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ARE ACCURATE EQUATION OF STATE PARAMETERS
IMPORTANT IN RICHTMYER-MESHKOV INSTABILITIES?

Lawrence D. Cloutman

Abstract

The Richtmyer-Meshkov instability is a classical fluid dynamical instability that
has been extensively studied to help understand turbulent mixing. A recent numerical
simulation of a shock tube experiment with an an air-SFg interface and a weak shock
(Mach 1.2) used the ideal gas equation of state for air and an artifically low temperature
as a surrogate for the correct SFg gas physics. We have run a similar problem with both
the correct gas physics and three versions of the air surrogate to understand the errors
thereby introduced. We find that for the weakly driven single-mode case considered
here, the instability amplitude is not affected, the interface location is affected only
slightly, but the thermodynamic states are quite different. This result is not surprising
because the flow far from the shock waves is essentially incompressible.



1 Introduction

One of the classical, archetybal fluid dynamical instabilities is the Richtmyer-Meshkov in-
stability. In this instability, a shock wave impinges on a contact surface between two fluid
layers with different densities. Vorticity induced at the contact surface by baroclinic torques
during the shock passage leads to fluid motions that persist due to inertia. This instability
has been extensively studied experimentally in shock tubes, and numerous numerical simu-
lations have been performed with a wide variety of computational fluid dynamics programs
(for example, see reference [1] and references therein).

Soon-to-be-published calculations [2] attempt to model an experiment [3] in which
a shock travels from air into sulfur hexafluoride at modest Mach numbers. Unfortunately,
the computer program used is restricted to a single fluid, so both fluids were approximated
as a single ideal gas with a ratio of specific heats v = 1.3. The density difference of a
factor of 5 was imposed by a temperature difference of the same factor rather than by using
different molecular weights. The present study uses similar calculations with both correct
and incorrect gas physics to determine the magnitude of the errors introduced by using the
unphysical equation of state parameters.

The present calculations were performed with the COYOTE program [4], which solves
the two-dimensional multicomponent Navier-Stokes equations. The problem solved is a
simulation of the shock tube experiment by Benjamin [5], who also used air and SFg¢ with
a Mach 1.24 shock. This experiment has been studied previously with a different computer
program [1]. In the present study, we computed cases with four models for the SFg gas
physics. All four assumed a counstant-vy ideal gas. In the first case, we took the correct values
of 7 = 1.0935 and a molecular weight of 146.0544 for the SFs. In the second case, we changed
- the v to 1.4 but retained the correct molecular weight. In the third case, we approximated
the SFg by cold air with v = 1.4 and molecular weight 28.9256. The fourth case uses the
equation of state of reference [2], which is the same as our third case but with v = 1.3 for
both fluids.

Section 2 summarizes the governing equations. Section 3 presents numerical examples

from COYOTE. Section 4 discusses the implications of these results.



2 Governing Equations

The simulations were performed‘ with the COYOTE computational fluid dynamics pro-
gram [4], which is based on the full transient multicomponent Navier-Stokes equations in
two dimensions. The model includes real-gas equations of state, arbitrary chemical kinetics,
transport coefficients from a Lennard-Jones model, a simple radiative heat loss model, and
mass diffusion based on the full Stefan-Maxwell equations. Chemistry and radiation are
omitted from the present calculations.

Mass conservation is expressed by the continuity equation for each species o

0pq _
—(:)7+V'(Pau)— V-Ja, (1)

where p, is the density of species «, u is the fluid velocity, and J, is the diffusional mass

flux of species &. The momentum equation is

%-{-V-(puu):—VP%-V-T, (2)

where p is the total density and P is the pressure. Because we consider only fluids, we

assume that the viscous stress tensor is
T _ 2
T = p[Vu+ (V) ]——?)—(V-u) u, (3)

where 4 is the coefficient of viscosity, and U is the unit tensor. We choose the thermal

internal energy equation to express energy conservation:

%+V-(p[u):—PV-u+T:Vu+V-[KVT~—Zha(T)Ja , (4)

where I is the specific thermal internal energy, K is the mixture thermal conductivity, and
h. is the specific enthalpy of species a.

The thermal equation of state assumes P is given by the sum of the partial pressures
of an ideal gas for each species. The JANAF tables [6, 7, 8] provide a homogeneous set of
thermochemical data for a large collection of materials, and these tables normally are used
to supply the specific enthalpy for each species of interest. However, the limited range of
temperatures encountered in the present study allows us to use a constant specific heat at
constant volume for the caloric equation of state.

In the present study, we use the Lennard-Jones model to estimate the transport

coefficients [9]. This model provides a viscosity (in cgs units; to get SI units, multiply the
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cgs viscosity by 0.1) for each species,

_ s (MoT)'?
o, = 28093x 10750 —, (5)

5 (maks\"? (M,T)V?
Ha = 16 T

where M, is the molecular weight, my is the mass of one atomic mass unit in grams, kg is

the Boltzmann constant, o, is the collision diameter (in A), and €, is the collision integral

approximated by
Q, = 1147 (T/Toe) "™ + (T/T.q + 0.5)72, (6)

where T/T.o, = T kg/e, is the reduced temperature and ¢, is the Lennard-Jones potential
well depth [10, 11]. Equation 6 is accurate to a few percent for Monchick and Mason’s [12] 6 <
0.5 at low temperatures, and it becomes valid for larger values of § at higher temperatures.

Once the species viscosities have been calculated, they must be combined to provide

the viscosity of the fluid mixture. We adopt Wilke’ law [13] (see also Bird et al. [14]). For
N species,

N
X
U= “’N‘a—ua_> (7)
a1 2p=1XpPap
where X, is the mole fraction of species o and where
2
M\ L2 i Y2 ar o\ 1/4
B, = 8712142 1—“—(—ﬁ> .
@ =9 ( +Mﬁ) { +(Mﬁ) M, )

In the original COYOTE program, K was calculated from the mixture viscosity p and
a constant mixture Prandtl number. This capability has been expanded to allow calculation
of the conductivity based on the local composition and temperature, just as was done for the
viscosity. Following the procedure of Hayashi and Hishida [10], we calculate the conductivity
for each species from the species viscosities using the Eucken correction, which is discussed

also by Ferziger and Kaper [15] and by Hirschfelder, Curtiss, and Bird [16]:
Ko = 0.25 (99 — 5)pia Cars (9)

where Cyo = R/My(va — 1) is the specific heat at constant volume, R is the universal gas
constant, and -y, is the ratio of specific heats. The mixture rule that we use for conductivities

is due to Mathur et al. [17] and is recommended by Kee, et al. [18]:

K = % Lz: XoKa+ (g XQ/KQ>_1] | (10)



In general, calculation of the diffusional mass fluxes is a complicated task (for exam-
ple, [14], [16], and [19]). Because molecular mass diffusion effects are small in the present

problem, we simply use Fick’s law,

Jo = _pDaV(pa/p)a (11)

where D, is the species diffusivity. We use the same value of D,, for all species, and this value
is given as the kinematic viscosity of the mixture divided by a constant mixture Schmidt
number, which we took to be 0.9. This simple model has the advantages that it is computa-

tionally inexpensive and the species mass fluxes properly add up to zero when summed over

species.

3 Numerical Simulations

Table 1 gives the COYOTE input file for the problem with the correct gas physics for SFs.
We assume the fluids are ideal gases with constant ratios of specific heats that are computed
from the input values of v, and M,. The computational grid is 34.0 cm long. The left
10.0 cm is covered by 200 uniform zones and is the part of the grid where the instability
occurs. The right 24.0 cm is covered by a stretched grid of 140 zones and provides a reservoir
where waves reflected from the contact surface may safely propagate away from the region
of interest. The grid is 3.75 cm high and is spanned by 75 uniform zones. This height is
one wavelength of the initial single-mode perturbation of the air-SFg contact surface. The
intial peak-to-peak amplitude of the perturbation is 0.48 cm. Temperature in the unshocked
fluid is 287.7 K. The pressure in the unshocked fluid was assumed to be 1.0 atm, although it
actually may have been closer to 0.8 atm in the experiment due to the 2100 m elevation of Los
Alamos. However, the results of interest here are independent of this baseline pressure [1].

Figure 1 shows the density in the left 10.478 cm of the grid at ¢ = 0.0 ms. There are
nine contours lines, and each pair of contours is separated by 10 percent of the difference
between the maximum and minimum values of the density in the plotted region. The single
contour at the far right is the Mach 1.24 shock wave, which is propagating to the left. The
closely spaced contours to the left of the shock are the initial interface (that is, the contact
surface), which has its average location 7.5 cm from the left boundary.

Figure 2 shows the density at ¢ = 0.6 ms. This problem was run with convective fluxes

that are a mixture of 0.2 donor cell and 0.8 tensor viscosity differencing and with the correct



gas parameters. The vertical contcurs at the left are the shock, which has been reflected
off the left wall of the grid. The curved contours are the air-SFg contact surface. The code
calculates the problem as a multicomponent fluid without an explicit interface treatment.
The broadening of the contact surface when compared to Figure 1 is due to the diffusive
truncation errors in the advective fluxes, with only a minor contribution from molecular
diffusion. This numerical diffusion is needed to keep dispersive truncation errors under
control since this code has no advective flux limiters. COYOTE was designed primarily for
subsonic flows and deflagration waves, and experience shows that flux limiters are of limited
utility under those conditions.

Figure 3 is the same as Figure 2 except the convective fluxes are computed with donor
cell differencing. The numerical diffusion is quite a bit larger in this case, but the location,
shape, and peak-to-peak amplitude of the contact surface is nearly the same as with the
more accurate method used in Figure 2. Overlaying the plots, one can see that the four
rightmost contours in Figure 2 nearly coincide with the ¢ and d contours of Figure 3. This
result suggests that numerical diffusion is more of an aesthetic problem than an accuracy
issue for our present purposes.

The density contours shown in Figure 4 are from a calculation that is the same as
that shown in Figure 2, except we have used twice as many zones in each direction. The
only difference is in the thickness of the shock and contact surface, as expected.

Figure b is the same as Figure 2, except we used v = 1.4 instead of v = 1.0935 in
the SFg. The biggest difference is that the shock has traveled approximately 1 cm farther to
the right in Figure 5. The contact surface has moved only about 2 mm farther to the left,
which is a little surprising given the significant stiffening of the gas by the larger « in Figure
5. However, the original shock is not very strong, and consequently not only is the degree
of compression modest in the singly-shocked gas, it is not terribly sensitive to the details of
the equation of state. The amplitude of the instability is virtually unaffected by the change
in the equation of state, which is not surprising given that the baroclinic torques that drive
the instability depend only on the density and pressure gradients during shock passage, and
these are essentially the same in all four cases.

Figure 6 shows the density contours for the case where the SFg has been replaced by
air with the temperature lowered by a factor of approximately 5 to get the density of SFg
while maintaining the pressure of one atmosphere. There is no significant difference between

this plot and Figure 5 as far as the amplitude of the instability and the locations of the shock



and contact surface are concerned.

This is all well and good, but the run described in reference [2] that led to this study
used a one-component model with the correct molecular weight for air, but used v = 1.3
as “a compromise” between the correct values in the two fluids. This unfortunate choice
causes a problem at the start because the experimental papers give no information about
the original shock except for its Mach number in air. We have to assume that the unshocked
air is at room temperature and pressure. By changing the 7y of the air from 1.4 to 1.3, we
must also change the post-shock conditions to hold the Mach number fixed. The velocity
increases from 1.229 x 10* to 1.321 x 10* cm/s, the singly-shocked air density increases to
1.8078 x 1073 from 1.7285 x 1072 g/cm?, and the temperature decreases to 324.0 from 331.8
K. Since the unshocked density is 1.2250 x 10~3, the density jump across the shock increases
by 16 percent. Figure 7 shows the density contours for this case at t = 0.6 ms. If we ignore
the g contour in Figure 6 and translate the contours 3 mm to the right in Figure 7, then
the contours coincide. In other words, the instability amplitude is still independent of the
choice of v, but the translation speed is slightly higher for the lower 7.

The remaining figures show the distributions of the hydrodynamical variables along
the centerline of the grid for the four equations of state. The calculations shown here were
done with donor cell differencing to suppress the dispersive truncation errors without altering
the jump conditions.

Figure 8 shows the distributions of density for all four equation of state models. The
solid curve is for the correct equation of state for both gases. The high density fluid between
0 and 1 cm is SFg that has been shocked twice. SFg that has been shocked once lies between
1 and 3 cm. The next 1.5 cm contain the numerically broadened contact surface. Note that
this is the thickness of the contact surface at the rightmost peak in figure 2, not the amplitude
of the instability. This much broadening of a contact surface that has moved approximately 4
cm from its original position is why we normally avoid using donor cell differencing. However,
donor cell differencing will produce the correct jump conditions without dispersively driven
oscillations, which would only obscure the features of interest here. Between 5 and 10 cm
we have air that was shocked first by the incoming shock, and then reshocked by the shock
wave reflected from the contact surface. As noted in the discussion of the contour plots,
the contact surface location varies only about 3 mm between the correct SFg model and the
three unphysical models, two of which are in perfect agreement. The densities of both the

doubly and singly shocked SFg¢ show a dependence on 7, but not on the molecular weight



for a fixed . Similarly, the location of the reflected shock depends on the value of v but not
on the molecular weight.

Figure 9 shows the pressure distributions. Once again, the two unphysical v = 1.4
equations of state produce the same solutions, neither of which is quite the same as the
solution with the correct parameters. In all cases, there is no pressure gradient across the
contact surface. There is an interesting feature in the pressure in the incoming air, however.
It has been reshocked by slightly different shocks reflected back to the right off the contact
surface. The reflected shock strength depends slightly on the ratio of specific heats in the
SFg, but not on the molecular weight.

Figure 10 shows the temperature distributions. Here we see big differences in both
the singly and doubly shocked SFg. If you are doing a problem that requires accurate
temperatures, such as chemical reaction rates or opacities, then clearly it is important to use
the correct equation of state.

Figure 11 shows the internal energy distributions. The only point of interest is that
unlike the temperature, the internal energies are the same for the two unphysical v = 1.4
equations of state. The internal energy for the singly-shocked air is the same also for the
correct equation of state, but it is decidedly different for the “compromise” v = 1.3 solution.

Figure 12 shows the velocity component in the direction of the centerline. For the
three v # 1.3 solutions, the incoming air velocity does show a significant v dependence,
and a very tiny molecular weight dependence. The bumps in the region around 3 to 4 cm
are perturbations due to the two-dimensional motion that increases the amplitude of the
instability in the contact surface.

Table 2 summarizes the instability (peak-to-peak) growth rates and translation speeds
for the experiment and for two numerical solutions. One solution, Case 2, is from refer-
ence [1], in which the computed growth rate is twice the experimental growth rate. The
other solution, Case 3, is taken from the run shown in figure 2. The numerical values were
obtained by measuring graphical computer output and used the locations of the middle con-
tour in the contact surface at two different times. This is the correct feature to measure
in Case 3 because it minimizes errors in the growth rate due to numerical diffusion of the
contact surface. The precision of these values is approximately 100 cm/s. The most notable
feature is the significant reduction in the computed growth rate compared to Case 2. How-
ever, the COYOTE growth rate still is appreciably larger than the experimental value. The

computed translation speeds are consistent with the experiment.



4 Conclusions

We have completed numerical simulations of a Richtmyer-Meshkov instability experiment
performed in a shock tube. The working fluids are air and SF¢, and the shock speed is Mach
1.24. We used four different approximations to the ideal gas parameters for the SF¢. This

study demonstrates several things.

1. Numerical diffusion, while not negligible on the fairly coarse mesh used, does not
seriously affect the parameters that we are most interested in. Since we are interested
only in gross differential changes in the solution as we vary the equation of state
parameters for the SFg, and since the one finer-mesh run showed no change in the

parameters of interest, there is little point to running additional fine mesh cases.

2. The amplitude of the singly-shocked mixed layer seems to be independent of the molec-
ular weights and ratios of specific heats. This is because the growth rate depends on
the amount of vorticity generated by baroclinic torques during shock passage of the
contact surface. If the pressure and density jumps are always the same, the vorticity

generation with always be the same.

3. The contact surface translation speed and location are insensitive to the equation of

state parameters. Perhaps this is a fortuitous consequence of the relatively weak shock

wave.

4. The shock location just before the reshocking of the contact surface does depend slightly
on the equation of state parameters, and the difference is expected to be more pro-

nounced for strong shocks.

5. The post-shock thermodynamic conditions depend sensitively on the equation of state,

even for this weak shock wave.

We note that these results may not carry over to cases with strong shock waves. Also,
it remains to be demonstrated that the insensitivity to the details of the equation of state
will carry over to the case of multimode contact surfaces, especially if there are wavelengths
present that are comparable to the zone size. However, the equation of state errors in the
calculations that inspired this study {2] should not be a significant source of error in the

predicted growth rate of the mixed layer.
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Table 1.
COYOTE Input File

Base Case Input (cgs units)

&coydat

ncyc=0,

lpr=0, idebug=0,

nclast=25000, ncfilm=50000, tclast=1.e-03, printv=5.e-05,

nsubzx=2, _

izxtype(1)=1, subzxl(1)=0., subzxr(1)=10., noxz(1)=201, subdx1(i)=0.,

izxtype(2)=2, subzx1(2)=10., subzxr(2)=34., noxz(2)=141, subdx1(2)=0.05,

nsubzy=1, _

izytype(1)=1, subzyl(1)=1.875, subzyr(1)=5.625, noyz(1)=76,

alpha=0.2, beta=0.8,

dtmax=6.e-07, delt=2.e-07, autot=1.0, cyl=0.d+00,

kl=1, kb=1, kt=1,

kr=6, epsp=1.e-06, airmu=0., rhood=1.,

xlam0=0.2, xlamfl=0.d+00,

ndtits=40, dtrat=1.005d+00,

gx=0.d+00, gy=0.d+00,

xnumol=0.0d+00, scmol=0.9d+00, prmol=0.9d+00,

swrl=0.d+00,

tcut=700., tcute=1200., itptype=2,

tvilag=1.,

nregn=3, ispecl=2,
is(1)=202, ie(1)=342, js(1)=1, je(1)=77,
treg(1)=331.8,
rhoreg(1,1)=0.0,
rhoreg(1,2)=1.7285e-03,
rhoreg(1,3)=0.,
ureg(1)=-1.229e+04,
vreg(1)=0.,
omgreg(1)=0.,
tkereg(1)=0.,
epsreg(1)=0.,
is(2)=1, ie(2)=201, js(2)=1, je(2)
treg(2)=287.7,
rhoreg(2,1)=0.0,
rhoreg(2,2)=1.2250e-03,
rhoreg(2,3)=0.,
ureg(2)=0.0,
vreg(2)=0.,
omgreg(2)=0.,
tkereg(2)=0.,
epsreg(2)=0.,
is(3)=-1, ie(3)=86, js(3)=1, je(3)
treg(3)=287.7,
rhoreg(3,1)=0.d4+00,
rhoreg(3,2)=0.d+00,
rhoreg(3,3)=6.1854d-03,
ureg(3)=0.0,

1
~
~

i

77,
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vreg(3)=0.,
omgreg(3)=0.,
tkereg(3)=0.,
epsreg(3)=0.,
keps=0, atke=0., dtke=0., charl=0.175,
algsgs=0., xnusgs=0., cbuoy=1.4, lrect=2,
charlf=0.d+00, charlg=0.d+00,
cbscat=0., prsgs=0.7, scsgs=0.7,
nobs=0,
nsp=3,
eosform(1)=1., gamma(1)=1.6667, wt(1)=4.,
eosform(2)=1., gamma(2)=1.4000, wt(2)=28.9256,
eosform(3)=1., gamma(3)=1.0935, wt(3)=146.0544,
&end
&tranco
mixvis=2,
jdrflg=0, jdradv=1, jdrsm=1, jdrdbg=0,
$end
&chemin
nre=0, nrk=0,
ntaps=0, printt=1.05, kwikeq=2, jchem=7,
&end

Benjamin RM instability test problem 2/1/99

The gasdata file has 3 species, and we used the Lennard-Jones parameters:

Species sigma (A)  epsilon/k_B

1 He 2.576 10.2

2 N2 3.621 97.53 (used these for air)
3 SF6 5.2562 207.7

Table 2. Growth Rates and Translation Velocities (cm/s)
Case EOS Parameters Growth Rate Translation Vel.

T Expt. 5] 1580 8100
2 CW [ 3080 7800
3 Air-SFg (Figure 2) 2420 7740
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Density cycle= 0 t= 0.000000D+00 di= 2.000000D-07
max = 6.185400D-03 min = 1.225000D-03 dq = 4.960400D-04

Figure 1: Density at ¢ = 0.0 ms in the left 10.478 cm of the grid. The shock is seen at the
far right, and it is moving to the left. The interface is 7.5 cm from the left. The first three
figures use the correct gas physics for the SFg.
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Density cycle= 1088 t= 6.002369D-04 dt= 6.000000D-07
max = 2.031632D-02 min = 1.851387D-03 dq = 1.846493D-03

Figure 2: Density at ¢ = 0.6 ms. The vertical contours at the left are the shock wave, which
has been reflected off the left boundary. The curved contours are the air-SFg contact surface.
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Density cycle= 1088 t= 6.002369D-04 dt= 6.000000D-07
max = 1.973155D-02 min = 1.941900D-03 dq = 1.778965D-03

é

Figure 3: Density at £ = 0.6 ms, the same as the previous figure, except the run was made
with pure donor cell differencing to test the effect of numerical diffusion on this problem.
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Density cycle= 1373 t= 6.003324D-04 dt= 5.465480D-07
max = 1.999216D-02 min = 1.887352D-03 dq = 1.810481D-03

Figure 4: Density at ¢ = 0.6 ms for the same case as shown in Figure 2, except this run has
twice as many zones in each direction.
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Density cycle= 1088 t= 6.002369D-04 dt= 6.000000D-07
max = 1.549932D-02 min = 1.941366D-03 dq = 1.355795D-03

Figure 5: Density at ¢ = 0.6 ms for the case with v = 1.4 and the correct molecular weight
for the SFg.
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Density cycle= 1088 t= 6.002369D-04 dt= 6.000000D-07
max = 1.553979D-02 min = 1.427397D-03 dq = 1.411239D-03

;

Figure 6: Density at ¢ = 0.6 ms for the case where the SF¢ is approximated by cold air with
v =14.
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Density cycle= 1088 t= 6.002369D-04 di= 6.000000D-07
max = 1.757307D-02 min = 1.507563D-03 dq = 1.606550D-03

?

Figure 7: Density at t = 0.6 ms for the case where the SFg is approximated by cold air. All
regions of the fluid use v = 1.3, which affects the shock strength when we hold the Mach
number fixed.
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Figure 8: Density as a function of z along the centerline of the grid at ¢ = 0.6 ms for all four
SFs equation of state models. The solid line is for the correct SFg equation of state, and the
line with long dashes is for the correct molecular weights but v = 1.4. The line with short
dashes is the case with SF¢ modeled as cold air, which has a different molecular weight and
v = 1.4. The dotted line is the case with both gases represented by air with v = 1.3. The
two dashed lines coincide in this plot.
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Figure 9: Pressure as a function of z at { = 0.6 ms for all four cases. The two dashed lines

coincide in this plot.
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Figure 10: Temperature as a function of z at ¢ = 0.6 ms for all four cases.
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lines coincide in this plot.
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Figure 11: Internal energy as a function of z at ¢ = 0.6 ms for all four cases. The two dashed
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Figure 12: Velocity as a function of z at ¢ = 0.6 ms for all four cases. The two dashed lines
nearly coincide in this plot.
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