly; as the number of threads increase each message is split into
smaller equal pieces for each thread. We can see that for small messages, less than



32KiB, Cray SHMEM achieves best performance when using a single thread.
After 32 KiB, 4 threads sending portions of the message appear to outperform
the 1 thread case. For the message sizes used in this test, 16 threads performs
worse in bandwidth than the other cases, likely due to insufficient hardware-level
concurrency to amortize the increased synchronization overheads.

Figure 2 shows the runtime of the HPCCG and MiniFE mini-applications
when run with 24 ranks per node on up to 32 nodes using a weak scaling problem
size. In particular, HPCCG was set to 1003 elements per PE while the MiniFE
problem size was set at (330 ∗ nodes1/3)3. Note that, these mini-applications
do not yet include full threading support. In this case, messaging concurrency
is provided at the thread level, however we run a PE per core to maintain
computational concurrency.

R
u
n
ti
m

e
 (

S
)

Number of Processes

 0

 10

 20

 30

 40

 50

 60

24 48 96 192
384

768

(a) HPCCG

R
u
n
ti
m

e
 (

S
)

Number of Processes

 0

 50

 100

 150

 200

 250

 300

 350

48 96 192
384

768

(b) MiniFE

Fig. 2. SHMEM-MT Mini-application Weak-scaling Runtime

In both cases, performance is largely constant as expected, particularly for
MiniFE. HPCCG runtimes begin to increase slightly with increased scale, but
to a level that is generally expected for this mini-application. Note that both
mini-applications also include solution verifications provided from the original
Mantevo versions that complete successfully.

4 Related Work

The most relevant related work to the work presented here is work by Luecke et
al. [8] where they compared the performance of SHMEM with MPI-2 RMA on
an SGI Origin 2000 and Cray T3E system. Unlike this work, they used a single
threaded approach and the MPI-2 RMA interface was the only one available.
Since that time, significant improvements have been made to the MPI RMA
interfaces for MPI-3, and OpenSHMEM [2] has emerged as a standard, with
matching implementations.



5 Conclusions and Future Work

Overall, our work provides a first set of benchmarks for evaluating OpenSH-
MEM implementations and optimizations, particularly in the presence of multi-
ple threads. Our initial results show OpenSHMEM performance that is generally
comparable to other modern messaging systems; due to time and space limita-
tions, we defer a complete performance comparison across MPI, OpenSHMEM,
and similar messaging system implementations on different platforms for future
work. In addition, the relative ease with which we converted MPI RMA bench-
marks to OpenSHMEM demonstrates a path for developing further benchmarks
and mini-applications.

References

1. I. T. Association. InfiniBand Architecture Specification: Release 1.0. InfiniBand
Trade Association, 2000.

2. B. Chapman, T. Curtis, S. Pophale, S. Poole, J. Kuehn, C. Koelbel, and L. Smith.
Introducing OpenSHMEM: SHMEM for the PGAS community. In Proceedings of
the Fourth Conference on Partitioned Global Address Space Programming Model,
page 2. ACM, 2010.

3. D. Doefler and B. W. Barrett. Sandia MPI microbenchmark suite (SMB). Technical
report, Sandia National Laboratories, 2009.

4. M. G. Dosanjh, T. Groves, R. E. Grant, R. Brightwell, and P. G. Bridges. RMA-
MT: A benchmark suite for assessing mpi multi-threaded rma performance. In
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(IEEE/ACM CCGrid 2016), 2016.

5. M. A. Heroux, D. W. Doerfler, P. S. Crozier, J. M. Willenbring, H. C. Edwards,
A. Williams, M. Rajan, E. R. Keiter, H. K. Thornquist, and R. W. Numrich.
Improving performance via mini-applications. Sandia National Laboratories, Tech.
Rep, 2009.

6. J. Jose, S. Potluri, K. Tomko, and D. K. Panda. Designing scalable graph500
benchmark with hybrid MPI+OpenSHMEM programming models. In Supercom-
puting, pages 109–124. Springer, 2013.

7. M. Li, J. Lin, X. Lu, K. Hamidouche, K. Tomko, and D. K. Panda. Scalable
MiniMD design with hybrid MPI and OpenSHMEM. In Proceedings of the 8th In-
ternational Conference on Partitioned Global Address Space Programming Models,
page 24. ACM, 2014.

8. G. R. Luecke, S. Spanoyannis, and M. Kraeva. The performance and scalability of
SHMEM and MPI-2 one-sided routines on a SGI Origin 2000 and a Cray T3E-600.
Concurrency and Computation: Practice and Experience, 16(10):1037–1060, 2004.

9. M. ten Bruggencate, D. Roweth, and S. Oyanagi. Thread-safe SHMEM extensions.
In Workshop on OpenSHMEM and Related Technologies, pages 178–185. Springer,
2014.

10. R. Thakur and W. Gropp. Test suite for evaluating performance of MPI implemen-
tations that support MPI THREAD MULTIPLE. In Recent Advances in Parallel
Virtual Machine and Message Passing Interface, pages 46–55. Springer, 2007.


