

UCRL--15965

DE91 000661

Fabrication Development for High-Level Nuclear Waste Containers for the Tuff Repository

Phase 1 Final Report

K. O. Stein
Project Manager

H. A. Domian, R. L. Holbrook, and
D. F. LaCount
Principal Authors

Manuscript date: September 1988

Prepared for
Lawrence Livermore National Laboratory
by
BABCOCK & WILCOX
Nuclear Power Division
P. O. Box 10935
Lynchburg, Virginia 24506-0935

BABCOCK & WILCOX
Research and Development Division
P. O. Box 835
Alliance, Ohio 44601

MASTER

EP

Babcock & Wilcox Legal Notice

"This report was prepared by the Babcock & Wilcox Company as an account of work sponsored by the Lawrence Livermore National Laboratory (LLNL). Neither LLNL nor Babcock & Wilcox Company, nor any person acting on behalf of either:

- a. Makes any warranty or representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
- b. Assumes any liabilities with respect to the use of, or for damages resulting from the use of, any information, apparatus, method, or process disclosed in this report."

LLNL-Yucca Mountain Project Disclaimer

The work described in the attached report was performed prior to full implementation of the current Yucca Mountain Project Quality Assurance Program Plan. The LLNL Yucca Mountain Project cautions that any information is preliminary and subject to change as further analyses are performed or as an enlarged and perhaps more representative data base is accumulated. These data and interpretations should be used accordingly.

Acknowledgments

The work reported herein is the product of the efforts of many individuals at Babcock & Wilcox Company and Lawrence Livermore National Laboratory. The authors gratefully recognize their help and efforts. In particular, the efforts of E. W. Russell of the Lawrence Livermore National Laboratory and technical liaison to this activity, W. S. Lyman of the Copper Development Association, and P. C. Childress of Babcock & Wilcox are acknowledged.

Contributing Authors

K. Aral
E. A. Martin
F. P. Vaccaro

Preface

The container fabrication process development activity (also referred to in text as the Fabrication Project) consists of a multiyear, multiphase project to assess alternatives and to recommend and demonstrate a method for fabrication of disposal containers through production of full-scale prototypes.

This activity is being pursued concurrently with two other process development activities: container closure process development and container closure nondestructive evaluation process development.

This Phase 1 report is a fabrication process assessment; Phase 2 will provide test specimens and sub-scale mockup fabrications with a formal evaluation report and proposed specifications for both a primary and an alternate fabrication process; and Phase 3 will provide a final report and final specification package and several sets of full-scale prototype parts.

The Phase 1 closure process assessment report, "Closure Development for High-Level Nuclear Waste Containers for the Tuff Repository, Phase 1 Final Report," UCRL-15964, is referred to throughout the text as the Closure Development Report; the closure process assessment activity is referred to as the Closure Project.

Contents

LIST OF ACRONYMS AND ABBREVIATIONS.....	viii
ABSTRACT	1
1. INTRODUCTION	2
2. EXECUTIVE SUMMARY	5
3. TECHNICAL APPROACH	10
3.1. Objective	10
3.2. Overview of Technical Plan	10
3.2.1. Phase 1—Fabrication Process Assessment	10
3.2.2. Phase 2—Fabricability Evaluations	15
3.2.3. Phase 3—Production of Prototype Containers	16
3.3. Fabrication Approaches	16
4. MAJOR PROJECT ACTIVITIES	18
4.1. Performance Requirements	18
4.1.1. Regulatory Requirements	18
4.1.2. Codes and Standards for Use in Evaluating Container Fabrication Processes	19
4.1.3. Assumptions	19
4.1.3.1. Container Drawing	19
4.1.3.2. Interface Assumptions	19
4.2. Literature Review	23
4.2.1. Corrosion Resistance	24
4.2.1.1. Galvanic Corrosion	24
4.2.1.2. Intergranular Corrosion	24
4.2.1.3. Stress Corrosion Cracking	27
4.2.1.4. Pitting and Crevice Corrosion	29
4.2.1.5. Hydrogen Embrittlement and Hydrogen-Assisted Cracking	30
4.2.2. Forming and Fabrication Limitations	30
4.2.2.1. Casting	30
4.2.2.2. Cold Working	31
4.2.2.3. Hot Workability	31
4.2.2.4. Heat Treatments	31
4.2.2.5. Grain Size Control	32
4.2.2.6. Surface Condition	32
4.2.2.7. Inspectability	32
4.2.3. Literature Review Summary	32
4.3. Vendor Surveys and Quotations	33
4.3.1. Capabilities and Interest Survey	33
4.3.2. Spin Forming Survey	33
4.3.3. Heat Treating Capabilities Survey	34
4.3.4. B&W Nuclear Equipment Division and Trading Company Purchasing Inquiries	34
4.3.5. Key Vendors	35
4.3.6. Vendor Quotations	35
4.3.7. Rationalization of Vendor Quotes	35
4.3.7.1. Pintle and Upper Head	43
4.3.7.2. Body and Lower Head	45
4.4. Copper Development Association Activities	51
4.5. Foreign Technology Review	52
4.6. Overview of Evaluation Methodology	53

Contents (cont'd)

4.6.1.	Description of Candidate Processes	54
4.6.2.	Evaluation Criteria and Methodology	64
5.	SUMMARY OF RESULTS AND RECOMMENDATIONS	89
5.1.	Selection of Viable Processes	89
5.2.	Issues to be Resolved	99
5.2.1.	Centrifugal Casting	99
5.2.2.	Uniformity of Closed-End Cylinder Extrusions	99
5.2.3.	Uniformity of Closed-End Deep Drawn Components	100
5.2.4.	Cold Work and Annealing of Welded Lower Units	100
5.2.5.	Annealing of Lower Units	100
5.2.6.	Availability of Starting Materials	100
5.2.7.	Producibility of Materials	100
5.2.8.	Advantages and Disadvantages of Candidate Processes	100
5.3.	Recommendations	100
6.	QUALITY ASSURANCE	105
7.	REFERENCES	109
8.	BIBLIOGRAPHY	112

List of Tables

1-1.	Candidate Container Materials	4
1-2.	Projected Production Requirements for Containers	4
2-1.	Fabrication Processes for the Lower Unit Recommended for Testing	9
3-1.	Overview of Technical Plan	11
3-2.	Preliminary Listing of Evaluation Criteria for Ranking Candidate Fabrication Processes	15
4-1.	Key LLNL Design Requirements Derived from 10 CFR Part 60, Other Applicable Regulations, and Waste Management System Requirements	18
4-2.	Candidate Material Specifications for Mock-Ups	20
4-3.	YMP Candidate Alloys	21
4-4.	Composition Comparisons Between Cast, Wrought, and Welding Alloys	25
4-5.	Expressions Relating Austenite Stability and Alloy Chemistry	30
4-6.	Survey Results of Heat Treating Capabilities	34
4-7.	List of Vendors Providing Quotations	36
4-8.	Relative Cost of Upper Heads	44
4-9.	Relative Costs for Integral Body and Head	46
4-10.	Estimated Production Costs—Body Welded to Head	48
4-11.	Relative Costs of Body Welded to Head and Cold Worked	49
4-12.	Chemical Composition of CDA 613 and CDA 614	52
4-13.	Failure Mechanism Weighting Factors	70
4-14.	Product Criterion Failure Mechanism Array for AISI 304L/CF3	73
4-15.	Performance Product Criteria Values for Candidate Container Alloys	74
4-16.	Performance Index—Product and Process Criteria Values for Wrought AISI 304L	76
4-17.	Performance Index and Normalized Rating for Various Container Alloys	78
4-18.	Performance Ratings for the Upper Head and Handling Pintle	80
4-19.	Performance Ratings for the Lower Unit	81
4-20.	Fabrication Ratings for the Upper Head and Handling Pintle	85
4-21.	Fabrication Ratings for the Lower Unit	86
4-22.	Cost Ratings for the Upper Head and Handling Pintle	87

List of Tables (cont'd)

4-23.	Cost Ratings for the Lower Unit	88
5-1.	Combined Rating—Performance, Fabricability, and Cost	96
5-2.	Ratings for Performance, Fabricability, and Cost Separately Combined	97
5-3.	Range of Rating Values for AISI 304L Lower Units	99
5-4.	Producibility of Candidate Alloys	102
5-5.	General Advantages and Disadvantages of Various Processes for Lower Unit Fabrication	103
5-6.	Processes for the Lower Unit Recommended for Testing	104

List of Figures

1-1.	Conceptual Layout of Nuclear Waste Container	3
2-1.	Lower Unit Performance and Fabricability Ratings and Relative Costs for AISI 304L/CF3	8
3-1.	Schematic of Major Technical Tasks	12
3-2.	Possible Container Components	17
3-3.	Fabrication Approaches	17
4-1.	Container Drawing Used for Estimating Purposes	22
4-2.	Comparison of the As-Drawn and Annealed Maximum Critical Cooling Rates for Sensitization in AISI 304L	28
4-3.	Reference Container Design	38
4-4.	Alternate Configuration Sketch Used for Integral Pintle and Head Forging Quotes	39
4-5.	Sketches Used for Ladish Co. Quotes—Integral Pintle and Head Forging	40
4-6.	Alcoa Forging Division Drawings for Integral Pintle and Head Forging Quotes	41
4-7.	Overview of Fabrication Process Evaluation Criteria	55
4-8.	Three-Roll Initial Pinch Bender	57
4-9.	Cameron Forge Blocking Sequence	58
4-10.	Cameron Forge Extrusion Sequence	59
4-11.	Deep Drawing of Cup	60
4-12.	Deep Drawing Sequences for Making Gas Cylinders	61
4-13.	Centrifugal Casting Events	62
4-14.	Automatic Spinning	63
4-15.	External Roll Extrusion	65
5-1.	Lower Unit Performance and Fabricability Ratings and Relative Costs for AISI 304L/CF3	90
5-2.	Lower Unit Performance and Fabricability Ratings and Relative Costs for AISI 316L/CF3M	91
5-3.	Lower Unit Performance and Fabricability Ratings and Relative Costs for Alloy 825	92
5-4.	Lower Unit Performance and Fabricability Ratings and Relative Costs for CDA 122	93
5-5.	Lower Unit Performance and Fabricability Ratings and Relative Costs for CDA 613/952	94
5-6.	Lower Unit Performance and Fabricability Ratings and Relative Costs for CDA 715/964	95

List of Acronyms and Abbreviations

AIME	American Institute of Metallurgical Engineers
AISI	American Iron and Steel Institute
AISI 304L	AISI 304L Stainless Steel
AISI 316L	AISI 316L Stainless Steel
Alloy 825	Incoloy 825
ANSI	American National Standards Institute, Inc.
ASM International	American Society for Metals International
ASME	American Society of Mechanical Engineers
ASME BPVC	ASME Boiler & Pressure Vessel Code
ASTM	American Society of Testing and Materials
B&W	Babcock & Wilcox
CDA	Copper Development Association
CDA 102	oxygen-free, high purity copper
CDA 122	phosphorus deoxidized high purity copper
CDA 613	aluminum bronze (7% Al)
CDA 715	70/30 copper-nickel
CDA 801	cast version of oxygen-free copper
CDA 952	cast version of aluminum bronze
CDA 954	cast version of 70/30 copper-nickel
CF3	cast austenic alloy containing ferrite
CF3M	cast austenic alloy containing ferrite
CFR	Code of Federal Regulations
DOE	Department of Energy
HAC	hydrogen-assisted cracking
HAZ	heat-affected zone
HE	hydrogen embrittlement
HIPing	hot isostatic pressing
ID	inside diameter
LH	lower head
LLNL	Lawrence Livermore National Laboratory
LU	lower unit
MT&C	Materials Testing and Characterization
NDE	nondestructive evaluation
NPD	Nuclear Power Division (of B&W)
NRBM	normalized rating for base metal
NRC	Nuclear Regulatory Commission
NRWM	normalized rating for weld metal
OCRWM	Office of Civilian Radioactive Waste Management
OD	outside diameter
OFC	oxygen-free copper
QA	quality assurance
R&D	research and development
RDD	Research and Development Division (of B&W)
SCC	stress corrosion cracking
SGN	Societe Generale pour les Techniques Nouvelles (French waste management company)
SKB	Svensk Kärnbranslesäkerhet AB (Swedish nuclear fuel and waste management company)
TWI	The Welding Institute (in England)
UH	upper head
UT	ultrasonics
YMP	Yucca Mountain Project

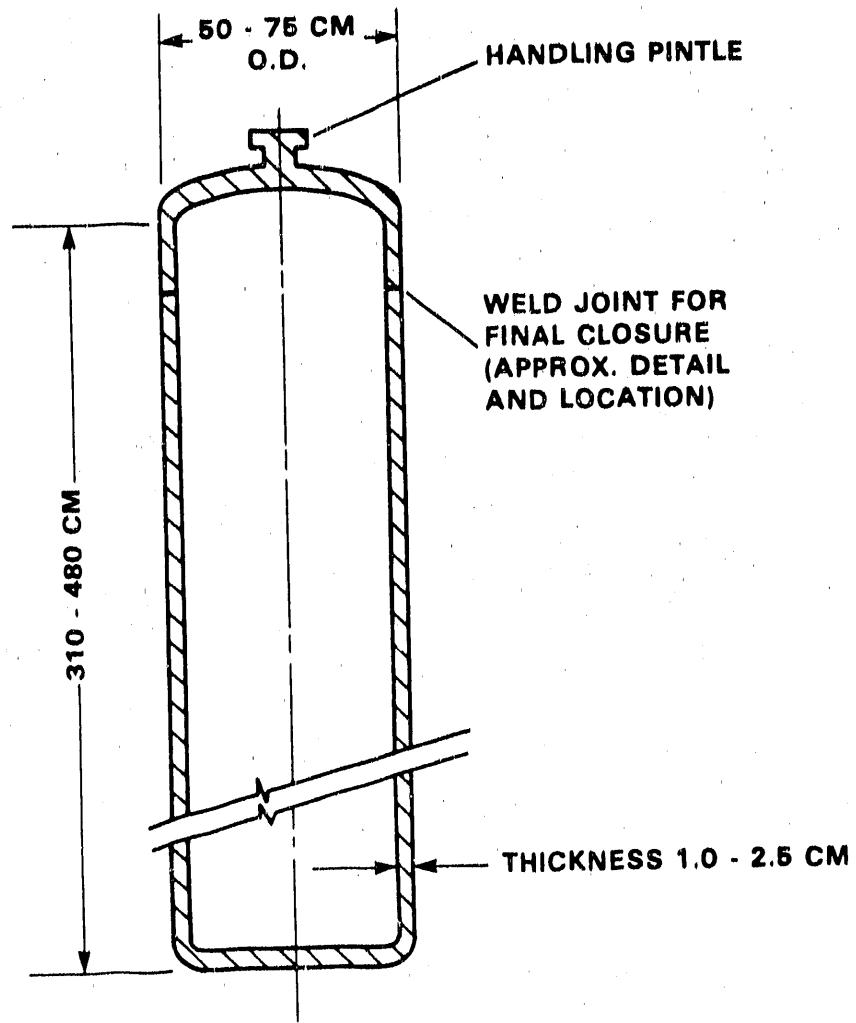
Fabrication Development for High-Level Nuclear Waste Containers for the Tuff Repository

H. A. Domian
R. L. Holbrook
D. F. LaCount

Key Words: High-Level Nuclear Waste Containers, Fabrication Development, Tuff Repository, Austenitic Stainless Steels, Copper, Copper-Base Alloys, Process Selection Criteria, Performance Requirements, Fabrication Requirements

Abstract

This final report completes Phase 1 of an engineering study of potential manufacturing processes for the fabrication of containers for the long-term storage of nuclear waste. Work was conducted under U.S. Department of Energy (DOE) Contract 9172105, administered through the Lawrence Livermore National Laboratory (LLNL), as part of the Yucca Mountain Project (YMP), funded through the DOE Office of Civilian Radioactive Waste Management (OCRWM). An extensive literature and industry review was conducted to identify and characterize various processes. A technical specification was prepared using the American Society of Mechanical Engineers Boiler & Pressure Vessel Code (ASME BPVC) to develop the requirements. A complex weighting and evaluation system was devised as a preliminary method to assess the processes. The system takes into account the likelihood and severity of each possible failure mechanism in service and the effects of various processes on the microstructural features. It is concluded that an integral, seamless lower unit of the container made by back extrusion has potential performance advantages but is also very high in cost. A welded construction offers lower cost and may be adequate for the application. Recommendations are made for the processes to be further evaluated in the next phase when mock-up trials will be conducted to address key concerns with various processes and materials before selecting a primary manufacturing process.


1. Introduction

The U.S. Congress and the President have identified Yucca Mountain, Nevada as the site for consideration for the first U.S. high-level nuclear waste repository. Lawrence Livermore National Laboratory (LLNL), as part of the Yucca Mountain Project (YMP), has the responsibility for designing and developing the waste package for the permanent storage of high-level nuclear waste. To develop a design for the package, LLNL has activities underway in several interrelated areas: the package environment; the selection and testing of the container structural materials; the container design, fabrication, closure after filling, and inspection of the closure area; and the testing and analysis of the package performance under expected repository conditions. All of these projects are currently in the preliminary, conceptual design and development stage. Babcock & Wilcox (B&W) is involved with the YMP as a subcontractor to LLNL. B&W's role is to recommend and demonstrate a method for fabricating the metallic waste container and for performing the final closure of the container after filling it with waste.

At this stage, LLNL contemplates that the container will be a single-wall, corrosion-resistant metal cylinder similar to that shown in Figure 1-1. Candidate materials, currently being evaluated by LLNL's Materials Testing & Characterization (MT&C) technical area are the six shown in Table 1-1. Projected production requirements are shown in Table 1-2. The metallic containment barrier is the primary waste container structural member and is intended to provide substantially complete containment for the nuclear waste for 300 to 1000 years after emplacement in the repository. The waste package is being designed to meet 10 CFR Part 60 (1983) and derivative requirements (O'Neal et al., 1983). The final engineered barrier system design may be composed of a waste form, metallic container, borehole liner, and near-field host rock, or some combination of these components.

The contract is being administered in three phases. Presented herein is the final report for all activities related to recommending fabrication technology in Phase 1. The objective of the Phase 1 activities was to perform an engineering study to assess various alternatives and recommend fabrication processes for the containers. Full-scale production of the containers is not anticipated to begin until 1998.

This report consists of an executive summary (Section 2), an outline of the technical approach to the program (Section 3), a description of the major project activities (Section 4), and a summary of the results and recommendations (Section 5). Quality assurance information (Section 6), a list of references (Section 7), and a bibliography (Section 8) are also provided.

NOTES

1. WALL THICKNESS UNIFORMITY: $\pm .3$ CM
2. CONCENTRICITY OF CONTAINER OD: $\pm .6$ CM AND
CONSISTENT WITH CLOSURE JOINT FIT-UP
3. SURFACE FINISH, TYPICAL COLD ROLLED

Figure 1-1. Conceptual layout of nuclear waste container

Table 1-1. Candidate container materials

Common Alloy Name	Common Industry Designation	Unified Numbering System Designation
304L Stainless Steel	AISI 304L	S30403
316L Stainless Steel	AISI 316L	S31603
Incoloy 825	Alloy 825	NO8825
Aluminum Bronze	CDA 613	C61300
70/30 Copper-Nickel	CDA 715	C71500
Oxygen-Free Copper	CDA 122	C12200

Table 1-2. Projected production requirements for containers

Year of Receipt	Containers	
	Annual	Cumulative
1998	150	150
1999	150	300
2000	150	450
2001	350	800
2002	650	1,450
2003	1500	2,950
2004	1500	4,450
2005	1500	5,950
2006	1500	7,450
2007	1500	8,950
2008	1500	10,450
2009	1500	11,950
2010	1500	13,450
2011	1500	14,950
2012	1500	16,450
2013	1500	17,950
2014	1500	19,450
2015	1500	20,950
2016	1500	22,450
2017	1500	23,950
2018	1500	25,450
2019	1500	26,950
2020	1500	28,450
2021	1500	29,950
2022	400	30,350

2. Executive Summary

As part of the U.S. Department of Energy's (DOE) Yucca Mountain Project (YMP), the Lawrence Livermore National Laboratory (LLNL) has the responsibility for designing and developing the package in which to permanently store high-level nuclear waste in the tuff repository site at Yucca Mountain, Nevada. LLNL engaged Babcock & Wilcox (B&W) as a subcontractor to develop the technology for fabricating the waste container and for permanently closing the container after it is filled. Presented herein is the final report for all activities related to fabrication processes in Phase 1 of this contract. Closure activities are addressed in the Closure Development Report.

A three-phase program is being conducted to identify, assess, and demonstrate the optimum manufacturing method for containers, consistent with the performance requirements for Yucca Mountain. The specific purpose of Phase 1 was to conduct an engineering study to assess various alternatives and manufacturing processes, to identify gaps in fabrication technology that need to be examined, and to rank candidate processes with respect to their ability to meet the application requirements. Plans for Phase 2 involve vendor trials to produce mock-ups from the candidate materials by various processes so that both a primary and an alternate manufacturing method can be selected. Prototypes at full scale would then be made in Phase 3 via the primary process for the final material selected by LLNL. Full-scale production of containers is not anticipated to begin until 1998.

Phase 1 was a 6-month study to define the performance requirements and the evaluation criteria, survey the state of the art by a literature and vendor survey, identify candidate manufacturing processes, and then rank those processes according to the criteria.

As B&W began to collect information on the performance requirements from LLNL and DOE, it became evident, because of the preliminary nature of the project, that these requirements were not fully defined. Therefore, it was necessary for B&W to make several assumptions. B&W assumed use of the American Society of Mechanical Engineers Boiler & Pressure Vessel Code (ASME BPVC), Section VIII, "Pressure Vessels," Division 1 (Lethal), to develop a technical specification for fabrication. B&W believes that use of this code, which is well-accepted both legally and by industry, will hasten Nuclear Regulatory Commission (NRC) licensing and public approval. Furthermore, it is believed that, although the code is technically very conservative being that the container is not a pressure vessel, it is more efficient to use an existing standard than to create a new one. B&W also assumed a container geometry, and prepared a drawing that included requirements for surface finish, inspection, and applicable codes.

The state-of-the-art survey included an extensive literature search with over 200 references, which are listed in the bibliography (Section 8). Particular emphasis was placed on the possible effects of various fabrication processes that could possibly influence performance or quality for each of the six candidate alloys (Table 1-1). Forming limitations for each of the alloys were also reviewed. The Copper Development Association (CDA) was used as a consultant to B&W for copper-base materials; they provided access to their data base for the literature search and a report dealing with the possible effects of fabrication processes on the corrosion of copper. The CDA also prepared for B&W several other reports that listed and described potential vendors for the fabrication of copper materials.

B&W visited several European sites to review relevant activities in nuclear-waste container fabrication and closure. A visit was made to The Welding Institute in England (TWI), where research is being conducted on the welding of copper for the Swedish nuclear fuel and waste management company (SKB). SKB has the overall responsibility for Swedish nuclear waste management, and B&W engaged them as a consultant in the project. A visit was also made to three sites in France with personnel from the French waste management program (SGN). These sites included their operating plants for processing and vitrification of nuclear wastes. The French have fabricated over 1000 stainless-steel canisters for the short-term storage of waste.

To identify and characterize the candidate manufacturing processes, B&W conducted several vendor surveys. A general survey was sent out to seek information on vendors' capabilities to make various sizes and geometries of container components using various alloys, and to obtain an expression of interest in the product. A survey of capabilities in spinning and deep drawing was also made since this method of forming seemed like a good way to fabricate the end heads. A heat treating survey was conducted because it was anticipated that the size of the container might be a problem for existing vacuum or atmosphere furnaces. In addition to these surveys, two units of B&W (Nuclear Equipment Division, and McDermott's CCC International Trading Company), who routinely purchase commercial products similar to the container, solicited budgetary quotations for container components. They also contacted various fabrication shops for an expression of interest. Another inquiry package (with B&W's drawing and technical specification) was sent to various vendors requesting quotations for full-size containers in quantities of 1, 5, and 1500 for mock-up, prototype, and production, respectively. Although many vendors did respond to the surveys above, response was generally very slow. To accelerate matters, B&W identified "key vendors" representing various processing technologies, and began a dialogue to obtain more specific quotes and information in a shorter time.

As previously stated, the performance requirements for the container have not yet been fully defined. Therefore, defining an evaluation system to rank the candidate processes was a difficult task. A simple weighting and criteria approach did not seem practical because of the large number of interrelationships between processing effects on each material and the possible failure or degradation mechanisms in service. Because of this, the system that B&W devised is somewhat complex. However, it is intended as a preliminary approach to organizing and quantifying a complicated problem. B&W believes that it will require continuing refinement as the application requirements are better defined.

B&W's evaluation system uses three primary evaluation criteria to judge each process:

1. Performance—how the proposed fabrication method affects performance. The primary concern for long-term storage is nonuniform corrosion.
2. Fabricability—the consistency and reliability of the process in making a good product in terms of dimensions, surface finish, etc.
3. Cost—estimated comparative unit costs at full production quantities. The report presents cost ratings on a relative basis, representing only budgetary estimates.

The performance criteria consist mainly of the effects of each process on microstructural features. The quantity of weld metal has a very large impact on this rating, so a process that makes an integral, seamless container receives very high marks relative to a rolled and welded container. The weighting factors for performance were developed from LLNL's list of 14 possible failure or degradation mechanisms (described in Section 4). Each criterion was related to the failure mechanisms by using the product of the probability of occurrence and the severity of a failure or degradation.

As a result of the activities described previously, many conceivable manufacturing processes were identified by which to fabricate the container. Several processes, such as static sand casting, were excluded from further evaluation in early reviews because of perceived problems with reliability and quality. The processes remaining for the lower unit of the container fell into three general categories: (1) integral, a seamless one-piece forging made by back extrusion or deep drawing, and possibly followed by cold work; (2) welded lower unit with the pipe body made by roll and weld, deep drawing, extrusion, or centrifugal casting, then girth welded to a wrought or cast head; and (3) those processes in (2) that would subsequently involve cold working and annealing to break up the weld microstructure.

Each of these processes was then assessed via the evaluation system described above. Figure 2-1 summarizes the rankings for all three criteria and each process for AISI 304L stainless steel (AISI 304L). In terms of performance, the integral lower unit is the most desirable, and the rolled and welded unit that is not subsequently recrystallized is the least desirable. However, the integral unit is about

three times as expensive. Some processes may rate lower in performance, but still meet minimum acceptability standards (to be determined). If the cost of these processes is lower, they may be preferred. The rankings were combined using a vector sum to give a single overall grade.

B&W believes that since the YMP is in the preliminary stages of defining performance requirements, design, material selection, etc., several options should be kept open in Phase 2 for the selection of manufacturing processes. Therefore, B&W is recommending that those processes shown in Table 2-1 be evaluated via mock-up trials in Phase 2. Note that the recommendations do not call for all processes to be used with all six materials. Rather, it is suggested that only key issues be addressed for each process. At the same time, the evaluation system could be further refined to select the optimum process and cost for the application.

ALLOY: 304L/CF3

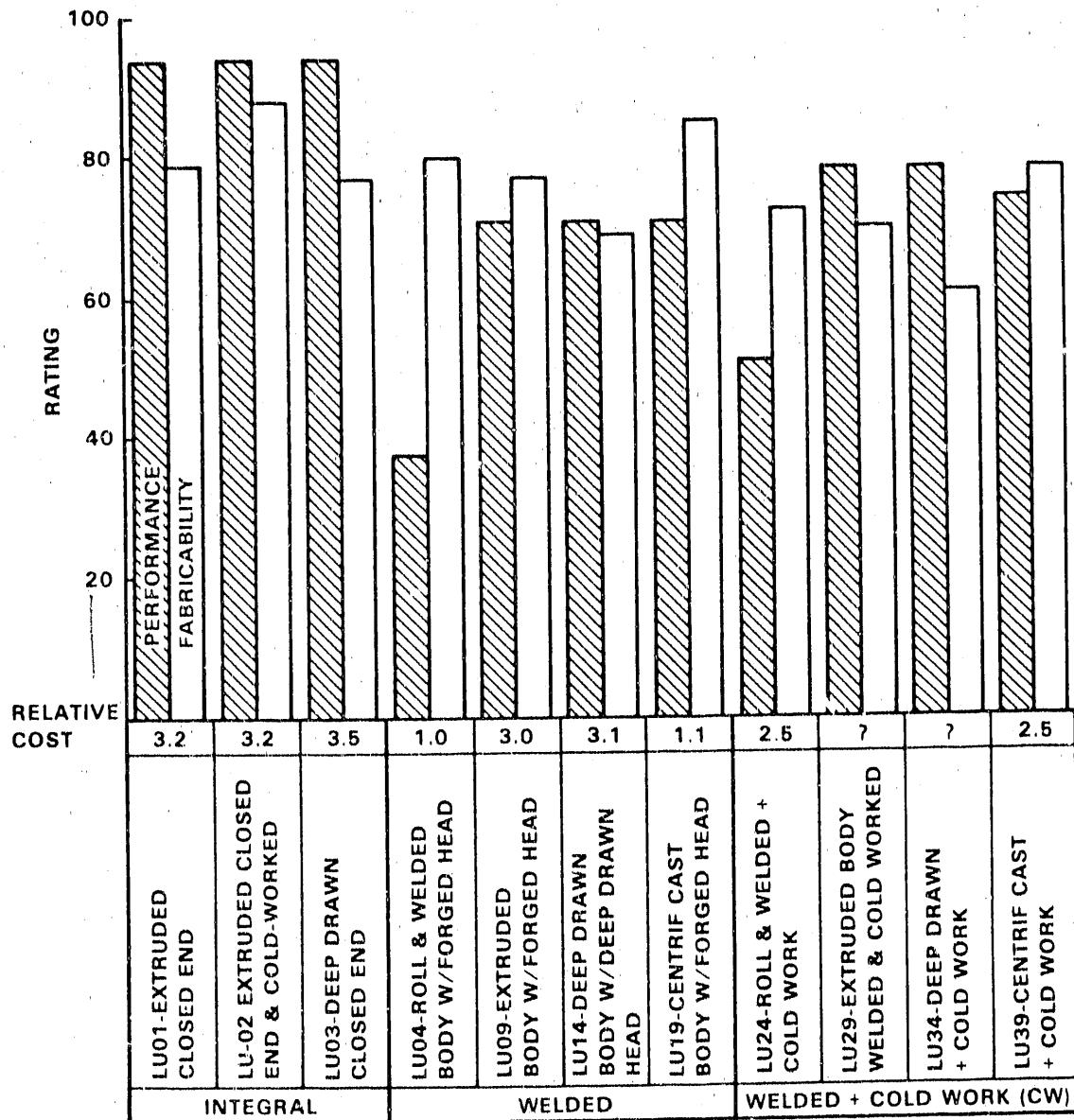


Figure 2-1. Lower unit performance and fabricability ratings and relative costs for AISI 304L/CF3

Table 2-1. Fabrication processes for the lower unit recommended for testing

Process No.	Description	No. of pieces	Approximate Size, in.	Material						Remarks	Key Process Considerations/Issues
				OD	Wall	Length	304L	316L	IN 825	CDN	
PLATE MOCK-UPS											
16	Roll and Weld For Spin Form Trial	1	1-in.	24	.4	60			x	x	No need to evaluate 304L and 316L; technology is proven. No vendor bids for CDA 122.
18	For Spin Form Trial	1	26	1.25	.60	120			x	x	
19	Preform		24.5	.4							
	Finished										
2A	Centrifugal Casting	1	1-in.	26	1.25	20			x	x	Evaluate porosity, pitting, shrinkage.
2B	For Spin Form Trial	1	26	1.25	.40	120			x	x	Evaluate porosity, pitting, shrinkage.
	Preform		24.5	.4							
	Finished										
3	Deep Drawing	1	1-in.	<12	.4	<12	x	x	x	x	Evaluate porosity, pitting, shrinkage.
SECOND MOCK-UPS											
4A	Hot Back Extrusion	1	26	1.25	.60				x		
4B	For Spin Form Trial	1	26	1.25	.60	120			x		
	Preform		24.5	.4							
	Finished										
ROLL AND WELD											
5	With Spin Head	1	24	.4	144				x		
5A	With Machined Head	1	24	.4	144				x		
5B	For Heat Treatment Study										
6A	Back Extrusion 6	1	24.5	.4	120			x			
6B	Roll Form										
	Back Extrusion & Roll Form for Heat Treatment Study	1	24.5	.4	120			x			

3. Technical Approach

3.1. Objective

The overall goal of the fabrication project is to identify and demonstrate the optimum manufacturing process for container fabrication consistent with the functional and performance requirements of the application. The solution is complex because the manufacturing method affects the characteristics and properties of the material being produced. These effects must be understood and integrated into the overall program to achieve a material and manufacturing method selection that meets the design requirements and performs satisfactorily for many hundreds of years. Processes and evaluations should be technically conservative to ensure safety and long-term performance.

In this regard, fabrication cost should not impose sacrifices in construction methodology. This statement does not mean to imply that cost is not a concern, only that it is not the top priority.

An ancillary objective of the fabrication project is to provide input to other facets of the waste package development impacted by the fabrication process such as material selection, container design, and closure activities.

3.2. Overview of Technical Plan

As requested by LLNL, the total program has been divided into 3 phases. The specific objective and approach for each phase are shown in Table 3-1. Phase 1 is a paper study to identify candidate processes and rank them relative to the application requirements. In Phase 2, sub-scale mock-ups of the container will be made by several of the leading processes. The mock-ups will help gather information on limitations for some of the candidate materials and aid in narrowing down the candidate processes. For Phase 3, up to 5 full-scale prototypes will be made in one material to demonstrate the preferred procedure.

Figure 3-1 shows the major technical tasks planned for each of the three phases. The plans are described below to highlight key activities. As the work progresses, the plans are expected to be modified as necessary.

3.2.1. Phase 1—Fabrication Process Assessment

Phase 1 was primarily an engineering study to identify and assess candidate fabrication methods. An important initial activity was to establish performance requirements for the application by outlining material, design, functional, and regulatory requirements. B&W expected that most of this information would be available from LLNL to help establish and prioritize the criteria for ranking the various processes. LLNL's initial Invitation for Proposal identified some of the criteria shown in Table 3-2. LLNL instructed that preference be given to established commercial processes that are reasonably well-developed and in common use. It is judged that these will offer the greatest reliability, and will also minimize the need for subsequent development work to establish a production capability.

The evaluation criteria are obviously very important in assuring that the process fits the functional requirements of the design. For example, if a seamless integral body and lower head are deemed important to eliminate a weld joint (and, thus, minimize the chance for localized corrosion), then obviously a welded construction would receive a lower ranking. On the other hand, a welded assembly might offer significant advantages in cost, simplicity, use of standardized components, and be technically well-understood.

Table 3-1. Overview of technical plan

PHASE	TITLE	OBJECTIVE	APPROACH	DELIVERABLES	TERM (MONTHS)
1	Fabrication Process Assessment	Identify and assess candidate processes	- Rank processes based on criteria to meet functional requirements	- Report	6
2	Fabricability Evaluations	Fabricate and test sub-scale sized mock-ups	- Make mock-ups - Test to confirm validity of processing - Narrow candidate processes and produce mock-up of 1 material by 2 processes	- Test specimens - Mock-up remains - Fabrication tooling - Report	24
3	Production of Prototype Containers	Produce full-sized prototypes	- Make prototypes for delivery to LNL - Make 1 prototype for testing	- Test specimens - Prototype sets - Specification & drawings - Fabrication tooling - Report	13

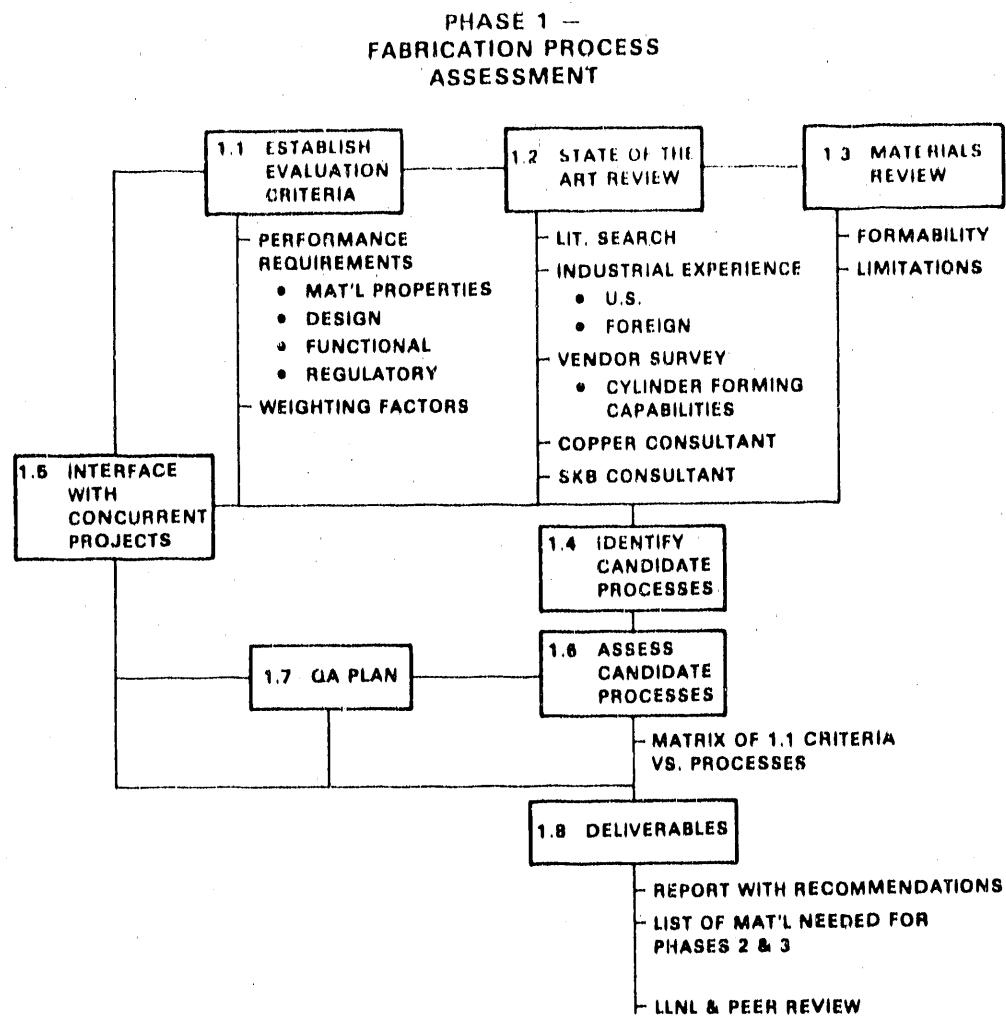


Figure 3-1. Schematic of major technical tasks

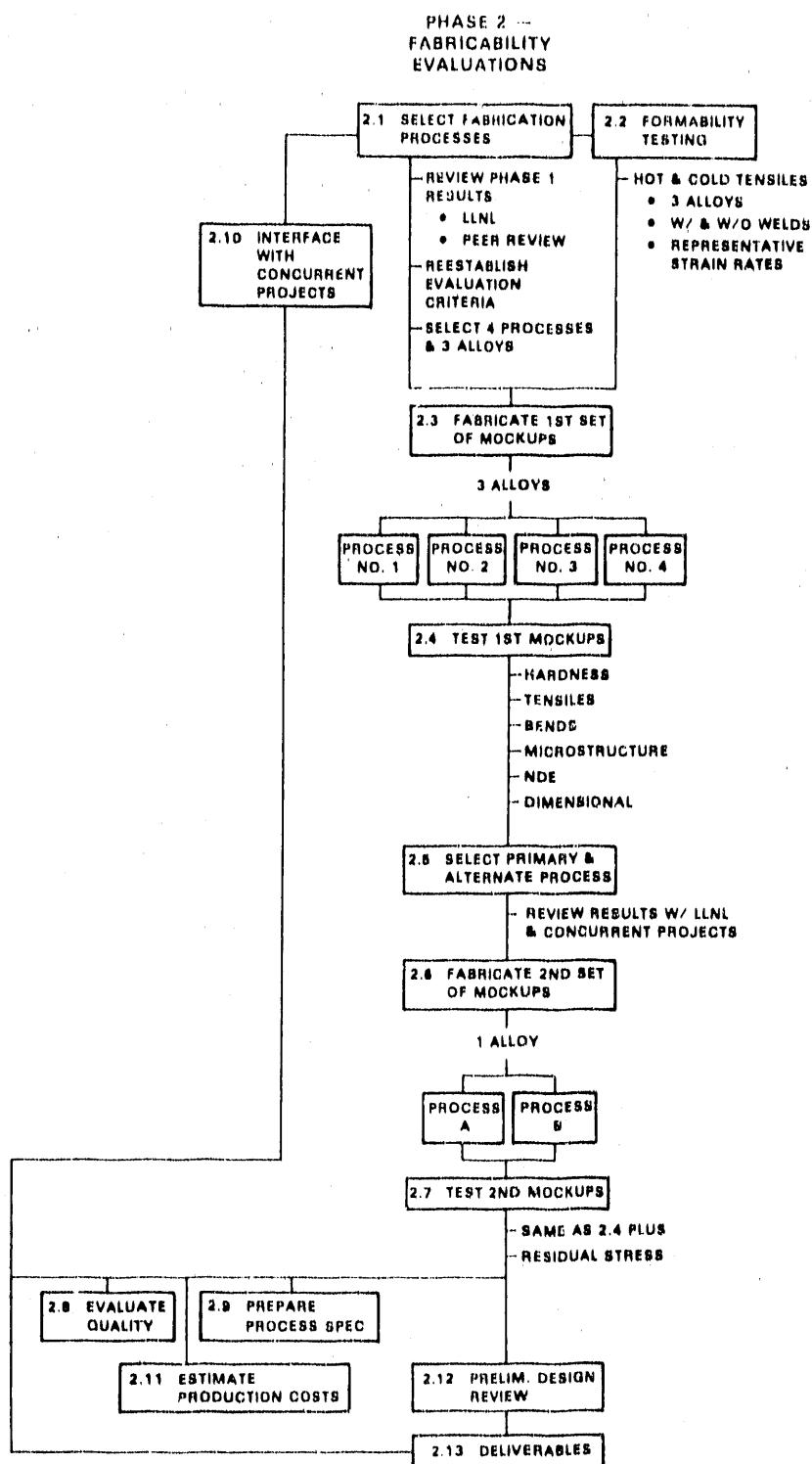


Figure 3-1. Schematic of major technical tasks (cont'd)

PHASE 3 -
PRODUCTION OF
PROTOTYPE CONTAINERS

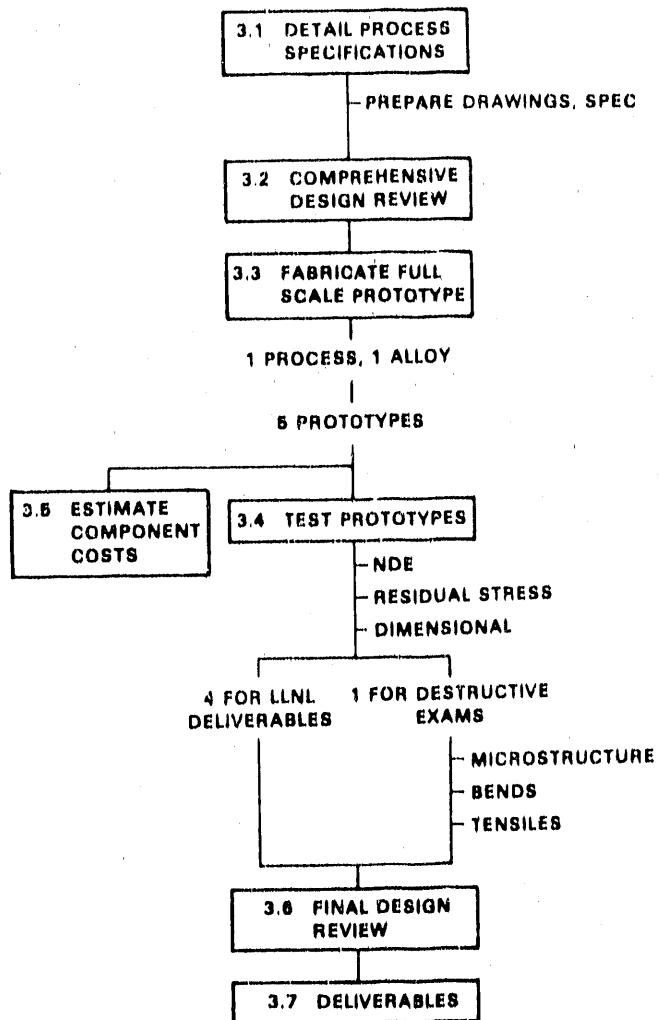


Figure 3-1. Schematic of major technical tasks (cont'd)

Table 3-2. Preliminary listing of evaluation criteria for ranking candidate fabrication processes

1. The process is an established commercial one in common use.
2. The number of joints is minimized.
3. The process is simple.
4. The process is insensitive to the presence of microstructural discontinuities (such as pores, bonding, inclusions, and segregation).
5. The process produces high structural integrity and soundness.
6. There are no requirements for tight control over material composition or thermomechanical parameters.
7. The process is not confined to a single fabrication source, vendor, or facility.
8. Annual production capacity is sufficient to meet projected requirements.
9. The process is cost-effective.
10. The process can be used for all candidate alloys.
11. The process has proven reliability.
12. The process is flexible in producing alternate configurations.
13. The process produces acceptable mechanical properties.
14. The process produces optimal metallurgical structure homogeneously throughout for long-term performance.
15. The process is conducive to state-of-the-art inspection and flaw detection capabilities.
16. Standardized components can be used.

An extensive state-of-the-art review was planned. B&W recognized that many projects involving nuclear-waste storage have been conducted in the last 5 to 10 years. Because there were two other repository projects in competition with the YMP when Phase 1 began, container fabrication was not a new subject. B&W also realized that foreign experience was available, especially in France. The French currently operate waste processing facilities, and have made and used hundreds of smaller-sized canisters. B&W will use the Swedish nuclear fuel and waste management company (SKB) as a consultant on copper alloys and forming because of their experience in the Swedish program. Also, consultants from the Copper Development Association (CDA) will complement the activities related to copper materials.

Although B&W was informed about the capabilities of many vendors, a vendor survey was planned to identify processes and to seek specific capabilities with regard to processes, size limitations, material restrictions, production costs, etc. The intent was to consider all reasonable processes or combinations. The literature was surveyed to investigate workability data for the six candidate alloys, and to elucidate how the alloys might be affected by various types of processing.

From these initial tasks, the proper background information was gathered for a comprehensive list of possible fabrication approaches. The approaches were then evaluated relative to the criteria to obtain a numerical ranking.

3.2.2. Phase 2—Fabricability Evaluations

Fabrication trials will be conducted to produce sub-scale containers for several high-ranked processes from Phase 1. Evaluations will address process feasibility, limitations, and effects of processing on materials. The more difficult or challenging aspects of producing container parts will be emphasized. The size of the sub-scale mock-ups will depend upon readily available materials and tooling, but every effort will be made to assure relevance to the full-size container.

B&W anticipates that there will be a first series of mock-ups with perhaps four processes and three materials. Instead of fabricating using every candidate alloy, B&W will select the materials to represent three classes of alloys shown in Table 1-1: (1) iron nickel alloy (AISI 304L, AISI 316L,

Alloy 825), (2) copper-nickel alloy (CDA 715), and (3) copper (CDA 613, CDA 122). B&W would expect to work closely with LLNL's MT&C technical area to select these alloys and to provide input on fabricability limitations.

From the first series of mock-ups, two processes (primary and alternate) will emerge as most promising relative to the evaluation criteria. A second set of mock-ups will be made by these processes. By this time, the final material selection will have been made, so the second set of mock-ups will be made with only one material. Proposed process specifications will be documented and production costs estimated for both the preferred and the alternate processes.

B&W's approach regarding testing will be to perform only limited, routine testing (e.g., hardness, tensile strength, bend strength, dimensional checks, microstructural characterization, and nondestructive evaluation), with emphasis on nonuniform areas (e.g., welds, bends). B&W will not perform corrosion or fracture mechanics testing because this work is being performed by the MT&C technical area.

3.2.3. Phase 3—Production of Prototype Containers

After review of the Phase 2 results for all the other concurrent activities, such as closure, nondestructive evaluation (NDE), and metal selection, detailed fabrication process specifications and drawings will be prepared. A comprehensive design review involving LLNL and independents will be conducted prior to the fabrication of the prototypes. Up to five full-sized container sets (upper and lower units) will be produced—one for characterization testing by B&W and the remainder for delivery to LLNL.

3.3. Fabrication Approaches

For discussion purposes, one could divide the container into four main components (Figure 3-2). A minimum of two pieces is possible if the upper and lower units are each made integrally, or a maximum of four pieces is possible if each component is made separately.

Figure 3-3 shows some conceivable approaches for fabricating the container components, depending on whether they are made integrally or separately. If an integral lower unit (with no weld joint) is of prime importance in the application, due to potentially higher reliability, then a variety of potential processes exist. As Figure 3-3 shows, these units could be used as-formed, or preforms could be made that could subsequently be hot or cold worked. Some of these processes may have significant cost and size limitations, but they are provided to include complete information. Once the performance specification and process evaluation criteria are established, the number of processes can be narrowed considerably.

One method to produce the lower unit is to fabricate a welded assembly. Several options within this method are also shown in Figure 3-3 in the "separate" approach. The body could be made by using rolled and welded plate, seamless extruded pipe, or centrifugal casting. The body could be welded to the lower head, which could be made from flat plate or a forging (depending on the design configuration). There are many processes available to make these welds. The welded assembly could then be used as is, or it could be further cold worked and annealed to modify the weld metal microstructure. Many process variations are possible, even with a welded fabrication.

This section illustrated the variety of fabrication methods that are available. Specific processes are described in more detail in Section 4.

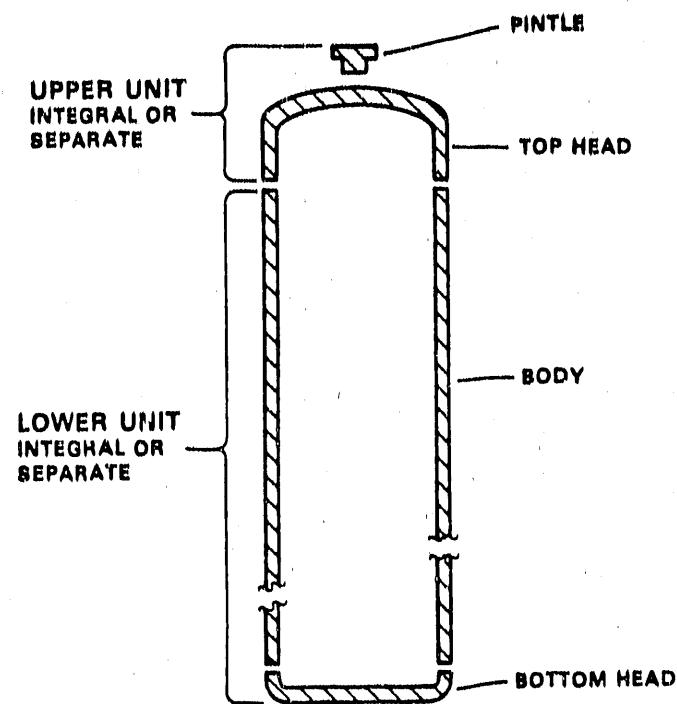


Figure 3-2. Possible container components

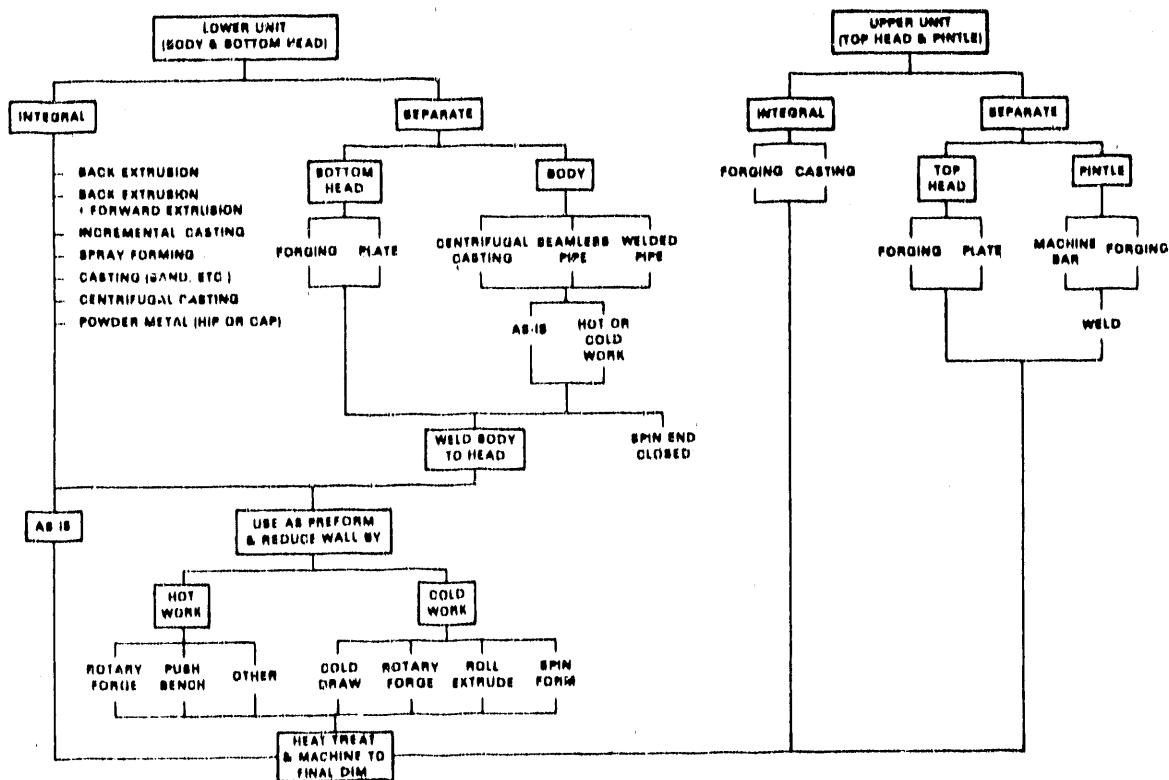


Figure 3-3. Fabrication approaches

4. Major Project Activities

This section describes the activities and the results of the major tasks in the project:

- 4.1 Performance Requirements
- 4.2 Literature Search
- 4.3 Vendor Survey and Quotations
- 4.4 Copper Development Association Activities
- 4.5 Foreign Technology Review
- 4.6 Process Identification and Evaluation

4.1. Performance Requirements

4.1.1. Regulatory Requirements

The 10 CFR Part 60 (1983) requires that the container satisfy the application needs in terms of performance requirements, environmental factors, and closure constraints. Table 4-1 shows design requirements that LLNL has derived from this regulation, other applicable regulations, and waste management system requirements.

Table 4-1. Key LLNL design requirements (O'Neal et al., 1983) derived from 10 CFR Part 60, other applicable regulations, and waste management system requirements

Waste packages shall be designed to:

1. Contain the waste for 300 to 1000 years.^(a,b)
2. Maintain a release rate of less than 10^{-5} per year of radionuclide inventory present at the end of the containment period (300 years minimum).^(b)
3. Be retrievable for 50 years after the emplacement of the first waste package.^(a)
4. Meet nuclear criticality standards, i.e., not exceed an effective multiplication factor (K_{eff}) of 0.95.
5. Not exceed temperature limits of the waste forms, which are 773K (500°C) for defense high-level waste glass, 673K (400°C) for commercial high-level waste glass, and 623K (350°C) for spent fuel cladding.
6. Retain legible, externally labeled identification up to and including the time of retrieval.
7. Meet requirements for cost-effectiveness, including direct package costs and related repository system costs through the operational period.^(a)

^(a)These requirements determine or affect the selection of containment barrier metal.

^(b)Interactions of waste package materials and hole-liner materials must not significantly increase the release rate of the waste forms or the corrosion rate of the containment barriers.

Vagueness in several terms used in the regulations has caused some confusion in defining specific requirements (e.g., the exact meaning of the phrases "substantially complete containment" or "anticipated processes and events"). As a result, specific container requirements are not yet defined, thus making it very difficult to establish evaluation criteria to rank candidate manufacturing processes. B&W's approach to this problem was to assume that the ASME BPVC would be used as the basis for fabrication requirements. Although the use of this code is extremely conservative, B&W felt that it would be more efficient and effective to use an existing code specification that was well understood and accepted. The use of the ASME BPVC for this Phase I effort does not mean that it will be used as a specification for the procurement of production of nuclear-waste containers. It is used here simply because it facilitates comparison of fabrication processes on a common widely understood basis.

The final specification for production of nuclear-waste containers may or may not contain elements of the ASME BPVC.

4.1.2. Codes and Standards for Use in Evaluating Container Fabrication Processes

At the present time, there are no specific codes and standards available for the fabrication of long-term nuclear-waste storage containers. The most frequently used code within the nuclear industry is the ASME BPVC for the design and fabrication of pressure boundary components and appurtenances. The code's Section III, "Nuclear Power Plant Components," or Section VIII, "Pressure Vessels," could be used for these purposes.

Within Section VIII, "Pressure Vessels," Division 1, (1986 Edition) are rules for the fabrication of containers for lethal substances and this appears to be the most appropriate. This was selected as the guide to use in evaluating fabrication processes for these containers because it provides adequate safeguards and proven rules for the fabrication of containers. Although the internal pressure for the containers is expected to be small, the use of a code intended for pressure vessels will provide conservative rules for material specifications and fabrication. B&W gained experience with this code in the fabrication of the Three Mile Island Unit 2 defueling canisters.

Adherence to the ASME BPVC requires that materials used for construction meet the requirements of Section II, "Material Specifications," and be included within the appropriate application section, in this case, Section VIII, Division 1. With these rules it is not possible to use aluminum bronze (CDA 613), one of the candidate alloys, because it is not covered by Section VIII. In other instances, there are no existing specifications for some of the product forms that could be used in fabrication (e.g., Alloy 825 forgings). Table 4-2 shows the material specifications for various product forms that could be used if the ASME BPVC rules are relaxed. These are to be used for interim specifications for making mock-ups. Table 4-3 shows the compositions and specifications for each of the candidate materials.

A draft specification was prepared to solicit budgetary bids for the fabrication of container mock-ups and prototypes.

4.1.3. Assumptions

Assumptions include a container configuration and other interface issues.

4.1.3.1. Container Drawing

Since a detailed drawing of the container had not been provided, B&W prepared the drawing (No. 1167652D-0) shown in Figure 4-1 for discussion with vendors, quotation requests, etc. Various assumptions are provided in this drawing, and it is subject to many revisions. The "reference" top and bottom designs are from the LLNL sketches. The "alternate" designs are suggestions from B&W.

4.1.3.2. Interface Assumptions

The following list contains assumptions that B&W used in the Phase 1 activities:

1. The spent-fuel waste container configuration and size will be as shown in Figure 4-1, using the reference designs for the top and bottom. The fabrication methods should also be applicable to the defense high-level waste container, which has the same diameter and geometry, but is shorter in length.
2. At this point, B&W was not concerned with any structure inside the container that might be required to separate fuel rods, etc.

Table 4-2. Candidate material specifications for mock-ups

Alloy	Bar	Product Form					
		Centrifugal Casting		Forging	Seamless	Pipe Welded	Plate
TP304L	SA479	Pipe	Other	SA336	SA312	SA312 [SA358]	SA240
3PF3, 3A		[SA451]	SA351				
TP316L	SA479			SA336	SA312	SA312 [SA358]	SA240
3PF3M		[SA451]	SA351				
IN825	SB425			(SB564/ SB424)	SB423*	(SB619/ SB424)*	SB424
CDA122	SB152			(SB283/ SB152)	SB42*	SB543*	SB152
CDA811		(SB271/ SB152)	(SB271/ SB152)				
CDA613	QQ-C-450a**			(SB283/ QQ-C-450a**)		(SB543/ QQ-C-450a**)	
CDA952		SB271	SB271				
CDA715				(SB283/ SB402)	SB467*	SB543*	SB402
CDA964		(SB271/ SB402)	(SB271/ SB402)				

[] Denotes that the material is acceptable under Section III but not Section VIII.

* The containers are beyond the maximum diameter covered by the specification but could be acceptable according to Paragraph UG-4, Section VIII.

() Denotes that the material is made to a process specification not normally covering the alloy but meets the composition and mechanical properties of the alloy plate specification. Currently not acceptable to Section III or VIII but expected to be acceptable to Section VIII for the production containers.

** Not acceptable to either Section III or VIII.

Specification Sources:

SA and SB - ASME BPVC

QQ - Federal Specifications

Figure 4-1. Container drawing used for estimating purposes

REVISIONS			
REV.	DESCRIPTION	DATE	APPROVED

MATERIAL CHARACTERISTICS

USE ASME BPVC SECTION VIII, DIVISION I (LEYTHAL)
OR ASME III WHERE AVAILABLE

MATERIAL	ALLOY	BAR	CENTRIFUGAL CASTING		PIPE		WELDED	PLATE	WELD WIRE
			PIPE	OTHER	FORGING	SEAMLESS			
1	IP304L 3PI 1, 3A	S4479			S4336	S4312 (S4358)		S4240	SFA 5.9 ER 309L
			(S4451)	S4351					
2	IP316L 3PI 1M	S4479			S4336	S4312 (S4358)		S4240	SFA 5.9 ER 316L
			(S4451)	S4351					
3	IN4025	S8425			(S8664/ S8424)	S8473*	(S8619/ S8424)	S8424	SFA 5.14 UNS N08065 ERHIC-1
	IN4122*	S8152	T8804T (S8152)	T8804T (S8152)	(S8283/ S8402)	S847*	S8543*	S8152	
4	CD4Mn11								SFA 5.7 FR Cu
	CD4Mn13								
5	CD4Mn13		-	-	-	-	-	-	SFA 5.7 ERG414-12 MDO WITH Si
	CD4Mn12		-	-	-	-	-	-	
6	CD4Mn13		-	-	T88071/ (S8402)	T88071/ (S8402)	S8466*	S8462	SFA 5.7/ ERG414-12 MDO WITH Si
	CD4Mn14				(S8402)	S8462			

- () - DENOTES THAT THE MATERIAL IS ACCEPTABLE UNDER SECTION III, BUT NOT SECTION VIII (CURRENTLY).
- - THE CONTAINERS ARE BEYOND THE MAXIMUM DIAMETER COVERED BY THE SPECIFICATION, BUT COULD BE ACCEPTABLE ACCORDING TO PARAGRAPH UG-4, SECTION VIII.
- () - NOT A CURRENT SPECIFICATION FOR THIS MATERIAL, BUT MEETS COMPOSITION AND MECHANICAL PROPERTIES OF THIS ALLOY FORM, SHOULD HE ACCEPTABLE FOR SECTION VIII INCORPORATION

NOTES

1. ALL WELDS ARE VISUALLY INSPECTED. ADDITIONAL INSPECTION WHERE NOTED ARE LIQUID PENETRANT TEST (PT), RADIOPHGRAPHIC TEST (RT) OR ULTRASONIC TEST (UT).
2. $t = .375"$ EXCEPT FOR MATERIAL NO. 4 WHERE $t = 1.00"$
3. COBALT CONTENT ON MATERIALS 1,2 AND 3 IS 0.1% MAXIMUM.
4. CLOSURE WELD AND WELD PREP BY OTHERS.
5. PINTE AND TOP CAN BE SUPPLIED AS ONE PIECE.
6. BOTTOM AND CONTAINER SHELL CAN BE SUPPLIED AS ONE PIECE.
7. ASSEMBLIES TO BE ANNEALED
8. WELD REPAIRS ON BASE METAL NOT ASSOCIATED WITH PINTE ATTACHMENT, LONG SEAM, AND GIRTH WELD ARE PROHIBITED.
9. OUTER SURFACES TO BE ≤ 50 RHR OR BETTER.
10. WELD JOINT GEOMETRY AND WELD PROCESS TO BE AT OPTION OF FABRICATOR WITH APPROVAL OF BUYER.
11. PARTS WILL NOT BE CODE STAMPED, BUT WILL USE ASME CODE REQUIREMENTS WHERE APPLICABLE.
12. SEE DOW SPECIFICATION ARC-TP-760 FOR FURTHER REQUIREMENTS.

Table 4-3. YMP candidate alloys

UNIFIED NUMBER	DESCRIPTION	CHEMICAL COMPOSITION	CROSS REFERENCE SPECIFICATIONS
C10200	Oxygen-Free Copper (OF)	Cu 99.95 min Other Ag included in Cu	AMS 4601, 4602, 4701 ASME SB12, SB42, SB75, SB111, SB152, SB369, SB395 ASTM B1, B2, B3, B12 (102), B13 (102), B48, B49, B69 (102), B75 (102), B88 (102), B111 (102), B133 (102), B152 (102), B170 (102), B187 (102), B188 (102), B189, B246, B272, B280 (102), B298, B355, B359 (102), B372 (102), B395 (102), B432 (102), B447 (102), B451, B506 (102), B566, F9 FED QQ-C-502, QQ-C-676, QQ-N-571, QQ-W-343 MIL SPEC MIL-W-88 MIL-T-3235 MIL-W-3310, MIL-R-19631, MIL-W-23080, MIL-W-8-18907 SAE J461 (CA102), J463 (CA102)
C61300	Aluminum Bronze	Al 8-0.7-5 Fe 2-0.3-0 Mn 0.10 max Ni 0.18 max P 0.015 max Pb 0.01 max Si 0.10 max Sn 0.20-0.60 Zn 0.08 max	QDA 613 FED QQ-C-480
C71500	Copper Nickel, 30%	Cu 99.5 min Fe 0.40-1.0 Mn 1.0 max Ni 29.0-33.0 Pb 0.05 max Zn 1.0 max Other Ag included in Cu, Cu 99.5 min including all named elements. For welded applications C 0.06 max, P 0.02 max, Pb 0.02 max, S 0.02 max, Zn 0.60 max	ASME SB111, SB171, SB369, SB395, SB402, SB460, SB467, SB543 ASTM B111 (716), B122 (716), B181 (716), B171 (716), B369 (716), B395 (716), B402 (716), B432 (716), B466 (716), B467 (716), B543 (716), B652 (716) MIL SPEC MIL-T-16006, MIL-C-16726, MIL-T-16420, MIL-R-19631, MIL-T-22214 SAE J461 (CA716), J463 (CA716)
C80100	Cast Copper	Cu 99.95 min Other total 0.05 max, Ag included in Cu	
C95200	Cast Aluminum Bronze	Al 8-0.9-5 Cu 86.0 min Fe 2-6.4-0 Other total named elements 99.0 min	ASME SB148, SB271 ASTM B30 (952), B148 (952), B271 (952) B505 FED QQ-B-675, QQ-C-390 MIL SPEC MIL-C-22220 (6) SAE J461 (CA952), J462 (CA952)
C96400	Cast Copper-Nickel	C 0.15 max Cr 0.50-1.5 Cu 85.0-89.0 Fe 0.25-1.5 Mn 1.5 max Ni 28.0-32.0 Pb 0.03 max Si 0.50 max Other For welding grades, Pb 0.01 max	ASTM B30 (964), B369 (964), B433 (964), B505 (964) FED QQ-C-390 MIL SPEC MIL-C-16345 (24), MIL-C-20159 (1)
J92600	Alloy Steel Casting (CF-3)	C 0.03 max Cr 17-0.21-0 Mn 1.50 max Ni 8.0-12.0 P 0.040 max S 0.040 max Si 2.00 max	ACI CF-3 AMS 5370, 5371 ASTM A351 (CF-3), A743 (CF-3), A744 (CF-3)
J92800	Alloy Steel Casting (CF-3M)	C 0.03 max Cr 17-0.21-0 Mn 1.50 max Mo 2.0-3.0 Ni 9.0-13.0 P 0.04 max S 0.04 max Si 1.50 max	ACI CF-3M ASTM A351 (CF3M, CF3MA), A743 (CF-3F), A744 (CF-3M)
N08825	Ni-Fe-Cr Alloy Solid Solution Strengthened (Incoloy 825)	Al 0.2 max C 0.05 max Cr 19.6-23.6 Cu 1.6-3.0 Fe bal Mn 1.0 max Mo 2.5-3.5 Ni 38.0-46.0 S 0.03 max Si 0.5 max Ti 0.0-1.2	ASME SB163, SB423, SB424, SB425 ASTM B163, B423, B424, B425
S30403	Austenitic Cr-Ni Stainless Steel (Low Carbon)	C 0.03 max Cr 18.00-20.00 Mn 2.00 max Ni 8.00-12.00 P 0.045 max S 0.030 max Si 1.00 max	AlSi 304 L AMS 5511, 5647 ASME SA182 (304 L), SA213 (304 L), SA240 (304 L), SA249 (304 L), SA312 (304 L), SA403 (304 L), SA479 (304 L), SA688 (304 L) ASTM A167 (304 L), A182 (304 L), A213 (304 L), A240 (304 L), A249 (304 L), A269 (304 L), A276 (304 L), A312 (304 L), A314 (304 L), A403 (304 L), A473 (304 L), A478 (304 L), A479 (304 L), A511 (304 L), A554 (304 L), A580 (304 L), A632 (304 L), A688 (304 L) FED QQ-S-763 (304 L), QQ-S-766 (304 L) MIL SPEC MIL-S-862 (304 L), MIL-S-4043, MIL-S-23195 (304 L), MIL-S-23196 (304 L) SAE J406 (30316 L)
S31603	Austenitic Cr-Ni-Mo Stainless Steel (Low Carbon)	C 0.030 max Cr 16.00-18.00 Mn 2.00 max Mo 2.00-3.00 Ni 10.00-14.00 P 0.045 max S 0.030 max Si 1.00 max	AlSi 316 L AMS 5507, 5653 ASME SA182 (316 L), SA213 (316 L), SA240 (316 L), SA249 (316 L), SA312 (316 L), SA403 (316 L), SA479 (316 L), SA688 (316 L) ASTM A167 (316 L), A182 (316 L), A213 (316 L), A240 (316 L), A249 (316 L), A269 (316 L), A276 (316 L), A312 (316 L), A314 (316 L), A403 (316 L), A473 (316 L), A478 (316 L), A479 (316 L), A511 (316 L), A554 (316 L), A580 (316 L), A632 (316 L), A688 (316 L) FED QQ-S-763 (316 L), QQ-S-766 (316 L) MIL SPEC MIL-S-862 (316 L), SAE J406 (30316 L)

3. As previously discussed, where possible the container will be assumed to be made according to requirements in ASME BPVC, Section VIII, Division 1. Helium leak testing will be assumed in lieu of hydrostatic testing, and other exceptions may be made to best fit the application. A material or process will not be eliminated if there is no applicable code.

4. The container components shall be solution annealed to minimize residual stresses and stress corrosion cracking (SCC).

5. Surface finish of the outside surface is more critical than that of the inside (requirements: 63 rms for outside, 250 rms for inside).

6. If the material specifications for mock-ups and prototypes are not available from ASME BPVC, B&W will use B&W-generated specifications (with approval by LLNL).

7. Casting grades are acceptable as centrifugal castings.

8. Ultrasonic (UT) testing of centrifugal castings will be possible if cold worked and annealed.

9. B&W assumes that the following material combinations are acceptable for weld joints:

<u>Base Metal</u>	<u>Filler Metal</u>
AISI 304L	308L
AISI 316L	316L
Alloy 825	165 (matching composition or 1625)
CDA 122	ER Cu
CDA 613	ER CuAl-A2, ER CuAl-Al
CDA 715	ER CuNi

4.2. Literature Review

The literature review concentrated on factors of the fabrication process that would affect the quality or serviceability of the containers. Of principal concern are:

- Corrosion resistance.
- Chemical homogeneity.
- Uniform microstructure.
- Grain size uniformity.
- Yield strength.
- Decrease in ductility.
- Internal quality, soundness.
- Residual stresses.
- Workability.
- Weldability.
- Heat treatment.
- Inspectability.

The possible effects due to fabrication are:

- Compositional variations
 - Joining of pieces from different heats
 - In weldments, filler versus base metal composition.
- Cold work in forming.
- Grain size variations
 - Joining of pieces with different thermal-mechanical histories
 - Nonuniform working and recrystallization
 - In weldments.

- Residual stresses
 - Due to forming
 - Due to welding.
- Nonuniform microstructure
 - In weldments
 - Nonuniform heat treatments.
- Decrease in ductility.

The cause-and-effect relationships between these variables were searched using computer-based literature retrieval sources, with the American Society of Metals International (ASM) Metadex database as the principal source. The search included the following alloys:

AISI 304L(CF3)	CDA 122 (CDA 811)
AISI 316L (CF3M)	CDA 613 (CDA 952)
Alloy 825	CDA 715 (CDA 964)
Austenitic stainless steel	
Copper	
Copper alloys	

The results of this search are summarized below.

4.2.1. Corrosion Resistance

The primary concerns for corrosion resulting from fabrication are the localized corrosion mechanisms of

- Galvanic corrosion due to chemical composition variations.
- Intergranular corrosion.
- Stress corrosion cracking that is either intergranular or transgranular.
- Pitting and crevice corrosion.
- Hydrogen embrittlement (HE) and hydrogen-assisted cracking (HAC).

4.2.1.1. Galvanic Corrosion

The compositional differences between components of the container and welds due to differences in heats, product form, and wrought versus cast are small (Table 4-4). Whether these differences are large enough to lead to galvanic corrosion is subject to further investigation. A specific search of the literature on this subject failed to produce any information on the galvanic corrosion of components made with different heats of base metal, or the galvanic corrosion of components due to compositional differences between base and weld metal when using matched filler metals. This is taken as evidence that such differences do not produce significant galvanic corrosion effects. For instance, copper-nickel alloys have been used successfully in marine and boat welded construction.

4.2.1.2. Intergranular Corrosion

Intergranular corrosion in these copper and copper-base alloys is apparently insignificant (Hong and Pitt, 1983), but it could be significant for the austenitic stainless steels and Alloy 825. A necessary condition for this mechanism is that the microstructure be sensitized. Procurement of base metal material specified to meet acceptance standards and tests for intergranular corrosion would ensure that the material was initially satisfactory. Because sensitization during welding is a possibility, the re-solution of the chromium carbides that are the cause of intergranular corrosion could be accomplished by solution annealing after welding. Nagawa (1982) investigated the effects of re-solutioning AISI 304, which is more prone to sensitization than AISI 304L, AISI 316L, and Alloy 825, to show that heat variability was reduced and improved corrosion resistance resulted. The exposure of AISI 304L and AISI 316L to temperatures of about 540–815°C (1000–1500°F) (Costello et al., 1969) and Alloy 825 to

Table 4-4. Composition comparisons between cast, wrought, and welding alloys

Spec. -->	TP 304L SS						
	Wrought SA240 TP 304L	Wrought SA312 TP 304L	Wrought SA336 F 304L	Cast SA351 CF-3,3A	Cast SA351 CP-3,3A	Wrought SA479 TP 304L	Weldmetal 375.9 308L
C	.03	.035	.035	.03	.03	.03	.03
Mn	2.00	2.00	2.00	1.50	1.50	2.00	1.0-2.5
P	.045	.04	.04	.04	.04	.045	.03
S	.03	.03	.03	.04	.04	.03	.03
Si	1.00	.75	1.00	2.00	2.00	1.00	.30-.65
Cr	18.0-20.0	18.0-20.0	18.0-20.0	17.0-21.0	17.0-21.0	18.0-20.0	19.5-21.0
Ni	8.0-12.0	8.0-13.0	8.0-13.0	8.0-12.0	8.0-12.0	8.0-12.0	9.0-11.0
Mo	--	--	--	.50	--	--	.75
N	.10	--	--	--	--	.10	--
Cu	--	--	--	--	--	--	.75

Grade-->	TP 316L SS						
	TP 316L	TP 316L	F 316L	CF-3M, 3MA	CP-3M	TP 316L	316L
C	.03	.035	.035	.03	.03	.03	.03
Mn	2.00	2.00	2.00	1.50	1.50	2.00	1.0-2.5
P	.045	.04	.04	.04	.04	.045	.03
S	.03	.03	.03	.04	.04	.03	.03
Si	1.00	.75	1.00	1.50	1.50	1.00	.30-.65
Cr	16.0-18.0	16.0-18.0	16.0-18.0	17.0-21.0	17.0-21.0	16.0-18.0	18.0-20.0
Ni	10.0-14.0	10.0-15.0	10.0-15.0	9.0-13.0	9.0-13.0	10.0-14.0	11.0-14.0
Mo	2.0-3.0	2.0-3.0	2.0-3.0	2.0-3.0	2.0-3.0	2.0-3.0	2.0-3.0
N	.10	--	--	--	--	.10	--
Cu	--	--	--	--	--	--	.75

Spec. -->	XH 825				
	Wrought SB423 NO825	Wrought SB424 NO821	Wrought SB425 NO825	Weldmetal SPA 5.14 ER Ni Fe Cr-1	
C	.05	.05	.05	.05	
Mn	1.0	1.0	1.0	1.0	
S	.03	.03	.03	.03	
Si	.50	.50	.50	.50	
Cr	19.5-23.5	19.5-23.5	19.5-23.5	19.5-23.5	
Ni	38.0-46.0	38.0-46.0	38.0-46.0	38.0-46.0	
Mo	2.5-3.5	2.5-3.5	2.5-3.5	2.5-3.5	
Cu	1.5-3.0	1.5-3.0	1.5-3.0	1.5-3.0	
Al	.20	.20	.20	.20	
Ti	.6-1.2	.6-1.2	.6-1.2	.6-1.2	
Fe	22.0 Min.	22.0 Min.	22.0 Min.	22.0 Min.	
Others	--	--	--	.50	

Table 4-4. Composition comparisons between cast, wrought, and welding alloys (cont'd)

Spec. --> Grade -->	CDA 122				CDA 613			
	Wrought		Wrought		Wrought		Cast	Weldmetal
	SB 42 C12200	SB 152 C12200	SB 543 C12200	SP A 5.7 ER CU	QQ-C-450 613	SB 271 C 95200	SB 148 Er CU Al-A2	SP A 5.7
Cu + Ag	99.9	99.9	99.9	98.0	Rem.	88.0 Nom.	Rem.	
Fe	--	--	--	--	.15	3.0 Nom.	1.5	
Al	--	--	--	.01	6.0-8.0	9.0 Nom.	9.0-11.0	
Zn	--	--	--	.50	--	--	.10	
Si	--	--	--	.02	--	--	.02	
Pb	--	--	--	--	--	--	--	
Ni + Co	--	--	--	--	.5	--	--	
Mn	--	--	--	.5	.5	--	--	
S	--	--	--	--	--	--	--	
P	.015-.40	.015-.40	.015-.40	.015	--	--	--	
C	--	--	--	--	--	--	--	
Ti	--	--	--	--	--	--	--	
Sn	--	--	--	1.0	.2-.5	--	--	
Others	--	--	--	.50	--	--	.50	

Spec. --> Grade -->	CDA 715			
	Wrought		Weldmetal	
	SB 467 C 71500	SB 543 C 71500	SP A 5.7 Er CU H1	
Cu + Ag	65.0 Min.	Rem.	Rem.	
Fe	.40-1.0	.40-1.0	.40-.75	
Al	--	--	--	
Zn	.50	.50	--	
Si	--	--	.25	
Pb	.02	.02	.02	
Ni + Co	29.0-33.0	29.0-33.0	29.0-32.0	
Mn	1.0	1.0	1.0	
S	.02	.02	.01	
P	.02	.02	.02	
C	.05	.05	--	
Ti	--	--	.20-.50	
Sn	--	--	--	
Others	--	--	.50	

about 650-760°C (1200-1400°F) (Brochure, 1984) required for sensitization will be prohibited after annealing. This practice will produce material that should not be a problem with the austenitic steels (Logan, 1983) and presumably with Alloy 825.

The effect of processing on Alloy 825 is apparently more complex than on the austenitic stainless steels. A stabilizing treatment of 1 hour at about 940°C (1700°F) after a solution anneal of about 1090°C (2000°F) (Brown, 1969) does not restore resistance to intergranular corrosion. Apparently, this alloy is more sensitive to thermal mechanical processing as compared to the austenitic stainless steels.

Work on the development of spent-fuel canisters has shown the beneficial effects of a solution treatment after welding AISI 304, and the increased resistance of AISI 304L to intergranular corrosion even after welding and a furnace sensitization treatment (Phillipps, 1980). The use of a re-solution heat treatment for the low carbon grades, AISI 304L and AISI 316L, may not be necessary to prevent intergranular corrosion, but would be added protection against encountering a "fast precipitation" heat of material. The other benefits of a re-solution treatment are discussed below.

For forming operations involving cold work, annealing would provide recovery and recrystallization as well as re-solution of carbides. Using "Practices for Detecting Susceptibility to Intergranular Attack in Austenitic Stainless Steels—Practice E," (ASTM, 1986), Solomon (1985) showed that 11% prior work by drawing increased the maximum cooling for sensitization in AISI 304 by a factor of about 7 when compared to annealed material (Figure 4-2).

This figure also illustrates that the minimum cooling rate for annealing to prevent sensitization in a 0.03 Wt %C AISI 304L should be 5°C/s.

The cast alloy and weld metal equivalents to AISI 304L and AISI 316L generally contain some delta ferrite, and sensitization is reduced as compared to their wholly austenitic stainless counterparts. If the ferrite number exceeds $133 \times \text{Wt } \%\text{C}$, the sensitization of base metal and heat-affected zone (HAZ) is prevented (Matsumoto, 1989).

4.2.1.3. Stress Corrosion Cracking (SCC)

The following three essential criteria must be met for either intergranular SCC or transgranular SCC to occur:

- Susceptible microstructure/alloy.
- Hostile environment.
- Tensile stress.

The approach to be used in the fabrication of the containers is to produce the lowest practicable tensile stresses and, thus, avoid failure by these mechanisms. Intergranular SCC and transgranular SCC are not possible in either austenitic (Flanninneh, 1979) or copper-base alloys (ASM, 1979), without a sufficiently high tensile stress.

The residual stresses due to either cold working or welding can be reduced to very low levels by stress relief or annealing treatments. Unfortunately, effective stress relief treatments for austenitic stainless steels are also in the range of temperatures in which sensitization occurs. However, solution anneal is effective in reducing residual stresses to an acceptable level while avoiding sensitization, provided that cooling rates from annealing are fast enough and uniform. Short times, less than 1 hour, at 900°C are effective in removing the SCC susceptibility of cold worked AISI 304L and AISI 316L (Cigada et al., 1982). Both of these alloys display threshold amounts of cold work (about 10%) below which SCC does not occur. This would permit the use of minor straightening operations provided that the residual stresses introduced by such operations are also low.

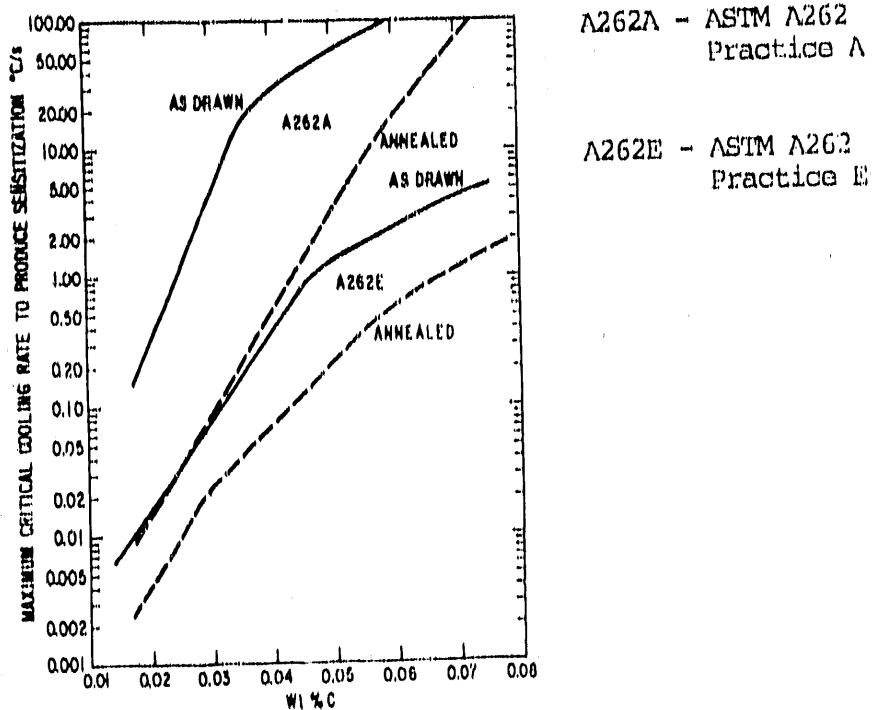


Figure 4-2. Comparison of the as-drawn and annealed maximum critical cooling rates for sensitization in AISI 304 (Reprinted from Solomon, 1985)

The stress relaxation that occurs in austenitic stainless steel welds follows a Larsen-Miller relationship (Fidler, 1982) and can be predicted with the following expression:

$$s = 10^{(5.24 - 0.16 [T(20 + \log t) \times 10^{-3}]) \pm 20} \text{ MNm}^{-2}$$

where s = stress, MNm^{-2} ;
 T = temperature, K;
 t = time in hours;
 $\pm 20 \text{ MNm}^{-2}$ = predicted accuracy of the stress.

Using 1 hour at 1038°C (1900°F) as an example, the calculated residual stress would be equal to 11.1 MNmm^{-2} (1.6 ksi), provided that there is no increase in residual stress due to the annealing practice.

The annealing temperatures commonly used for the candidate alloys are given below.

Alloy	Annealing Temperature, $^\circ\text{C}$ ($^\circ\text{F}$)	Reference
AISI 304L	1040 (1900) min.	148.1
CF3	1040 (1900) min.	148.6
AISI 316L	1040 (1900) min.	148.1
CF3M	1040 (1900) min.	148.6
Alloy 825	930-980 (1700-1800)	145
CDA 122	370-650 (700-1200)	67
CDA 811	370-650 (700-1200) ^(a)	--

Alloy	Annealing Temperature, °C (°F)	Reference
CDA 613	610-870 (1125-1600)	67
CDA 952	610-870 (1125-1600)(a)	--
CDA 715	650-820 (1200-1500)	67
CDA 964	650-820 (1200-1500)(a)	--

(a) Annealing is not normally specified for castings but is assumed to be the same as its wrought alloy counterpart.

A principal effect in fabrication with the austenitic stainless steels is the formation of delta ferrite. Delta ferrite is beneficial in castings and weld metals. Large amounts of delta ferrite may produce difficulties in hot working, so it is usually held to very low levels in wrought products. Beeston et al. (1984) compared the mechanical and corrosion-resistance properties of centrifugally cast CF3 and wrought AISI 304L canisters. They concluded that the properties of the cast canisters that contained up to 4.5% ferrite were equivalent to the AISI 304 wrought canisters. In particular, the cast material was found to be slightly less susceptible to SCC as compared to the wrought material. Flowers et al. (1963) have shown that the susceptibility to chloride SCC decreased with increasing ferrite content and that these alloys are more resistant than single-phase alloys.

On the other hand, Baeslack (1979) has shown that increasing the ferrite content up to 10-12% in ferrite-containing stainless-steel welds increases SCC susceptibility. The SCC susceptibility then decreases with further increases in ferrite. The differences in corrosion resistance between the cast and weld-metal cases are attributed to the globular and continuous ferrite morphologies in the cast and weld-metal microstructures, respectively.

No sensitization to intergranular corrosion occurred in stainless steels containing up to 0.054 Wt %C when interpass temperatures did not exceed 300°C (572°F) (Ginn et al., 1983). A common usage of 260°C (500°F) maximum interpass temperature would appear to be satisfactory.

4.2.1.4. Pitting and Crevice Corrosion

There are no data to indicate that fabrication affects the pitting and crevice corrosion resistance of copper and its alloys (CDA, 1987). Qualitative observations and practical experience indicate that the pitting resistance of cold-drawn copper may be greater than that of annealed tubing. Otherwise, the effect of fabrication on these properties appears to be nil.

In comparison, the pitting and crevice corrosion resistance of austenitic stainless steels is of greater concern with respect to the effects of fabrication. These are as follows:

- Crevice corrosion resistance decreases with a decrease in the average grain diameter (critical potential for crevice corrosion, $E_{cc} \text{ ad}^{-1/2}$) (Dayal et al., 1984).
- Crevice corrosion increases with sensitization (Dayal et al., 1984).
- Post-weld annealing reduces pitting in welds (Suutala and Kurkela, 1984).
- Pitting is caused by sulfur segregation during the solidification of autogenous AISI 316 welds (Crekula et al., 1984).
- Pits nucleate preferentially at the austenite/ferrite interface or inside the cores of austenite in AISI 304L welds (Manning et al., 1980).
- Laser glazing reduces pitting corrosion resistance (Lamb et al., 1984) and does not offer a method of improvement.

4.2.1.5. Hydrogen Embrittlement (HE) and Hydrogen-Assisted Cracking (HAC)

Hydrogen embrittlement in copper-base alloys only occurs if oxygen is present in amounts greater than 10 ppm for pure oxygen-free copper (OFC) (CDA, 1987). If the fabrication process includes exposure to an oxidizing atmosphere followed by exposure to hydrogen, then water forms, resulting in voids and cracks. Embrittlement in the other copper alloys is apparently insignificant.

For the austenitic stainless steels, deformation-induced martensite is essential for HAC of low yield strength steels (Briant, 1981; Ellezer, 1981; West, 1981), although there is controversy concerning the role played by the martensite (Lewandowski and Thompson, 1981). Other contributing factors to cracking include chromium depletion of grain boundaries due to sensitization (Briant, 1981; Ellezer, 1981).

The amount of martensite formed in the cold working of metastable austenitic steels is a function of composition and can be predicted using empirical relationships such as those in the table (Table 4-5) summarized by Novak (1979). However, this is not a variable in container fabrication if annealing is performed, since the martensite that formed during cold working would be transformed back to austenite.

Table 4-5. Expressions relating austenite stability and alloy chemistry (reprinted from Novak, 1979)

Reference	Quantity computed	Relationship (elements in weight %)
Post and Eberly ⁴⁰	Stability factor Δ	$NI = \left[\frac{(Cr + 1.5Mo - 20)^2}{12} - 0.5Mn - 35C + 15 \right]$
Griffiths and Wright ⁴¹	Stability factor Δ modified to include copper and nitrogen	$NI = \left[\frac{(Cr + 1.5Mo - 20)^2}{12} - 0.5Mn - 35C - Cu - 27N + 15 \right]$
Eichelman and Hull ⁴²	M_s (°F)	$75(14.6 - Cr) + 110(8.9 - Ni) + 80(1.33 - Mn) + 50(0.47 - Si) + 3000(0.004 - (C + N))$
Monkman et al. ⁴³	M_s (°F)	$2160 - 60(Cr) - 102(Ni) - 282(C + N)$
Angel ⁴⁴	M_{ew} (°C)	$413 - 482(C + N) - 9.2Si - 8.1Mn - 13.7Cr - 0.5Ni - 18.5Mo$
Flureen and Mihailovic ⁴⁵ from Irvine et al. ⁴⁶ and Eichelman and Hull ⁴²	Stability factor S	$NI + 0.68Cr + 0.35Mn + 0.45Si + 27(C + N)$
Flureen and Mayne ⁴⁷ from Irvine et al. ⁴⁶ Eichelman and Hull ⁴² and Contosoudis ⁴⁸	Stability factor S	$NI + 0.68Cr + 0.35Mn + 0.45Si + 27(C + N) + Mo + 0.2Co$

Note: References cited in the table are in Novak (1979)

4.2.2. Forming and Fabrication Limitations

4.2.2.1. Casting

Alloy 825 and CDA 122 are not currently available as cast products. The other four candidate wrought alloys are available as castings with chemical compositions nearly equivalent to their wrought product forms.

B&W and Industry's experience with defects in sand castings would preclude their use in these containers. Centrifugal castings are known to have much fewer defects than sand castings and improved mechanical and corrosion-resistant properties. This was demonstrated with the making of prototypical CFC waste containers and comparing their properties to those for wrought AISI 304L (Beeston et al., 1984; Howell, 1982). One issue that was not addressed in these studies was the UT inspection of centrifugally cast material. The topic is covered in Section 4.2.2.7.

4.2.2.2. Cold Working

All of the six candidate wrought alloys are workable to varying degrees. None of the alloys present a problem in bending and forming into cylinders. Of the four cold forming operations under consideration (bending, spinning, roll extrusion, and deep drawing), deep drawing is the most severe and would reveal the more subtle differences in workability than would the less demanding processes. A commercial producer of deep-drawn tubular components reports the following ratings for the wrought alloys (Holbrook, 1987).

<u>Alloy</u>	<u>Deep Drawability</u>
AISI 304L	Good
AISI 316L	Difficult
Alloy 825	Good
CDA 122	Good
CDA 613	Poor
CDA 715	Good

4.2.2.3. Hot Workability

The effect of alloy composition on hot workability is more apparent than in cold working. The large differences in flow stress as a function of temperature for the iron versus copper-base alloys results in two principal regimes of extrusion temperatures:

<u>Alloy</u>	<u>Extrusion Temperature Range, °C (°F)</u>
AISI 304L	1100-1260 (2000-2300)
AISI 316L	1100-1260 (2000-2300)
Alloy 825	1100-1260 (2000-2300)
CDA 122	760-870 (1400-1600)
CDA 613	790-930 (1450-1700)
CDA 715	930-1040 (1700-1900)

4.2.2.4. Heat Treatments

Recommended heat treatment ranges for the candidate wrought alloys and their casting counterparts are listed below.

<u>Alloy</u>	<u>Post-Weld Heat Treatment Temperatures, °C (°F)</u>	<u>Annealing Temperatures, °C (°F)</u>
AISI 304L	Not recommended	1010-1120 (1850-2050)
AISI 316L	Not recommended	1010-1120 (1850-2050)
Alloy 825	Not recommended	930-980 (1700-1800)
CDA 122	None required	370-650 (700-1200)
CDA 613	600 (1100)	610-870 (1125-1600)
CDA 715	540 (1000)	650-820 (1200-1500)

Heating these alloys in gas-fired or electrical furnaces will produce scaling that is probably not acceptable for nuclear-waste containers. The use of protective atmospheres or vacuums is preferred. To avoid pitting when using protective atmospheres with copper, it is necessary to either prevent or remove the deposition of carbonaceous films on the surface (Mattson, 1980).

4.2.2.5. Grain Size Control

Since all of these alloys are prone to grain growth upon heating, controls that involve cold working and/or heat treatment must be used in fabrication. Large variable grain sizes could produce differences in strength, corrosion resistance, and UT testing sensitivity. Limiting the heat treatments to the lower ends of the temperature ranges should be part of the standard practice for fabrication. Also, avoiding strains and deformations in the range of about 10-30% will preclude the possibility of abnormal grain growth.

For the cast austenitic alloys that contain ferrite, CF3 and CF3M, cold working and recrystallization offer a means of producing fine-grained material (Murakami et al., 1979).

Some of the grain size differences between base and weld metal are due to substructures produced in the weld that are not present in the base metal (Foulds and Motoff, 1982). The only apparent method to reduce these differences is by cold work and recrystallization.

4.2.2.6. Surface Condition

A smooth surface, free of residual stresses, is desirable to avoid pitting and crevice corrosion and to provide a satisfactory surface for UT inspection. The methods used to produce the surface must be scrutinized carefully. For example, the SCC of boiling-water reactor piping was found to be greatly exacerbated by residual stresses left after grinding welds (Chrenko, 1978). Abusive grinding must be avoided after the final annealing treatment.

4.2.2.7. Inspectability

Inspectability is affected not only by the geometrical constraints of container design but also by the following factors:

- Large grain size of base metal, HAZs, and weld metals.
- Anisotropy in weld metals and centrifugal castings. Both of these could be eliminated by cold work and recrystallization.
- Another concern with centrifugal castings is the possibility of porosity affecting radiographic and UT inspectability. This latter effect can apparently be controlled by argon-oxygen decarbonization for the iron-base alloys.

4.2.3. Literature Review Summary

The following issues need to be addressed in the fabrication of YMP containers:

- If welding is used in fabrication, the consequences of the following must be considered:
 - Small compositional differences between the filler and base metal may promote galvanic corrosion.
 - There are practical limits of thermal gradients and cooling rates that can be used in the annealing of the container components (upper head and lower unit) without re-introducing residual stresses in the heat-treated pieces.
 - There is a possibility of avoiding pitting of welds containing delta ferrite by annealing the container. Can the continuous delta ferrite in these welds be eliminated to produce microstructures similar to those in castings?
- The best method must be found to achieve stress-free, smooth surfaces on the containers.
- There is a possibility of using centrifugal castings without subsequent cold work and recrystallization. Is their UT inspectability acceptable?

- The effects of thermal-mechanical processing of Alloy 825 with respect to carbide precipitation and other second-phase reactions must be examined.

4.3. Vendor Surveys and Quotations

The following four principal vendor surveys were conducted by mail and in limited cases by telephone and meetings:

- Capabilities and interest.
- Spin forming.
- Heat treating capabilities.
- B&W Nuclear Equipment Division and Trading Co. purchasing inquiries.

The results of these surveys are summarized below, together with questions received from vendors.

4.3.1. Capabilities and Interest Survey

Companies surveyed	57
Responses (total)	32
Negative responses	9
Expressions of positive interest and descriptions of capabilities	23

The results of this survey indicate a sufficient interest by roll-and-weld fabricators and centrifugal casting companies who wish to participate in the YMP container fabrication project.

A significant limitation appears to be the lack of availability of wrought seamless pipe of sufficient diameter for the container. Special processing such as back extrusion, roll extrusion, and deep drawing appear to be the most attractive options.

4.3.2. Spin Forming Survey

Spinning and deep drawing are two possible methods for fabricating a seamless lower unit (integral cylindrical body and lower head—no welds). The Precision Metal Forming Association (Mr. Karl M. Roth) was contacted and companies in its Metal Spinning Division were surveyed. The survey results were as follows:

Companies surveyed	19
Responses (total)	11
Negative responses	11

The waste-container components exceed the forming capacity of the vendor equipment. From this survey, two other possible vendors and one used-machinery dealer were identified. Additional possible vendors for spin forming and deep drawing were taken from the *Thomas Register of American Manufacturers*.

The same basic letter (with minor revisions) was then sent to 15 more vendors. The results are presented below.

Companies surveyed	15
Returned, no forwarding address	1
Responses (total)	5
Negative responses	2

Positive responses	3
- Interest in total package	1
- Interest in heads only	1
- Sell machinery	1

Vendors interested in fabricating all or part of the container were sent the bid package soliciting quotes. Mr. William J. Molloy of Mohawk Machinery, Inc. has for sale a 75 in. x 100 in. Cincinnati Vertical Hydrospinning Machine used by General Electric to fabricate Minuteman Missiles (60-in. OD x 130-in. long).

The vendor quotes are discussed in Section 4.3.6.

4.3.3. Heat Treating Capabilities Survey

The objective of this survey was to determine if there are any firms interested in, and capable of, annealing the fabricated containers, using either protective bright annealing or vacuum annealing. The results of this survey are summarized in Table 4-6.

Table 4-6. Survey results of heat treating capabilities

Companies surveyed	46
Responses (total)	25
Positive responses	20
Negative responses	5

Number of Companies	Annealing Capabilities			
	Upper Head		Lower Unit	
	Bright	Vacuum	Bright	Vacuum
10	13	4	2	

Virtually all of the respondents could work with all of the alloys. The limiting case was the vacuum annealing of the lower unit; the length of the lower unit limits the number of available vacuum chambers.

4.3.4. B&W Nuclear Equipment Division and Trading Company Purchasing Inquiries

Independent of the surveys described above, purchasing agents from B&W Nuclear Equipment Division and Coutino, Caro & Co. (a trading company within the McDermott Co.), who were familiar with this type of product, solicited budgetary quotations for container components. Additional sources uncovered by these agents included the following:

- Tube Sales—welded pipe agents including RaftPipe.
- Spincraft—spun heads.
- Ladish Co.—forged heads.
- Earle M. Jorgensen Co.—forged heads.
- Wyman Gordon Co.—forged heads.

The results of these inquiries are included in Section 4.3.6.

4.3.5. Key Vendors

During the course of the study it became apparent that obtaining technical information and quotations from vendors could be better accomplished by identifying certain key vendors for various processes and working more closely with them. The selection of these vendors was based on a number of factors including previous contacts, process capabilities, and responsiveness to our inquiries. These vendors are listed below.

<u>Process</u>	<u>Key Vendor</u>
Roll and weld	B&W Nuclear Equipment Division
Extrusion	Cameron Forge Co.
Roll extrusion	Kaiser Rollmet
Forgings	Ladish Co.
Deep drawing	NI Industries
Centrifugal casting	Wisconsin Centrifugal, Inc.
Welded pipe	Youngstown Welding

This choice of key vendors was made only for the purposes of this report and is not intended to prejudice any subsequent procurements, which are generally subject to free competitive bidding.

4.3.6. Vendor Quotations

To obtain data for use in estimating the cost of various processing options, budgetary quotations were requested from selected vendors. The response varied from highly interested to nonresponsive. This is not surprising in that the potential market for the vendors was too far ahead to motivate much effort, if any, in their responses. In order to obtain a more definite response to meet the near-term needs of Phases 2 (subscale mock-ups) and 3 (prototypes), an inquiry was submitted to 11 potential and interested vendors that could provide complete containers. The inquiry contained Specification ARC-TP-760, Drawing No. 116752-D-0 (Figure 4-1), and other associated specifications. The following points were brought out as a result of these inquiries:

- More specifics and clarifications are required in the bid package to make accurate comparisons between vendors.
- The final heat-treatment requirements need further specification.
- There is a reluctance on the part of the vendors to provide special cleaning of the fabricated containers.
- Only a few vendors may be interested, or capable of, supplying complete containers because of certifications that may be required; vendors are more interested in providing components for assembly.

The vendors listed in Table 4-7 supplied quotations for mock-ups, prototypes, or production units of various components of the containers.

4.3.7. Rationalization of Vendor Quotes

Vendor quotes were sought to identify companies capable of supplying waste-container components and to compare and rank alternate fabrication methods for cost. A reference container was designed (Figure 4-3) and used for quotes. Prior to the design of the reference container, an alternate configuration sketch (Figure 4-4) was used to obtain quotes for an integral pintle and upper head forging. Two vendors quoted modified versions of the alternate configuration sketch as shown in Figures 4-5 and 4-6.

Table 4-7. List of vendors providing quotations

<u>Vendor</u>	<u>Component</u>	<u>Alloys</u>					
		AISI 304L CF3	AISI 316L CF3M	Alloy 825	CDA 102 CDA 122	CDA 613 CDA 952	CDA 715 CDA 964
Alcoa Forging Division	Pintle and head forgings	X	X	X			X
B&W Nuclear Equipment Div.	Rolled and welded container mock-up, prototype, and production units	X	X	X			
Cameron Forge Co.	Forged open-end closed-end prototype and production cylinders		X	X			X
E. A. Jorgensen Co.	Forged mock-up heads	X	X				
Kaiser Rollmet	Roll extruded open- and closed-end production cylinders		X	X			X
Ladish Co.	Forged mock-up heads	X	X	X			
NI Industries	Deep drawn seamless and welded head container mock-up and prototype units	X	X	X	X	X	X
Sandusky Foundry Machine	Centrifugally cast mock-up open-end cylinders	X	X	X			X
Shenango Co.	Centrifugally cast mock-up open-end cylinders	X	X				X
Spincraft	Spun mock-up heads	X	X	X	X	X	X
Trent Tube	Welded pipe	X	X	X			X
Tube Sales	Welded pipe	X	X	X	X		X

Table 4-7. List of vendors providing quotations (cont'd)

<u>Vendor</u>	<u>Component</u>	Alloys					
		AISI 304L CF3	AISI 316L CF3M	Alloy 825	CDA 102 CDA 122	CDA 613 CDA 952	CDA 715 CDA 964
Wisconsin Centrifugal, Inc.	Centrifugally cast welded head, con- tainer mock-up, prototype, and production units	X	X			X	X
Wyman Gordon	Pintle and head forgings		X	X	X		X
Zak, Inc.	Rolled and welded container mock-up, prototype, and production units					X	

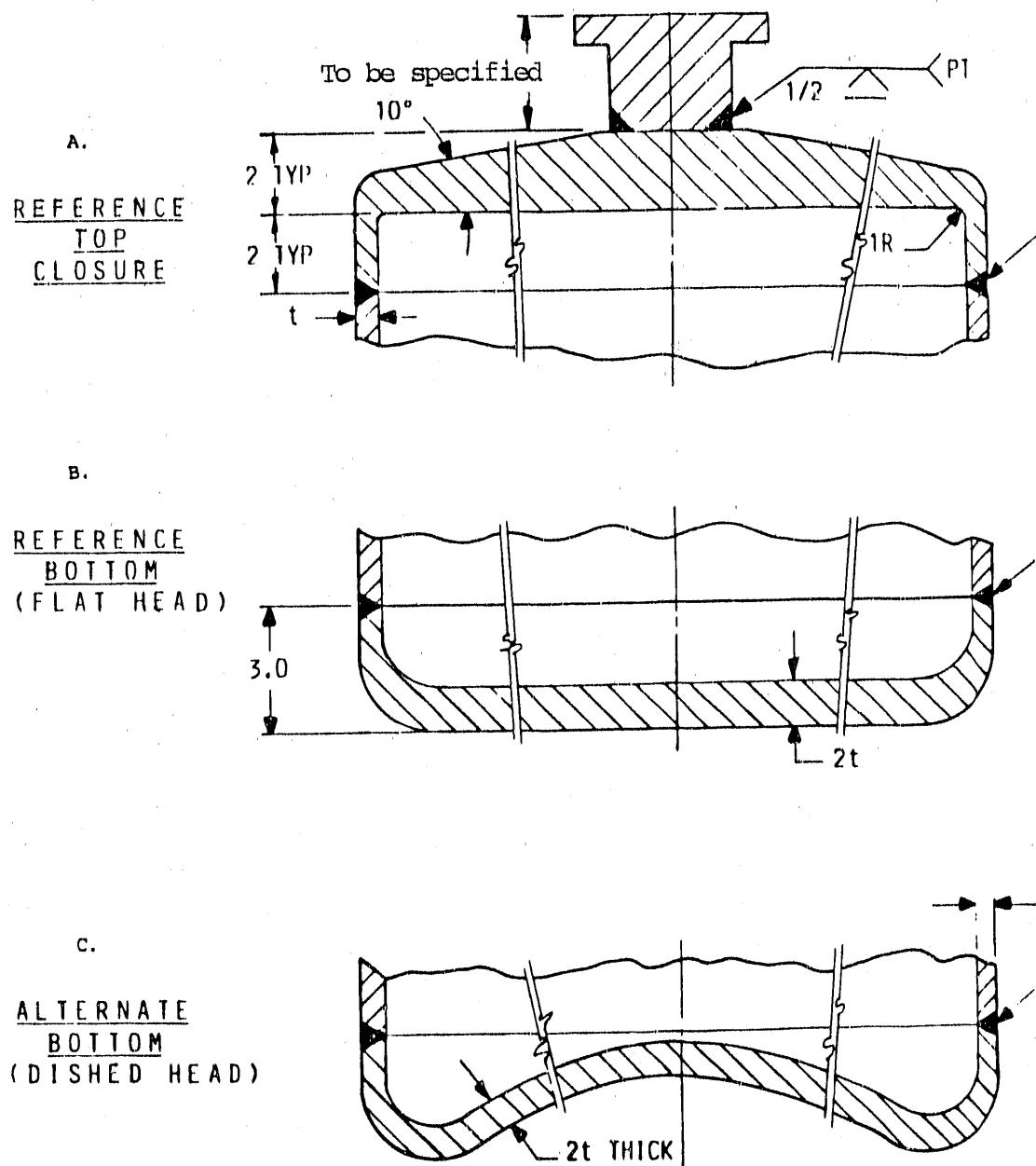


Figure 4-3. Reference container design

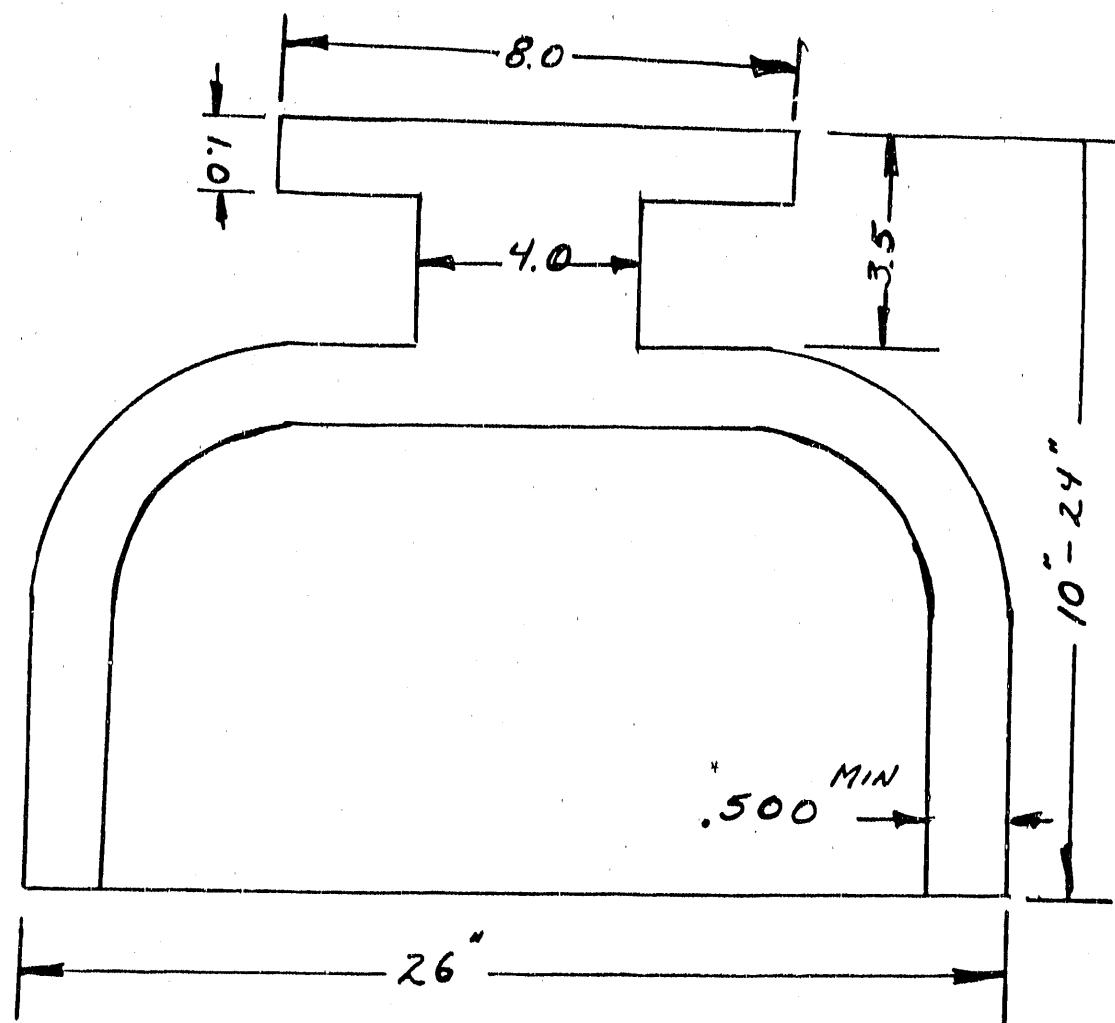


Figure 4-4. Alternate configuration sketch used for integral pintle and head forging quotes

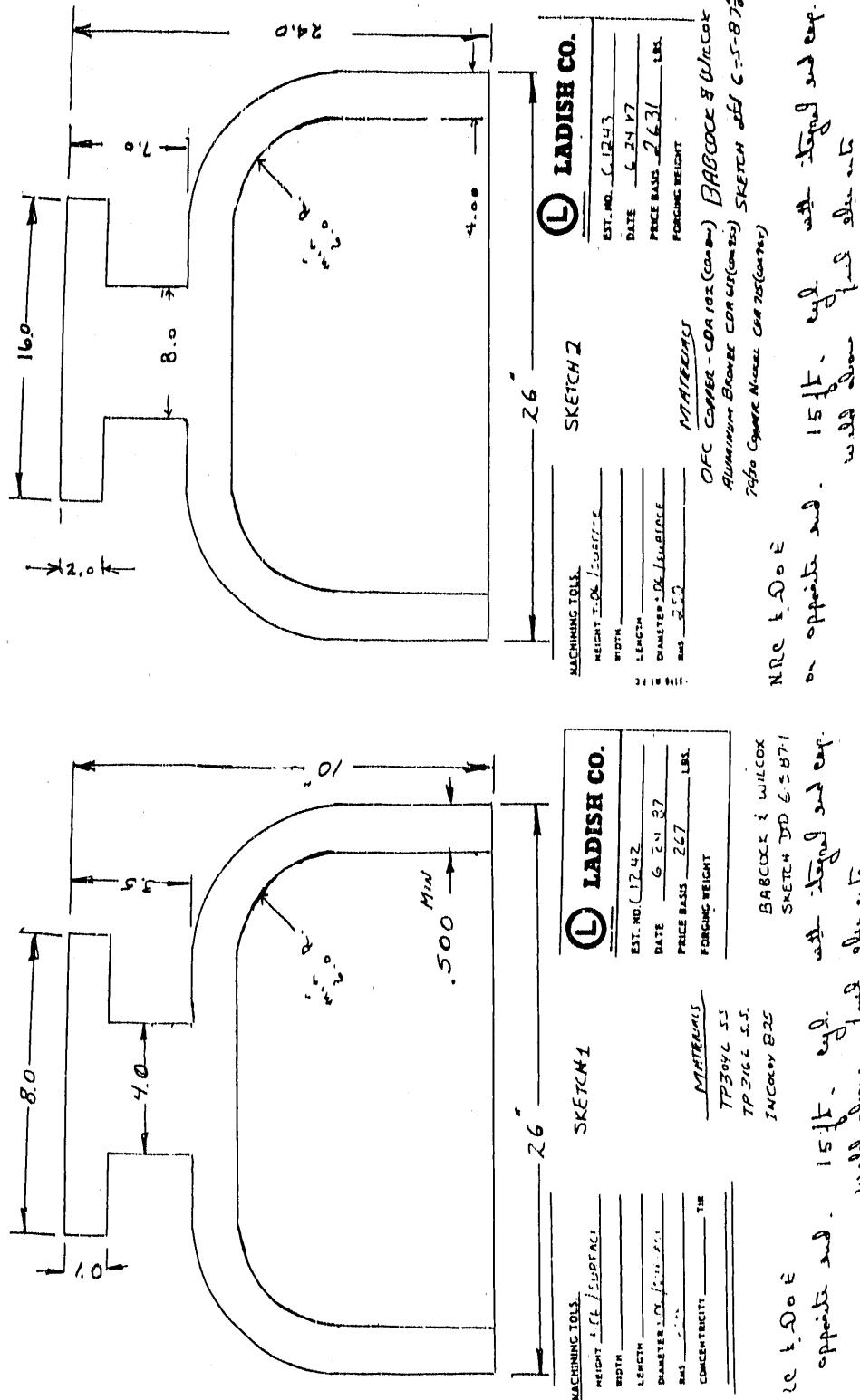


Figure 4-5. Sketches used for Ladish Co. quotes—integral pintle and head forging

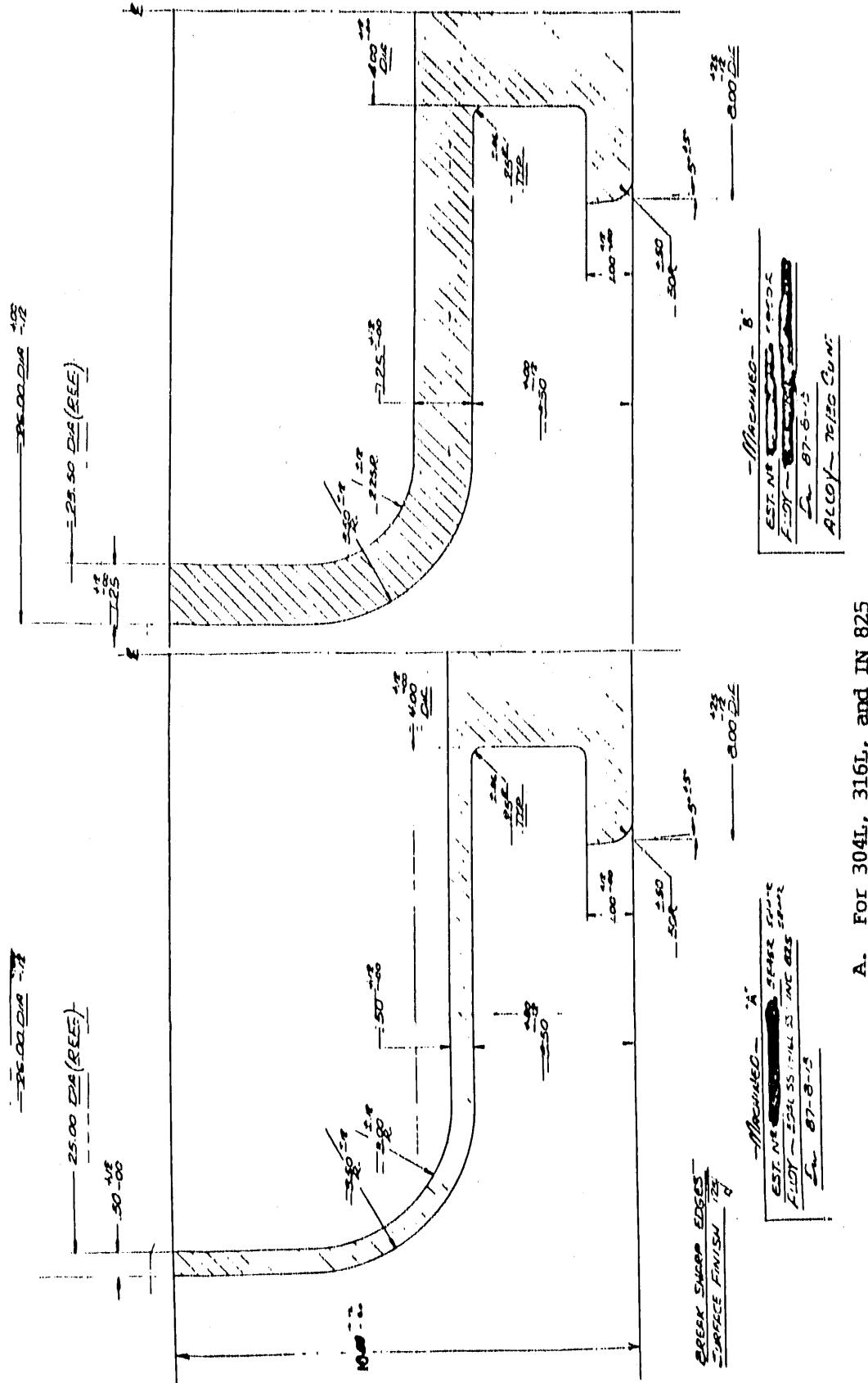


Figure 4-6. Alcoa Forging Division drawings for integral pintle and head forging quotes

A bid package was sent out for the reference container design. Four vendors quoted for the whole container (pintle and upper head, and body and lower head). One vendor (Cameron Iron) quoted the whole container to a previous design in separate quotes. Not all material and process combinations were quoted. The five vendors quoting the whole container, the fabrication processes, and alloys are given below.

Babcock & Wilcox Nuclear Equipment Division

- Machined heads, rolled and welded body, and welded pintle and lower head.
- AISI 304L, AISI 316L, Alloy 825.

Cameron Forge

- Forged upper head and pintle, and extruded closed-end body.
- Extruded hollows and preforms.
- AISI 304L, AISI 316L, Alloy 825, and CDA 715 (Cameron was not asked to quote AISI 304L, but can supply it).

NI Industries

- Deep draw as two equal length halves, cut head from one and weld remaining cylinder to other half. Weld pintle to head.
- Deep-draw body full-length, deep-draw shallow head, and weld pintle.
- AISI 304L, AISI 316L, Alloy 825, CDA 122, CDA 613, and CDA 715.

Wisconsin Centrifugal

- Centrifugally cast heads and body, pintle welded to upper head and body welded to lower head.
- CF3, CF3M, CDA 952, and CDA 964.

Zak

- Machined heads, rolled and welded body, pintle welded to upper head, and lower head welded to body
- CDA 122

Various upper head geometries were quoted—Figure 4-3 for centrifugal casting and machining with welded pintle, and Figures 4-4 through 4-6 for forged heads with integral pintle. The lower heads were only quoted machined from plate or centrifugally cast.

For welding of the lower unit (body welded to lower head) three quotes were received covering various materials and processes. These cost estimates varied by an order of magnitude.

Preform bodies for roll extrusion were quoted to a different OD for centrifugal casting and were not quoted for roll and weld.

To estimate projected container costs, assumptions were made to fill in the cost gaps for the lower head, welding the body to the lower head, and body preforms. Because of the uncertainties in design and specifications and disputability of the assumed costs, LLNL requested that the cost estimates not be included in this report. To provide a feel for the costs of various materials and processes, relative costs have been normalized to a welded lower unit (roll-and-weld body welded to a forged head) of AISI 304L. This component is assigned a relative cost of one.

In the following sections, the component geometries and vendor responses are discussed as follows:

- Pintle and Upper Head
 - Pintle welded to head
 - Integral pintle and head
- Body and Lower Head
 - Integral
 - Body welded to head
 - Body welded to head and cold worked

4.3.7.1. Pintle and Upper Head

The pintle and upper head may be fabricated as a machined pintle welded to a head, or an integral pintle and head (no weld). The geometric configuration and vendor responses for each fabrication method are summarized in the following sections.

Pintle Welded to Head—Quotes were requested for the geometry shown in Figure 4-3. Quotes were received for heads machined from wrought material (Babcock & Wilcox) and for centrifugally cast heads (Wisconsin Centrifugal).

For the welded pintle construction, the trade-off between a formed head (forged, spun, or deep drawn) and a machined head will depend on the height of the head. A shallower head favors machining, and a higher or deeper head favors forming. For forging, an integral pintle is preferred, eliminating the pintle weld for an incremental increase in tooling and machining costs.

Integral Pintle and Head—Forging vendors were requested to quote on an integral pintle and head in quantities of 8 and 12 units for the alternate configuration sketch shown in Figure 4-4. Five vendors (Alcoa Forging Division, Cameron Forge, Jorgensen, Ladish, and Wyman Gordon) provided quotes. The vendors consider these quotes as budgetary, approximate, and "ball park," subject to revision based on finished print and specifications. Ladish quoted for the sketches given in Figure 4-5, while the Alcoa Forging Division made the drawings shown in Figure 4-6, and quoted for them. The alternate configuration sketch (Figure 4-4), and the quotes, preceded the reference container design (Figure 4-3).

The designs for the austenitic materials (304L SS, 316L SS, and Alloy 825) are based on nearly identical configurations—same pintle dimensions, height, and shell-wall thickness. Jorgensen did not quote a separate tooling charge; presumably, the tooling charge is included in the unit price.

To estimate costs for production quantities, consider the four vendors who did show tooling charges and

1. Neglect the tooling charge (spread over 1500 units the charge is less than \$50 per unit),
2. Average the quotes for 8 units (8 is the only quantity quoted by all vendors), and
3. Take 70% of the average and round to the nearest hundred.

The 70% factor is based on the Ladish quote for 8 and 100 units for the 3 austenitic materials. CDA 122 and CDA 613 were not quoted. CDA 715 was quoted for several configurations. The four vendors, the sketches they quoted from, and the salient differences are given next.

CDA 715—Upper Head and Handling Pintle

<u>Vendor</u>	<u>Figure</u>	<u>Comments</u>
Alcoa Forging Division	4-6	1.25-in. wall x 10-in. high with 4-in. diam pintle.
Cameron Iron	4-4	Assumed 2-in. wall x 10-in. high with 4-in. diam pintle.
Ladish	4-5	4-in. wall x 24-in. high with 8-in. diam pintle.
Wyman Gordon	4-4	Assumed 2-in. wall x 10-in. high with 4-in. diam pintle.

The original inquiry gave a wall range of 2-4 in. for the copper alloys to allow for additional machining when detailed drawings became available. Only CDA 122 would require a wall that heavy. The Alcoa Forging configuration (Figure 4-6) is representative of the current configuration. The Alcoa response for 8 to 11 units is used as the average value. The 70% factor is applied to estimate cost for production quantities.

As noted previously, the purpose of the vendor quotes was to identify vendors and rank fabrication processes for cost. Subsequent to the request based on the alternate configuration sketch in Figure 4-4, the reference container design shown in Figure 4-3 was prepared. The thicker top plate (2-in. thick at the center) may increase the cost, while the shallower overall height (6 in. versus 10 in.) should reduce the cost. The design is subject to further change. The representative values are thought to be reasonable.

Wisconsin Centrifugal suggested a centrifugally cast head with an integral pintle, but did not quote a price for it. No quotes were obtained for a machined integral pintle and head. The forging quotes may contain various amounts of machining based on the nature of the forged shape.

The estimates for production costs derived from the vendor quotes have been normalized relative to the cost of a AISI 304 rolled-and-welded body, welded to a forged head. Table 4-8 presents these normalized estimates.

Table 4-8. Relative cost of upper heads

	Materials					
	AISI 304L CF3	AISI 316L CF3M	Alloy 825	CDA 122	CDA 613 CDA 952	CDA 715 CDA 964
<u>Pintle Welded to Head</u>						
Centrifugally Cast	0.3	0.3			0.1	0.4
Machined	0.9	0.9	1.3	0.3		
<u>Integral Pintle and Head</u>						
Forged	0.3	0.4	0.6			0.7

The pintle-welded-to-head construction is estimated to have costs greater than or equal to the forged integral pintle and head. At equal cost, the integral construction (no pintle weld) would seem advantageous. For forgings, the higher nickel Alloy 825 and CDA 715 are about double the cost of AISI 304L.

4.3.7.2. Body and Lower Head

The body is a cylinder 26-in. OD \times 0.375-in. wall \times 180-in. long for all alloys except CDA 122, which has a wall thickness of 1.00 in. The reference container design has a flat bottom lower head of thickness two times the body thickness (Figure 4-3, B).

The body and lower head may be made integrally (one piece) by extruding a closed-end hollow or by deep drawing.

The body and lower head may be fabricated separately and joined by welding. A further variation involves cold working the body after welding. (See the following discussion, "Body Welded to Head and Cold Worked.")

The vendor response for each of the fabrication methods (integral, body welded to head, body welded to head and cold worked) is discussed in the following sections.

Integral Body and Lower Head

The following three integral processes are quoted:

- Extruded closed-end cylinder.
- Extruded closed-end and cold-worked cylinder.
- Deep drawn closed-end cylinder.

For the extruded closed-end cylinder, the container wall thickness is 0.600 in. The minimum wall thickness after extrusion is approximately 0.800 in. The unit is bored and turned to 0.600-in.-wall thickness. Machining to lighter wall thickness increases the cost. The most economic size for this process would be the 0.800-in.-wall thickness with minimum machining based on container requirements. The minimum amount of machining is unknown. In process ranking for cost, the response for 1500 units, neglecting tooling charges, is used. For 1500 units, the tooling cost is less than \$50 per unit. A quote was not requested for AISI 304L. The quote for AISI 316L will be used for AISI 304L for process evaluation.

The extruded and cold work process involves Cameron Iron for extrusion of a heavy wall preform and Kaiser Rollmet for roll extrusion. This should minimize machining off extrusion and permit finishing to the aim wall thickness of 0.375 in. The estimated total cost is the same or less than the cost of extrusion alone. The reduction in machining (depth of cut and length of cut) helps to offset the cost of roll extrusion. The final length calculation assumes that 55 in. of the preform is cold worked. Again, for process evaluation the tooling cost is neglected (\$100 per unit for 1500 units) and the 1500-unit estimates are used. The AISI 316L estimate is used for AISI 304L.

The deep draw quote from NI Industries is for 5 units and assumes starting material for 3 containers to make 1. Production costs "would depend on the equipment available at that time." The extra material cost is about \$28K for CDA 122. For other alloys, the extra start material is about \$8K. The tooling charge spread over 1500 units is less than \$700 per unit. In the estimate for production, the excess material is subtracted from the estimate, and 70% of the balance is taken as the estimate for process evaluation. The uncertainty of the 70% factor is greater here than for the heads. The ratio of costs for 1500 units, versus 2 units for the other integral processes, ranges from 47-70%.

Relative costs for the integral lower unit are given in Table 4-9. For AISI 304L or AISI 316L, the integral body and head is more than 3 times as costly as the roll-and-weld body welded to forged head in AISI 304L. For Alloy 825 and CDA 122, the extruded closed-end is about 6 times as expensive as the AISI 304L reference, and the extrusion/roll extrusion is about 5 times as costly. Because of the manipulation of the deep drawn estimates, the relative costs are less certain.

Body Welded to Head

Costs are for the body, the lower head, and the welding.

Body: The production estimate for the roll-and-weld body used the lowest quote rounded up to the next hundred dollars (except CDA 122 was rounded to the nearest hundred). The tooling cost for Zak, \$2.48M, is the cost to set up a production line for machining and welding the body, heads, and pintle.

The extrusion quote was for 26-in. OD × 0.400-in. wall × 183-in. long (a little heavier wall and longer length). As noted in the discussion of the closed-end extrusion, a heavier wall thickness might be more economical. The 1500-unit quote, neglecting tooling charges, is used for the relative cost. The AISI 316L estimate is used for AISI 304L.

Table 4-9. Relative costs for integral body and head

(Cost relative to AISI 304L roll-and-weld body welded to forged head)

<u>Vendor</u>	<u>Materials</u>					
	AISI 304L	AISI 316L	Alloy 825	CDA 122	CDA 952	CDA 715 CDA 964
<u>Extruded Closed-End</u>						
Cameron Iron ^(a) (26.4-in. OD × 0.600-in. wall × 189-in. long)	3.2	6.1				5.8
<u>Extruded Closed-End and Cold Worked</u>						
Cameron Iron Kaiser Rollmet	Extruded: 27.6-in. OD × 1.200-in. wall × 63-in. long Roll Extruded: 26.0-in. OD × 0.375-in. wall × 189-in. long					
Extrusion ^(a)	1.8	3.6				3.4
Roll Extrusion ^(a)	1.4	1.3				0.9
Total ^(a) (may differ from sum due to rounding)	3.2	4.9				4.4
<u>Deep Drawn Closed-End</u>						
NI Industries	3.5	3.5	3.5	4.9	3.5	3.7

(Original quote for 5 units and assumes starting material for 3 containers to make 1. Extra material cost removed. A factor of 70% used to estimate production costs.)

(a) For evaluation assumed same as AISI 316L.

The centrifugal casting quotes are for the reference design body. The minimum quotes for 1500 units, neglecting tooling charges, are used for the production estimate.

Deep drawing can be used to fabricate a container with a single girth weld. The container is deep drawn as two half-length, one-end-closed cylinders. If the closure weld could be made at mid-length, the pintle would be welded to the upper shell. For a closure weld at one end, the closed end is cut from one piece for the upper head. The remaining cylinder is welded to the open end of the other piece.

The NI Industries' quote was for 5 containers. For material they assumed 3 start blanks for 1 finish draw. The tooling cost is 25% less than for deep drawing the lower unit to full length. To estimate production costs, the extra material cost is deducted and a factor of 70% is used. This covers the cost of the lower unit except for welding, and the upper head except for welding the pintle.

Quotes for machined heads and centrifugally cast heads for 1500 units are used for the production estimate. No quotes were received for a forged lower head. The quotes for spun heads are for a thickness lower than desired. The heavier reference design thickness makes the piece more difficult to spin.

A forged lower head should be less expensive than the forged upper head—slightly less weight and simpler to machine. For the lower head, reducing the production estimate for the upper head by \$500 seems reasonable.

Welding and finishing the lower head and body includes machining the weld prep, fit-up, welding, x-ray and dye check, annealing, and machining to length. Separate quotes were sought for this work scope. No responses were received.

In responding to the bid package, B&W, Wisconsin Centrifugal, and Zak separated the cost of welding the body and lower head. The B&W quote allowed \$2K for heat treatment and x-ray. The assumed processing was not automated. The Wisconsin Centrifugal quote did not include post-weld heat treatment. The Zak quote is between the other quotes. Furthermore, the CDA 122 is thicker (1.00 in.) and harder to weld. The relative production costs for welding and finishing the other materials are reduced slightly from the Zak quote (0.31 versus 0.32).

Estimated relative production costs are given in Table 4-10 for the components: body, lower head, and welding and finishing. By summing the appropriate part and fabrication process combinations, the estimated costs are obtained. These estimates are used in the process evaluation.

Body Welded to Head and Cold Worked

Cold work is performed to deform the weld and obtain a more uniform microstructure in order to improve the container performance for nonuniform corrosion. The part is annealed after the cold working operation. Both long seam and girth welds are to be cold worked via the Kaiser Rollmet external roll extrusion process. Feasibility of roll extruding the girth weld has not been demonstrated.

From a cost perspective, the body preform is hoped to be less expensive than the finished body welded to head to offset the roll extrusion costs. The shorter, heavier wall body preform should be easier to machine (shorter length) and have a higher yield (smaller chip weight as percentage of the total). The relative costs are summarized in Table 4-11.

Quotes for open-ended body preforms were not solicited for roll and weld and extrusion. A closed-end extrusion preform was quoted. Sizes varied for the centrifugally cast quotes. An estimate was made using the quote for 24-in. OD x 1.200-in. average wall bodies, ratioing the cost on a volume basis.

Table 4-10. Estimated production costs—body welded to head
 (Relative to roll and weld AISI 304 lower unit with forged head)

		Materials					
		AISI 304L CF3	AISI 316L CF3M	AISI 825	Alloy CDA 122	CDA 715 CDA 952	CDA 964
Body							
Roll and Weld		0.43	0.49	1.11	2.26	—	1.13
Extruded		2.42	2.42	24.56	—	—	4.39
Deep Drawn		2.78	2.78	2.89	4.12	2.89	3.09
Centrifugally Cast		0.58	0.61	—	—	0.41	1.24
Lower Head							
Forged		0.26	0.30	0.57	—	—	0.65
Machined		0.49	0.44	0.88	0.21	—	—
Centrifugally Cast		0.11	0.11	—	—	0.06	0.16
Welding and Finishing		0.31	0.31	0.31	0.32	0.31	0.31
Body Welded to Head							
Body	Head						
Roll and Weld	Forged	1.00	1.10	1.99	—	—	2.09
	Machined	1.24	1.30	2.30	2.78	—	—
Extruded	Forged	2.99	3.03	5.43	—	—	5.04
	Machined	3.23	3.23	5.74	—	—	—
Deep Drawn	Deep Drawn	3.09	3.09	3.20	4.44	3.20	3.40
Cent. Cast	Forged	1.14	1.22	—	—	—	2.20
	Cent. Cast	1.00	1.03	—	—	0.78	1.71
	Machined	1.38	1.41	—	—	—	—

Table 4-11. Relative costs of body welded to head and cold worked (production quantities)
 (Relative to roll and welded AISI 304 lower unit with forged head)

		Materials					
		AISI 304L CF3	AISI 316L CF3M	Alloy 825	CDA 715 CDA 122	CDA 952	CDA 964
Body Preform 1.20 Wall							
Open Ended Cylinder							
Roll and Weld ^(a)		0.43	0.49	1.11	2.26	1.13	
Extrusion							
Deep Drawn							
Centrifugally Cast		0.48	0.52		0.42	0.98	
Lower Head ^(b)							
Forged		0.31	0.35	0.62		0.70	
Machined		0.55	0.55	0.93	0.26		
Cent. Cast		0.16	0.16		0.11	0.22	
Weld and Inspect		0.31	0.31	0.31	0.32	0.31	
Roll Extrusion		1.41 ^(c)	1.41	1.29		0.93 ^(d)	
(one end closed)						0.93	
Body Welded to Head							
and Cold Worked							
<u>Body</u>	<u>Head</u>						
Roll and	Forged	2.46	2.57	3.43		3.07	
Weld	Machined	2.70	2.76	3.74			
Extruded	Forged						
	Machined						
Deep Drawn	Deep Drawn						
Cent. Cast	Forged	2.51	2.60			2.92	
	Cent. Cast	2.37	2.41		1.77	2.43	
	Machined	2.70	2.74				

(a) Assumed same as finished body.

(b) Increased over lower head estimate for extra material.

(c) Assume roll extrusion cost for AISI 304L same as AISI 316L.

(d) Assume roll extrusion cost for CDA 613/952 same as CDA 715/964.

The conversion costs for roll extruding either an open or one-end-closed cylinder were obtained from Kaiser Rollmet. For the one-end-closed cylinder, the conversion cost in the tooling costs is higher. The girth weld should be 8 to 10 in. from the bottom to allow forming across the weld. It is assumed that the conversion cost for AISI 304L/CF3 is the same as for AISI 316L/CF3M, and that the conversion cost for CDA 613 is the same as for CDA 715.

Quotes for roll-extruded open-ended cylinders, including the cost of the preform and roll extrusion, were obtained. In a comparison of the body quotes, the roll-extruded body is more expensive than the roll-and-weld or centrifugally cast bodies, and less expensive than the extruded bodies.

In Table 4-11, the relative costs for a one-end-closed, roll-extruded body are determined as the sum of the following components and operations:

- Body preform.
- Head preform.
- Weld head and inspect.
- Roll extrusion (one end closed).

Only the centrifugally cast body preform has been estimated. The roll and weld cylinder estimates for the finished body are used for the preform body for process ranking. The shorter, thicker preform body may have a slightly lower cost. The preform lower head was not quoted. The head skirt must be thicker to weld to the heavier preform. For the preform lower head estimate, \$500 was added to the lower head quotes. For welding and finishing the roll extrusion preform, the costs for welding the finished container were used. The estimate for a welded and roll extruded centrifugally cast preform is below the estimates for the integral lower unit and above the estimates for a roll and weld or centrifugally cast body and welded head.

Summary

Relative Material Costs: Based on quotes for the cylindrical body (26-in. OD \times 0.375-in. average wall \times 180-in. long) for roll and weld pipe and centrifugally cast hollows, the material costs relative to AISI 304L/CF3 are shown below.

	Material					
	AISI 304L CF3	AISI 316L CF3M	Alloy 825	CDA 122	CDA 613 CDA 952	CDA 715 CDA 964
	1.00	1.15	2.75		—	—
Welded	1.00	1.15	2.75	—	—	2.66
Centrifugally Cast	1.00	1.06	—	—	0.98	2.91

Relative fabrication costs are summarized next. The roll-and-weld body and forged lower head in AISI 304L is the reference or base-line cost.

Relative Fabrication Costs (AISI 304L/CF3)

Pintle and Upper Head	
Pintle Welded to Machined Head	0.9
Integral Pintle and Head Forging	0.3
Body and Lower Head	
Integral	3
Welded	
Seamless Wrought Body	3
Roll and Weld Body	1
Centrifugally Cast Body	1
Welded and Cold Worked	
Seamless Wrought Body	No Data
Roll and Weld Body	2.5
Centrifugally Cast Body	2.5

The relative material cost ratios should not be applied to the fabrication cost ratios because processing costs may not be proportional to material costs, and the costs may be overestimated.

4.4. Copper Development Association Activities

B&W engaged the services of the Copper Development Association (CDA) as a consultant on the Fabrication Project because three copper-base materials are under consideration. CDA's expertise in copper complements B&W's expertise in stainless steels and nickel alloys. CDA has been involved with the LLNL program since 1984. They have provided various data, information, and draft papers directly to LLNL. In particular, Kundig (1986) reviewed fabrication alternatives for copper containers by surveying manufacturing options and representative U.S. facilities.

On May 15, 1987, Mr. W. Stuart Lyman, Vice President of CDA, and Dr. Konrad Kundig, consultant to the CDA, visited B&W to discuss the project. Results of the meeting are described in Domain (1987).

Provided below are the CDA tasks and their resultant activities:

Task 1: Provide specific list of vendors and discussion of capabilities.

Result: The CDA prepared a document that was used for the B&W vendor surveys described in Section 4.3.

Task 2: Review B&W's evaluation criteria and provide documentation on the effects of fabrication on the three copper materials.

Result: CDA responded with two documents. One document was a draft report covering the effect of fabrication on the corrosion performance of the three copper materials. The other document contained CDA's rating of the copper materials with regard to failure mechanisms for welded components.

Task 3: Provide access to CDA's data base and previous copper reports.

Result: CDA provided B&W with a copy of a previous report on fabrication that was prepared for LLNL (Kundig, 1986). They also provided handbooks on standards for cast and wrought products.

CDA provided access to the CDA data base of copper literature that resides at Battelle. They demonstrated usage procedures to a B&W librarian for access by modem. Specific references are provided in Section 4.2.

Task 4: Provide miscellaneous consultation services to B&W.
Result: CDA handled miscellaneous telephone calls addressing questions on copper alloys, vendors, etc.

Task 5: Provide a list of vendors for welding cast copper.
Result: CDA prepared a document.

Task 6: Review draft of B&W final report for Phase 1.
Result: CDA reviewed the report with particular attention to any reference to copper-base materials.

CDA expressed the following opinions about the copper materials on LLNL's list:

1. CDA 102—CDA prefers to use CDA 122 (which is phosphorus deoxidized, high residual copper) because it has better weldability. This information was relayed to LLNL.
2. CDA 613—B&W pointed out that there is no ASME BPVC material specification for CDA 613, whereas CDA 614 is covered by ASME BPVC Specifications SB 150, SB 169, and SB 171 in Section II, "Materials Specifications," Part B—Nonferrous Material (1986 Edition). The compositions of the two alloys are very similar as shown in Table 4-12.

Table 4-12. Chemical composition of CDA 613 and CDA 614

	Cu (incl. Ag)	Pb Max	Fe	Sn	Zn Max	Al	Mn Max	Si Max	Ni+ Co Max	P Max
CDA 613	Bal	0.01	2.0- 3.0	0.25- 0.50	0.10	6.0- 7.5	0.20	0.10	0.15	0.015
CDA 614	Bal	0.01	1.5- 3.5	—	0.20	6.0- 8.0	0.10	—	—	0.015

CDA reported that the tin (Sn) added to CDA 613 is beneficial in increasing SCC resistance, and for that reason it is preferable to CDA 614. The other properties of CDA 613 are comparable to CDA 614, so if CDA 613 is selected, a code case should be prepared. Until then, B&W should use the properties of CDA 614 to represent CDA 613, when the properties of CDA 613 are unavailable.

4.5. Foreign Technology Review

Recognizing that various European concerns have active programs in waste package fabrication and closure, B&W visited with engineers from the United Kingdom, Sweden, and France. Tours of operating facilities and reviews of research work were conducted at several European sites. Although the European waste management programs differ in scope and approach from that of the U.S., valuable information was gained about their rationale and methodology for container fabrication and closure. Details were presented to LLNL via a trip report in the June 1987 monthly report from B&W. The summary of that report is reproduced below.

SPENT FUEL CONTAINER TRIP REPORT
JUNE 1987

SUMMARY

As part of B&W's work on the waste package fabrication and closure development contract for Lawrence Livermore National Lab (LLNL), a team of engineers was organized to meet with English, Swedish, and French nuclear waste specialists to learn what their respective states-of-the-art are. The English Central Electricity Generating Board (CEGB) was contacted on June 12. The meeting with the Swedish specialist (an SKB engineer) was held on June 15 and 16 in England to simultaneously involve the Welding Institute, which is performing the development work for the SKB. The French firm SGN coordinated our June 17, 18, and 19 meetings in France, which consisted of (1) a tour of La Hague (the French state-of-the-art processing and vitrification plant) and meeting with their canister welding engineers, (2) a meeting with SGN development and design engineers at their Paris office, and (3) a tour of Marcoule (their currently operating processing and vitrification plant) and meeting with their canister fabrication and welding specialists.

The CEGB information was helpful in terms of welding equipment and process development. The primary knowledge gained from the SKB meetings include information on their material selection process, development of a Hot Isostatic Press (HIP) process for encapsulation, research into different welding processes for copper, design of their waste package and expected fuel performance during storage. The information from SGN included a detailed review of their stainless steel canister designs (two different glass canisters and one waste canister), their canister welding technology (including qualifications and operating parameters), their general hot cell philosophy, their fuel handling procedures, and their shipping cask operations.

4.6. Overview of Evaluation Methodology

As previously discussed, the YMP is in the preliminary stages of defining performance requirements, design, material selection, etc. Because of this, and because of the large number of interrelationships between processing effects and the possible failure mechanisms in service, a simple weighing and criteria approach did not seem practical to rank the candidate processes. Therefore, B&W devised a rating system to attempt to account for these interrelationships. The resultant system is somewhat complicated and difficult to understand. This section will provide an overview of the system and preview the final result. Details of the system with specific equations, etc., are provided in Section 4.6.2.

Figure 4-7 shows an overview of the fabrication process evaluation criteria. B&W selected three major criteria to rate various manufacturing routines:

- Performance—how a container made by the process performs in service. The primary concern for long-term storage is localized corrosion.
- Fabricability—the consistency and reliability of the process in making a good product in terms of dimensions, surface finish, etc.
- Cost—estimated unit costs assuming a production quantity of 1500 units per year.

As Figure 4-7 shows, the performance criteria consist of 15 different microstructural features of a product with the importance of each feature determined by how it might impact a potential failure or degradation mode in service. These 14 failure modes were taken from the *LLNL Metal Barrier Draft Plan* (McCright, 1987). To assess the importance of the failure mode, each was rated for its likelihood and then the severity level if failure or degradation occurs. The details are described in Section 4.6.2.

Another important part of the performance criteria is microstructure produced by a process. Four types were taken into account: (1) welded, (2) welded and annealed, (3) welded, cold worked, and annealed, and (4) base metal. Each manufacturing process was rated for microstructural type and amount of each microstructural type. The rating process, then, places a large importance on the amount of weld metal because this area is considered most suspect in localized corrosion mechanisms. Therefore, from a performance standpoint, a rolled and welded container receives a lower mark than a seamless integral container with no welds.

The final output of the evaluation system, after suitable normalizations of data, is a rating grade from 0 to 100 (100 = best) for each primary criterion, material type, and process. For example, a rolled and welded lower unit of AISI 304L was graded 38 for performance, 80 for fabricability, and 87 for cost. An integral extrusion was rated 94, 79, and 60, respectively. Thus, the roll and weld had a relatively poor performance rating but a very good cost rating. Although B&W believes that performance is the most important criterion, we are not sure how much more important it is than fabricability or cost. Therefore, it was difficult to assign weights to each primary criterion. B&W was fully aware that the rolled and welded process may be more than adequate for the application, and that the poorer performance rating may be offset by the better cost rating. To attempt to allow for this, B&W chose to use a vector sum normalized to 100 as a preliminary method of combining the 3 primary criteria. A vector sum is the square root of the sum of the squares of each rating. In other words, a vector sum is really a 3-dimensional plot of each of the 3 criteria as illustrated in Figure 4-7.

This is one method of weighting the 3 criteria. As the program progresses, LLNL may revise or refine this method, or perhaps adopt a go-no go rationale for certain criteria, wherein one would choose the lowest cost option of those that met some minimum acceptance standards.

4.6.1. Description of Candidate Processes

From the activities described above, many container fabrication processes and combinations of processes were identified. In Section 3.3, the container was divided into four components: (1) handling pintle, (2) upper head, (3) body, and (4) lower head. The first two components are called the "upper unit" and the last two components the "lower unit," as shown in Figure 3-2. The schematic in Figure 3-3 shows some general approaches for fabricating the lower and upper units as integral one-piece components or as multiple-piece welded assemblies.

For complete information, many process options are listed in Figure 3-3. However, with the use of engineering judgement and practical experience, many processes can be discarded because of insufficient commercial experience, poor quality, or reliability problems. The following processes are excluded from further consideration for the reasons given below.

Sand Casting: General experience at B&W and in industry is that sand castings require extensive weld repairs, are difficult to obtain in high quality, and would pose a serious quality-control problem. By comparison, centrifugal castings are of higher quality and are viable for container components.

Brazing: Joining sections by brazing produces large compositional variations due to the dissimilar metal required for brazing. These variations could lead to galvanic corrosion.

Adhesive Bonding: Degradation of adhesives by radiation from the container contents and the long-term storage at elevated temperature are judged to be unacceptable.

HIP Encapsulation: This could present problems in the retrievability of the container contents. HIPing is performed at 500°C, which is above the maximum 350°C stipulated for the cladding. This temperature would be expected to degrade or rupture the cladding during HIPing. Inspection methods for the HIPed material have not been developed.

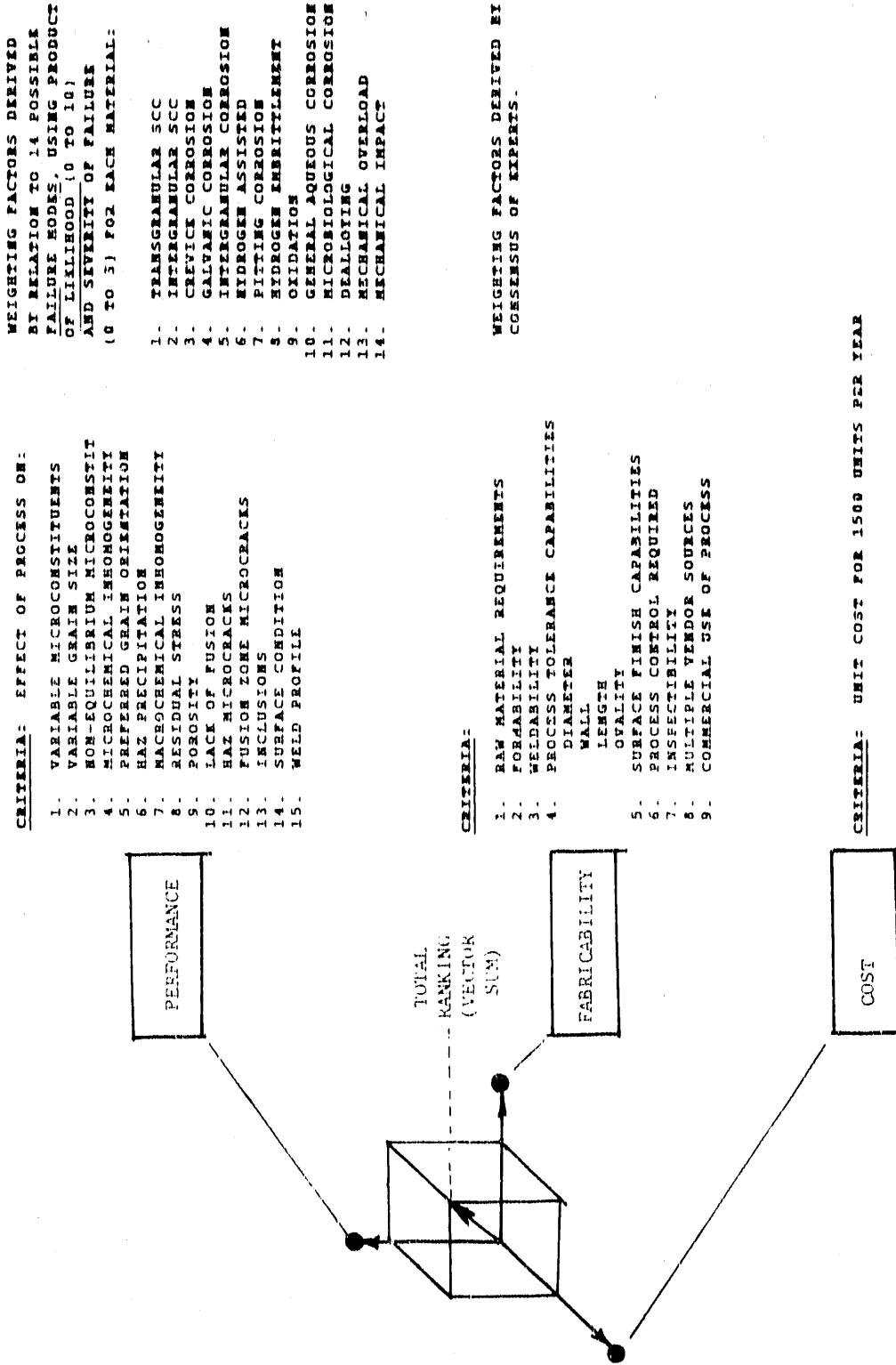


Figure 4-7. Overview of fabrication process evaluation criteria

The processes chosen for evaluation have all been used to make container-like components similar in shape but, in some cases, smaller in size. The processes and related container components are listed below.

- Roll and Weld
 - Welded body.
 - Welded body preform—heavier wall and shorter length.
- Extrusion
 - Integral lower unit—one end closed, hollow.
 - Integral lower unit preform—one end closed, hollow with heavier wall and shorter length.
 - Seamless body.
 - Seamless body preform.
- Deep Drawn
 - Integral lower unit.
 - Integral lower unit preform.
 - Welded lower unit—two half-length one-end-closed hollows; cut end from one for top head and weld remaining cylinder to other piece for lower unit.
 - Heads.
- Centrifugal Casting
 - Seamless body.
 - Seamless body preform.
 - Heads.
- Spinning
 - Integral lower unit preform.
 - Heads.
- Roll Extrusion
 - Convert lower unit preform or body preform to finish size.

These processes are used alone or in combination as described in Section 4.6.2. A brief description of each process follows.

Roll and Weld

The roll and weld process starts with flat rolled plate. The length and thickness of the plate are the same as for the container. The plate width matches the body circumference, allowing for any stretching that may occur in bending.

A three-roll initial pinch bender is shown in Figure 4-8. In this machine, the top roll center is fixed and the roll is undriven or idle. The vertical gap between the pinch and top rolls is set to the plate thickness. The back roll is adjusted to obtain the desired bend radius. The roll bending concerns include obtaining a straight unbent edge at the long seam and good edge match-up over the length of the cylinder for welding. The 15-ft cylinder length may make fit-up more of a problem than with shorter lengths. Depending on the geometric requirements, the plate edges may be pre-bent using a die and pressing beam. The edge fit-up can be handled with fixturing to pull the edges together for the welding (Kundig, 1986). Roll and weld is a common process used for pipe fabrication. Welding and inspection techniques to meet the anticipated container requirements are in place. Many fabricators should be able to meet the requirements.

Extrusion

The Cameron Forge (Houston, Texas) processes for blocking (upsetting and pliering) and tube extrusion are illustrated in Figures 4-9 and 4-10 which are taken from Cameron literature. In the blocking

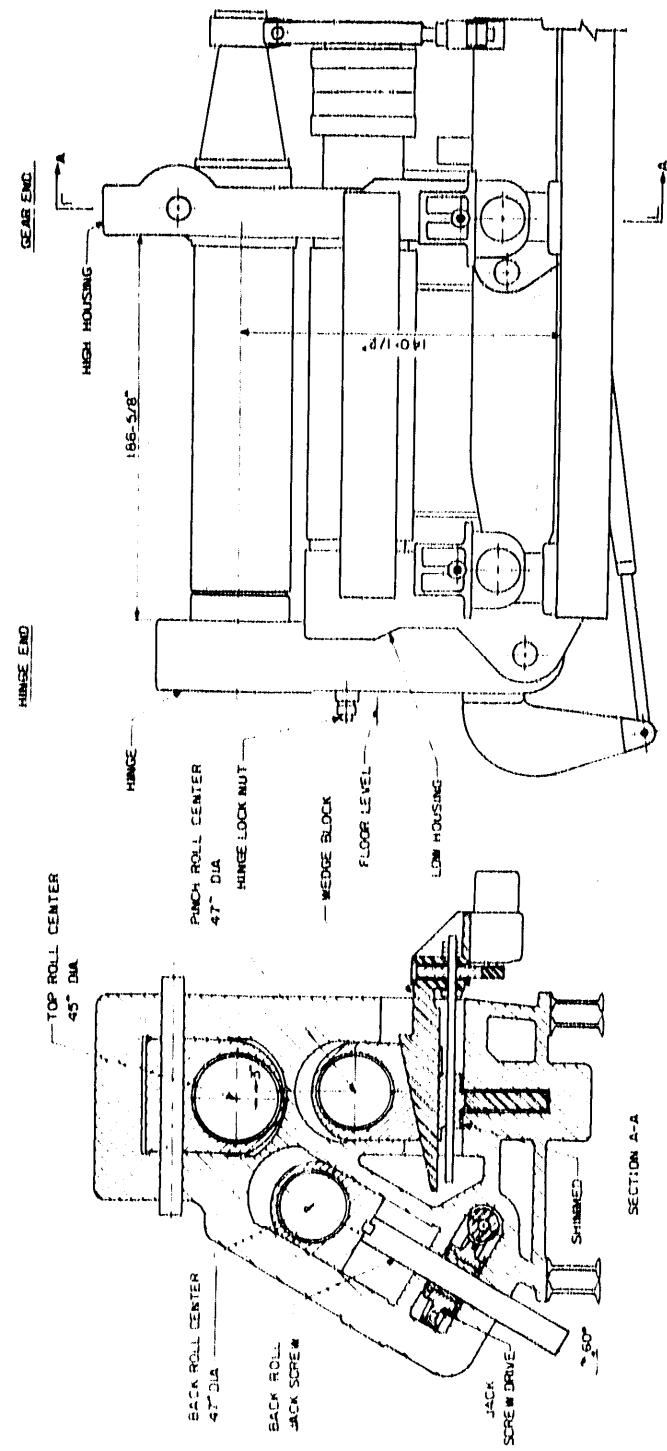


Figure 4-8. Three-roll initial pinch bender

Cameron

Seamless Extruded Pipe

Blocking Sequence

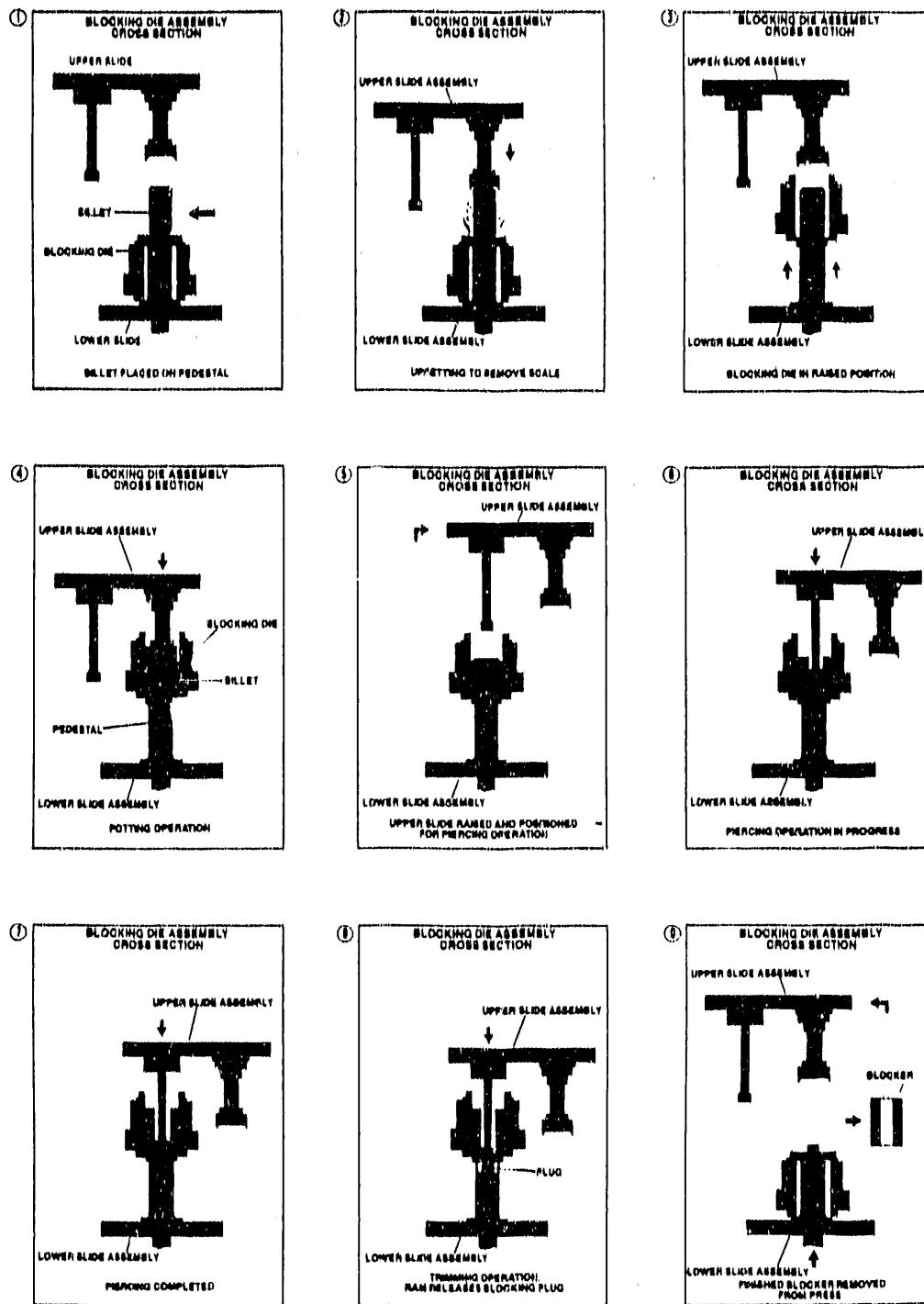


Figure 4-9. Cameron Forge blocking sequence

Cameron

Seamless Extruded Pipe

Extrusion Sequence

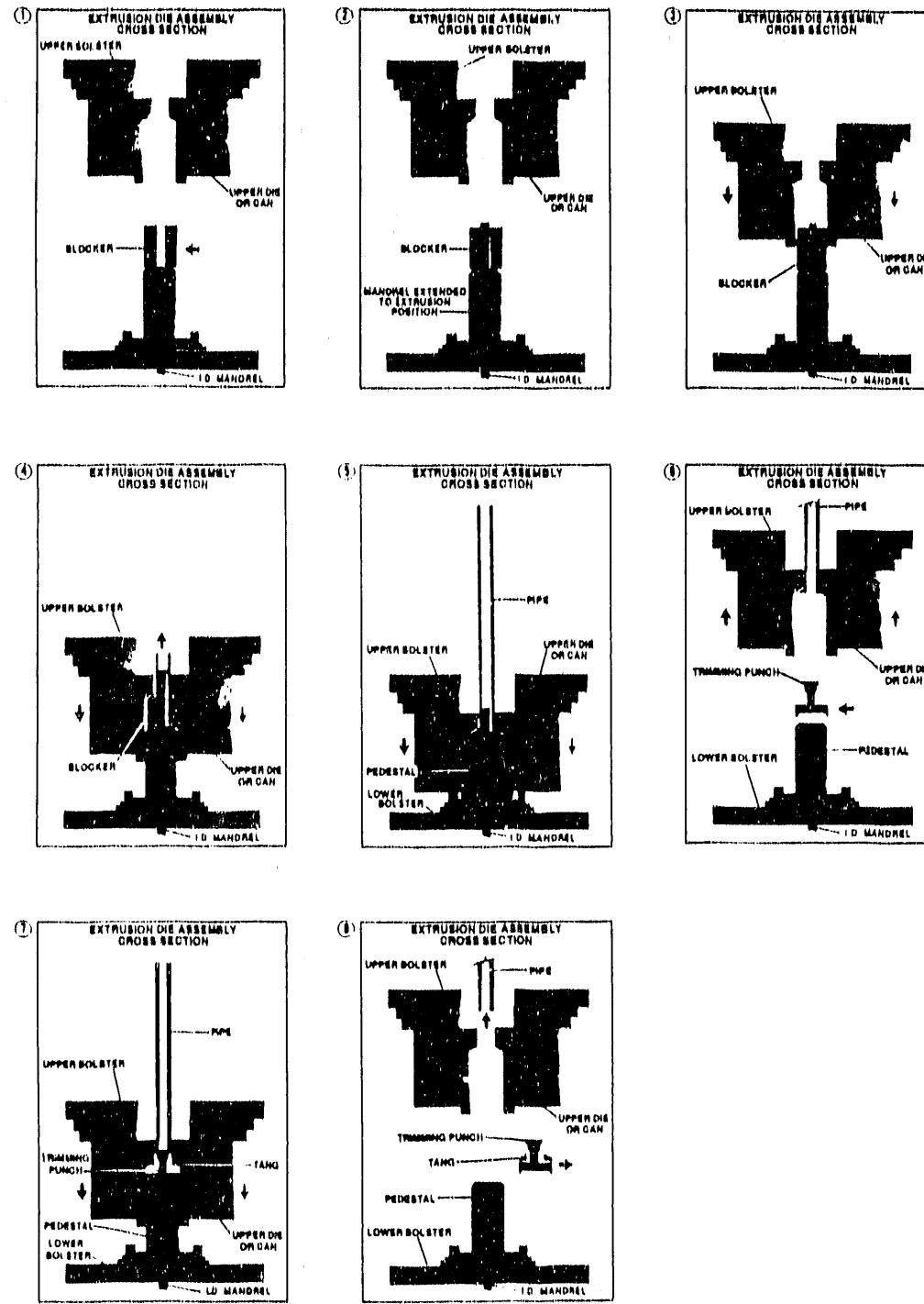


Figure 4-10. Cameron Forge extrusion sequence

sequence, Plates 1 and 2 of Figure 4-9 show upsetting the billet to remove scale, Plates 3 and 4 show the potting operation (upsetting the billet in a closed die to size the diameter), and Plates 5, 6, and 7 show piercing of the center hole or back extrusion. Plate 8 shows the end plug being sheared from the blocker and Plate 9 shows stripping the die from the blocker. For piercing a closed-end billet, the piercing operation (Plate 8) is stopped to leave the desired bottom or end thickness.

The next figure (Figure 4-10) shows the extrusion sequence. Plates 1, 2, and 3 show placing the blocker on the pedestal, raising the mandrel through the blocker, and lowering the extrusion container and die over the blocker. Extrusion is shown in Plates 4 and 5. The upper die is forced down over the pedestal causing the tube to be extruded upward through the annular space between the mandrel and the die. Not all of the blocker can be extruded. The discard is sheared from the tube by the trimming punch as shown in Plates 6 and 7. The pipe is removed, the upper die lifted, and the trimming punch removed as shown in Plate 8.

For extruding pipe with one end closed (blind end), the mandrel (Plate 2) is inserted in the closed-end blocker. At the start of extrusion, the mandrel may be below the die. The extrusion orifice (minimum annular space between mandrel and die) starts large, reduces until the mandrel enters the die, and then remains constant. The closed end is extruded under these non-steady-state conditions. The blocker may be preformed to assist the extrusion start-up.

Deep Drawing

Deep drawing is used to make axisymmetric parts from sheet or plate material (ASM, 1969). Typically, the starting material is a disk of diameter much greater than the thickness. The blank is placed over a circular die hole (Figure 4-11). The holddown ring prevents the blank edges from dashing upward. The punch pushes the blank through the die to form a cup. In the first draw or cupping operation, a 40% reduction in diameter (40-in.-diam blank to 26-in.-diam cup) from blank to cup is typical. The wall thickness generally increases at the edge of the blank due to the radially inward flow. With no wall reduction or ironing from the tooling, and minimal friction, the 40% reduction in diameter (43% logarithmic strain) would cause the edge wall to increase about 21.5%. Also at the edge of the blank, the radial distance between the edge and a circle scribed on the blank near the edge would increase by 21.5% when measured on the cup. With tool friction (die and holddown ring), the wall thickness increase would be less and the edge stretch or elongation more. For deep drawing the container (depth of draw 7 diameters), many draw operations are required depending on the material grade. A part with similar depth-to-diameter ratio is depicted as "Example 265" in Figure 4-12 (ASM, 1969). The 8-in. OD \times 0.150-in. wall \times 62-in. long piece is one-third the container size. Six drawing operations were required. The material was hot rolled carbon steel, which is easy to work and easy to lubricate.

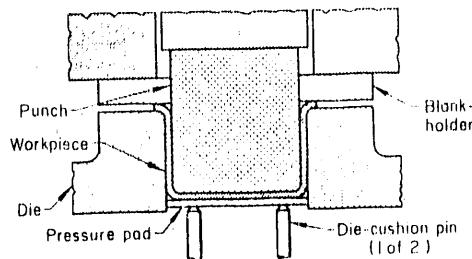


Figure 4-11. Deep drawing of cup (reprinted from ASM, 1969)

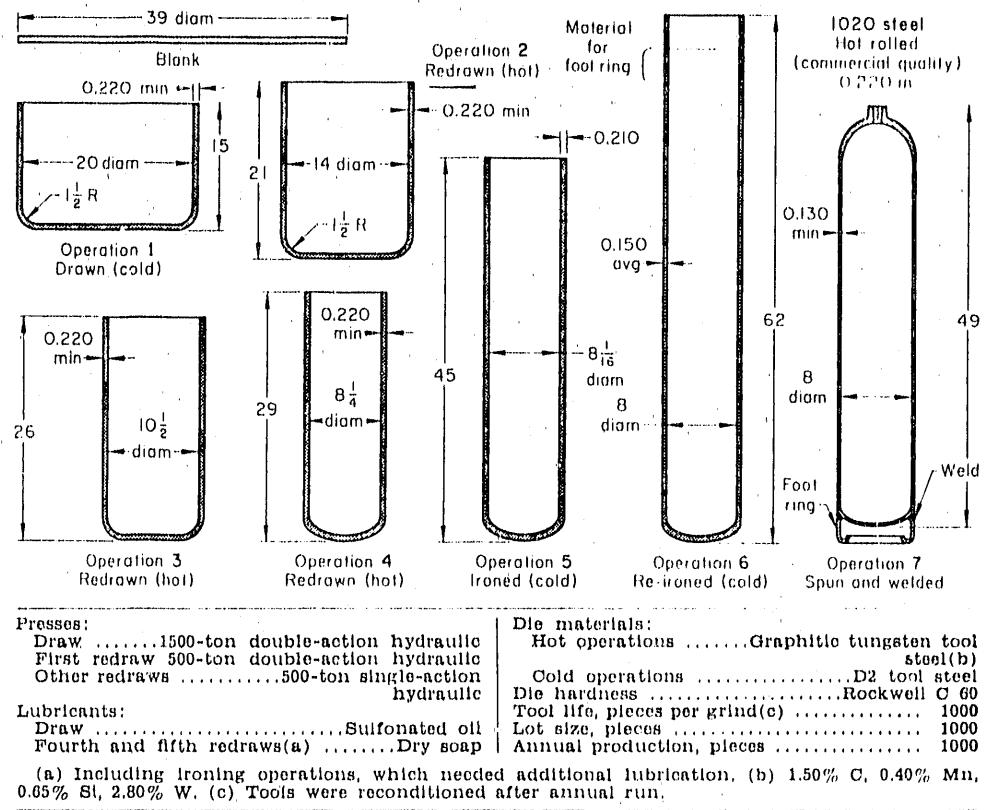


Fig. 66. Cylinder (for chlorine gas) that was produced from one blank (Example 265)

Figure 4-12. Deep drawing sequences for making gas cylinders (reprinted from ASM, 1969)

Austenitic stainless relative to carbon steel will require about double the force, slower ram speeds, and more between-draw anneals.

Deep drawing requires relatively expensive tooling and is a high volume production technique. The tool cost-per-piece depends on the production volume.

Centrifugal Casting

In the centrifugal casting process, liquid metal is poured into a rotating mold (vertical or horizontal). Most parts are bodies of revolution, however, only axisymmetry is required for balance. The centrifugal force (65 to 100 g—Medley and Quinn, 1987) holds the metal against the mold wall. Solidification is from the mold wall inward as illustrated in Figure 4-13 from Medley and Quinn (1987).

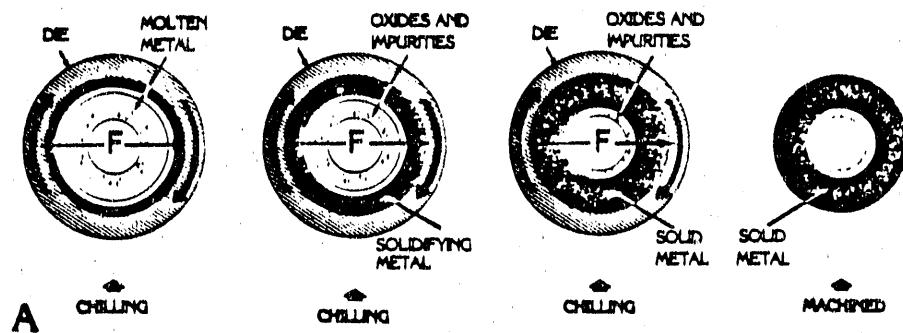


Figure 4-13. Centrifugal casting events (reprinted from Medley and Quinn, 1987)

The lower density oxides and impurities are displaced toward the ID by the higher density liquid metal. As the metal freezes at the mold wall, metal contraction occurs in sequence from cooling liquid, solidification, and cooling solid. The central core of liquid metal forced to the outside provides liquid metal to compensate for the volume change and eliminate void formation. The following summary of advantages for centrifugal casting is from Medley and Quinn (1987).

- High degree of soundness and cleanliness.
- Dense homogeneous structure.
- Uniform strength at all points in all directions.
- Freedom from porosity.
- No directional or center weakness.
- Versatility of shape.

Centrifugal castings of the diameter and length required for the nuclear-waste container are common. The reference 0.375-in. container wall is small relative to typical centrifugal castings, and a double, or slightly heavier, wall might be more economical (less machining). Shorter, heavier wall preforms for subsequent working will not be a problem.

Spinning

Spinning forms bodies of revolution from initially flat disks (Figure 4-14). The start blank (disk) is cut from sheet (plate). The blank is clamped to the form. The spinning roller is positioned and the blank rotated. The spinning roller follows the Figure 4-14 automatic spinning contour set by the tracer. The figure shows several intermediate contours. In this free-spinning process, the blank thickness is not reduced. Blank dimensions were estimated for the container based on part volume (26-in. OD \times 0.396-in. wall \times 180-in. long, bottom thickness equals blank thickness) as follows:

Blank Size (in.)		Cup Size (in.)		
Thickness	Diameter	OD	Wall	Length
1.188	85	26	1.188	66
1.500	77	26	1.500	55
2.000	68	26	2.000	50

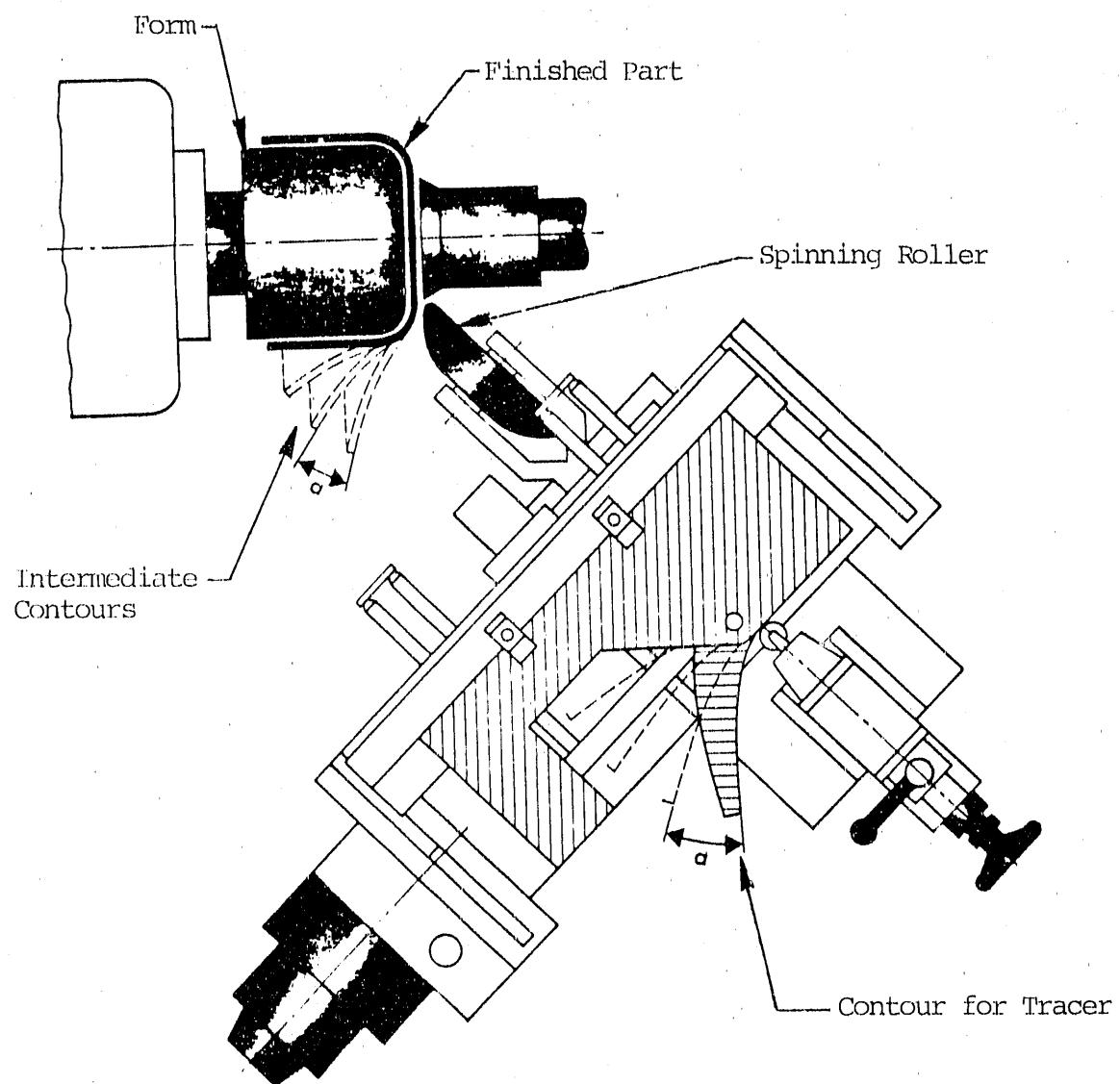


Figure 4-14. Automatic spinning

For cups, the corner radius should be 1 to 1.5 times the blank thickness. The cup made by spinning can then be elongated by roll extrusion (discussed elsewhere) or flow turning. In flow turning, the cup wall thickness is reduced between a mandrel and external roll. In flow turning, the external roll does not encircle the work piece. The roll center is outside of the work piece.

Advantages of spinning include simple start material (sheet or plate) and simplified tooling relative to press forming. The relative tooling expense is sensitive to the part volume—savings are more significant at lower volumes. Typical spun parts are smaller and lighter than the nuclear waste container preform cups.

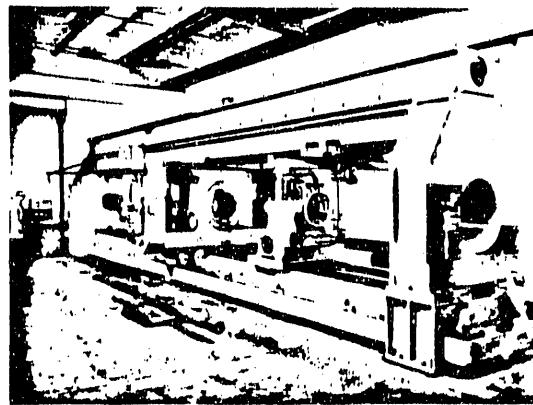
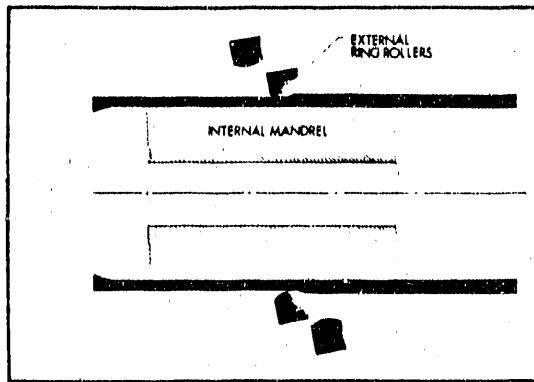
External Roll Extrusion

The external roll extrusion process was developed by Rollmet (now Kaiser-Rollmet). The process is shown schematically in Figure 4-15. The mandrel is placed inside the tube hollow. The external ring rollers encircle the tube and mandrel. The tube wall is reduced between the roller and mandrel. The tube ID remains nearly constant. The external ring roller centerlines are offset and skewed with respect to the tube axis. The offset causes one ring roller to work the tube on one side of the mandrel and the other roller to work the opposite side. By skewing the axis relative to the tube centerline, the external ring roller contact points are on opposite sides of the tube at the same axial position. This arrangement balances the forces in the horizontal plane. The process is used for precise cylindrical components—high diameter-to-wall ratios (over 15) and precise wall tolerances. The diameter-to-wall ratio for the reference container is 65 to 1. The container geometry is well-suited for the roll extrusion process. Diameter-to-wall ratios greater than 15 are difficult to make with good wall tolerances using primary seamless manufacturing processes such as extrusion. Thus, roll extrusion with a primary seamless process may be a good combination.

Roll extrusion of long seam-welded cylinders requires the highest level of weld integrity to withstand the required deformations. As such, the process is a test of weld integrity.

Roll extrusion of a girth weld apparently has not been attempted. Again, a high level of weld integrity would appear to be necessary. Working of the welds is desired to break up the weld microstructure and reduce susceptibility to nonuniform corrosion.

4.6.2. Evaluation Criteria and Methodology



Methodology

To aid in evaluating alternate fabrication methods for the YMP waste containers, three primary criteria were identified:

- Performance—how the proposed fabrication method impacts performance. The primary concern for long-term waste containment is nonuniform corrosion.
- Fabricability—what the fabrication process requires of the starting material (formability, weldability), whether the process meets dimensional requirements (tolerances, surface finish), and whether the process is used commercially.
- Cost—estimated unit costs assuming a production quantity of 1500 units per year.

A process ranking is calculated numerically by considering the product and the process. With respect to each primary criterion (performance, fabrication and cost), a list of product criteria, features, or characteristics is made. A numerical value is assigned to the product criterion based on the relative importance of the feature—the more important the feature, the higher the numerical value.

EXTERNAL ROLL EXTRUSION

The process starts with a forged cup, ring blank, or right cylinder (pipe, extrusion, etc.). External pressure rollers work the metal from the outside, with or without an internal mandrel, as the blank increases in length.

Dimensional control and special contours can be obtained through tape programming, using one or more passes as required to produce the final form.

MATERIALS

ROLLMET shapes are available in many materials.

MARAGING STEEL	ALUMINUM
TITANIUM	ALLOY STEEL
STAINLESS	NICKEL BASE ALLOYS
COPPER	REFRACTORY METALS
BERYLIUM	

Additional metals and alloys will be provided as development work progresses. Materials for certain shapes can be either cold or hot rolled.

FEATURES

Completely seamless
Eliminates welding
Rolled weldments have enhanced properties
Accurate sizing

Very thin walls available
Superior surface finish
Variety of starting blanks can be utilized
Maximum material economy

Meets the requirements in such demanding applications as seamless, collapsible storage containers.

APPLICATION

ROLLMET applies wherever the requirement is for high performance, precision cylindrical structural components, especially where welding is undesirable for design or economic reasons. Material and tooling costs are reduced, and subsequent machining is minimized. Typical examples of current applications include components for missiles, chemical process plants, seamless preform sections, gas turbines, aircraft, ordnance, nuclear, commercial, marine and electronic equipment.

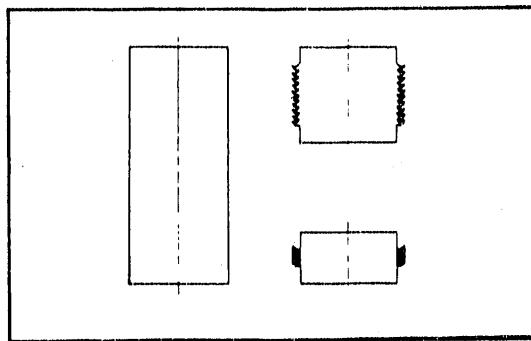


Figure 4-15. Rollmet's external roll extrusion

In the current project, the product features are cast in a negative context (i.e., they represent potential problems). In rating the ability of each process to influence the product features, a process criteria value is assigned between 0 and 5, where 0 indicates that the process eliminates potential problems associated with a particular product feature (e.g., annealing eliminates residual stress as a performance concern) and 5 denotes that the process exacerbates a problem.

A process index value is calculated as the sum of the products of the product criteria values and the process criteria values. In equation form,

$$IV = \sum_{I=1}^N PROD(I) \times PROC(I)$$

where IV = index value;
 N = number of product criteria;
 $PROD(I)$ = product criterion value, relative importance of the product feature;
 $PROC(I)$ = process criterion value, influence of the process on the product "0" denotes that the process eliminates problems associated with the product criterion.

After the index values are calculated for each process, they are normalized as follows:

$$NORM = \left(1 - \frac{IV}{IVMAX} \right) \times 100$$

where $NORM$ = normalized value,
 IV = index value,
 $IVMAX$ = maximum index value (5 times the sum of the product criteria values).

Thus, when $IV = 0$, $NORM = 100$, and this is the perfect process.

When $IV = IVMAX$, $NORM = 0$, and this is the worst possible process.

Index and normalized values are calculated for performance, fabrication, and cost. Over the course of the project, various methods of weighing the criteria for deriving an overall ranking were considered. Because the rankings of processes for performance and cost may be related—good performance ranking and poor cost ranking or vice versa—an arbitrary weighting system could be used to skew the results in either direction.

Thus, each criterion is evaluated separately and may be combined with emphasis placed on the three primary criteria as desired. Overall rankings for performance and fabrication and for all three criteria are given as vector sums (square root of sum of squares) for the normalized values of the criteria. The combined rankings are normalized to 100 by dividing by the square root of 2 for summing two criteria and by the square root of 3 for summing three criteria.

The ranking procedure for each of the primary criteria—performance, fabrication, and cost—is discussed separately.

Processes

The processes being considered are described next and numbered.

Upper Head (Processes UH-01 to UH-08)

The upper head (UH) includes both the head and the handling pintle. The fabrication processes are:

	<u>Pintle</u>	<u>Upper Head</u>
UH-01	Machined	Forged
UH-02	Machined	Spun
UH-03	Machined	Deep drawn
UH-04	Machined	Centrifugally cast
UH-05	Machined	Machined
UH-06	Integral	Forged
UH-07	Integral	Centrifugally cast
UH-08	Integral	Machined

Processes UH-04 and UH-07 use centrifugally cast components and would use the cast form of the alloys being considered where available. The alloys without cast equivalents are considered to be unavailable as centrifugal castings.

Processes UH-01 to UH-05, machined pintle welded to the head, all require weldability and inspectability. The integral processes, UH-06 to UH-08, do not require welding during fabrication. The closure weld is covered under a separate project.

Lower Unit (Processes LU-01 to LU-43)

The lower unit (LU) consists of the lower head and the cylindrical body section. Processes LU-01 to LU-03 are an integral body and lower head, and have no welds. The remaining 40 processes all have a girth weld joining the body and lower head.

Processes LU-04 to LU-23 represent 4 methods of body manufacture, and 5 methods of head manufacture (20 combinations).

Processes LU-24 to LU-43 represent the same body and head manufacturing methods as LU-04 to LU-23, followed by cold working of the body including the girth weld.

For all processes, the component is final annealed to eliminate residual stresses and sensitization. The processes are enumerated below.

Integral Body and Lower Head

- LU-01 Extruded Closed-End Cylinder
- LU-02 Extruded Closed-End Cylinder and Cold Worked Body
- LU-03 Deep Drawn Closed-End Cylinder

Welded Lower Unit

	<u>Body</u>	<u>Lower Head</u>	<u>Remarks</u>
LU-04	BO1 Roll and Weld	LH-01 Forged	
LU-05		LH-02 Spun	
LU-06		LH-03 Deep Drawn	
LU-07		LH-04 Centrifugally Cast	NA1
LU-08		LH-05 Machined	

Welded Lower Unit (cont'd)

	<u>Body</u>		<u>Lower Head</u>	<u>Remarks</u>
LU-09	BO2 Extruded	LH-01	Forged	
LU-10		LH-02	Spun	
LU-11		LH-03	Deep Drawn	
LU-12		LH-04	Centrifugally Cast	NA1
LU-13		LH-05	Machined	
LU-14	BO3 Deep Drawn	LH-01	Forged	NA2
LU-15		LH-02	Spun	NA2
LU-16		LH-03	Deep Drawn	
LU-17		LH-04	Centrifugally Cast	NA1,2
LU-18		LH-05	Machined	NA2
LU-19	BO4 Centrifugally Cast	LH-01	Forged	
LU-20		LH-02	Spun	
LU-21		LH-03	Deep Drawn	
LU-22		LH-04	Centrifugally Cast	
LU-23		LH-05	Machined	

Welded Lower Unit—Cold Work Body and Girth Weld

	<u>Body</u>		<u>Lower Head</u>	<u>Remarks</u>
LU-24	BO1 Roll and Weld—Cold Work after Welding	LH-01	Forged	
LU-25		LH-02	Spun	
LU-26		LH-03	Deep Drawn	
LU-27		LH-04	Centrifugally Cast	NA1
LU-28		LH-05	Machined	
LU-29	BO2 Extruded—Cold Work after Welding	LH-01	Forged	
LU-30		LH-02	Spun	
LU-31		LH-03	Deep Drawn	
LU-32		LH-04	Centrifugally Cast	NA1
LU-33		LH-05	Machined	
LU-34	BO3 Deep Drawn—Cold Work after Welding	LH-01	Forged	NA2
LU-35		LH-02	Spun	NA2
LU-36		LH-03	Deep Drawn	
LU-37		LH-04	Centrifugally Cast	NA1,2
LU-38		LH-05	Machined	NA2
LU-39	BO4 Centrifugally Cast—Cold Work after Welding	LH-01	Forged	
LU-40		LH-02	Spun	
LU-41		LH-03	Deep Drawn	
LU-42		LH-04	Centrifugally Cast	
LU-43		LH-05	Machined	

NA1 Centrifugally cast head not allowed with forged body.

NA2 Deep drawn body produces the heads as part of the process. Alternate head forming may be used if configuration of the head cannot be met by deep drawing.

Performance Criteria

The performance requirements are based primarily on the expected effects of welds on possible degradation modes given in the *LLNL Metal Barrier Draft Plan* (McCright, 1987). Experience has shown that, in cases of localized corrosion, welds are more susceptible to failure than base metal because of the inhomogeneities of their composition, microstructure, and stresses. Compared to the welds, the base metal degradation modes are substantially reduced and of lesser importance. For this reason, the number of welds in the container is to be limited to a maximum of a single attachment weld, a longitudinal seam weld in the body, and a girth weld attaching the bottom head to the body. Since the base metal corrosion resistance is expected to be so much better than that of the weld metal, a seamless construction is preferred. However, it is not known if a nonwelded fabrication and the concomitant higher costs are necessary.

The performance product criteria values are identical to those developed in the Closure Project. The tables and a brief explanation of the methodology are given. The process is fully described in the Closure Development Report.

The product criteria are the "Summation of the Weighted Material and Process Consideration Factors" for the Closure Development Report. They are developed from the possible degradation or failure modes given in the *LLNL Metal Barrier Draft Plan* (McCright, 1987).

Fourteen potential failure mechanisms are listed in Table 4-13. For each alloy material, the 14 failure mechanisms are assigned numerical values for likelihood of occurrence ($L = 0-10$) and for severity of occurrence ($S = 0-3$). For example, the transgranular SCC failure mechanism of the AISI 304L and CF3 alloys is assigned a 5 for likelihood of occurrence and a 3 for severity of occurrence. The cracking is considered to be severe because it is a localized attack and is difficult to allow for in the container design. As another example, the oxidation failure mechanism is likely to occur ($L = 10$), but the severity is low ($S = 0.5$) because it is easily allowed for in the container design. Multiplying the likelihood factor (L) by the severity factor (S) gives us the weighting factor (W) for each failure mechanism. The weighting factor indicates the mechanism's relative importance—the higher the number the greater the concern with the failure mechanism. For the AISI 304L and CF3 alloys, the transgranular SCC and oxidation weighting factors are 15 and 5, respectively. The table shows that the weighting factors for those particular alloys fall between the extreme value of 18 for intergranular SCC and 0.9 for galvanic corrosion.

A material index may be calculated as the sum of the weighting factors. A higher numerical value implies a greater concern for failure of a particular material. It was not the intent of the current projects (Fabrication and Closure) to compare materials. The numbers were assigned independently for each material and were not specifically evaluated relative to the other materials. Any subsequent differences in performance ratings among material grades are based on the values in Table 4-13.

Table 4-13. Failure mechanism weighting factors

SCC = Stress corrosion cracking
 L = Likelihood of occurrence (0-10)
 S = Severity of occurrence (0-3)
 S = Sighting factor ($S = L \cdot S'$)

Product Criteria

The next step is to identify product criteria or features that relate to the failure mechanisms. The failure mechanisms and product criteria are listed below.

<u>Failure Mechanisms</u>	<u>Product Criteria</u>
Transgranular SCC	Variable Microconstituents
Intergranular SCC	Variable Grain Size
Crevice Corrosion	Nonequilibrium Microconstituents
Galvanic Corrosion	Microchemical Inhomogeneity
Intergranular Corrosion	Preferred Grain Orientation
HAC	HAZ Precipitation
Pitting Corrosion	Macrochemical Inhomogeneity
Hydrogen Embrittlement	Residual Stress
Oxidation	Porosity
General Aqueous Corrosion	Lack of Fusion
Microbiological Corrosion	HAZ Microcracks
Dealloying	Fusion Zone Microcracks
Mechanical Overload	Inclusions
Mechanical Impact	Surface Condition
	Weld Profile

As noted previously, the methodology developed in the Closure Development Report is being used. The failure mechanisms are negative in context as are the product criteria. The product criteria are oriented to a welded microstructure.

For each failure mechanism, numerical values or weightings are assigned to each product criterion. These weightings are normalized to 10 in the Closure Development Report. The normalized values for AISI 304L/CF3 for transgranular and intergranular SCC are listed below.

<u>Product Criteria</u>	<u>Transgranular SCC</u>	<u>Intergranular SCC</u>		
	Normalized Weighting to 10	Factor 15	Normalized Weighting to 10	Factor 18
Variable Microconstituents	1.47	22.05	1.36	24.48
Variable Grain Size	0.18	2.70	0.34	6.12
Nonequilibrium Microconstituents	0.74	11.10	0.68	12.24
Microchemical Inhomogeneity	1.65	24.75	1.53	27.54
Preferred Grain Orientation	0.07	1.05	0.68	12.24
HAZ Precipitation	1.47	22.05	1.36	24.48
Macrochemical Inhomogeneity	0.74	11.10	0.68	12.24
Residual Stress	1.84	27.60	1.69	30.42
Porosity	0.18	2.70	0.17	3.06
Lack of Fusion	0.37	5.55	0.34	6.12
HAZ Microcracks	0.37	5.55	0.34	6.12
Fusion Zone Microcracks	0.37	5.55	0.34	6.12
Inclusions	0.18	2.70	0.17	3.06
Surface Condition	0.18	2.70	0.17	3.06
Weld Profile	0.18	2.70	0.17	3.06
	10.00	150.00	10.00	180.00

The normalized values may be thought of as a partition function distributing susceptibility to the failure mechanism among the product criteria. Thus, susceptibility to transgranular SCC is associated primarily with:

	<u>Normalized</u>	<u>As a Percentage</u>
Variable Microconstituents	1.47	14.7
Microchemical Inhomogeneity	1.65	16.5
HAZ Precipitation	1.47	14.7
Residual Stress	1.84	18.4
		64.3

These four product criteria account for more than half the susceptibility of the material to transgranular SCC.

Also shown are the values for intergranular SCC. The same four product criteria are again most important. Multiply the normalized product criteria by the weighting factor for the failure mechanism to obtain a value for each combination of product criterion and failure mechanism. Product criterion values are summed for all failure mechanisms to obtain the product criteria. The product criterion failure mechanism array for AISI 304L/CF3 is given in Table 4-14. (Note: Figures 5-1 through 5-6 in Section 5 contain summary tables for all materials, and detailed tables for AISI 304L/CF3.)

For each failure mechanism, the first row gives the normalized value for each product criterion, which summed across the page has a value of 10. The second row gives the product of the weighting factor from Table 4-13 and the normalized criterion value. By summing vertically, we obtain the unweighted summation and the product criterion values (weighted summation). This establishes the relative importance of each product criterion relative to all failure mechanisms for each material. For AISI 304L/CF3 the product criteria values greater than 100 are:

<u>Product Criterion</u>	<u>Value</u>
Variable Microconstituents	122.70
Nonequilibrium Microconstituents	100.83
Macrochemical Inhomogeneity	158.06
HAZ Precipitation	130.23
	511.82

These four product criteria account for nearly half the susceptibility to failure by the mechanisms listed and would, therefore, be of primary concern in considering how the fabrication process affects them.

The performance product criterion values for all container materials are shown in Table 4-15. Differences in the respective product criteria sums are due solely to differences in the weighting factors given in Table 4-13. The sum of the product criteria is 10 times the material index from Table 4-13.

Process Criteria

The process criterion values represent the ability of the processing to affect the product criteria. As the product criteria are cast in a negative context, the process criteria are assigned values from 0 to 5, with 0 being the best. A "0" indicates that the process eliminates any deleterious effects associated with the product criterion.

Table 4-14. Product criterion failure mechanism array for AISI 304L/CF3

		PRODUCT CRITERIA		NORMALIZED AND WEIGHTED VALUES					
		NON-EQUILIBRIUM MICROCONSTITUENTS	PREFERRED MICROGRAIN ORIENTATION	MACROCHEMICAL INHOMOGENEITY		POROSITY	HAZ MICROCRACKS	INCLUSIONS	WELD PROFILE
MATERIAL & PROCESS CONSIDERATION FACTORS (UNWEIGHTED/WEIGHTED)	VARIABLE	VARIABLE	VARIABLE	HAZ PRECIPITATION	RESIDUAL STRESS	LAZ OF FUSION	FUSION ZONE MICROCRACKS	SURFACE CONDITION	
Transgranular SCC Weight fctr = 15.00	1.47 22.05	0.18 2.70	0.74 11.10	1.65 24.75	0.47 1.05	1.47 22.05	1.84 11.10	0.16 27.60	0.37 2.70
Intergranular SCC Weight fctr = 18.00	1.36 24.48	0.34 6.12	0.68 12.24	1.53 27.54	0.66 12.24	1.36 24.48	0.68 12.24	0.17 3.06	0.34 6.12
Crevice corrosion Weight fctr = 16.00	0.72 11.52	0.24 3.84	0.96 15.36	1.08 17.26	0.36 5.76	0.72 11.52	0.36 5.76	0.12 1.92	1.20 19.20
Galvanic corrosion Weight fctr = 0.90	0.90 0.81	0.18 0.16	0.90 0.81	0.18 0.81	0.90 0.16	1.20 1.08	2.99 2.69	0.18 0.16	0.30 0.27
Intergranular corrosion Weight fctr = 14.00	0.92 12.68	1.19 15.40	0.92 12.88	1.28 17.92	0.73 10.22	1.83 25.62	0.73 10.22	0.55 7.70	0.37 5.18
Hydrogen assisted cracking Weight fctr = 1.50	0.75 1.13	0.30 0.45	0.75 1.13	1.05 1.57	0.30 0.45	0.75 1.13	0.60 0.90	0.30 2.25	0.75 0.45
Pitting corrosion Weight fctr = 14.00	0.85 11.50	0.49 6.86	0.61 6.54	1.21 16.94	0.36 5.04	0.73 13.22	0.49 6.86	0.24 3.36	0.97 13.58
Hydrogen embrittlement Weight fctr = 1.50	1.41 2.12	0.35 0.52	1.06 1.59	1.24 1.86	0.35 0.52	0.88 1.32	0.71 1.06	1.77 2.65	0.35 0.52
Oxidation Weight fctr = 5.00	1.11 5.55	0.37 1.85	0.74 3.70	0.37 1.85	0.37 1.85	1.48 7.40	2.22 11.10	0.15 0.75	0.15 0.75
General aqueous corrosion Weight fctr = 10.00	1.38 13.80	0.34 3.40	0.69 6.90	1.38 13.80	0.34 3.40	0.59 6.90	2.07 20.70	0.24 1.40	0.14 1.40
Microbiological corrosion Weight fctr = 15.00	0.91 13.65	0.23 3.45	1.82 27.30	2.05 30.75	0.23 3.45	1.14 17.10	0.45 6.75	0.09 1.35	0.45 6.75
Dealingassing Weight fctr = 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00
Mechanical overload Weight fctr = 1.00	1.53 1.53	1.22 1.22	0.61 0.61	0.61 0.92	0.92 0.92	0.76 0.76	0.76 0.76	0.51 0.51	0.51 0.51
UNWEIGHTED SUMMATION PRODUCT CRITERIA (WEIGHTED SUMMATION)	14.66 12.70	6.37 47.31	10.63 106.83	15.24 156.06	5.67 45.85	13.66 150.23	13.45 90.80	9.55 30.85	7.51 49.32

Table 4-15. Performance product criteria values for candidate container alloys

Product criteria	MATERIAL GRADES								CD1964
	304L	CF3	316L	CF3M	1NB25	CDA122	CDA613	CDA952	
Variable microconstituents	122.7	122.7	104.5	104.5	33.3	54.8	72.8	75.0	75.0
Variable grain size	47.0	47.0	51.7	51.7	32.4	16.8	19.7	16.0	16.0
Non-equilibrium microconstituents	100.8	100.8	69.3	69.3	21.5	39.4	55.6	54.7	54.7
Microchemical inhomogeneity	158.1	158.1	144.4	144.4	70.5	57.0	81.0	76.2	76.2
Preferred grain orientation	45.8	45.8	50.9	50.9	28.4	15.4	19.2	16.2	15.2
Haz precipitation	130.2	130.2	118.1	118.1	67.1	38.3	62.2	59.1	59.1
Macrochemical inhomogeneity	90.8	90.8	94.3	94.3	68.3	67.4	99.1	97.2	97.2
Residual stress	80.8	80.8	71.6	71.6	21.9	15.0	29.8	21.5	21.5
Porosity	49.3	49.3	47.8	47.8	26.2	14.0	20.3	18.0	18.0
Lack of fusion	62.1	62.1	59.1	59.1	30.7	19.1	26.0	23.8	23.8
Haz microcracks	62.8	62.8	59.5	59.5	31.5	19.7	26.6	24.5	24.5
Fusion zone microcracks	62.8	62.8	59.5	59.5	31.5	19.7	26.6	24.5	24.5
Inclusions	51.7	51.7	46.3	46.3	25.2	21.8	27.2	27.6	27.6
Surface condition	51.9	51.9	49.9	49.9	39.6	43.0	52.5	51.9	51.9
Weld profile	12.4	12.4	11.4	11.4	3.5	2.7	4.5	3.7	3.7
Sum of Product criteria	1129.2	1129.2	1040.2	1040.2	531.5	444.0	623.2	590.0	590.0

For each container material, four process conditions are evaluated. These process conditions are later related to fabrication sequences. The four process conditions are:

1. As-welded (cold wire—gas tungsten arc weld).
2. Welded and annealed.
3. Weld, cold worked (including the weld), and annealed.
4. Base metal annealed.

The as-welded process criteria are from the Closure Project for cold wire gas tungsten arc welding. (The criteria are reversed from the Closure Project where 5 was best and 0 was worst.)

For the other processing conditions, multiplicative reduction factors were selected by one of the authors (H. A. Domian) based on his physical metallurgy expertise. The reduction factor may be applied to the as-welded process value and/or to the as-welded performance index for each product criterion. The same reduction factors are used for all the container alloys and are listed below.

	<u>Welded</u>	<u>Cold Worked</u>	<u>Base Metal</u>
	<u>Annealed</u>	<u>Annealed</u>	<u>Annealed</u>
Variable Microconstituents	0.50	0.25	0.125
Variable Grain Size	1.00	0.50	0.25
Nonequilibrium Microconstituents	0.00	0.00	0.00
Microchemical Inhomogeneity	0.50	0.25	0.125
Preferred Grain Orientation	1.00	0.00	1.00
HAZ Precipitation	0.00	0.00	0.00
Macrochemical Inhomogeneity	1.00	1.00	0.125
Residual Stress	0.00	0.00	0.00
Porosity	1.00	0.50	0.00
Lack of Fusion	1.00	0.50	0.00
HAZ Microcracks	1.00	1.00	0.00
Fusion Zone Microcracks	1.00	1.00	1.00
Inclusions	1.00	1.00	1.00
Surface Condition	0.00	0.00	0.00
Weld Profile	0.00	0.00	0.00

A reduction factor of 1.00 indicates no effect on the process criterion, while a reduction factor of 0 indicates that deleterious effects of the product criterion are eliminated.

Performance Index and Normalized Rating

The product criteria and calculation of the performance index for AISI 304L are shown in Table 4-16. The product criteria are listed at the left and values are given in the first column. The sum of the product criteria is used later for normalizing the index values. The second column of numbers gives the process criteria for cold wire gas tungsten arc welding. The third column, "index value," is the product of the product criterion and process criterion. The sum of the products is the performance index for the as-welded process. The following three columns are given for each of the other three processes:

- Reduction factor given previously.
- Process criterion—reduction factor times the as-welded process criterion.
- Index value—product of product and process criteria (or reduction factor times the as-welded index value).

Table 4-16. Performance index—product and process criteria values for wrought AISI 304L

PRODUCT CRITERIA	AS WELDED			WELDED & ANNEALED			WELDED COLD WORKED & ANNEALED			BASE METAL ANNEALED		
	A	B	C=A*B	PROCESS INDEX			REDUCT PROC INDEX			REDUCT PROC INDEX		
				R1	R1*B	R1*C	R2	R2*B	R2*C	R3	R3*B	R3*C
Variable microconstituents	122.7	3.00	368.1	0.500	1.500	184.1	0.250	0.750	32.0	0.125	0.375	46.0
Variable grain size	47.0	2.00	94.0	1.000	2.000	94.0	0.500	1.000	47.0	0.250	0.500	23.5
Non-equilibrium microconstituents	100.8	2.50	252.1	0.000	0.000	0.0	0.000	0.000	0.0	0.000	0.000	0.0
Microchemical inhomogeneity	158.1	2.00	316.1	0.500	1.000	158.1	0.250	0.500	79.0	0.125	0.250	39.5
Preferred grain orientation	45.8	2.00	91.7	1.000	2.000	91.7	0.000	0.000	0.0	1.000	2.000	91.7
Haz precipitation	130.2	2.00	260.5	0.000	0.000	0.0	0.000	0.000	0.0	0.000	0.000	0.0
Macrochemical inhomogeneity	90.8	2.50	227.0	1.000	2.500	227.0	1.000	2.500	227.0	0.125	0.313	28.4
Residual stress	80.8	3.50	283.0	0.000	0.000	0.0	0.000	0.000	0.0	0.000	0.000	0.0
Porosity	49.3	2.50	123.3	1.000	2.500	123.3	0.500	1.250	61.6	0.000	0.000	0.0
Lack of fusion	62.1	1.50	93.2	1.000	1.500	93.2	0.500	0.750	46.6	0.000	0.000	0.0
Haz microcracks	62.8	2.00	125.6	1.000	2.000	125.6	1.000	2.000	125.6	0.000	0.000	0.0
Fusion zone microcracks	52.8	2.50	157.0	1.000	2.500	157.0	1.000	2.500	157.0	0.000	0.000	0.0
Inclusions	51.7	2.50	129.2	1.000	2.500	129.2	1.000	2.500	129.2	1.000	2.500	129.2
Surface condition	51.9	1.50	77.8	0.000	0.000	0.0	0.000	0.000	0.0	0.000	0.000	0.0
Weld profile	12.4	1.50	18.5	0.000	0.000	0.0	0.000	0.000	0.0	0.000	0.000	0.0
SUM OF PRODUCT CRITERIA			1129.2	2617.0	1383.1		955.1			358.3		

PERFORMANCE INDEX VALUE
(INDEX VALUE SUM)

The performance index and normalized ratings for the four process conditions and various container alloys are given in Table 4-17. The index values are normalized relative to 5 times the maximum sum of product criteria, where 5 denotes the worst possible process. The maximum sum of product criteria is 1129.2 for AISI 304L and CF3. The normalized ratings are then:

$$\text{Normalized Rating} = \left[1.0 - \left(\frac{\text{Index Value}}{5 \times 1129.2} \right) \times 100 \right]$$

Thus, the perfect process has an index value of 0 and normalized rating of 100. The worst possible process is a normalized rating of 0. The next step is relating the normalized process rating to the various fabrication methods listed previously.

Performance Fabrication Process Rating

For the processes listed previously, the container consists of base metal and various amounts of weld metal. For all processes, it is assumed that the components are annealed after welding or forming. Thus, the worst condition is welded and annealed.

Various methods were considered to allow for the effects of base metal and weld metal in the container. These included:

- Using the lowest normalized rating. This method did not discriminate between a container with a longitudinal seam and girth weld (262 in. of weld) relative to a container with only a girth weld (82 in. of weld). The roll-and-weld construction would seem equivalent to a container with three girth welds, which is less reliable.
- From the normalized rating for the base metal (NRBM), subtracting the product of a normalized weld length "b" and 100 minus the normalized rating of the weld metal (NRWM):

$$\text{NRBM} - b (100 - \text{NRWM})$$

This makes the final rating depend on the weld length. Depending on the dimensionless weld length "b," the resultant rating could be negative.

The method chosen is based on reliability concepts. If two items must both function for a system to work, and one is 90% reliable, while the other is 70% reliable, the system reliability is the product of the component reliabilities or 63%.

The method selected is as follows:

- Use the normalized ratings as measures of reliability.
- Consider the relative weld length as an exponent of the NRWM.

Thus, the performance rating would be calculated as follows:

$$\text{Performance Rating} = \left(\frac{\text{Normalized Rating}}{\text{Base Metal}} \right) \times \left(\frac{\text{Normalized Rating}}{\text{Weld Metal}} \right)^{\frac{\text{Weld Length}}{\text{Reference Weld Length}}}$$

$$\text{PR} = \text{NRBM} \times \text{NRWM}^b$$

Table 4-17. Performance index and normalized rating for various container alloys

Material	FABRICATED CONDITION					
	WELDED GTAW-CW		WELDED & ANNEALED		WELDED COLD WORKED & ANNEALED	
	INDEX VALUE	NORMALIZED RATING	INDEX VALUE	NORMALIZED RATING	INDEX VALUE	NORMALIZED RATING
304L wrought	2617	53.7	1383	75.5	965	82.9
CF3 Centrifugally cast	3058	45.8	1615	71.4	1080	80.9
316L wrought	2528	55.2	1368	75.8	898	84.1
CF3M Centrifugally cast	2939	47.9	1602	71.6	1013	82.1
IN325 wrought	1223	78.3	728	87.1	489	91.3
CD A122 wrought	746	96.8	541	90.4	408	92.8
CD A613 wrought	1135	79.9	710	87.4	553	90.2
CD A952 Centrifugally cast	1345	76.2	835	85.2	636	88.7
CD A715 wrought	961	83.0	574	89.8	433	92.3
CD A964 Centrifugally cast	1136	79.8	696	87.7	514	90.9

Normalized rating = (1.0 - Index value/Max Index value) * 100.

Max Index value = 5.0 * Max Sum of product criteria

Max Sum of product criteria = 1129.2 for 304L, CF3

For cases with zero weld length, the base metal rating is obtained. The exponent for the roll-and-weld plus girth-weld case is proportionally larger than the girth-weld case exponent. The girth-weld length of 82 in. was selected as the reference weld length. Thus,

$$PR = NRBM \times NRWM \times \frac{Weld\ Length}{82\ in.}$$

For each material and fabrication process, the appropriate values for NRBM and NRWM are read from Table 4-17.

- Base metal annealed, and welded and annealed weld metal

<u>Processes</u>	<u>Welds</u>	<u>Weld Length (in.)</u>
LH01-05	Welded Pintle	38
LH06-08	Integral Pintle	0
LU01-03	Integral Lower Unit	0
LU04-08	Welded Head and Long Seam	262
LU09-23	Welded Head	82

- Base metal annealed, and welded, cold worked, annealed weld metal

<u>Processes</u>	<u>Welds</u>	<u>Weld Length (in.)</u>
LU24-28	Welded Head and Long Seam	62
LU29-43	Welded Head	82

The calculated performance ratings are shown in Table 4-18 (upper unit) and Table 4-19 (lower unit).

The nonwelded fabrications UH06-08 and LU01-03 are ranked highest for performance, followed by cases involving welding a head to a seamless body. The welded body cases were ranked lowest. Cold working the lower unit (body and girth weld) raised the performance ratings. If the weld length was normalized at 262 in. (Exponent = Weld Length/262 in.), the range of performance ratings would be narrowed.

Fabricability Criteria

Since the candidate alloys are all fabricable with routine commercial processes, there are only some relatively subtle differences depending on the alloy and process being considered. The ratings determined by the fabrication project team (H. A. Domian, E. Martin, R. L. Holbrook, and D. F. LaCount) were based on negative effects of a particular alloy/process combination.

Fabrication product requirements include material property requirements for forming and welding, dimensional and tolerance requirements, inspectability, and commercial considerations. These

Table 4-18. Performance ratings for the upper head and handling pintle

MACHINED PINTLE WELDED TO UPPER HEAD		364L	CF3	316L	CF3W	IM825	CDA122	CDA613	CJ1952	CDA715	CDA964
UPPER HEAD											
UHO1	Forged	82		82		91		91		91	93
UHO2	Spun	82		82		91		91		91	93
UHO3	Deep drawn	82		82		91		91		91	93
UHO4	Centrifugally cast			79		79					91
UHO5	Machined	82		82		91		91		91	93
INTEGRAL PINTLE & UPPER HEAD											
UHO6	Forged	94		93		97		98		97	97
UHO7	Centrifugally cast			92		92		98		96	97
JHO6	Machined	94		93		97		98		97	97

Table 4-19. Performance ratings for the lower unit

INTEGRAL LOWER UNIT		304L	CF3	316L	CF3M	1M825	CDA122	CDA613	CJA952	CJA715	CDA954
L001	Extruded closed end	94		93		97	98	97	97	97	
L002	Extruded closed end & cold worked	94		93		97	98	97	97	97	
L003	Deep drawn closed end	94		93		97	98	97	97	97	
WELDED LOWER UNIT											
LW04	Body	38		38		62	71	63	69		
LW05	Roll & weld		Forged								
LW06			Spun								
LW07			Deep drawn								
LW08			Centrifugally cast								
LW09			Machined								
LW10			Forged								
LW11			Spun								
LW12			Deep drawn								
LW13			Centrifugally cast								
LW14	Deep drawn		Machined								
LW15			Forged								
LW16			Spun								
LW17			Deep drawn								
LW18			Centrifugally cast								
LW19	Cent. cast		Machined								
LW20			Forged								
LW21			Spun								
LW22			Deep drawn								
LW23			Centrifugally cast								
			Machined								
COLD WELDED LOWER UNIT											
LW24	Body		38								
LW25	Roll & weld		Forged								
LW26			Spun								
LW27			Deep drawn								
LW28			Centrifugally cast								
LW29	Extruded		Machined								
LW30			Forged								
LW31			Spun								
LW32			Deep drawn								
LW33			Centrifugally cast								
LW34	Deep drawn		Machined								
LW35			Forged								
LW36			Spun								
LW37			Deep drawn								
LW38			Centrifugally cast								
LW39	Cent. cast		Machined								
LW40			Forged								
LW41			Spun								
LW42			Deep drawn								
LW43			Centrifugally cast								
			Machined								

NA1 - Centrifugally cast head not allowed with forged body.

NA2 - Deep drawn body produces the heads as part of the process. Alternate head forming is redundant.

fabrication product criteria are the product attributes with respect to fabrication. The thirteen criteria and weighting factors are listed below.

Fabricability—Product Criteria

<u>Product Criterion</u>	<u>Weighting</u>	<u>Description</u>
1. Material Quality	4	Is commercial-quality starting material adequate, or is special quality required?
2. Formability	4	Is normal ductility adequate?
3. Weldability	4	When welding is required, how difficult is the material to weld?
4. Tolerance OD	1	Primary concern is fit-up for closure welding. Better than normal tolerances may be required for ovality.
5. Tolerance Wall	1	
6. Tolerance ID	1	
7. Tolerance Ovality	4	
8. Surface Finish ID	1	The OD surface finish is important for corrosion.
9. Surface Finish OD	2	
10. Process Control	4	Will a high level of process control be required?
11. Inspectability	4	Can the component be inspected by UT, x-ray, and dye penetrant? Will it permit closure weld UT?
12. Vendor Sources	2	Is the material and process available from several sources, or is there only one vendor?
13. Commercial Use	4	Is the process in use for the desired materials and sizes, or is further development required?
TOTAL	36	

The same criteria and values are used for all materials. The weighting was determined by a consensus of the forming project team. The highest weighting, 4, was assigned to required factors:

1. Material Quality—required for QA.
2. Formability—required for manufacture.
3. Weldability—required for manufacture.
7. Ovality Tolerance—required for closure weld fit-up.
10. Process Control—required for QA.
11. Inspectability—required for closure weld NDE.
13. Commercial Use—project requirement to use established commercial processes.

Factors 2, 3, 11, and 13 are material and process dependent. The remaining factors are only process dependent. Welding CDA 122 is considered to be difficult. Centrifugally cast heads have a single source and are not now in commercial use. CDA 122 and Alloy 825 are not available commercially as centrifugal castings.

An index value is calculated for each fabricated component as the sum of the products of the product and process criteria values. Fabricability of the processes and materials is normalized to the "worst case" (e.g., all process criteria equal to 10). The maximum fabricability index is 10 times the sum of the product criteria (36), or 360. All processes are normalized for fabricability as:

$$\text{NORM} = \frac{(1 - \text{Index Value})}{360} \times 100$$

For the upper head and handling pintle, and integral lower unit fabrication processes, the normalized fabricability rating is used. For lower units with the head welded to the body, the normalized fabricability rating is the product of the component ratings:

$$\begin{array}{l} \text{Normalized} \\ \text{Rating Welded} \\ \text{Lower Unit} \end{array} = \begin{array}{l} \text{Normalized} \\ \text{Rating} \\ \text{Body} \end{array} \times \begin{array}{l} \text{Normalized} \\ \text{Rating} \\ \text{Head} \end{array}$$

For the cold worked welded lower unit processes, the normalized rating is the product of three process ratings:

$$\begin{array}{l} \text{Normalized Rating} \\ \text{Cold Worked Welded} \\ \text{Lower Unit} \end{array} = \begin{array}{l} \text{Normalized} \\ \text{Rating} \\ \text{Head} \end{array} \times \begin{array}{l} \text{Normalized} \\ \text{Rating} \\ \text{Body} \end{array} \times \begin{array}{l} \text{Normalized} \\ \text{Rating for} \\ \text{Cold Work} \end{array}$$

The normalized fabrication ratings for the upper head and handling pintle are given in Table 4-20 and for the lower unit in Table 4-21. For the upper unit, the forged or machined head and integral pintle are ranked highest (no pintle weld). For the welded pintle, forged, spun, or machined heads are ranked equal to one another. The deep-drawn head is ranked lower because of higher formability and process control requirements. Centrifugally cast heads are ranked low because of poorer inspectability, limited vendor sources, and lack of commercial usage.

For the integral lower unit, the extruded and cold-worked process (LU-02) is ranked highest. The extruded closed-end process (LU-01) is rated lower for tolerances and surface finish. The deep-drawn process is rated lower for high material property requirements and tolerances.

For the welded lower unit (cold worked or not), three body processes rank nearly equal: centrifugally cast (rated good for ovality with concern for inspectability), roll and weld (rated lower for ovality), and extrusion (concerns over surface finish and limited vendor sources). Deep drawn ranks slightly lower (requires higher level of formability and limited vendor sources). The lower head processes ranked as follows: machined head ranks highest (no formability requirement), followed by forged or spun heads, and deep drawn heads (formability and material quality requirements). The centrifugally cast head is considered only with a centrifugally cast body. It is rated lower because of more difficult inspectability, limited vendor sources, and not being in commercial use.

The cold worked processes are ranked lower because of the extra processing required.

For processes involving welding, CDA 122 is ranked lowest. CDA 613 is also ranked lower for weldability than the other alloys. In general, this alloy is readily welded by solid-state processes

(e.g., friction welding). Alloy 825 and CDA 122 are not available as centrifugal castings. (An alloy similar to Alloy 825, with niobium substituted for titanium, has been centrifugally cast.)

Cost Criteria

The cost rating is derived from the relative costs presented in Section 4.3.7 and is shown here in Tables 4-22 and 4-23. The reference unit (relative cost equal to 1) is a roll and weld body welded to a forged head in AISI 304L. The relative costs are in multiples of the reference unit.

To obtain a "cost rating," a scale having a range from 0 to 100 is desired, with the higher rating denoting lower cost. The cost ratings are calculated as follows:

Upper Head and Handling Pintle:

$$\text{Cost Rating} = (1 - \text{Relative Cost}/2) \times 100$$

(An upper unit with relative cost of 2 would receive a zero rating.)

Lower Unit:

$$\text{Cost Rating} = (1 - \text{Relative Cost}/8) \times 100$$

(A lower unit with a relative cost of 8 would receive a zero rating.)

A cost rating of 100 requires zero cost. The relative costs for a zero cost rating (2 for the upper unit and 8 for the lower unit) are chosen based on the relative cost range to give a wide range to the cost ratings.

The cost rating is used in the vector sum process comparisons for performance, fabricability, and cost.

Table 4-20. Fabrication ratings for the upper head and handling pintle

MACHINED PINTLE WELDED TO UPPER HEAD		304L	CF3	316L	C72W	W925	CDA122	CDA613	CDA952	CDA715	CDA964
UPPER HEAD											
UH01	Forged	98	98	98	98	92	94	94	98	98	93
UH02	Spun	98	98	86	86	92	94	84	84	88	71
UH03	Deep drawn	88	71	71	98	92	94	71	71	98	71
UH04	Centrifugally cast										
UH05	Machined	98	98	98	98	92	94	71	71	98	71
INTEGRAL PINTLE & UPPER HEAD											
JH06	Forged	100	100	100	100	100	100	100	100	100	72
JH07	Centrifugally cast	100	72	72	100	100	100	78	78	100	72
JH08	Machined										

Table 4-21. Fabrication ratings for the lower unit

INTEGRAL LOWER UNIT		304L	CF3	316L	CF3M	IN825	CD4122	CD4613	CD4952	CD4715	CD4954
LUD1	Extruded closed end	79	79	79	79	79	79	79	79	79	79
LUD2	Extruded closed end & cold worked	83	88	82	77	88	88	88	88	88	88
LUD3	Deep drawn closed end	77	74	74	77	66	77	77	77	77	77
WELDED LOWER UNIT											
BODY		WELDED LOWER UNIT									
LUD4	Roll & weld	Forged	90	80	80	60	60	74	82	82	82
LUD5		Spun	60	80	73	73	56	74	82	82	82
LUD6		Deep drawn	74	74	73	73	69	74	74	74	74
LUD7		Centrifugally cast	N/A1	83	83	62	77	77	83	83	83
LUD8		Machined				77	67	71	77	77	77
LUD9	Extruded	Forged	77	77	77	71	67	71	77	77	77
LUD10		Spun				70	62	66	71	71	71
LUD11		Deep drawn				70	62	66	71	71	71
LUD12		Centrifugally cast	N/A1	71	79	79	79	79	79	79	79
LUD13		Machined	N/A2	79	79	79	79	79	79	79	79
LUD14	Deep drawn	Forged	N/A2				74	74	74	74	74
LUD15		Spun				65	60	54	59	59	59
LUD16		Deep drawn									
LUD17		Centrifugally cast	N/A1,2			73	73	73	79	79	79
LUD18		Machined	N/A2			79	79	79	79	79	79
LUD19	Cent.	cast	Forged			73	73	73	74	74	74
LUD20		Spun				59	59	59	63	63	63
LUD21		Deep drawn									
LUD22		Centrifugally cast				82	82	82	82	82	82
LUD23		Machined									
COLD WORKED WELDED LOWER UNIT											
BODY		COLD WORKED WELDED LOWER UNIT									
LUD24	Roll & weld	Forged	61	61	61	61	61	43	54	54	54
LUD25		Spun	61	61	56	56	40	50	50	50	50
LUD26		Deep drawn									
LUD27		Centrifugally cast	N/A1	63	63	63	44	44	56	56	56
LUD28		Machined				59	48	52	52	52	52
LUD29	Extruded	Forged	N/A1	59	59	59	48	48	52	52	52
LUD30		Spun									
LUD31		Deep drawn				53	53	44	48	48	48
LUD32		Centrifugally cast	N/A1	61	61	61	50	50	54	54	54
LUD33		Machined	N/A2								
LUD34	Deep drawn	Forged	N/A2			50	43	40	53	53	53
LUD35		Spun									
LUD36		Deep drawn									
LUD37		Centrifugally cast	N/A1,2								
LUD38		Machined	N/A2								
LUD39	Cent.	cast	Forged	61	61	61					
LUD40		Spun									
LUD41		Deep drawn				56	55	55	58	58	58
LUD42		Centrifugally cast				45	45	45	46	46	46
LUD43		Machined				63	63	63	63	63	63

N/A1 - Centrifugally cast head not allowed with forged body.

N/A2 - Deep drawn body produces the heads as part of the process. Alternate head forming is redundant.

Table 4-22. Cost ratings for the upper head and handling pinitle

MACHINED PINTLE WELDED TO UPPER HEAD		304L	CF3	316L	CF3M	IM825	CD122	CD1613	CD1952	CD1715	CD1964
UPPER HEAD											
UHO1	Forged										
UHO2	Spun										
UHO3	Deep drawn										
UHO4	Centrifugally cast										
UHO5	Machined	56	86	56	86	36	36	86	36	93	80
INTEGRAL PINTLE & UPPER HEAD											
UHO6	Forged	85	82	82	82	59	59	59	59	65	65
UHO7	Centrifugally cast										
UHO8	Machined										

Table 4-23. Cost ratings for the lower unit

INTEGRAL LOWER UNIT	304L	CF3	316L	CF3M	IN825	CDA122	CDA613	CA952	CD4715	CD4964
LU01 Extruded closed end	60	60	60	60	24	27	45	45	45	27
LU02 Extruded closed end & cold worked	60	60	60	60	39	39	54	54	54	45
LU03 Deep drawn closed end	56	56	56	56	56	38	56	56	56	54
WELDED LOWER UNIT										
BODY	74									
LU04 Roll & weld		87		86		75				
LU05		Span								
LU06		Deep drawn								
LU07		Centrifugally cast								
LU08		Machined								
LU09 Extruded		Forged								
LU10		Spun								
LU11		Deep drawn								
LU12		Centrifugally cast								
LU13		Machined								
LU14 Deep drawn		Forged								
LU15		Spun								
LU16		Deep drawn								
LU17		Centrifugally cast								
LU18		Machined								
LU19 Cent. cast		Forged								
LU20		Spun								
LU21		Deep drawn								
LU22		Centrifugally cast								
LU23		Machined								
COLD WORKED WELDED LOWER UNIT										
BODY	62									
LU24 Roll & weld		69		68		57				
LU25		Forged								
LU26		Spun								
LU27		Deep drawn								
LU28		Centrifugally cast								
LU29 Extruded		Machined								
LU30		Forged								
LU31		Spun								
LU32		Deep drawn								
LU33		Centrifugally cast								
LU34 Deep drawn		Machined								
LU35		Forged								
LU36		Spun								
LU37		Deep drawn								
LU38		Centrifugally cast								
LU39 Cent. cast		Machined								
LU40		Forged								
LU41		Spun								
LU42		Deep drawn								
LU43		Centrifugally cast								
		Machined								

N11 - Centrifugally cast head not allowed with forged body.
 N12 - Deep drawn body produces the heads as part of the process. Alternate head forming is not allowed.

Table 4-22. Cost ratings for the upper head and handling pintle

MACHINED PINTLE WELDED TO UPPER HEAD		304L	CF3	316L	CF3W	IN825	CD4122	CD4613	CD4952	CD4715	CD4964
UPPER HEAD											
UHO 1	Forged										
UHO 2	Spun										
UHO 3	Deep drawn										
UHO 4	Centrifugally cast										
UHO 5	Machined										
INTEGRAL PINTLE & UPPER HEAD											
UHO 6	Forged										
UHO 7	Centrifugally cast										
UHO 8	Machined										

5. Summary of Results and Recommendations

An evaluation methodology was used to rank the candidate processes for fabricating a container in which to store high-level nuclear waste. Section 4.6.2 provides an overview of the evaluation methodology used to rank the processes. The fabrication processes were judged on performance, fabricability, and cost and were rated from 0 to 100 based on these three criteria. Figures 5-1 through 5-6 provide an overall summary of the results for each material by showing the performance and fabricability ratings, and the cost relative to rolled and welded AISI 304. In Table 5-1, the three criteria are combined via a vector sum, so that one final value is given for each material and process.

5.1. Selection of Viable Processes

Table 5-2 summarizes the results of applying the fabrication selection criteria to the candidate processes. Not all of the possible combinations of the lower units of the four body and five lower head manufacturing processes are evaluated, for the following reasons:

- There are no substantial differences between forged, spun, and deep-drawn heads, so they are lumped into the category of "forged lower heads."
- All combinations involving a centrifugally cast head with a wrought body were dropped from further consideration because of the poor rating of these heads in comparison to the wrought heads.
- The deep drawing process produces a head, so there is no need to consider any other kind of head when a deep drawn body is available.

Upper Heads

Except for cost, changing alloys has only a small effect on processing the upper heads. The ratings for performance and fabrication of the different wrought alloys vary by smaller amounts than do the ratings for a single alloy when different processes are being compared. Eliminating the weld by using an integral process increases both performance and fabrication ratings as illustrated in Table 5-2. The performance and fabrication ratings for forged, spun, and machined heads are essentially equal. The ratings for the heads indicate the following order of preference, high to low, for performance and fabrication:

- Forged, spun, and machined.
- Deep drawn.
- Centrifugally cast.

The lack of cost data in some cases makes it difficult to complete the overall ratings. The available results of Table 5-2 indicate that the relatively poor performance and fabrication of centrifugal castings are offset somewhat by their lower costs. However, the experience in making centrifugal heads was found to be limited to a single vendor, indicating that there may be insufficient experience with this component/process combination.

Lower Units

The performance ratings of integral lower units are viewed as superior to those of the welded lower units. Cold working and annealing welded units improves their performance but decreases their fabrication ratings so that there is little difference in the combined performance and fabrication ratings. When costs are included in these ratings, the spread becomes even smaller. In general, as performance and fabrication ratings increase, the costs also increase, so that the overall rating of the three primary criteria comes closer together. For instance, the values in Table 5-3 are obtained:

Figure 5-1. Lower unit performance and fabricability ratings and relative costs for AISI 304L/CF3

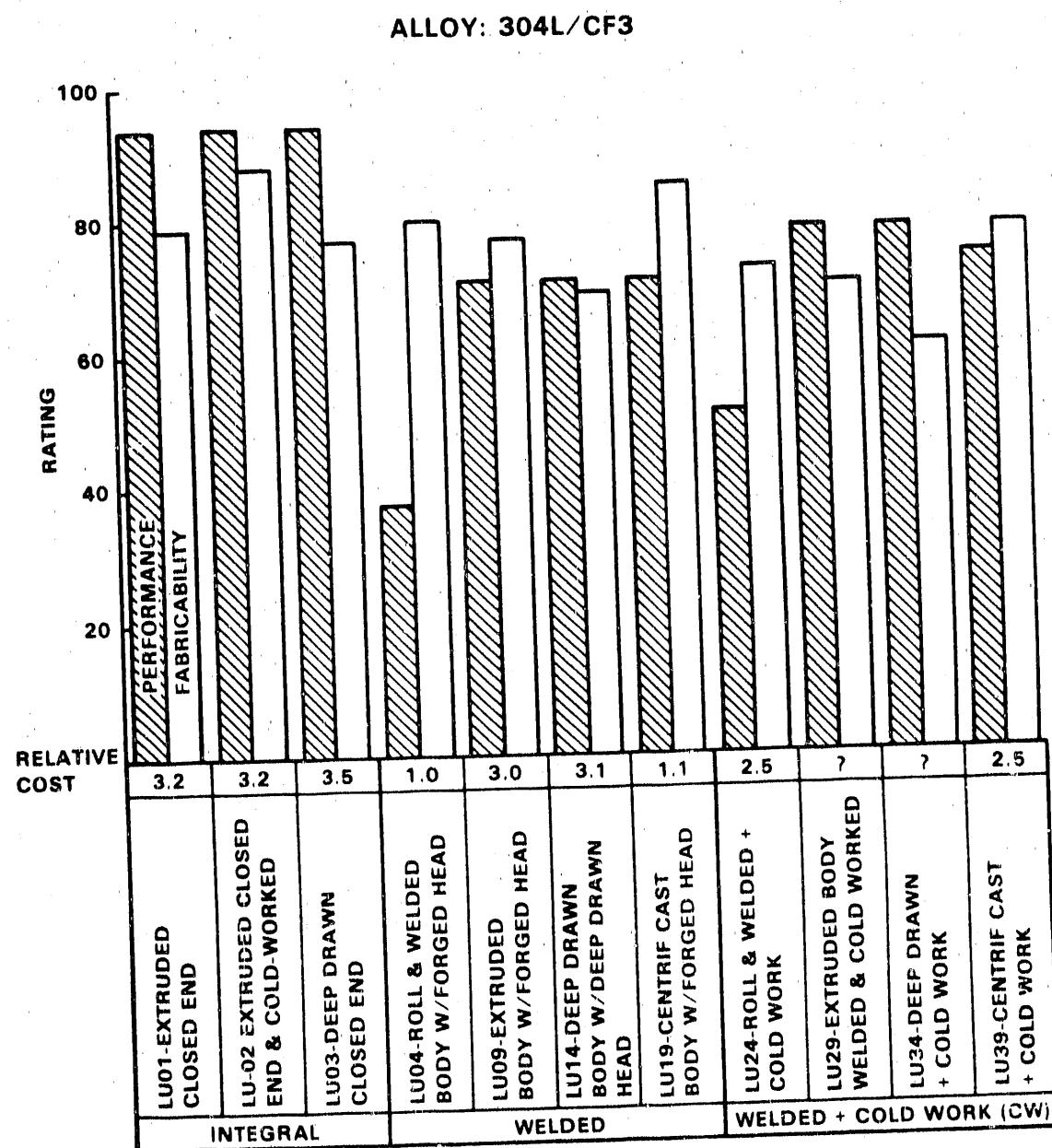


Figure 5-2. Lower unit performance and fabricability ratings and relative costs for AISI 316L/CF3M

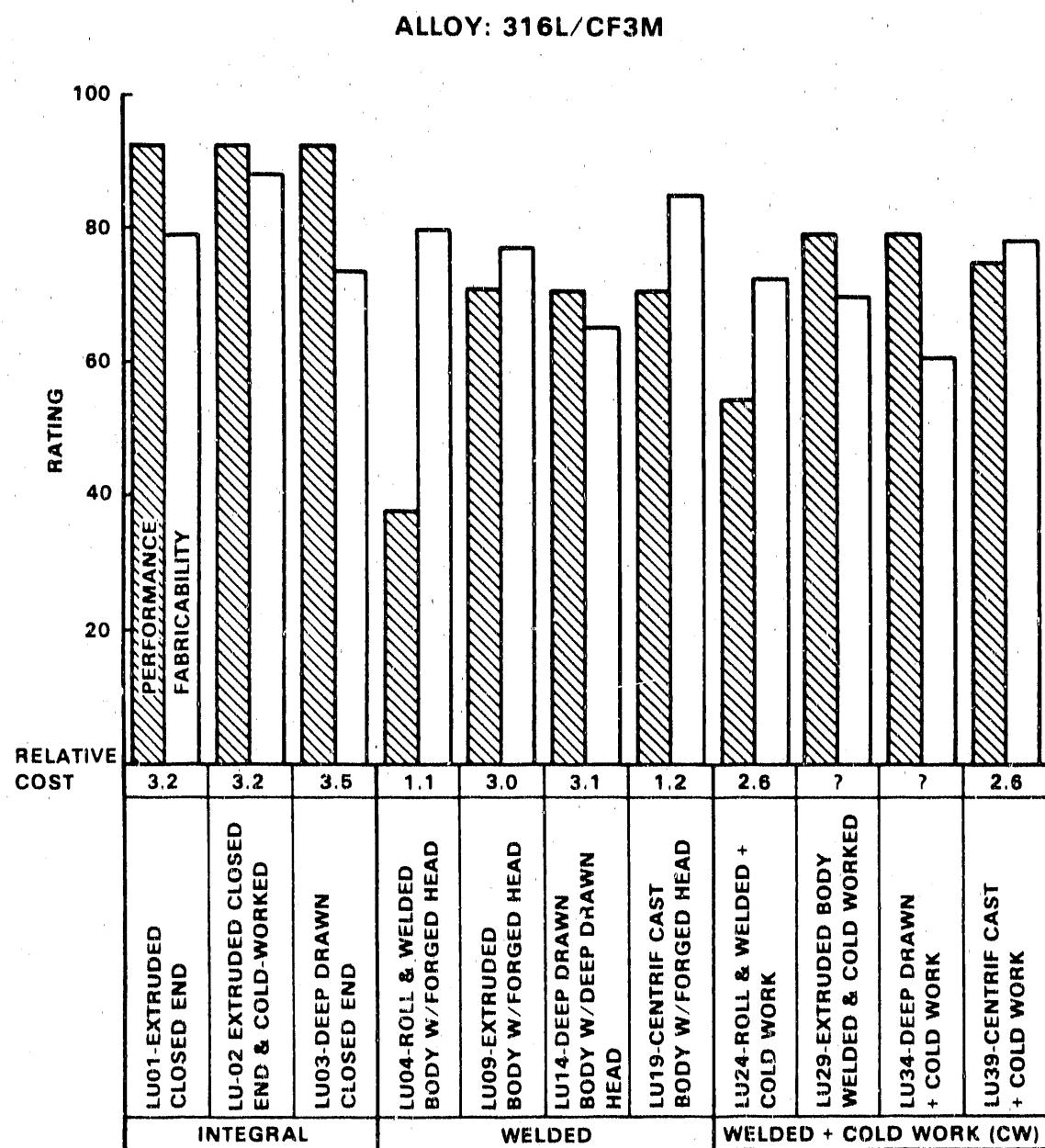


Figure 5-3. Lower unit performance and fabricability ratings and relative costs for Alloy 825

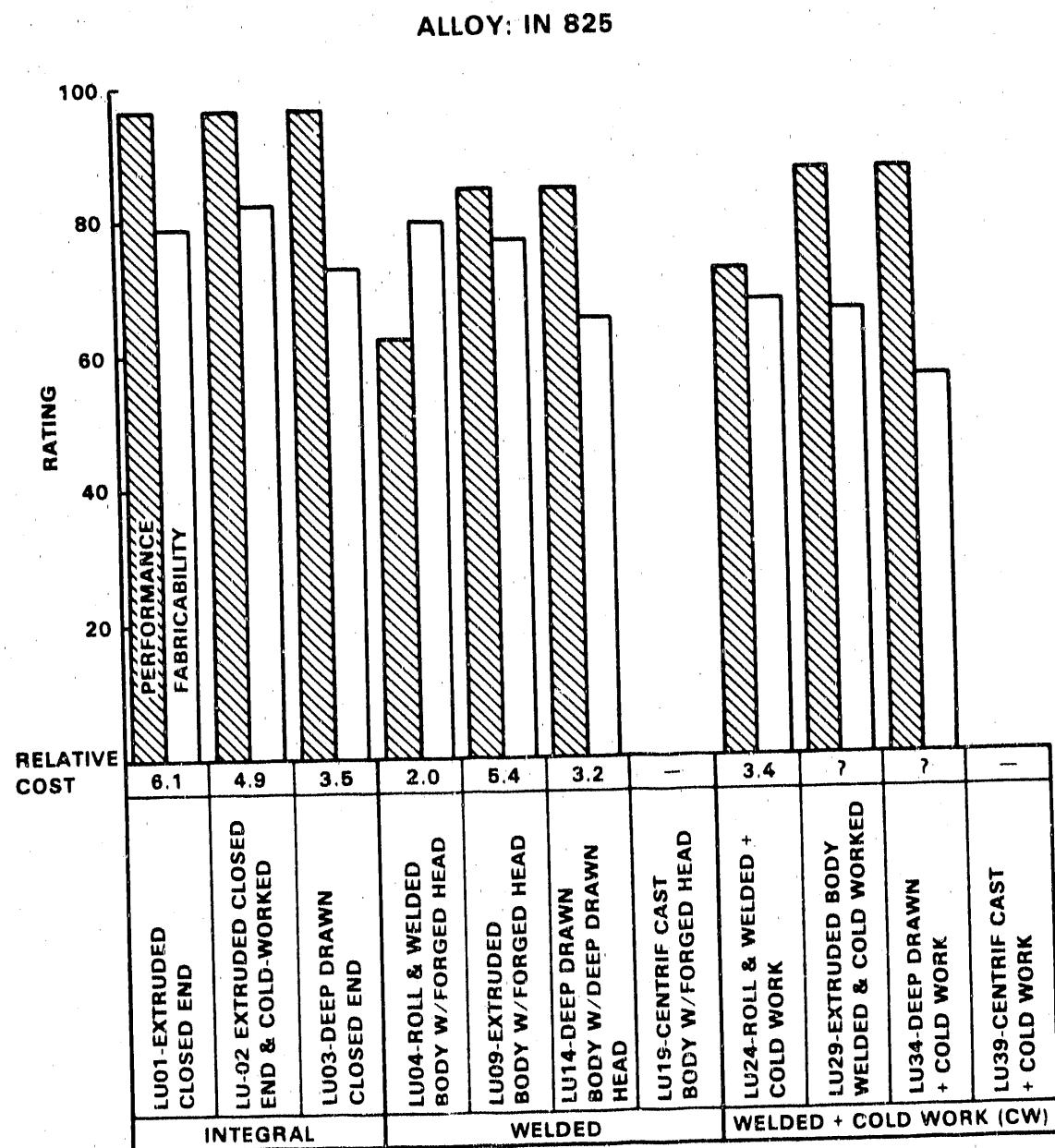


Figure 5-4. Lower unit performance and fabricability ratings and relative costs for CDA 122

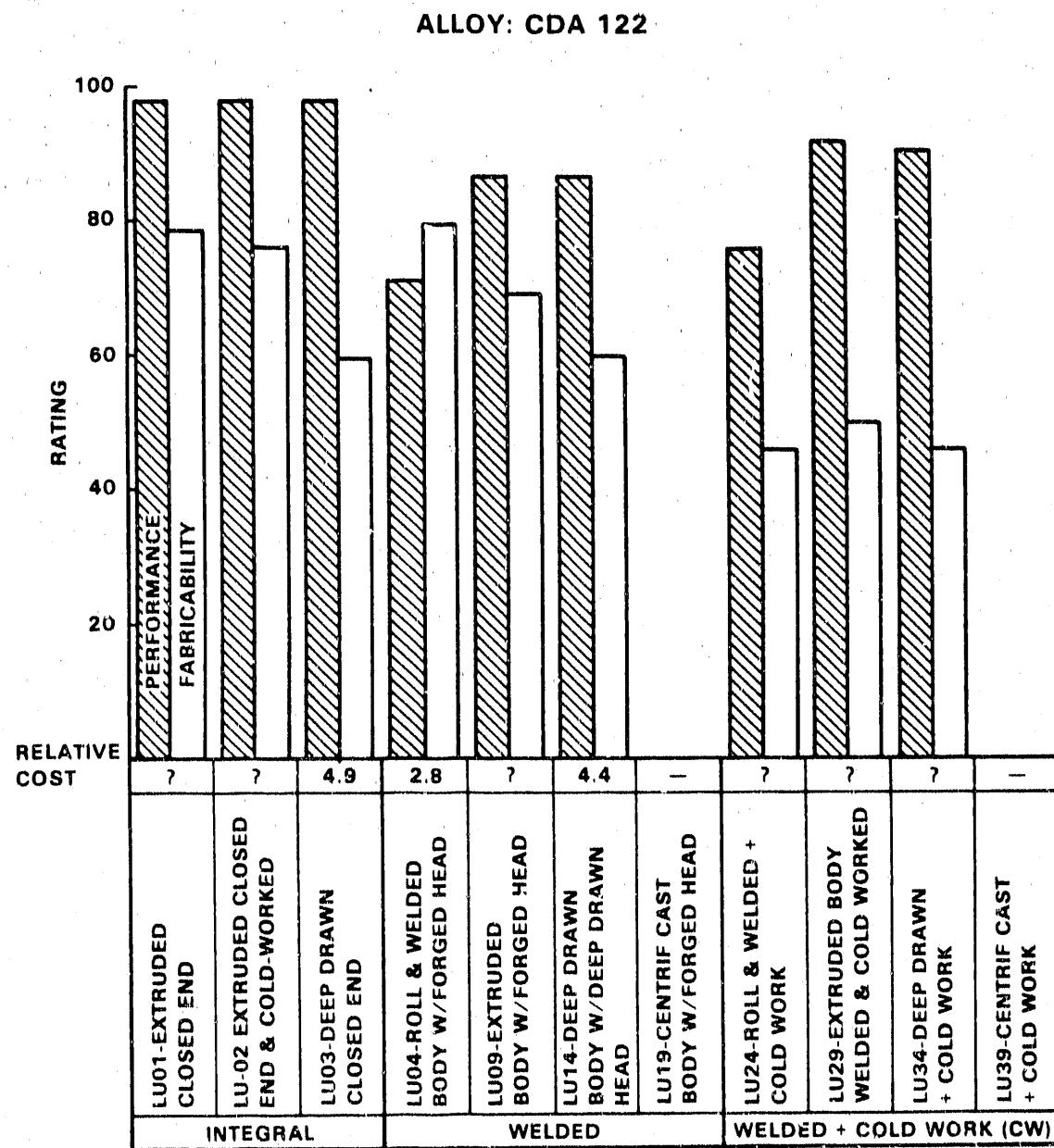


Figure 5-5. Lower unit performance and fabricability ratings and relative costs for CDA 613/952

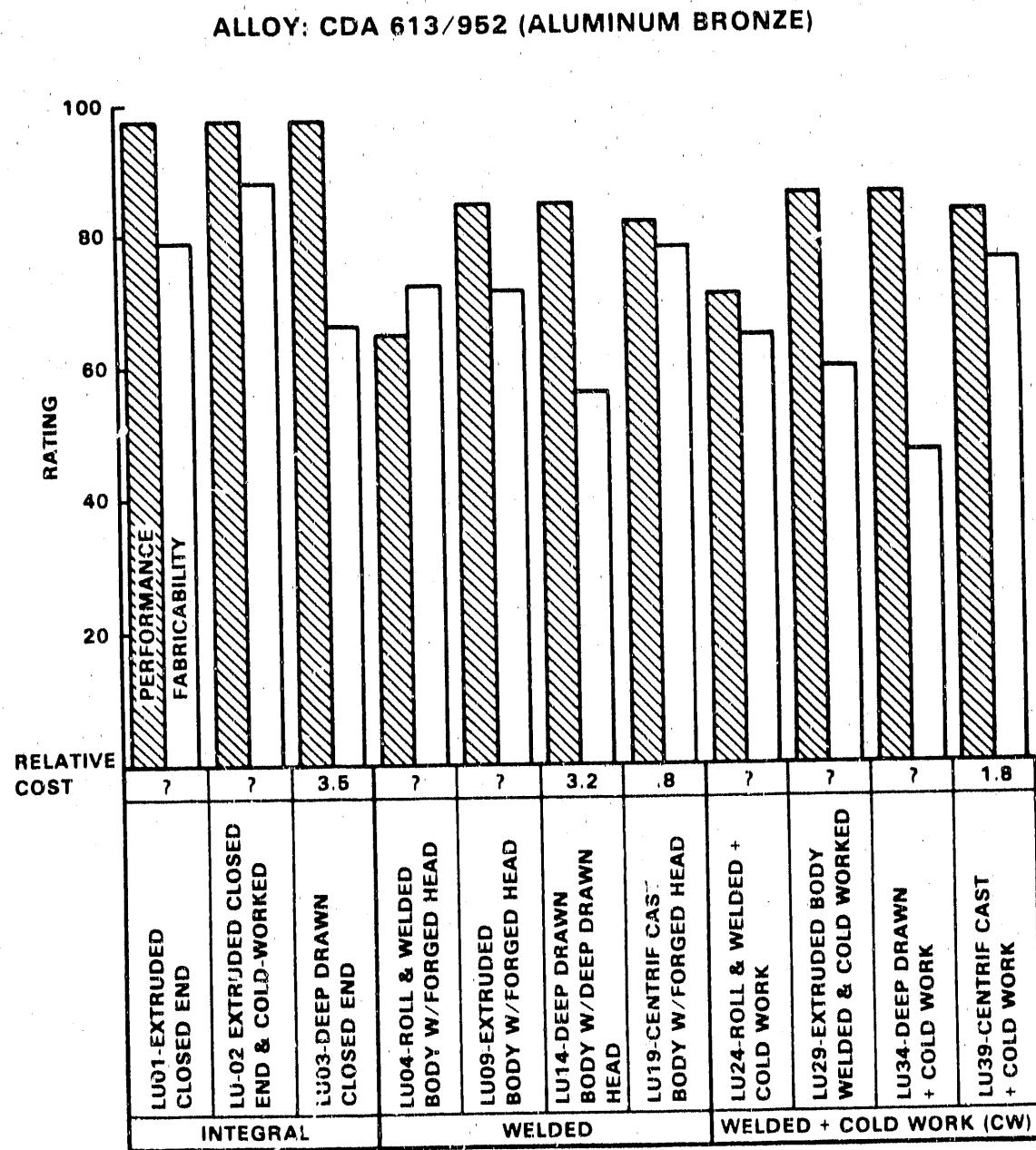


Figure 5-6. Lower unit performance and fabricability ratings and relative costs for CDA 715/964

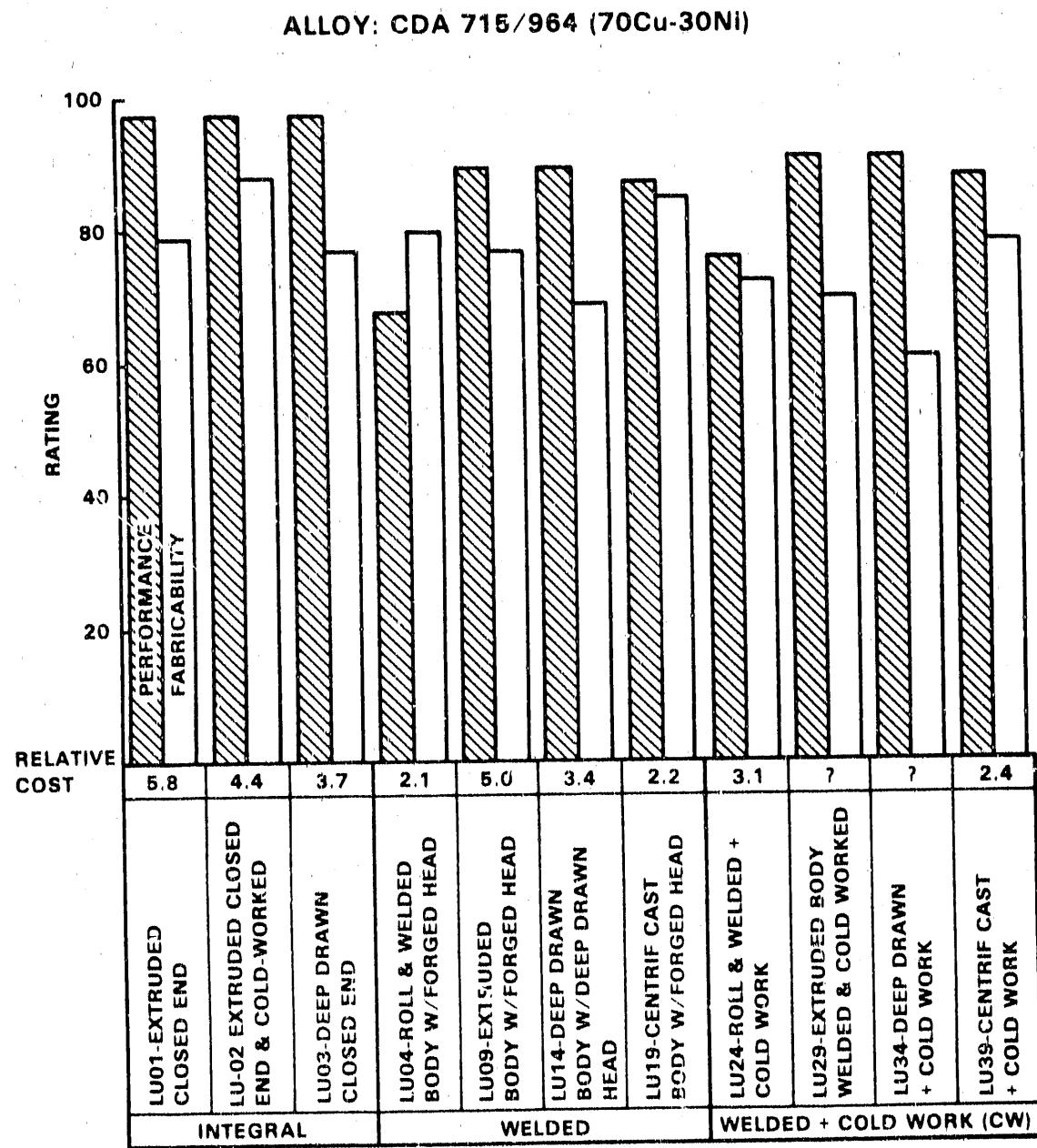


Table 5-1. Combined rating—performance, fabricability, and cost

Fabrication Processes	Materials					
	AISI 304L CF3	AISI 316L CF3M	Alloy 825	CDA 122	CDA 613/ 952	CDA 715/ 964
	Pintle and Upper Head					
	Pintle Welded to Head					
Forged						
Spun						
Deep drawn	79	79			85	81
Centrifugally cast	80	80	80	91		
Machined						
Integral Pintle and Head		93	92	90		89
Forged						
Centrifugally cast						
Machined						
Body and Lower Head						
Integral	79	79	74		74	
Extruded closed-end	82	82	77		80	
Extruded closed-end cold worked	77	76	77	75	75	78
Deep-drawn closed-end						
Body Welded to Head						
<u>Body</u>	<u>Lower Head</u>					
Roll and weld	Forged	72	71	73		74
	Machined	72	72	73	66	
Extruded	Forged	70	70	68		70
	Machined	70	70	69		
Deep drawn	Deep drawn	67	66	71	67	68
Cent. cast	Forged	77	77			79
	Centrifugally cast	72	72		79	
	Machined	77	77			75
Welded Cold Worked						
<u>Body</u>	<u>Lower Head</u>					
Roll and weld	Forged	61	61	64		66
	Machined	61	61	63		
Extruded	Forged					
	Machined					
Deep drawn	Deep drawn					
Cent. cast	Forged	68	68			72
	Centrifugally cast	65	65			70
	Machined	68	68			

Table 5-2. Ratings for performance, fabricability, and cost separately combined

FABRICATION PROCESSES		AUSTENITIC MATERIALS				IM825			
		304L/CF3		316L/CF3N		IM825			
PERF	FABR	COST	PERF	FABR	COST	PERF	FABR	PERF	FABR
PINTLE AND UPPER HEAD									
Pintle_Welded_to_Head									
Forged	82	98	90	82	98	90	91	98	94
Spun	82	96	90	82	98	90	91	98	94
Deep drawn	82	88	85	82	86	84	91	86	88
Centrifugally cast	79	71	86	75	79	71	86	75	79
Machined	82	98	90	80	82	98	90	89	91
Integral_Einleit_Head									
Forged	94	100	85	97	93	100	82	97	100
Centrifugally cast	92	72	83	92	72	83	97	100	98
Machined	94	100	97	93	100	97	97	100	98
BODY AND LOWER HEAD									
Integral									
Extruded closed end	94	79	60	87	79	93	60	87	97
Extruded closed end cold worked	94	88	60	91	82	93	88	91	97
Deep drawn closed end	94	77	56	86	77	93	74	56	76
Body_Welded_to_head									
Body: Lower_Head:									
Roll & weld	38	80	87	63	72	38	80	86	71
Forged	39	83	85	64	72	38	83	84	72
Machined	71	77	63	74	70	71	77	62	74
Extruded									
Forged									
Machined									
Deep drawn	71	69	61	70	67	71	65	61	68
Cent. cast	66	79	86	73	77	66	79	85	73
Centrifugally cast	66	59	87	62	72	66	59	87	72
Machined	66	82	83	74	77	66	82	82	74
Welded_Solid_Worked									
Body: Lower_Head:									
Roll & weld	51	61	69	57	61	54	61	68	61
Forged	51	63	66	58	61	54	63	65	61
Machined	78	59	69	69	70	79	59	69	70
Extruded									
Forged									
Machined									
Deep drawn	78	53	66	68	68	79	50	66	68
Cent. cast	74	61	69	70	62	75	61	68	65
Centrifugally cast	74	45	70	62	65	75	45	70	62
Machined	74	63	66	69	68	75	63	66	68

Table 5-2. Ratings for performance, fabricability, and cost separately combined (cont'd)

FABRICATION PROCESSES		C O P P E R			R B A S E D			A L L O Y S			CDA715/964		
		PERF	FABR	COST	PERF	FABR	COST	PERF	FABR	COST	PERF	FABR	COST
PINTLE AND UPPER HEAD													
Pintle_Helded_to_Head													
Forged	93	92	93	91	94	93	93	93	98	93	95	95	
Spun	93	92	93	91	94	93	93	93	98	93	90	90	
Deep drawn	93	82	88	91	84	88	93	91	71	80	82	81	
Centrifugally cast													
Machined													
Integral_Pintle-&_head													
Forged	93	92	86	93	91	91	93	93	96	93	95	95	
Centrifugally cast													
Machined													
BODY AND LOWER HEAD													
Integral													
Extruded closed end	98	79	89	97	79	89	97	79	27	89	74	74	
Extruded closed end cold worked	98	77	88	97	88	92	92	88	45	93	80	80	
Deep drawn closed end	98	77	38	88	75	97	66	56	75	97	54	88	
Body_Welded_to_Head													
Body:													
Roll & weld	71	60	66	63	74	69	69	80	74	75	74	74	
Forged	71	62	65	67	66	63	77	79	69	83	76	76	
Machined	88	67	71	79	85	71	78	87	77	37	82	70	
Extruded													
Forged	88	70	80	85	74	79	79	87	79	83	83	72	
Machined	88	60	44	76	67	85	54	60	68	69	57	79	
Deep drawn													
Deep drawn	88	82	63	90	82	82	79	81	85	79	82	79	
Cent. cast													
Centrifugally cast													
Machined													
Helded_Cold_Worked													
Body:													
Roll & weld	77	43	62	70	54	62	75	61	62	69	66	66	
Forged	77	44	63	70	56	63	75	63	70	59	76	70	
Machined	91	48	72	87	52	72	90	61	77	53	74	74	
Extruded													
Forged	91	50	73	87	54	68	90	53	64	75	72	72	
Machined	91	43	71	87	40	73	88	61	64	75	70	70	
Deep drawn													
Deep drawn													
Cent. cast													
Centrifugally cast													
Machined													

Table 5-3. Range of rating values for AISI 304L lower units

Rating Criteria	High	Low	Difference
Performance	94	38	56
Fabricability	88	60	28
Performance, Fabricability, and Costs	80	64	16

Results in Table 5-3 indicate the following ranking of process differences, high to low, for the AISI 304L lower units and, in general, are reflected by the ratings for the other alloys as well. Differences of one or two rating points are considered to be insignificant.

Performance and Fabricability

Integral Units

Extruded closed-end and cold worked
Extruded closed-end or deep drawn

Welded Units

Extruded body
Forged or machined head
Centrifugally cast body
Forged or machined head
Deep-drawn body and head
Rolled and welded body
Forged or machined head
Centrifugally cast body
Centrifugally cast head

Performance, Fabricability, and Costs

Integral Units

Extruded closed-end and cold worked
Extruded closed-end
Deep drawn

Welded Units

Centrifugally cast body
Forged or machined head
Rolled and welded body
Forged or machined head
Extruded body
Forged or machined head
Deep-drawn body and head

5.2. Issues to be Resolved

The issues discussed below need further clarification to make the fabrication selection criteria more accurate. These issues have resulted from discussions with potential vendors, preparation of the fabrication selection criteria, and consideration of methods to reduce container fabrication costs.

5.2.1. Centrifugal Casting

Centrifugal casting for making large diameter seamless pipe is a less expensive method than extrusion or deep drawing. A possible approach is to use centrifugally cast preforms for roll extrusion or deep drawing to reduce costs and produce a wrought product. For some alloys, Kaiser Rollmet has produced seamless pipe by roll extrusion of centrifugal castings. This method should also eliminate the concerns that exist for ultrasonic testing and possible porosity of castings.

Centrifugal casting may not be used for all of the candidate alloys, because there is no casting grade equivalent to Alloy 825, and the centrifugal casting of CDA 122 is not technically feasible.

5.2.2. Uniformity of Closed-End Cylinder Extrusions

The amount of hot work in the closed-end portion of the extrusion will be less than in the wall of the container. If roll extrusion is used, the differential will be exaggerated further because the closed end will not be worked during the thinning of the wall. The property and microstructural differences between the closed end and the wall need to be investigated.

5.2.3. Uniformity of Closed-End Deep Drawn Components

The issue here is similar to that of closed-end cylinder extrusions. The amount of deformation of the closed end is nil compared to the wall, and the same types of evaluations must be performed.

5.2.4. Cold Work and Annealing of Welded Lower Units

Cold working and annealing the longitudinal and girth seam welds, in order to recrystallize them, produces a more uniform microstructure in welded units. This method offers a means to increase performance at acceptable costs. The existence of only limited experience with roll extrusion and deep drawing of welded containers, such as the lower units, requires that the adequacy of this approach be evaluated further with trials.

5.2.5. Annealing of Lower Units

Annealing of the lower units could produce unacceptable distortion, residual stresses, and variations in properties. To avoid descaling after annealing, either a protective atmosphere or a vacuum would have to be employed. For the austenitic stainless steels, a fast cooling rate to avoid sensitization should be employed. The evaluation of the annealing practice with regard to these concerns should be demonstrated with near prototypical containers.

5.2.6. Availability of Starting Materials

The Cameron Forge Company was not able to find a source of supply for CDA 102 or CDA 613. A supplier would have to be found if the back extrusion process and these alloys were selected for the container lower units.

5.2.7. Producibility of Materials

To allow a general comparison of the candidate materials regarding producibility by various processes, Table 5-4 was prepared. This may be of interest to the MT&C technical area. For example, if CDA 122 is chosen, there may be difficulties in obtaining ingots of sufficient size, and in using centrifugal casting.

5.2.8. Advantages and Disadvantages of Candidate Processes

These are summarized in simple terms in Table 5-5.

5.3. Recommendations

B&W recommends that Phase 2 be conducted similar to the original plan discussed in Section 3. However, B&W recognizes the preliminary nature of the total waste-package program and, therefore, believes that more processing options should be kept open until the container design and material selection are better defined. Because of the large potential matrix of processes and materials and limited funding available, B&W is recommending that the Phase 2 mock-up trials be conducted only for selected materials to address key issues for specific processes. Table 5-6 contains specific recommendations for processes, sizes, and materials to be evaluated for the lower unit in Phase 2. Mock-up fabrication will be limited to confirming process feasibility and assessing the more challenging aspects of each process for specific alloys. B&W recommends that mock-up trials for the upper head not be included in Phase 2 since its fabrication can be more routine, and its detailed design configuration has not been established.

The recommendations in Table 5-6 are an attempt to reduce the work scope to fit an anticipated budget. Therefore, not all bases are covered for each process, which could lead to generating insufficient information, depending on which material is finally chosen by the MT&C technical area. For example,

the plan calls for only one process to produce mock-ups from AISI 304L or AISI 316L. Although information generated for Alloy 825 should apply, Alloy 825 is somewhat more difficult to work with than the stainless steel, and problems found with Alloy 825 may not be encountered with the stainless steels.

Table 5-4. Producibility of candidate alloys

PROCESS	Materials					
	304L CF-3	316L CF-3M	IN 825	CDA102 CDA122	CDA613 CDA952	CDA715 CDA954
LU01-EXTRUDED CLOSED-END	1	1	1	5	5	1
LU02-EXTRUDED CLOSED END + COLDWORK	1+1	1+1	1+1	5+1	5+1	1+1
LU03-DEEP DRAWN CLOSED-END	1	2	1	1	2	1
LU04-ROLL & WELD BODY W/FORGED HEAD	1	1	1	1	4	1
LU09-EXTRUDED BODY W/FORGED HEAD	1	1	1	5	5	1
LU14-DEEP DRAWN BODY W/DEEP DRAWN HEAD	1	1	1	1	1	1
LU19-CENTR. CAST BODY W/FORGED HEAD	1	1	7	4	1	1
LU24-ROLL & WELD BODY + COLDWORK	1+3	1+3	1+3	1+3	4+3	1+3
LU29-EXTRUDED BODY + COLD WORK	1+3	1+3	1+3	5+3	5+3	1+3
LU34-DEEP DRAWN, WELDED + COLD WORK	1+3	1+3	1+3	1+3	1+3	1+3
LU39-CENTR. CAST, WELDED + COLD WORK	1+3	1+3	7+3	4+3	1+3	1+3

- 1 - VENDOR(S) CAN READILY PRODUCE
- 2 - VENDOR(S) POSSIBLY CAN PRODUCE W/SOME DIFFICULTY
- 3 - VENDOR HAS NOT DETERMINED FEASIBILITY OF COLDWORKING OF GIRTH WELDS
- 4 - VENDOR(S) CANNOT PRODUCE/OR DID NOT QUOTE
- 5 - VENDOR(S) COULD PRODUCE IF INGOT SIZE AVAILABLE
- 6 - VENDOR CAN PRODUCE WITH NEW EQUIPMENT REQUIRED
- 7 - VENDOR CAN PRODUCE BUT WITH ALTERNATE CAST COMPOSITION

Example of Code

When cold work is used after a primary process, such as cold working after extrusion of a closed-end container, the first digit refers to the first process used and the second to the cold working process. For example, 5+1 for LU02 made with CDA 102 or CDA 122 means that the extrusion vendor could produce it if the proper ingot were available and the second process vendor can easily cold work it.

Table 5-5. General advantages and disadvantages of various processes for lower unit fabrication

PROCESSES	ADVANTAGES	DISADVANTAGES
LU01 - EXTRUDED CLOSED END	SIMPLE, HOMOGENEOUS, HEAVIER WALL EASIER	COST, OVALITY, ECCENTRICITY
LU02 - EXTRUDED CLOSED END + COLD WORKED	REFINED MICROSTRUCTURE, MAYBE CHEAPER TO REDUCE WALL BY COLDWORK RATHER THAN BY MACHINING	IF CAN'T COLD WORK BLIND END, THEN VARIABLE MICROSTRUCTURE?
LU03 - DEEP DRAWN CLOSED END	HOMOGENEOUS AND FINE GRAINED SINCE MADE FROM PLATE	HIGH TOOLING COST, NO MACHINE AVAILABLE YET FOR FULL LENGTH, DIFFICULT FOR SOME ALLOYS
LU04 - ROLL & WELD BODY W/FORGED HEAD	SIMPLE, PROVEN, CHEAP	MORE WELD METAL FOR LOCALIZED CORROSION
LU09 - EXTRUDED BODY W/DEEP DRAWN HEAD	LESS WELD METAL THAN LU04	MORE EXPENSIVE BODY THAN LU04
LU14 - DEEP DRAWN BODY W/DEEP DRAWN HEAD	ONLY NEED TO MAKE 1 COMPONENT TO FAB ENTIRE CONTAINER	STILL HAVE GIRTH WELD, AT EITHER LOCATION
LU19 - CENTRIFUGAL CAST BODY W/FORGED HEAD	CHEAP BODY W/NO LONG SEAM WELD	MICROPOROSITY?, LARGE GRAIN?, DIFF- ICULTIES IN UT. MAY NOT APPLY TO ALL ALLOYS, PUBLIC PERCEPTION
LU24 - ROLL & WELD BODY + COLD WORK	CHEAP PREFORM, COLD WORK TO BREAK-UP WELDS	CAN COLD WORK BREAK-UP WELDS OKAY W/O CAUSING OTHER DAMAGE? + COST
LU29 - EXTRUDED BODY + COLD WORK	MAY BE MORE FEASIBLE THAN LU24 OR LU39	CAN COLD WORK BREAK-UP WELDS OKAY W/O CAUSING OTHER DAMAGE? + COST
LU34 - DEEP DRAWN, WELDED + COLD WORK	MAY NOT REQUIRE AS MUCH COLD WORK, HEAD WOULD ALREADY HAVE COLD WORK. TOOLING COSTS LESS THAN LU14	CAN COLD WORK BREAK-UP WELDS OKAY W/O CAUSING OTHER DAMAGE? + COST
LU39 - CENTRIFUGAL CAST + COLD WORK	SAME AS LU24 BUT NO LONG SEAM	CAN COLD WORK BREAK-UP WELDS OKAY W/O CAUSING OTHER DAMAGE? + COST

Table 5-6. Processes for the lower unit recommended for testing

Process No.	Description	No. of Pieces		Appropriate Size, in.		Material				Remarks	Key Process Concerns/Issues
		Ø	Mill	Length	304L	316L	IN 85	CD4	CD4		
FIRST MOCK-UPS											
1A	Roll and Weld	1 ea.	.24	.4	60		x	x	x	No need to evaluate 304L and 316L; technology is proven.	Consistency of weld, microstructure.
1B	For Spin Form Trial	1	26	1.25	60				x	No vendor bids for CD4 122.	Weld durability, heat treatment response.
	Preform		24.5	.4	120						Evaluate cold work & anneal of welds.
	Finished										
2A	Centrifugal Casting	1 ea.	26	1.25	20			x	x	Evaluate porosity, pitting, shrinkage.	Grain size and UT.
2B	For Spin Form Trial	1 ea.	26	1.25	40			x	x	Evaluate cold work and anneal of welds and UT.	Evaluate cold work & anneal of welds and UT.
	Preform		24.5	.4	120						
	Finished										
3	Deep Drawing	1 ea.	.12	.4	.12		x	x	x	316L more difficult to draw than 304L. No experience with IN 85. CD4 122 requires thicker stock.	Property, grain size and residual variation at the bottom and corner.
											Adequacy of hot worked microstructure and properties of closed end. Homogeneity and quality.
											Effect on end/wall transition.
											Homogeneity of properties.
SECOND MOCK-UPS											
4A	Hot Back Extrusion	1	26	1.25	60	x					
4B	For Spin Form Trial	1	26	1.25	60	x					
	Preform		24.5	.4	120						
	Finished										
5	Roll and Weld	1	24	.4	144		x	x			
5A	With Spin Head	1	24	.4	144						
5B	With Machined Head	1	24	.4	144						
	For Heat Treatment Study										
6A	Block Extrusion 6	1	24.5	.4	120		x				
6B	Roll Form	1	24.5	.4	120		x				
	Block Extrusion 6 + Roll Form for Heat Treatment Study										

6. Quality Assurance

B&W Research and Development Division's Quality Assurance Plan

A copy of the B&W Research and Development Division's QA Plan for Phase 1 (RDD QA Plan No. 87008) is attached. This plan is made in accordance with B&W Nuclear Power Division (NPD) specification 09-1427, dated 10/27/75 and PA 83-776195-00, dated 6/12/87. The NPD QA program is in full compliance with the requirements of the Quality Assurance Criteria for Nuclear Power Plants and Fuel Reprocessing Plants (10 CFR 50, Appendix B), the Quality Assurance Program Requirements for Nuclear Power Plants (ANSI/ASME Standard NQA-1), and the NRC-accepted NPD QA Topical Report (B&W Internal Report BAW-10096A, Lynchberg, VA).

QA Approval

To the best of my knowledge and belief, the work described in this report was completed in accordance with RDD QA Plan No. 87008, Revision 0, dated June 29, 1987.

G. W. Roberts Date
QA Manager
Alliance Research Center
Babcock & Wilcox

AC 375.1
REV. 2 2/87

QUALITY ASSURANCE PLAN

PAGE 1 OF 3

CUSTOMER Nuclear Products DivisionQA PROJECT NO. 87008CUSTOMER CONTRACT NO. 9172105REVISION 0 DATE 6/29/87R&D PROJECT NO. 4380PROJECT Nuclear Waste Disposal Container Fabrication
Development - Phase 1DATE 3/25/87IN ACCORDANCE WITH CUSTOMER SPECIFICATION 09-1427 DATED 10/27/75
PAB3-776195-00 6/12/87

PREPARED BY:

QA ADMINISTRATOR J. A. Will
R. K. Gail

APPROVED BY:

PROJECT LEADER D. F. LaCount
D. F. LaCount

APPROVED BY:

QA MANAGER G. W. Roberts

APPROVED BY:

SUPERVISOR M. Weber
C. M. WeberTHE SECTIONS OF THE R&D QUALITY ASSURANCE MANUAL DESIGNATED BELOW (AND IMPLEMENTING PROCEDURES REFERENCED IN THE MANUAL) ARE APPLICABLE TO THIS PROJECT.

SECTION	REMARKS
1.0 INTRODUCTION	<input checked="" type="checkbox"/>
2.0 QA PROGRAM	<input checked="" type="checkbox"/> MANUAL REVISION 1/10/85
3.0 DESIGN CONTROL	
DESIGN REVIEW	<input type="checkbox"/>
INDEPENDENT TECHNICAL REVIEW	<input checked="" type="checkbox"/> 1704-03 Dated 2/22/85
CALCULATIONS	<input type="checkbox"/>
COMP. PROGRAMS	<input type="checkbox"/>
4.0 PROCUREMENT DOCUMENT CONTROL (QA REVIEW)	<input type="checkbox"/> Not Applicable
5.0 INSTRUCTIONS, PROCEDURES & DRAWINGS	
DRAWINGS	<input type="checkbox"/>
ROUTE SHEETS	<input type="checkbox"/>
INSPECTION CHECKLISTS	<input type="checkbox"/>
ADMIN. PROCEDURES	<input checked="" type="checkbox"/>
TECHNICAL PROCEDURES	<input type="checkbox"/>
6.0 DOCUMENT CONTROL	
ADMIN. PROCEDURES	<input checked="" type="checkbox"/>
DRAWINGS	<input type="checkbox"/>
INSPECTION CHECKLISTS	<input type="checkbox"/>
PROPOSAL	<input checked="" type="checkbox"/>
PROJECT TECHNICAL PLAN	<input type="checkbox"/>
QA MANUAL	<input checked="" type="checkbox"/> 1702-02 Dated 12/3/86
QA PLANS	<input checked="" type="checkbox"/> 1702-03 Dated 2/12/87
ROUTE SHEETS	<input type="checkbox"/>
FINAL REPORT	<input checked="" type="checkbox"/>
TECHNICAL PROCEDURES	<input type="checkbox"/>
RELEASE OF DATA	<input type="checkbox"/>

RC 375.2
REV. 2 2/87
QA PLAN - PAGE 2 OF 3

QA Project No. 87008 Rev. 0 Date 6/29/87
Nuc. Waste Dispos. Container
Fabrication Dev. - Phase 1 DATE 3/25/87

SECTION	REMARKS
7.0 CONTROL OF PURCHASED MATERIAL, EQUIPMENT & SERVICE	Not Applicable
SOURCE EVALUATION <input type="checkbox"/>	
APPROVED SUPPLIERS LIST <input type="checkbox"/>	
SUPPLIER QUALITY HISTORY <input type="checkbox"/>	
SUPPLIER AUDITS <input type="checkbox"/>	
SOURCE INSPECTION <input type="checkbox"/>	
RECEIVING INSPECTION <input type="checkbox"/>	
8.0 IDENTIFICATION AND CONTROL OF MATERIALS, PARTS & COMPONENTS	Not Applicable
I. D. TAGS <input type="checkbox"/>	
ROUTE SHEETS <input type="checkbox"/>	
9.0 CONTROL OF SPECIAL PROCESSES <input type="checkbox"/>	Not Applicable
10.0 INSPECTION	Not Applicable
INSPECTION CHECKLIST <input type="checkbox"/>	
11.0 TEST CONTROL	Not Applicable
TEST PROCEDURE <input type="checkbox"/>	
LOGBOOK/LABORATORY NOTEBOOK <input type="checkbox"/>	
DATA SHEETS <input type="checkbox"/>	
CALCULATION <input type="checkbox"/>	
COMPUTER PROGRAMS <input type="checkbox"/>	
INDEPENDENT TECHNICAL REVIEW <input type="checkbox"/>	
12.0 CONTROL OF MEASURING AND TEST EQUIPMENT	Not Applicable
MEAS. EQUIP. CONTROL & CALIB. SYSTEM <input type="checkbox"/>	
OUT OF CALIB. REPORT <input type="checkbox"/>	
13.0 HANDLING, STORAGE AND SHIPPING <input type="checkbox"/>	Not Applicable
14.0 INSPECTION, TEST AND OPERATING STATUS	Not Applicable
ROUTE SHEETS <input type="checkbox"/>	
LOGBOOK/LABORATORY NOTEBOOK <input type="checkbox"/>	
INSPECTION CHECKLISTS <input type="checkbox"/>	
DO NOT OPERATE TAGS <input type="checkbox"/>	
EQUIP. OPER. NOTICE <input type="checkbox"/>	
15.0 NONCONFORMING MATERIALS, PARTS OR COMPONENTS	Not Applicable
DISCREPANCY TAG <input type="checkbox"/>	
CORRECTIVE ACTION REPORT <input type="checkbox"/>	
16.0 CORRECTIVE ACTION SYSTEM	1717-01 Dated 12/3/86
CORRECTIVE ACTION REPORT <input checked="" type="checkbox"/>	

Quality Assurance Plan

Page 3 of 3

RC 375.3
REV. 2 2/87

QA PLAN - PAGE 3 OF 3

PROJECT

QA Project No. 87008 Rev. 0 Date 6/29/87

Nuc. Waste Disp. Container
Fabrication Dev. - Phase 1 DATE 3/25/87

SECTION	REMARKS
17.0 QA RECORDS	
RC-194	<input checked="" type="checkbox"/>
GO 402B - 4029	<input type="checkbox"/>
IWO	<input checked="" type="checkbox"/>
PROPOSAL	<input checked="" type="checkbox"/>
PROJECT TECHNICAL PLAN	<input type="checkbox"/>
QA PLAN	<input checked="" type="checkbox"/>
INDEPENDENT TECHNICAL REVIEW	<input checked="" type="checkbox"/>
ROUTE SHEETS	<input type="checkbox"/>
TECHNICAL PROCEDURES	<input type="checkbox"/>
INSPECTION CHECKLISTS	<input type="checkbox"/>
AUDIT REPORTS	<input type="checkbox"/>
CORRECTIVE ACTION REPORTS	<input checked="" type="checkbox"/>
MATERIAL I. D. TAGS	<input type="checkbox"/>
DISCREPANCY TAGS	<input type="checkbox"/>
CORRESPONDENCE	<input checked="" type="checkbox"/>
LOGBOOK/LABORATORY NOTEBOOKS	<input type="checkbox"/>
3-RING BINDERS	<input type="checkbox"/>
CALCULATIONS/REVIEWS	<input type="checkbox"/>
COMPUTER DATA/REVIEWS	<input type="checkbox"/>
LIST OF DRAWINGS	<input type="checkbox"/>
SUPPLIER QUALITY HISTORY	<input type="checkbox"/>
SOURCE INSPI. REPORTS	<input type="checkbox"/>
PURCHASE ORDERS	<input type="checkbox"/>
INTERIM REPORTS	<input type="checkbox"/>
DESIGN REVIEW REPORT	<input type="checkbox"/>
FINAL REPORT - PHASE 1	<input checked="" type="checkbox"/>
OUT OF CALIBRATION REPORTS	<input type="checkbox"/>
10 CFR 21 REPORTS	<input type="checkbox"/>
18.0 QA AUDITS	
INTERNAL	<input type="checkbox"/>
SUPPLIER	<input type="checkbox"/>
INFORMAL (SURVEILLANCE)	<input checked="" type="checkbox"/>
19.0 CONTROL OF CUSTOMER FURNISHED PROPERTY	Not Applicable

APPENDIX A DOCUMENTS REQUIRING CUSTOMER APPROVAL

DOCUMENT

APPROX. SUBMITTAL SCHEDULE

QA Plan 87008 Rev. 0
Dated 6/29/87

July 1, 1987

7. References

10 CFR Part 60 (1983), "Disposal of High-Level Radioactive Wastes in Geologic Repositories, Technical Criteria," *Nuclear Regulatory Agency, Federal Register, Rules and Regulations*, Vol. 48, No. 120, pp. 28194-28229. HQ2870302.3/19.

ASM (American Society for Metals International) (1969), "Deep Drawing," *Metals Handbook*, Vol. 4, Eighth Edition, (American Society for Metals International, Metals Park, OH), pp. 162-193. NNA.900904.0243

ASM (American Society for Metals International) (1979), "Copper," *Metals Handbook*, Vol. 2, Ninth Edition, (American Society for Metals International, Metals Park, OH), pp. 239-490. NNA.900108.0326

ASTM (American Society of Testing and Materials) (1986), "Practices for Detecting Susceptibility to Intergranular Attack in Austenitic Stainless Steels—Practice E," *Annual Book of ASTM Standards*, Vol. 01.03, (American Society of Testing and Materials, Philadelphia, PA), pp. 54-59. NNA.900904.0242

Baeslack III, W. A., D. J. Duquette, and W. F. Savage (1979), "The Effect of Ferrite Content on Stress Corrosion Cracking of Duplex Stainless Steel Weld Metals at Room Temperature," *Corrosion* 36(2), pp. 45-54. NNA.900108.0351

Beeston, J. M., et al. (1984), *Canister Material Test Program*, EC&G-INM-6707, Preliminary Copy, January 1, 1984. NNA.900108.0353

Briant, C. L. (1981), "Hydrogen Assisted Cracking of Austenitic Stainless Steels," *Hydrogen Effects in Metals Proc.*, I. M. Bernstein and A. W. Thompson, Eds., (AIME, Warrendale, PA), pp. 527-540. NNA.900108.0356

Brown, M. H. (1969), "The Relationship of Heat Treatment to the Corrosion Resistance of Stainless Alloys," *Corrosion* 25(10), pp. 438-443. NNA.900108.0373

CDA (Copper Development Association) (1987), *Effect of Fabrication on the Corrosion Performance of Copper Metals for Nuclear Waste Containers*, Copper Development Association, Draft, July 15, 1987. NNA.900108.0354

Chrenko, R. M. (1978), "Residual Stress Studies of Austenitic and Ferritic Steels," *Proc. Conf. on Residual Stresses in Welded Construction and Their Effects*, pp. 79-88. NNA.891215.0079

Cigada, A., et al. (1982), "Stress Corrosion Cracking of Cold-Worked Austenitic Stainless Steel," *Corrosion* 32(6) pp. 559-578. NNA.891215.0049

Costello, T. M., K. E. Pinnow, and A. Moskowitz (1969), "Test with Austenitic Stainless Steel," *Materials Protection*, November, pp. 15-18. NNA.900108.0325

Dayal, R. K., et al. (1984), "Intergranular Attack During Crevice Corrosion of Stainless Steels," *Mater. Lett.* 3(3), pp. 248-252. NNA.891215.0092

Domian, H. A. (1987), *Meeting with Representatives of the Copper Development Association*, Babcock & Wilcox Internal Memorandum to P. C. Childress, May 26, 1987. NNA.900108.0389

Eliezer, D. (1981), "Hydrogen Assisted Cracking Type 304L and 316L Stainless Steel," *Hydrogen Effects in Metals*, (AIME, Warrendale, PA), pp. 565-574. NNA.900108.0357

Fidler, R. (1982), "The Effect of Time and Temperature on Residual Stresses in Austenitic Welds," *J. Pressure Vessel Technol.* 104(3), pp. 188-192. NNA.900108.0310

Flowers, J. W., F. H. Bech, and M. G. Fontana (1963), "Corrosion and Age Hardening Studies of Some Cast Stainless Alloys Containing Ferrite," *Corrosion*. NNA.900108.0352

Foulds, J. R., and J. Motteff (1982), "Substructure Characterization of a 16-8-2 GTA Weld Through Transmission Electron Microscopy," *Weld J.* 62(6), pp. 189S-196S. NNA.900108.0308

Ginn, B. J., T. G. Gooch, and T. G. Davey (1983), "Effects of Interpass Temperature When Welding Austenitic Stainless Steel," *Met. Constr.* 15(12), pp. 745-752. NNA.891215.0043

Grekula, A. I., V. P. Kujanpaa, and L. P. Karjalainen (1984), "Effect of Solidification Mode and Impurities on Pitting Corrosion in AISI 316 GTA Welds," *Corrosion* 40(11), pp. 569-572. NNA.900108.0307

Hannineh, H. E. (1979), "Influence of Metallurgical Variables on Environment-Sensitive Cracking of Austenitic Alloys," *Int. Met. Rev.* 24(3), pp. 85-135. NNA.891215.0093

Holbrook, R. L. (1987), *Meeting—NI Industries, Vernon Division, July 23, 1987, Babcock & Wilcox Internal Memorandum*, July 29, 1987. NNA.900108.0371

Hong, Y. K., and C. H. Pitt (1983), "Corrosion of Selected Metal Alloys in Utah Geothermal Waters," *J. Mater. Energy Syst.* 5(2), pp. 77-83. NNA.891215.0044

Howell, R. M. (1982), *Comparison of Properties of Centrifugal Cast and Wrought Stainless Steels With Similar Chemical Composition for DWPF Canisters*, EG&G-WM-6097, October, 1982. NNA.900108.0370

Inco Alloys International, Inc. (1984), *INCOLOY Alloy 825 Brochure*, Inco Alloys International, Inc., Huntington, WV, 25720, January 1, 1984. NNA.900108.0324

Kundig, K. J. A. (1986), *Fabrication Alternatives for Manufacturing Copper and Copper Alloy Nuclear Waste Containers*, Draft, Copper Development Association, May 30, 1986. NNA.891215.0041

Lamb, M., W. M. Steen, and D. R. F. West (1984), "The Pitting Corrosion Behavior of Laser Surface Melted 420 and 316 Stainless Steels," *IALEO 84* 44, pp. 133-139. NNA.891215.0091

Lewandowski, J. L., and A. W. Thompson (1981), "The Effect of Austenite Stability on Sustained Load Cracking and Fracture Morphology of Stainless Steels in 1 Atmosphere Hydrogen," *Hydrogen Effects in Metals Proc.*, I. M. Bernstein and A. W. Thompson, Eds., (AIME, Warrendale, PA), pp. 629-636. NNA.900108.0359

Logan, R. W. (1983), *Computer Simulation of Sensitization in Stainless Steels*, Lawrence Livermore National Laboratory, Livermore, CA, UCID-20000. NNA.900108.0291

Manning, D. E., D. J. Duquette and W. S. Savage (1980), "The Effect of Retained Ferrite on Localized Corrosion in Duplex 304L Stainless Steel," *Welding J.*, September, pp. 260s-262s. NNA.900108.0355

Matsumoto, O., et al. (1989), *Effect of Ferrite Content on Mechanical Properties and Corrosion Resistance of Cast Duplex Stainless Steels*, January 1, 1989, IIW Doc. IX-1396-86. NNA.891215.0077

Mattson, E. (1980), "Corrosion of Copper and Brass: Practical Experience in Relation to Basic Data," *Br. Corrosion J.* 15(1), pp. 6-13. NNA.900108.0294

McCright, R. D. (1987), *LLNL Metal Barrier Draft Plan*, Lawrence Livermore National Laboratory, Livermore, CA. NNA.891215.0037.

Medley, D. F., and J. M. Quinn (1987), *Alloys Under Consideration for Nuclear Waste Storage Containers*, Wisconsin Centrifugal, Inc., July 17, 1987. NNA.900108.0269

Murakami, S., et al. (1979), "The Effect of Delta Ferrite in Duplex Cast Stainless Steel and the Characteristics of Recrystallized Cast Stainless Steel," *Cast Metals for Structural and Pressure Containment Applications*, MPC-11, pp. 171-203. NNA.900108.0367

Nakagawa, Y. G. (1982), "Heat Variability and Thermomechanical Effect of Sensitization," *Predictive Methods for Assessing Corrosion Damage to BWR Piping and PWR Steam Generators*, (National Corrosion Engineers), pp. 79-84. NNA.900108.0299

Novak, C. J. (1977), "Structure and Constitution of Wrought Austenitic Stainless Steels," *Handbook of Stainless Steels*, D. Peckner and I. M. Bernstein, Eds., (McGraw), pp. 4-1 to 4-78. NNA.900108.0360

O'Neal, W. C., et al. (1983), *Design of a Nuclear Waste Package for Emplacement in Tuff*, Lawrence Livermore National Laboratory, Livermore, CA, UCRL-88192. NNA.891215.0038

Pilippio, A. M. (1980), *Evaluation of Weldment Sensitization on Type 304 and 304L Stainless Steel Spent-Fuel Canisters*, DOE/NV/00597-1, January, 1980. NNA.900108.0347

Russell, E. W., R. D. McCright, and W. C. O'Neal (1983), *Containment Barrier Metals for High Level Waste Packages in a Tuff Repository*, Lawrence Livermore National Laboratory, Livermore, CA, UCID-53449. NNA.891215.0013

Solomon, H. D. (1985), "Influence of Prior Deformation and Composition on Continuous Cooling Sensitization of AISI 304 Stainless Steel," *Corrosion* 41(9), pp. 512-517. NNA.900108.0350

Suutala, N., and M. Kurkela (1984), "Localized Corrosion Resistance of High Alloy Austenitic Stainless Steels and Welds," *Stainless Steel 84*, September, pp. 240-247. NNA.891215.0094

West, A. J., and J. H. Holbrook (1981), "Hydrogen in Austenitic Stainless Steels: Effects of Phase Transformations and Stress State," *Hydrogen Effects in Metals Proc.*, I. M. Bernstein and A. W. Thompson, Eds., (AIME, Warrendale, PA), pp. 607-618. NNA.900108.0358

8. Bibliography

1. Anon., "Hot Isostatic Pressing of Copper Canisters for Nuclear Waste Disposal," Industrial Heating, December, 1984, 28,31. HIP, Copper, Canisters.
2. M. C. Juhas, R. D. McCright and R. E. Garrison, "Behavior of Stressed and Unstressed 304L Specimens in Tuff Repository Environmental Conditions," Corrosion 85, Paper 117. Type 304L, Tuff, LTS, Irradiated Corrosion Tests, SSRT, Bent Beam Corrosion, J- 13 Water.
3. R. A. Corbett, D. F. Bickford, and W. S. Mornson, "Corrosion Evaluation of Alloys for Nuclear Waste Processing," Corrosion 86, Paper 254. Corrosion, C-276, 20 Cb-3, IN 690.
4. J. F. Kircher, "Geologic Isolation of Nuclear Waste: Corrosion Concerns," Corrosion 84, Paper 197. Corrosion, Overview.
5. J. W. Fu and S. K. Chan, "A Finite Element Modeling Method for Predicting Long Term Corrosion Rates," Corrosion 84, Paper 199. FEM, Corrosion, Prediction.
6. N. R. Sorensen and J. A. Ruppen, "The Environmental Cracking of Ti Code-12 in a Repository Brine," Corrosion 84, Paper 200. SSRT, SCC, HE, Brine.
7. W. L. Lundberg and J. M. Markowitz, "High Level Nuclear Waste Package Thermal Performance in Geological Repositories: Corrosion Implications," Corrosion 86, Paper 246. Overview, Corrosion, Heat Generation, Temperature.
8. J. Kruger and K. Rhyne, "Current Understanding of Pitting and Crevice Corrosion and Its Application to Test Methods for Determining the Corrosion Susceptibility of Nuclear Waste Containers," Nuclear and Chemical Waste Management, 3, 1982, 205-227. Pitting, Crevice Corrosion, Review.
9. A. Sanderson and L. O. Werne, "Can High Power Electron Beam Welding Encapsulate Nuclear Waste for 100,000 Years?" The Welding Institute Research Bulletin, November, 1986, 365-370.
10. P. L. Hoffman (ed.), "Technology of High Level Nuclear Waste Disposal," DOE/TIC 4621, 2, 1982, p. 383 Site Characterization, Repository Design, Waste Package Development.
11. R. D. McCright, "FY 1985 Status Report on Feasibility Assessment of Copper-Base Waste Package Container Materials in a Tuff Repository," UCID - 20509, September 30, 1985, LLNL. Copper, Tuff, Rolled, Welded, Extrusion, Centrifugal, HIP, EBW, CDA 102, 613, 715, 801, 952, 964.
12. H. Weiss and R. A. VanKonynenburg, "Metallurgical Analysis of a 304L Stainless Steel Canister From the Spent Fuel Test," UCID - 20436, April 23, 1985, LLNL.
13. E. W. Russell, R. D. McCright and W. C. O'Neal, "Containment Barrier Metals for High Level Waste Packages in a Tuff Repository," UCID - 53449, October 10, 1983, LLNL. Ratings, Candidate Alloys, Review.
14. R. A. Van Konynenburg and R. D. McCright, "Corrosion Performance of Metals and Alloys in a Tuff Geochemical Environment," Proc. of Waste Management Conf., 1985, 453-457. Review, Metals and Alloys, Tuff.
15. B. J. Eberhard and J. W. Kelker, Jr., "High Current Resistance Welding of Nuclear Waste Containers," Welding Journal, June, 1982, 15-19. Upset Welding, 304L, Canisters.

16. T. M. Ahn, et al., "Corrosion of Ti Code-12 in a Simulated Waste Isolation Pilot Project (WIPP) Brine," *Scientific Basis for Nuclear Waste Management VI*, 1983, 761-767. Corrosion, Ti Code-12, Brine.
17. N. Moody and S. Robinson, "Internal Hydrogen Effects in Ti Code-12 Overpack/Canister Material," *Scientific Basis for Nuclear Waste Management VI*, 1983, 695-702. HE, Ti Code-12.
18. V. Mirschinka, et al., "Investigations of Suitable Metallic Container Materials for HAW Solidification," *Scientific Basis for Nuclear Waste Management VI*, 1983, 695-702. Solidification, Borosilicate Glass.
19. K. Nutall, et al., "The Canadian Container Development Program for Fuel Isolation," *Scientific Basis for Nuclear Waste Management VI*, 1983, 677-684.
20. N. J. Magnani, "Corrosion Resistant Canisters for Nuclear Waste Isolation," *Scientific Basis for Nuclear Waste Management VI*, 1983, 669-676. Corrosion Rates, IN 825, Copper, 90-10 Copper Nickel.
21. Anon., "Buried Nuclear Waste Must be Enclosed in Gold to Resist Corrosion," *Anti-Corrosion*, June, 1977, 12,13. Gold, Waste Containers.
22. G. P. Marsh, "Materials for High Level Waste Containment," *Nucl. Energy*, 1982, 21, (4), August, 1982, 253-265. Assessment, UK, Review, Waste Containers.
23. W. G. Sutcliffe, "Uncertainty Analysis: An Illustration From Nuclear Waste Package Development," *Nuclear and Chemical Waste Management*, 5, 1984, 131-140. Uncertainty Analysis.
24. J. W. Braithwaite and M. A. Molecke, "Nuclear Waste Canister Corrosion Studies Pertinent to Geologic Isolation," *Nuclear and Chemical Waste Management*, 1, 1980, 37-50. Corrosion, Candidate Materials, Canister.
25. D. F. Bickford and R. A. Corbett, "Material Selection for Nuclear Waste Processing Facility," *J. Materials for Energy Systems*, 8, (2), September, 1986, 142-149. Type 304L, Waste Processing.
26. K. Nutall, "Some Aspects of the Prediction of Long Term Performance of Fuel Disposal Containers," *Canadian Met. Quarterly*, 22, (3), 1983, 403- 409. Prediction, Canadian Program, Containers.
27. R. G. Baxter, "Description of DWPF Reference Waste Form and Canister," DP-1606, E. I. DuPont de Nemours & Co., June, 1981. 304L, Borosilicates, DWPF.
28. E. P. Gause and N. Abraham, "Feasibility Assessment of Copper-Base Waste Package Container Materials in Nuclear Waste Repositories Sited in Basalt and Tuff," Roy F. Weston, Inc., report to the Congress from the DOE Office of Civilian Radioactive Waste Management (1986). Feasibility Assessment, Tuff, Copper.
29. M. M. Larsen, J. A. Logan, and R. Y. Maughm, "Test Programs Conducted in Support of High Level Waste Canister Fabrication Using Radioactively Contaminated Steel," EGG Preprint. 304L, CF3, Centrifugal Casting, Canister.
30. A. R. E. Singer, "Recent Development in Spray Forming of Metals," *The International Journal of Powder Metallurgy and Powder Technology*, 21, (3), 1985, 219-234. Spray Forming.

31. V. Kucera and E. Mattsson, "Atmospheric Corrosion of Metallic Structures," *Atmos. Corrosion (Proc. Conf.)*, 1980, 561-574. Corrosion, Bimetallic.
32. Anon., "Disposal of High Level Radioactive Waste in Geologic Repositories; Amendments to Licensing Procedures," *Federal Register*, 50, (2), January 17, 1985, 10 CFR 60. Licensing Procedures.
33. J. L. Crosthwaite, et al., "Design of Containment for the Long Term Isolation of Irradiated Fuel During Underground Disposal," *Proc. 2nd Annual Conf. of the Canadian Nuclear Society*, 1981, 370-376. Canadian Program, 316L, Copper.
34. M. D. Merz, "Materials Characterization Center State-of-the-Art Report on Corrosion Data Pertaining to Metallic Barriers for Nuclear Waste Repositories," PNL 4474, October, 1982, p. 83. Review, Corrosion.
35. R. E. Westerman, et al., "Investigation of Metallic, Ceramic, and Polymeric Materials for Engineered Barrier . . .," PNL-3484, October, 1980, 119 p. Review, Candidate Materials.
36. B. E. Paton, "Welding of Multi-layer Pipes in the Manufacture and Construction of High Pressure Gas Pipelines," *Int. J. Pres. Ves. & Piping*, 24, 1986, 175-187. Welding, Multi-layer Vessels.
37. Anon., "Nevada Nuclear Waste Storage Investigations: Quality Assurance Plan," NVO - 196-17, 1981, 40 p. Quality Assurance.
38. R. G. Nelson, J. F. Nesbitt, and S. C. Slate, "Nuclear Waste Encapsulation by Metal-Matrix Casting," PNL -3750, May, 1981. Metal Matrix Casting.
39. R. D. McCright, LLNL Metal Barrier Draft Plan, April 9, 1987. Selection Criteria, Degradation Modes.
40. W. C. O'Neal, et al., Design of a Nuclear Waste Package for Emplacement in Tuff, Lawrence Livermore National Laboratory, Livermore, CA, UCRL-88192, 1983.. NNA.891215.0038
41. W. E. Glassley, "Reference Waste Package Environment Report," UCRL - 53726, October 1, 1986. Environment, Tuff.
42. A. S. Helle, K. E. Easterling and M. F. Ashby, "Hot Isostatic Pressing Diagrams, *Teknisk Rapport* 1985: 02T. HIP, Copper.
43. B. Lonnerberg, H. Larker, and L. Agesbok, "Encapsulation and Handling of Spent Nuclear Fuel for Final Disposal," SKBF-KBS 83-20. HIP, Welded Copper, SKBF.
44. K. J. A. Kundig, "Fabrication Alternatives for Manufacturing Copper and Copper Alloy Nuclear Waste Containers," Draft, CDA, May 30, 1986. Fabrication, Copper, Copper Alloy, Containers.
45. Anon., "Fabrication Alternatives for Manufacturing Copper and Copper Alloy Nuclear Waste Containers - A Survey of Representative vs. Fabrication Facilities," Draft, CDA, August, 8, 1985. Fabrication, Manufacturers, Copper Containers.
46. G. A. Brown, et al., "The Sealing and Testing of High Integrity Containers for the Long Term Storage of AGR Spent Fuel," *Intl. Conf. on Nuclear Containment*, 1987. AGR, CEGB, Containers, Welding.

47. C. F. Acton and R. D. McCright, "Feasibility Assessment of Copper-Base Waste Package Container Materials in A Tuff Repository," UCID-20847, September 30, 1986. Feasibility, Copper, Tuff, Container.
48. B. J. Ginn, T. G. Gooch and T. G. Davey, "Effects of Interpass Temperature When Welding Austenitic Stainless Steel," Met. Constr., 15, (12), December, 1983, 745-752. Interpass Temperature, Intercrystalline Corrosion, 304L, 316L.
49. Y. K. Hong and C. H. Pitt, "Corrosion of Selected Metal Alloys in Utah Geothermal Waters," J. Mater. Energy Syst., 5, (2), September, 1983, 77-83. Pitting Potential, Corrosion, Potentiodynamic, 316L.
50. L. A. Norstrom, "The Influence of Nitrogen and Grain Size on Yield Strength in Type AISI 316L Austenitic Stainless Steel," Metal Science, June, 1977, 208-212. Grain Size, Nitrogen, Yield Strength, 316L.
51. T. P. S. Gill, J. B. Gnangmoorthy and K. A. Padmanabhan, "Influence of Secondary Phases on the Localized Corrosion of Thermally Aged AISI 316L Stainless Steel Weld Metal," Corrosion, 43, (4), April, 1987, 208-213. Aged, 316L, Weld Metal, Pitting.
52. J. F. Klement, R. E. Maersch, and P. A. Tully, "Stress Corrosion Crack Paths in Alpha Aluminum Bronze in Ammonia and Steam Atmospheres," Corrosion, 15, 295t-298t. SCC, Al-Bronze, Ammonia, Steam.
53. D. H. Thompson and A. W. Tracy, "Influence of Composition on the Stress Corrosion Cracking of Some Copper-Base Alloys," Metals Trans. AIME, February, 1949, 100-109. SCC, Copper Alloys, Composition, Ammonia.
54. Anon., "Nuclear Quality Plates," Eastern Stainless Co. 304L, 316L, Heat Treatment, Machinability, Formability, Weldability, Properties.
55. G. Piatti and P. Schiller, "Thermal and Mechanical Properties of the Cr-Mn (Ni Free) Austenitic Steels for Fusion Reactor Applications," J. Nucl. Mater., November-December, 1986, 141-143, 407-426. Properties, 316L.
56. A. Cigada, et al., "Stress Corrosion Cracking of Cold-Worked Austenitic Stainless Steel," Corrosion Science, 22, (6), 1982, 559-578. Cold Work, Heat Treatment, Threshold Deformation, SCC, 304L, 316L.
57. C. Almasan, D. Nana, and I. Rosu, "Hot Strength of Stainless Steel," Rev. Rom. Sci. Tech., 26, (2), March-April, 1981, 249-256. Hot Strength, Flow Stress, 304L, 316L.
58. M. E. Blum, "Non-Destructive Metallography and Corrosion," Metallography and Corrosion, July 25-26, 1986, 90-103. EPR, 304L, 316L.
59. H. Recroix, "Metallurgical Characterization by Ultrasonics," Ultrasonic Materials Characterization, First Intl. Symp. on Ultrasonic Materials Characterization, June 7-9, 1978, 127-136. Ultrasonic Characterization, Work Hardening, 304L.
60. Y. K. Hong, "Pitting Corrosion Behavior of 316L Austenitic Stainless Steel," Dissertation, University of Utah, 1981. Pitting, 316L, Heat Treatment, Delta Ferrite.

61. G. W. Lorimer, et al., "Observation of Microstructure and Corrosion Behavior of Some Aluminum Bronzes," *Br. Corrosion J.*, 1986, 21, (4), 244-248. Corrosion, Aluminum Bronze, Microstructure, Preferential Attack.
62. A. Berusch and E. Gause, "DOE Progress in Assessing the Long Term Performance of Waste Package Materials," *Scientific Basis for Nuclear Waste Management X*, 1987, 13-28. DOE, NNWSI Waste Package.
63. T. C. Johnson, et al., "High Level Waste Package Licensing Considerations for Extrapolating Test Data," *Scientific Basis for Nuclear Waste Management*, 1987, 3-11. NRC, Waste Package, Licensing.
64. K. J. A. Kundig and W. S. Lyman, "Workshop Seminar on Copper-Base Waste Package Container Materials," CDA, March 13-14, 1986. Copper Base, Waste Containers, Review.
65. D. R. Duncan, "Feasibility Assessment of Copper-Base Waste Package Container Materials in A Repository in Basalt," SD-BWI-TA 023, Rockwell Hanford Operations, September 16, 1986. Feasibility, Copper Base, Container, Basalt.
66. Anon., "A Review of the Swedish KBS-3 Plan for Final Storage of Spent Nuclear Fuel," National Research Council, 1984. Review, KBS-3 Plan, National Research Council.
67. Anon., "Standards Handbook, Copper, Brass, Bronze, Wrought Products, Alloy Data/2," CDA, 1985. Wrought, Copper Alloys, Handbook.
68. Anon., "Standards Handbook, Copper, Brass, Bronze, Cast Products, Alloy Data/7," CDA, 1978. Cast, Copper Alloys, Handbook.
69. J. R. Myers, "Corrosion and Oxidation of Copper and Selected Copper Alloys in Air, Steam, and Water at Temperatures up to 300 C," Draft, CDA, July 18, 1985. Review, Corrosion, Oxidation, Copper Alloys.
70. M. Prager, "Implications of Alloy Variables for Candidate Materials for Copper and Copper Alloys Nuclear Waste Containers," Draft, CDA, June 2, 1986. Alloying Variables, Copper Alloys, Waste, Containers.
71. A. Cohen and W. S. Lyman, "Properties of Copper and Copper Alloys Under Consideration for Nuclear Waste Containers," Draft, CDA, July 18, 1986. Properties, Copper Alloys, Waste, Containers.
72. W. S. Lyman and I. S. Servi, "Copper Availability and Cost Considerations," Draft, CDA, June 23, 1986. Copper, Availability, Cost.
73. M. Akkaya and E. D. Verink, Jr., "Electrochemical Corrosion Studies on Copper-Base Waste Package Container Material in Unirradiated 0.1 NaNO₃ at 95°C," Draft, CDA, May 30, 1986. Electrochemical Corrosion, Copper Alloys.
74. J. W. Oldfield and W. H. Sutton, "Crevice Corrosion of Stainless Steels," *Br. Corrosion J.*, 13, 1978, 13-22, 104-111. Crevice Corrosion, Mechanism, 316.
75. Anon., "Copper Canisters for Nuclear Waste Disposal," CDA, Application Data Sheet. Copper, HIP, SKBF, Fuel Assembly.

76. Anon., "Standard Designations For Copper and Copper Alloys," CDA, Application Data Sheet. Copper Alloys, Standard Designations.
77. Anon., "Part 5 - Sources, Wrought Copper and Copper Alloy Mill Products," CDA. Wrought, Copper Alloys, Sources, Mill Products.
78. Anon., "Part 6 - Specifications Cross Index," Wrought Copper and Copper Alloy Mill Products, Cast Copper and Copper Alloy Foundry Products," CDA. Copper Alloys, Specifications Index.
79. Anon., "Welding Handbook, Copper, Brass, Bronze," August, 1972. Welding, Copper Alloys.
80. V. P. Weaver and J. Imperati, "Copper and Copper Alloys for Pressure Vessels," Welding Research Council Bulletin No. 73, November, 1961, 21p. Copper Alloys, Welding, Pressure Vessels, Annealing, Phosphorized.
81. Anon., "Engineered Barrier Development for a Nuclear Waste Repository Located in Basalt," Rockwell International RHO-BWI-ST-7. Barrier, Basalt, IN 825, Weldability.
82. H. Bresle, J. Saers, and B. Arrhenius, "Studies in Pitting Corrosion on Archaeological Bronzes," KBS 83-05, 1983. Pitting Corrosion, Bronze.
83. M. J. Smith, G. S. Barney, and E. L. Moore, "Waste Package for a Repository Located in Basalt," Proc. 1983 Civilian Radioactive Waste Management Information Meeting, December 12-15, 1983, 291-199. Basalt, BWIP, Containers, Status.
84. Anon., "HIP'd Copper Touted as Safe Way to Store Nuclear Waste," Modern Metals, 46 & 48. Copper, HIP, Container.
85. O. Matsumoto, et al., "Effect of Ferrite Content on Mechanical Properties and Corrosion Resistance of Cast Duplex Stainless Steels," IIW Doc. IX-1396-86. Ferrite, Cast, Austenitic Steels.
86. R. Fidler, "Residual Stresses Associated With Welds in Austenitic Steel," Proc. Conf. on Residual Stresses in Welded Construction and Their Effects, 1978, 97-106. 316, Stress Relief, PWHT.
87. R. M. Chrenko, "Residual Stress Studies of Austenitic and Ferritic Steels," Proc. Conf. on Residual Stresses in Welded Construction and Their Effects, 1978, 79-88. 304, Welding, Grinding, Residual Stress.
88. Anon., Proc. of the OFHC Brand Copper Technical Seminars, 1963. OFHC, HE, Review.
89. L. W. Scully, R. I. Brasier, and H. F. Gram, "Economic Impacts of Waste Emplacement Configuration for the Potential Nuclear Waste Repository at the Nevada Test Site," Waste Management 84, 1984, 353-357. NNWSI, Tuff, Cast, Vertical, Horizontal, Emplacement.
90. J. C. Griess, "Considerations in Estimating Corrosion of Metallic Containers in Nuclear Waste Repositories," Waste Management 84, 1984, 599-601. Corrosion, General.
91. G. W. Adair and J. N. Fiore, "Construction Features of the Exploratory Shaft at Yucca Mountain," Waste Management 84, 1984, 241-246. Yucca Mountain, Mining, Exploratory.
92. A. W. Dennis, R. Mulkin, and J. C. Frostenson, "Operational Procedures for Receiving, Packaging, Emplacing, and Retrieving High Level and Transuranic Waste in a Geologic Repository in Tuff," Waste Management 84, 1984, 269-272. Operating, Tuff, Repository, NNWSI.

93. J. N. Heckman and W. C. O'Neal, "Thermal Modeling of Nuclear Waste Package Designs for Disposal in Tuff," *Waste Management* 84, 1984, 441-448. Thermal Model, NNWSI.
94. J. L. Jackson, et al., "Preliminary Worst-Case Accident Analysis to Support the Conceptual Design of a Potential Repository in Tuff," *Waste Management* 84, 1984, 561-567. Accident Analysis, Repository, NNWSI.
95. W. C. O'Neal, et al., "Nuclear Waste Package Design for the Vadose Zone in Tuff," *Waste Management* 84, 1984, 547-551. Container Design, NNWSI.
96. J. F. Muller, "Contour Forming of Various Metals - Deformation and Recrystallization Characteristics," *Materials Synergisms*, 1978, 263-274. Grain Size, Deep Drawing, Forging, Copper.
97. H. Ikawa, Y. Nakao, and K. Nishimoto, "Study of Weld Decay in SUS 304: Quantitative Consideration on Its Preventing Method," *Technol. Rep. Osaka Univ.*, 29, (1459-1491), March 1979, 71-79. Prediction, Sensitization, Additive Rule, 304, HAZ.
98. H. Ikawa, Y. Nakao, and K. Nishimoto, "Study on Weld Decay in SUS 304: Precipitation Phenomenon of M₂₃C Sub 6 During Thermal Cycles," *Technol. Rep. Osaka Univ.*, 28, (1430-1458), October, 1978, 369-376. Prediction, Sensitization, Additive Rule, 304, HAZ.
99. M. Lamb, W. M. Steen, and D. R. F. West, "The Pitting Corrosion Behavior of Laser Surface Melted 420 and 316 Stainless Steels," *IALEO* 84, 44, November 12-15, 1984, 133-139. Laser Glazing, 316, Pitting Corrosion.
100. R. K. Dayal, et al., "Intergranular Attack During Crevice Corrosion of Stainless Steels," *Mater. Lett.*, 3, (3), February, 1984, 248-252. Crevice Corrosion, 316, Grain Size, Sensitization.
101. H. E. Hannineh, "Influence of Metallurgical Variables on Environment - Sensitive Cracking of Austenitic Alloys," *Int. Met. Rev.*, 24, (3), 1979, 85-135. Review, SCC, HE, HIC, Austenitic Alloys, Grain Size, Cold Work.
102. N. Suutala and M. Kurkela, "Localized Corrosion Resistance of High Alloy Austenitic Stainless Steels and Welds," *Stainless Steel* 84, September, 1984, 240-247. Pitting, Crevice Corrosion, Austenitic Stainless Steels, Cr, Mo, N, Pitting Index, PWHT, Microsegregation.
103. R. Fenn, R. Brown, and N. R. Barnes, "Corrosion of Welded Austenitic Stainless Steels," *New Developments in Stainless Steel Technology*, September, 1984, 17-21. Corrosion, Weld Bead, Delta Ferrite, HAZ, 304L, 316L.
104. A. Garner, "How Stainless Steel Welds Corrode," *Met. Prog.*, 127, (5), April, 1985, 31-32, 34-36. Pitting Corrosion, Delta Ferrite, Microsegregation, Sensitization, Review.
105. T. E. Perez, et al., "Hydrogen Induced Cracking in Austenitic Stainless Steel Weld Metals," *Miami Int. Symp. on Metal - Hydrogen Systems*, April 13-15, 1981, 81-84. HAC, GTAW, 304L, 316L, Ferrite, Sulfur, Austenitic Stability.
106. J. Lukkari and T. Moisio, "The Effect of the Welding Method on the Unmixed Zone in the Weld," *Microstructural Science*, 7, 1979, 333-344. Weld, SMAW, 304, Unmixed Zone Width, Heat Input, MMAW, TIG, MIG.
107. H. Brandis and H. Kiesheyer, "Influence of Chromium and Molybdenum on Chloride Corrosion of Stainless Steels," *Stainless Steel* 84, 1984, 217-221. Corrosion, Stainless Steels, Cr, Mo.

108. L. A. Norstrom, "Influence of Grain Size on Flow Stress in an Austenitic Stainless Steel," *Scand. J. Metall.*, 1977, 6, (4), 145-150. Grain Size, Flow Stress, Austenitic Stainless Steel, 316L.
109. L. A. Norstrom, "Influence of Ni and Grain Size on Yield Strength in Type 316L Austenitic Stainless Steel," *Met. Sel.*, June, 1977, 11, (6), 208-212. Ni, Grain Size, Yield Strength, 316L.
110. P. A. Kaprinos and V. N. Whittaker, "Ultrasonic Inspection of Fatigue Cracks in Austenitic 316 and 347 Weldments," *Br. J. Non-Destr. Test.*, 24, (3), May, 1982, 129-133. Ultrasonic Inspection, 316, Weld.
111. M. G. Hebsur and J. J. Moore, "Influence of Inclusions and Heat Treated Microstructure on Hydrogen Assisted Fracture Properties of AISI 316 Stainless Steel," *Eng. Fract. Mech.*, 22, (1), 1985, 93-100. HE, Inclusions, Grain Size, Sensitization, ESR, 316.
112. R. W. Logan, "Computer Simulation of Sensitization in Stainless Steels, UCID -2000, LLNL, December, 1983, 168p. LTS, Computer Simulation, 340L, 316L.
113. R. M. German, "Grain Growth in Austenitic Stainless Steels," *Metallography*, 11, (2), April, 1979, 235-239. Grain Growth, Activation Energy, 304, 316.
114. P. J. King, K. W. Lam, and D. P. Dautovich, "The Corrosion Behavior of Copper Under Simulated Nuclear Waste Repository Conditions," *Can. Metall. Q.*, 22, (1), January-March, 1983, 125-132. Corrosion, Copper, Simulated Ground Water.
115. E. Mattson, "Corrosion of Copper and Brass: Practical Experience in Relation to Basic Data," *Br. Corrosion J.*, 1980, 15, (1), 6-13. Corrosion, Copper, Bright Annealing, HE.
116. H. D. Hanes, "Spent Nuclear Fuel Rods Encapsulated in Copper," *Power Engineering*, April, 1984, 60-61. Copper, HIP, Containers.
117. P. J. King, et al., "The Corrosion Behavior of Copper Under Simulated Nuclear Fuel Waste Repository Conditions," *Proc. 8th Int'l. Congress Met. Corrosion*, 1981, 1650-1655. Corrosion, Copper, Simulated Ground Water.
118. R. H. Espy, "Residual Stresses and Stress Corrosion Cracking in Stainless Steel Weldments," *Control of Distortion and Residual Stress in Weldments*, 1977, 68-85.
119. S. L. Mannan, K. G. Samuel, and P. Rodriguez, "The Influence of Grain Size on Elevated Temperature Deformation Behavior of a Type 316 Stainless Steel," *Strength of Metals and Alloys*, 2, 1983, 637-642. Grain Size, Hall-Petch, Work Hardening, 316.
120. Y. G. Nakagawa, "Heat Variability and Thermomechanical Effect of Sensitization," *Predictive Methods for Assessing Corrosion Damage to BWR Piping and PWR Steam Generators*, 1982, 79-84. Sensitization, Heat Variability, 304.
121. M. Saito, et al., "Effect of Grain Size of Stainless Steel on Oxidation Rate Under Oxygen Pressure Controlled by Mo/Mo O₂ Oxygen Buffer," *J. Nucl. Sci Technol. (Jpn.)*, 22, (2), February, 1985, 153-154. Oxidation, Grain Size, 316.
122. S. L. Mannan, K. G. Samuel, and P. Rodriguez, "Influence of Temperature and Grain Size on the Tensile Ductility of AISI 316 Stainless Steel," *Mater. Sci. Eng.*, 68, (2), January, 1985, 143-149. Temperature, Grain Size, Ductility, 316.

123. W. Przetakiewicz, K. J. Kurdzydowski, and M. W. Grobski, "Grain Boundary Energy Changes During Grain Growth in Nickel and 316L Austenitic Steel," *Mater. Sci. Technol.*, 2, (2), February, 1986, 106-109. *Grain Growth, Critical Strain, 316L.*

124. A. Sandberg and R. Sandstrom, "Recrystallization of Molybdenum and Nitrogen Alloyed Austenitic Stainless Steels After Hot Working," *Mater. Sci. Technol.*, 2, (9), September, 1986, 917-925.

125. E. Minkovitz and D. Eliezer, "Grain Size and Heat Treatment Effects in Hydrogen-Assisted Cracking of Austenitic Stainless Steels," *J. Mater. Sci.*, 17. *HAC, Grain Size, Sensitization, 304L, 316L.*

126. K. Suzuki and S. Asami, "Drawability of Stainless Steel Sheets," *J. Mech. Work Technol.*, 7, (4), April, 1983, 327-338. *Drawability, Austenitic Stainless Steel, Grain Size.*

127. R. E. Westerman, et al., "Investigation of Metallic, Ceramic, and Polymeric Materials for Engineered Barrier Applications in Nuclear Waste Packages, PNL -3484, October, 1980. *Metallic, Ceramic, Polymeric, Barrier, Nuclear Waste Packages.*

128. A. I. Grekula, V. P. Kujanpaa, and L. P. Karjalainen, "Effect of Solidification Mode and Impurities on Pitting Corrosion in AISI 316 GTA Welds," *Corrosion*, 40, (11), November, 1984, 569-572. *Pitting, Autogenous GTA, 316, Delta Ferrite, P, Mn.*

129. J. R. Foulds and J. Motteff, "Substructure Characterization of a 16-8-2 GTA Weld Through Transmission Electron Microscopy," *Weld J.*, 62, (6), June, 1982, 189S-196S. *GTAW, 316, Substructure, Annealing, Grain Size.*

130. R. Fidler, "The Effect of Time and Temperature on Residual Stresses in Austenitic Welds," *J. Pressure Vessel Technol.*, 104, (3), August, 1982, 188-192. *Residual Stresses, 316, Larson-Miller, PWHT.*

131. S. Nair, E. Pang, and R. C. Dix, "Residual Stress Generation and Relaxation in Butt-Welded Pipes," *J. Pressure Vessel Technol.*, 104, (3), August, 1892, 188-192. *Residual Stresses, Relaxation, 316, PWHT.*

132. P. A. Karanos and V. H. Whittaker, "Ultrasonic Inspection of Austenitic Weldments," *Met. Const.*, 15, (7), July, 1983, 394-398. *Ultrasonic Examination, Microstructure, 316.*

133. P. M. Simpson, "Residual Stress Analysis of Type 304 Austenitic Stainless Steel Pipe Weldments," *Corrosion Cracking*, 1986, 355-368. *Residual Stress Analysis, Blind Hole, Layer Removal, 304.*

134. A. Jura and M. Haavisto, "Effects of Microstructure on the Attenuation of Ultrasonic Waves in Austenitic Stainless Steels," *Annual Assembly 1977 IIW*, 14p. *Microstructure, Ultrasonic Attenuation, Austenitic Stainless Steels, Grain Size, Delta Ferrite.*

135. K. Goebbel, M. Romer, and H. A. Crostak, "On the State-of-the-Art and Advanced Techniques to Improve the Signal-to-Noise Ratio for the Ultrasonic Testing of Coarse-Grained Materials," *Nondestructive Evaluation in the Nuclear Industry*, 1980, 75-99. *Ultrasonic Testing, Coarse Grained Materials.*

136. E. Neumann, et al., "Status of Ultrasonic Testing Techniques for Austenitic Coarse-Grained Weld Joints," *Ninth World Conf. on Non-destructive Testing*, 1979, 1-14. *Ultrasonic Testing, Coarse Grained Welds.*

137. A. C. Nyce, "Containerless HIPing of PM Parts: Technology Economics and Equipment Productivity," *Met. Powder Rep.*, 38, (7), July, 1983, 389-392. Containerless HIP, 316L.
138. F. E. Stanko, "Inversion of Attenuation Measurements in Terms of a Parameterized Autocorrelation Function," *NDE of Microstructure for Process Control*, 1985, 55-70. Ultrasonic Measurements, Grain Size, Cu, 304.
139. L. A. Benjamin, et al., "Investigation of the Stress Corrosion Cracking of Pure Copper," *SKOF-KBS-TR-83-06*, April, 1983, 70p. SCC, OFHC, PDOC.
140. C. E. Witherell, "Welding Stainless Steels for Structures Operating at Liquid Helium Temperature," *Welding J.*, November, 1980, Reprint. Welding, 316L, Microfissuring, Microstructure, Ferrite.
141. M. Takemoto and T. Shinozawa, "Surface Treatments for Preventing Stress Corrosion Cracking," *Advances in Surface Treatments, Technology - Applications - Effects*, 1984, 127-138. Post Weld Cooling, HSW, Wet Shot Peening, Needle Gun Hammering, Residual Stress Conversion.
142. M. Sucry, J. M. Jalinder, and J. Raphanel, "Damage Evolution and Its Influence on Metal Forming," *Plasticity Today: Modelling, Methods, and Applications*, 1985, 553-568. Inclusions, Void Nucleation, Plastic Deformation, Metal Forming.
143. W. R. Stone, "Seam Welded Copper and Copper Alloy Tubes," *Copper and Its Alloys in the Eighties*, 1983, 216-222. Welded Tubes, Copper.
144. J. H. Mendenhall, "Press Working Copper and Copper Alloy Sheet," *Mod. Met.*, 33, (8), September, 1977, 62, 65-66. Deep Drawing, Cu Alloys, Grain Size.
145. Inco Alloys International, Inc., INCOLOY Alloy 825 Brochure, Inco Alloys International, Inc., Huntington, West Virginia, 25720, USA.
146. T. M. Costello, K. E. Pinnow, and A. Moskowitz, "Test with Austenitic Stainless Steel", *Materials Protection*, November, 1969, p. 15-18.
147. ASM, "Copper," *Metals Handbook*, Vol. 2, Ninth Edition, (American Society for Metals International, Metals Park, OH) pp. 239-490, 1979.
- 148.0. ASME BPVC, Section II A Materials Specifications, 1986 Edition.
- 148.1. SA-240, "Specification for Heat-Resisting Chromium and Chromium-Nickel Stainless Steel Plate, Sheet, and Strip for Pressure Vessels."
- 148.2. SA-312, "Specification for Seamless and Welded Austenitic Stainless Steel Pipe."
- 148.3. SA-336, "Specification for Steel forgings, Alloy, For Pressure and High Temperature Parts."
- 148.4. SA-358, "Specification for Electric-Fusion-Welded Austenitic Chromium- Nickel Alloy Steel Pipe for High-Temperature Service."
- 148.5. SA-451, "Specification for Centrifugally Cast Austenitic Steel Pipe for High-Temperature Service."
- 148.6. SA-479, "Specification for Stainless and Heat-Resisting Steel Wire, Bars, and Shapes for Use in Boilers and Other Pressure Vessels."

149.0. ASME BPVC, Section II B, "Materials Specifications", 1986 Edition.

149.1. SB42 - "Specification for Seamless Copper Pipe, Standard Sizes."

149.2. SB152 - "Specification for Copper Sheet, Strip, Plate, and Rolled Bar."

149.3. SB271 - "Specification for Copper-Base Centrifugal Castings."

149.4. SB402 - "Specification for Copper-Nickel Alloy Plate and Sheet for Pressure Vessels."

149.5. SB423 - "Specification for Nickel-Iron-Chromium-Molybdenum Copper Alloy (UNS No. 8825) Seamless Pipe and Tube."

149.6. SB424 - "Specification for Nickel-Iron-Chromium-Molybdenum Copper Alloy (UNS No. 8825) Plate, Sheet, and Strip."

149.7. SB425 - "Specification for Nickel-Iron-Chromium-Molybdenum Copper Alloy (UNS No. 8825) Rod and Bar."

149.8. SB466 - "Specification for Seamless Copper-Nickel Pipe and Tube."

149.9. SB543 - "Specification for Welded Copper and Copper Alloy Heat Exchanger Tube."

149.10. SB467 - Specification for Welded Copper-Nickel Pipe."

150.0. ASME BPVC, Section II C, "Materials Specifications," 1986 Edition.

150.1. SFA 5.7 - "Specification for Copper and Copper Alloy Base Welding Rods and Electrodes."

150.2. SFA 5.9 - "Specification for Corrosion Resisting Chromium and Chromium-Nickel Steel Base and Composite Metal Cored and Standard Arc Welding Electrodes and Welding Rods."

150.3. SFA 5.14 - "Specification for Nickel and Nickel Alloy Base Welding Rods and Electrodes."

151. Anon., "Nevada Nuclear Waste Storage Investigations, 1977-1985, A Bibliography." OSTI, DOE, June 1987, DOE/TIC-3406, Bibliography, NNWSI.

152. W. Roberts, "Microstructure Evolution and Flow Stress During Hot Working," Strength of Metals & Alloys (ICSMA7), 3, 1985, 1859-1891, Recrystallization, Hot Working.

153. M. Blicharski, "The Effect of Structural Inhomogeneities of Strained Austenitic Stainless Steel on Recrystallization," Arch. Huth., 25, (3), 1980, 423-431. Recrystallization, Cold Work, Austenitic Stainless Steels.

154. Anon., "Standard Specification for Aluminum-bronze Sand Castings," ASTM B148-87.

155. Anon, "Copper Brass Bronze Design Guide-Forgings," CDA, Pamphlet. CDA 10200, CDA 71500, Formability, Machinability, Weldability.

156. C. H. Thornton, S. Harper and J. E. Bowers, "A Critical Survey of Available High Temperature Mechanical Property Data for Copper and Copper Alloys," Intl. Copper Research Assoc., Dec. 1983. Mechanical Properties, CDA 12200, CDA 71500, CDA 95200.

157. B. G. Nasser, Acoustic Nondestructive Evaluation of Microstructure, Ph.D Thesis, Stanford University, 1981. Nondestructive Examination, Microstructure, Grain Size.
158. A. J. Sodriks, "Corrosion Resistance of Austenitic Fe-Cr-Ni-Mo Alloys in Marine Environments," *Intl. Met. Rev.*, 27, (6), 1982, 321-353. IN 825, Intergranular Corrosion.
159. A. M. Philippo, "Evaluation of Weldment Sensitization on Type 304 and 304L Stainless Steel Spent-Fuel Canisters," DOE/NV/00597-1, Jan. 1980, 77 pp. Sensitization, 304L, Canisters, A312, A240, A-182.
160. A. J. Bermingham, et al., "Recommendations for Codes and Standards to be Used for Design and Fabrication of High Level Waste Canister," RI-IO-C- 13, NSC-1-78-004, Nuclear Services Corp., 26 Jan. 1978, 77 p. Codes, Standards, Canisters.
161. R. E. Nickell, "Retrievable Storage Concept Designs," Pacific Technology, UCRL-15018, 1 March 1979, 27 p. Canister, Designs, Drop Tests.
162. H. D. Solomon, "Influence of Prior Deformation and Composition on Continuous Cooling Sensitization of AISI 304 Stainless Steel, Corrosion, Sept. 1985, 41, (9), 512-517. Sensitization, 304, Cooling Rates, Cold Work.
163. W. A. Bassack III, D. J. Duquette and W. F. Savage, "The Effect of Ferrite Content on Stress Corrosion Cracking of Duplex Stainless Steel Weld Metals at Room Temperature," *Corrosion*, 36 (2), Feb. 1979, 45-54. SCC, Ferrite, Weldmetal.
164. J. W. Flowers, F. H. Bech, and M. G. Fontana, "Corrosion and Age Hardening Studies of Some Cast Stainless Alloys Containing Ferrite," *Corrosion*. Ferrite, Cast Stainless Steel, Corrosion, SCC.
165. J. M. Beeston, et al., "Canister Material Test Program," EG&G-INM-6707, Preliminary Copy, Undated. CF3, TP304L, Canister, Centrifugal Casting, Testing.
166. Copper Development Association, "Effect of Fabrication on the Corrosion Performance of Copper Metals for Nuclear Waste Containers," CDA, Draft, July 15, 1987. Fabrication, Copper Alloys.
167. D. E. Manning, D. J. Duquette and W. S. Savage, "The Effect of Retained Ferrite on Localized Corrosion in Duplex 304L Stainless Steel, *Welding J.*, Sept. 1980, 260s-262s. Ferrite, Pitting, 304L, Welds.
168. C. L. Brant, "Hydrogen Assisted Cracking of Austenitic Stainless Steels," *Hydrogen Effects in Metals*, AIME, 1981, 527-540. HAC, Stainless Steels, deformation.
169. D. Eliezer, "Hydrogen Assisted Cracking Type 304L and 316L Stainless Steel," *Hydrogen Effects in Metals*, AIME, 1981, 565-574. HAC, 304L, 316L.
170. A. J. West and J. H. Holbrook, "Hydrogen in Austenitic Stainless Steels: Effects of Phase Transformations and Stress State," *Hydrogen Effects in Metals*, AIME, 1981, 607-618. HAC, 304L.
171. J. L. Lewandowski and A. W. Thompson, "The Effect of Austenite Stability on Sustained Load Cracking and Fracture Morphology of Stainless Steels in 1 Atmosphere Hydrogen," *Hydrogen Effects in Metals*, AIME, 1981, 629-636. HAC, 304L.

172. C. J. Novak, "Structure and Constitution of Wrought Austenitic Stainless Steels," *Handbook of Stainless Steels*, D. Peckner and I. M. Bernstein, ed, 1977, 4-1 to 4-78. *Review, Stainless Steels, Structure, Constitution*.

173. A. W. Thompson, "Ductility Losses in Austenitic Steels Caused by Hydrogen," *Hydrogen in Metals*, I. M. Bernstein and A. W. Thompson, ed., 1974, 91-105. HE, 304L.

174. M. R. Louthan, Jr., "Effects of Hydrogen on the Mechanical Properties of Low Carbon and Austenitic Steels," *Hydrogen in Metals*, I. M. Bernstein and A. W. Thompson, ed, 1974, 53-77. HE., 304L.

175. C. S. Tedmon, Jr., D. A. Vermilyea and D. E. Broecker, "Effect of Cold Work on Intergranular Corrosion of Sensitized Stainless Steel," *Corrosion*, 27, (3), 1971, 104-106. *Cold Work, Sensitized Stainless Steel*.

176. F. H. Beck, J. Juppenlatz and P. F. Wieser, "Effects of Ferrite and Sensitization on the Intergranular and Stress-Corrosion Behavior of Cast Stainless Steel," *Stress Corrosion-New Approaches*, ASTM STP 610, 1976, 381-398. *SCC, Castings, Stainless Steels, Corrosion Tests, Ferrite, Sensitization*.

177. J. M. Beeston and M. M. Larsen, "Centrifugal Castings of Stainless Steels Spiked With Radioactive Tracers," EGG,WM-6835, March 1985. *CF3, Centrifugal Casting*.

178. J. M. Beeston and M. M. Larsen, "Casting Thickness and Machining Tests on CF3 Cast Stainless Steel Cylinders," PC-WM-85-007, EG&G, April 1985. *CF3, Centrifugal Casting, Wall Thickness*.

179. S. Murakami, et al., "The Effect of Delta Ferrite in Duplex Cast Stainless Steel and the Characteristics of Recrystallized Cast Stainless Steel," *Cast Metals for Structural and Pressure Containment Applications*; MPC-11, 1979, 171-203. *CF3, CF3M, ICSCC, IGC, Delta Ferrite, 304L, 316L, Aging, Recrystallized, Ultrasonic Inspection*.

180. Anon, "Aluminum Bronze Alloys Corrosion Resistance Guide," AB Publication No. 80, CDA, July 1981. *Aluminum Bronze, Corrosion Resistance*.

181. D. F. Medley and J. M. Quinn, "Alloys Under Consideration for Nuclear Waste Storage Containers," Wisconsin Centrifugal, Inc., July 17, 1987. *Centrifugal Casting, C102, Copper Nickel, Aluminum Bronze, CPF3, 3CF3M, IN 825, C613, C952*.

182. R. M. Howell, "Comparison of Properties of Centrifugal Cast and Wrought Stainless Steels With Similar Chemical Composition for DWPF Canisters," EGG-WM-6097, October, 1982. *Centrifugal Casting, Wrought, CF3, 304L, Comparisons*.

183. R. L. Holbrook, "Meeting - NI Industries, Vernon Division, July 23, 1987," B&W Internal Memo, July 29, 1987. *Deep Drawing, 304L, 316L, IN 825, CDA102, 122, 613, 715*.

184. M. H. Brown and R. W. Kirchner, "Sensitization of Wrought High Nickel Alloys," *Corrosion*, 29, (12), Dec. 1973, 476-474. *Sensitization, IN 825*.

185. M. H. Brown, "The Relationship of Heat Treatment to the Corrosion Resistance of Stainless Alloys," *Corrosion*, 25, (10), October 1969, 438-443. *Sensitization, IN 825*.

186. V. V. Valdya, "Metallurgical Considerations During Fabrication of Stainless Steel Structures," Nickel Metallurgy, 11, 17-20 August 1986, 217-240. Fe Contamination, Oxidation, Sensitization, Pitting, Crater Corrosion, Austenitic Stainless Steels.

187. M. Watanabe, Y. Mubai and M. Murata, "Effect of Cold Work on Intergranular Corrosion Cracking of Sensitized Stainless Steel," Trans. JWRI, 5, (1), 1976, 57-62.

188. H. J. Jurenba, "Development of the Ultrasonic Technique for Examination of Centrifugally-Cast Stainless Steel in Pressure Piping," Quantitative NDE In the Nuclear Industry, 1983, 194-197. Centrifugally Cast Stainless Steel, Ultrasonic Testing.

189. S. R. Doctor and P. G. Heasler, "A Pipe Inspection Round Robin Test," NDE in the Nuclear Industry, 1984, 563-568. Centrifugally Cast Stainless Steel, Ultrasonic Testing.

190. P. Jeong and J. L. Rose, "Ultrasonic Wave Propagation Considerations for Centrifugally Cast Stainless Steel Pipe Inspection," NDE in the Nuclear Industry, 1984, 629-647.

191. Anon., Guidance Notes for Welding Aluminum Bronze Alloys, CDA, October 1980. Welding, Aluminum Bronze.

192. Anon., Aluminum Bronze Alloys for Industry, CDA, March 1986. Aluminum Bronze Alloys.

193. Anon., Aluminum Bronze Alloys Technical Data, AB Publ. No. 82, CDA, October 1982. Aluminum Bronze, Data.

194. Anon., OFHC Brand Copper: A Survey of Properties and Applications, AMAX Copper Inc., CBA-1, 1974. OFHC, Properties, Applications.

195. E. R. Pade, and J. F. Enrietto, "Reliability of Detecting Natural Fatigue Cracks in Centrifugal Cast Stainless Steel Piping Using Ultrasonic Test Methods," 4th International Conference on Non-destructive Evaluation in the Nuclear Industry.

196. K. Nutall and V. F. Urbanic, "An Assessment of Materials for Nuclear Fuel Immobilization Containers," AECL-6440, Sept. 1981. Review, Container Materials, Canadian Program.

197. G. Negri and R. Pini, Experimental Welding of Aluminum Bronze to Itself and to Steel," Riv. Ital. Saldatura, 1985, (5), 323-335, Inst. Met. Transl. NF 150. Welding, Aluminum-Bronze.

198. G. Bertelli and M. Scasso, "Welding of Copper-Nickel Alloys," Riv. Ital. Saldatura, 1985, (2) 77-82, Inst. Met. Transl. NF 143. Welding, Copper-Nickel Alloys.

199. A. L. Dalton, "Centrifugal Casting of Stainless Steel," Stainless Steel Industry, 3, (13), 8, 9. Centrifugal Casting, Stainless Steel, Properties.

200. T. T. Taylor, "An Evaluation of Manual Ultrasonic Inspection of Cast Stainless Steel Piping," NUREG/CR-3753, PNL-5070, April 1984. Ultrasonic Testing, Centrifugally Cast Stainless Steel.

201. H. A. Domian, "Meeting with Representatives of the Copper Development Association," B&W Memo to P. C. Childress, May 26, 1987.


202. "Metal Spinning, Book I Basic Metal Spinning", The Metal Spinning Division of the Precision Metalforming Association.

203. Gates, W.G., "Spin Forming", Report BDX-613-3689, March 1987, Bendix Kansas City Division.
Department of Energy Contract DE-AC04-76-DP00613.
204. Metals Handbook, Volume 5, Forging and Casting, Eighth Edition.
205. Winship, John T., Associate Editor, "Basics of Roll Bending," American Machinists, Special Report 751, February 1983.
206. ASM, "Deep Drawing," Metals Handbook, Vol. 4, Eighth Edition, (American Society for Metals International, Metals Park, OH), pp. 162-193, 1969.
207. ASTM, "Practices for Detecting Susceptibility to Intergranular Attack in Austenitic Stainless Steels—Practice E" Annual Book of ASTM Standards, Vol. 01.03, (American Society Testing and Materials, Philadelphia, PA), pp. 54-59, 1986.

-END-

DATE FILMED

10/31/90

